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Abstract

Disseminating data in a wireless distributed system under limited
resources, where nodes have constrained energy and communica-
tions capabilities, is challenging. In such contexts, common data
dissemination technics cannot be used. Instead, simple device-to-
device communication policies allows to mitigate the impact of
communications on nodes energy consumption. However, depend-
ing on nodes configuration (up-times duration, wireless technology
capabilities and energy consumption), choosing a suitable commu-
nication policy is challenging.

In this paper, we propose and study two approaches based on
classification algorithms that aim at predicting the most suitable
communication policy to use, for a given node configuration, to
match a given coverage and energy consumption target. The first
approach called in situ learning, trains the classification models dur-
ing deployment. The second approach called offline learning, uses
existing data that are collected from previous deployments or simu-
lations. Results show that, for a resource constrained environment,
common classification models can take several months to converge
with in situ learning. Depending on the policy, in situ learning can
have a significant energy consumption overhead. Results underline
offline learning as an interesting alternative to in situ learning, but
requires to collect data from previous deployments or simulations.
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1 Introduction

Environmental monitoring based on distributed systems is a crucial
need for various applications. It allows to record the evolution of
several phenomenons such as CO2 concentration, water quality
or earthquake detection over large areas [1]. These distributed
systems must perform various tasks such as sensing, processing
and disseminating data. They can be built with technologies from
the Internet of Things (IoT), Wireless Sensor Networks (WSN) and
more generally Cyber-Physical System (CPS). Depending on the
context they are deployed in, performing environmental monitoring
can be challenging.

The Arctic Tundra (AT) is a particularly harsh environment to
monitor, with large isolated areas, where (i) nodes are expected to
operate for several months, under a very limited energy budget; (ii)
mobile networks provide little to no coverage on the monitored area,
forcing nodes to rely on their own wireless technologies; (iii) nodes
are not consistently reachable because of harsh weather conditions
(heavy snow, rain, humidity etc.). Consequently, monitoring and
disseminating data in this context is difficult to achieve.

To tackle this problem, different loosely-coupled communica-
tion policies are proposed in [2]. This related work studies four
communication policies that can be used in the AT context. Two
metrics are considered: 1) the energy consumption 2) the coverage
(representing the number of nodes that received the data). This
related work highlights that, in a given context, a policy can be
better than another. Also, depending on the use case, full coverage
is not always required, especially in scenarios with energy con-
sumption constraints. A trade off between coverage and energy
consumption must be found. According to the node configuration
(up-times duration, wireless technology capabilities and energy
consumption), this trade-off can change.

In this paper, we study the performance of two supervised learn-
ing classification algorithms, when predicting the policy to use
according to (i) node configuration, (ii) the targeted coverage and
(iii) the energy consumption budget. To train these models, two
learning approaches are proposed. The first one, called in situ learn-
ing, consists in training the models during deployment. The second,
called offline, consists in using the data collected from simulations
or previous deployments. The contributions of this paper are:

o A study of the usage of classification models to predict the
appropriate data dissemination policy, under energy con-
sumption and coverage constraints, for systems deployed in
scarce resource environments, like [2, 3].

o A study of in situ and offline training for the chosen analytical
models, for resource constrained environments.

This paper is organized as follow. Section 2 presents the state of
the art. Section 3 details the analytical process followed along with
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the two approaches used to train the models. Then, Section 4 and 5
present the results of both approaches. Finally, Section 6 concludes
this work.

2 State of The Art

Disseminating data in a distributed system that monitors the en-
vironment is crucial to back up data, coordinate nodes or provide
feedback to the users. However, it is challenging when it is con-
strained in energy and communication capabilities.

Several works provide structure-based solutions to save energy
during communications using Q-Learning algorithms [4, 5]. Simi-
larly, clustering-based solutions are proposed to tackle these issues
[6-8]. However, the proposed algorithms are not loosely-coupled,
as they require additional communications to operate and coordi-
nate nodes. Consequently, they cannot be used in scenarios like
the AT with low nodes availability, communication bandwidth and
energy resources.

To mitigate the usage of communications, Machine Learning
(ML) based node reconfiguration can be used to learn from nodes
communication history and existing data. In [9], authors use rein-
forcement learning algorithms to schedule Time Slotted Channel
Hopping (TSCH) 802.15.4 radio communications. Similarly, the
authors in [10] use random forest classifiers to determine the con-
figuration parameters to use for 802.15.4, in a dynamic IoT network.
However, these contributions are specific to the 802.15.4 and cannot
be used with various wireless technologies.

In [11], authors propose a global approach based on Q-Learning.
The model self-adjusts the duty-cycle of wireless nodes to reduce
their energy consumption. Despite being a global approach to the
problem, the work focuses on reducing the nodes energy consump-
tion by acting on their orchestration rather than focusing on the
algorithms to disseminate data.

In [12], authors propose a Q-Learning solution that can work
with any wireless technology. It maximizes the nodes operation
time by adjusting the duty-cycle periods, while taking into account
energy harvesting. Similarly, authors in [13] propose an energy
manager for wireless sensor networks, that takes into account
energy harvesting. Despite being wireless technology agnostic,
these solutions target the energy management of the nodes without
taking into account the dissemination of data nor its cost in energy.

To the best of our knowledge, literature does not provide a solu-
tion to determine the network communication policy to use among
several ones, when it can significantly impact the coverage and
nodes energy consumption. In such a context, nodes configuration
must be taken into account as it impacts both coverage and energy
consumption. In this work, we propose to study how classifica-
tion algorithms can provide a solution, for nodes in a constrained
environment like the AT.

3 Analytics for Data dissemination policies

This section presents an overview of a distributed observatory
in an environment with scarce resources (the Arctic Tundra) its
data dissemination policies and the metrics used to evaluate our
proposed classification approaches.

Trovato et al.

3.1 Data dissemination policies under
constrained environment
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Figure 1: Overview of the observation system architecture.
The “Back-end” hosts a set of services, like [2]. Its connectiv-
ity to Observation Nodes (ON) deployed in the Arctic Tundra
uses the gateway (when rarely available). This wireless gate-
way is used for 1:1 communications between ONs, forming a
star topology.

In related work [3], a distributed monitoring infrastructure for
constrained scenarios is proposed. The architecture for network
of nodes is depicted Figure 1. The Observation Nodes (ON) are
in charge of monitoring the environment and communicate with
other ON and the back-end, though a gateway. The ON communi-
cates using one of the available policies: Baseline, Hint, Extended or
Hint+Extended (c.f Figure 2):

Baseline — Nodes wake up at a random time, each hour, for a dura-
tion called up-time. When an overlap between the sender and the
receiver up-time happens, the sender starts transmitting data. If one
of the nodes up-time ends, ongoing communications are aborted
and the node turns off.

Extended — Compared to Baseline, the Extended policy does not
abort ongoing communications and nodes keep communicating
until data is transmitted. It implies that up-time duration of nodes
can be extended.

Hint - The Hint policy is based on Baseline. The sender performs
additional communications to send a timestamp to receivers. It
informs the receiver about the sender’s next up-time, to increase
the likelihood of overlap between them. This timestamp can be
gossiped between receivers.

Hint+Extended — This policy combines the principles of the Ex-
tended and Hint policies, with the aim of combining their effects.

In [3], simulations were performed to study the impact of the
policies on coverage and nodes energy consumption.

Since the arctic tundra is a particularly difficult and wide envi-
ronment, it requires long range communication capabilities. Low
Power Wide Area Network (LPWAN) wireless technologies allow to
reduce the energy consumed during wireless communications [18].
To extend lifetime, nodes have short and sparse daily up-times. To
match reality, the simulations from [3] use parameters presented Ta-
ble 1. Each run simulates 24 hours of deployment for 13 nodes that
operate and wake-up randomly each hour for an up-time duration
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Figure 2: Example of communication scenarios for each policy. Messages, up-times and added up-times are represented as

arrows, gray and green rectangles, respectively.
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Figure 3: Results from [3] showing the overall energy con-
sumption of the nodes according to the coverage achieve by
the nodes communication policy.

of 1min or 3min. During each simulation, a sender node attempts
to communicate with the 12 receivers to forward data. Nodes can
either use LoRa or NbloT as wireless technology, depending on the
simulated scenario.

Table 1: Simulation Parameters

Parameters Value Citations
Bandwidth (Ltnc) LoRa  50kbps (0s) [14, 15]
NbIoT  200kbps (0s) [14]
Energy states P;y,  04W [16]
LoRa  0.16W or 32mA at 5V [17]
NbIoT 0.65W or 130mA at 5V [17]
Up-time Long 3 min/hour
Short 1 min/hour
Data size 1MB
# Receivers 12

Related work [3] shows that each policy has a different impact
on the coverage and the energy consumption of nodes. Figure 3
summarises the results for each node configuration. This figure
shows the energy consumption and coverage for each combination
of policy, wireless technology and up-time duration. It shows a
wide trade-off between different available parameters.

When the scenario requires to meet a certain energy consump-
tion budget for a given coverage, a policy could answer one con-
straint while violating the other. To solve this problem, a model
predicting the appropriate policy to use for a given coverage and
energy budget must be introduced. This work proposes to study
the feasibility of such predictions, using classification models.

3.2 Models and Approaches

Machine learning classification models allow to predict the class of
an new instances based on their features. In our case, we want to
predict the policy to use (class) based on the nodes configuration
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(features), for a given coverage and energy budget (features). Thus,
supervised learning classification algorithms is a perfect fit.

This work focuses on two commonly used supervised learning
classification algorithms: K-Nearest Neighbours (KNN) and Classifi-
cation and Regression Tree (CART). Two different learning methods
are investigated in this work: in situ and offline. The aim of in situ
learning is to perform the training after deployment. With this
approach, no prior experiments are required to collect data and
train the models. However, it requires to have a learning period
for the models to converge. The offline learning approach uses
data collected from simulations or previous deployments to make
predictions. No learning period are required during the deployment.

The presented experiments use the R classification packages class
(KNN), rpart (CART) and MLMetrics (classification performance
metrics). The source code is available online ! and the reproducibil-
ity is improved with the Renv package.

3.3 Performance Metrics

To measure how precise and accurate the predictions of the models
are, classification performance metrics must be used. The first one
measures the overall model accuracy and is defined as follow:

> TP,
C
OAcc = e 1
= S TP, + TN, + FP, + FN, @
ceC

Where C = {Baseline, Hint, Extended, Hint+Extended} is the set
of predicted classes with ¢ € C and TP, TN, FP., FN, the number
of True Positive, True Negative, False Positive and False Negative,
respectively. This metric measures the total percentage of correctly
predicted classes, for each model.

Next, three common metrics for performance measurements of
classification models are used [19]. First, the recall, for each class c:

TP
recallp = ——< — 2)
TP. + FN.
The recall measures the percentage of instances, from class c, that
are correctly classified. Second, to account for False-Positive pre-

dictions, the precision is defined as:

.o TP
precision, = ———o- 3)
[ [

Third, to synthesize both metrics (recall; and precision,), the F1-
Score is defined as the harmonic mean:
recall. X precision,

Fl,=2X — 4)
recall; + precision,

Since F1-Score accounts for both recall; and precision,, it provides
enough information to state about the model performance. Thus,
only F1. are reported in the results.

In our use-case, two other metrics are used. First, the overall
nodes energy consumption, defined as:

Erotal = Z En (5)
neN
With N representing the set of nodes in the network and E,, the

energy consumption of node n.

Uhttps://gitlab.com/manzerbredes/loosely-policies-analytics
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Finally, the coverage achieved by the communication policies is
measured. It represents the total number of nodes that received the
data transmitted by the sender.

4 In situ Approach Analysis

This section presents the studied scenario and analyses the results
of the in situ training approach.

4.1 Scenario and Hypothesis

As explained in Section 3, the in situ training approach consists in
training the KNN or DT models on the deployed nodes. To train the
models, the sender node performs communication attempts every
day and monitors the required metrics. In our case, these metrics
are E; 4,47 and the coverage achieved, each day. These metrics are
used as the model inputs. We study the training period in an ideal
scenario, where at least OAcc > 0.8 and a F1; > 0.8 threshold is

reached for all class c, the same order as good classifiers [20, 21].
The following assumptions are set :

(1) All nodes use the same set of configuration parameters from
Table 1

(2) All nodes use the same policy for a given day, changed in a
round-robin scheme

(3) The sender has access to the monitored metrics from other
nodes, with no communication overhead

These assumptions allow us to study the KNN and DT classifiers
for the in situ approach.

4.2 Analysis

Based on data from related work [3], we study how in situ training
performed in terms of learning curve [22], E;,;, and coverage
compared to communication policies. The results of this analysis
using KNN and DT classifiers are depicted on Figure 4.

The Figure 4a shows the accuracy of a given model throughout
the training duration. This figure shows that scenarios with 60s of
up-time have a longer training period compared to scenarios with
180s up-time. In fact, with the DT model, it takes more than a year
to reach 0.7 accuracy with 60s up-time where it is reached after 4
months with 180s up-time and the 0.8 threshold is not even reached.
Similarly, the wireless technology has a significant impact on the
models learning curve. Depending on the nodes configuration, the
learning curves of both models are difficult to predict. For example,
the KNN model reaches an accuracy of 0.5 after 13 months with
NblIoT and 60s up-time, whereas with 180s up-time, it reaches more
than 0.7 accuracy after four months. This range of uncertainty
makes it difficult to determine the earliest time by which the models
can be used on the nodes.

Figure 4b shows the evolution of the F1-Score, for each model
and class. These results show no specific trend for the classes under
the KNN model. However, using the DT model, Baseline reaches a
high F1-Score (more than 0.8) in less than four months. As shown on
Figure 3, it is explained by the fact that, Baseline is easily predicted
as it is linearly separable from Extended and Hint+Extended.

Figure 4c shows the evolution of the difference in E;,;,; between
a fixed class for all nodes and the in situ approach, through time.
Negative values means that in situ training consumes more energy
than using the given class and positive values means the opposite.
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Figure 4: In situ training results generated from [3], for each wireless technology and up-time duration. Figure 4c shows the
difference in energy consumption between a given policy and in situ training. For each curve, three parameters are given:
1) s, the slope obtained by linear regression (in J/day) 2) ¢y, the average coverage per day, for a given policy 3) c;, the average

coverage per day of in situ training,.

For each curve, three parameters are given: (i) s represents the linear
regression’s slope of the curve in J/day; (ii) ¢, (for coverage policy)
represents the average coverage achieved by the fixed policy, per
day; (iii) ¢; (for coverage training) is the average coverage of in situ
training, per day.

For every nodes configuration, the results highlight the impor-
tance of using the correct class if we are not performing in situ
training. In fact, the difference in energy consumption between
each class and in situ training increases significantly over time.
With LoRa and an up-time of 180s, Hint consumes more energy

compared to in situ training per day with s = 2 343]/days. Over
time, after 20 months, this difference reaches 1500k]J. In the same
scenario, in situ training consumes 1276 more per day compared
to Extended while achieving a greater coverage (c, = 10.9) close to
Hint (cp = 11.2).

In most nodes configurations, there is a class that achieves a
coverage at least as good as in situ training (cp >= c;) or close
to it (lcp — ¢;| < 1) while consuming less energy (s < 0). This
is not the case for LoRa with 60s up-time since, as explained by
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related work [3], Hint and Baseline do not extend the nodes up-
time which prevents the data from being transmitted. With this
node configuration, the Hint and Extended are the two classes that
consume the highest amount of energy. But, they are able to achieve
a coverage greater than in situ training by reaching at least two
more nodes, in average. All classes that consume less energy than
in situ training, have a coverage equal to 0. Thus, performing in situ
training in these cases would always be beneficial, when achieving
coverage is crucial.

4.3 Discussion

The analysis of in situ training approach for a resource constrained
environment provides interesting conclusions. It shows that, in
situ training for the classification models used in this work, under
resource constrained environments (i.e short up-time duration in
a LPWAN context, even with relaxed assumption) is a challenge.
The duration of the training period ranges from several months to
years. But different methods can be used to leverage this duration.
As seen in the results, the nodes configuration (chosen wireless
technology or up-time duration) has a significant impact on the
learning curves and can be used as a leverage.

Designing policies with very distinct behaviors helps in reducing
the duration of the training period. Other training schemes should
also be investigated such as reducing the turnover of policies (e.g
going from 24h per policy to 12h). The results also show that, KNN
and DT have different learning curves. Hence, studying other clas-
sification algorithms such as Random Forest or multi-class Support
Vector Machine could be interesting and impact the learning period.

On the energy consumption perspective, performing in situ train-
ing of the model has a cost in energy consumption. For all node
configurations, there is a policy that consumes less energy than
in situ training while still maintaining a good coverage. However,
using the appropriate policy instead of in situ training is important
as the energy consumption adds up rapidly over time. But choosing
the policy is not trivial as it depends on the nodes configuration and
the trade-offs between the coverage and the energy consumption.

5 Offline Approach Analysis

This section presents an analysis of the offline approach, which
consists in predicting the communication policy to use (using KNN
and DT), prior to perform real nodes deployment.

5.1 Models Performance

Table 2: F1-Score and accuracy of KNN and DT

F1-Score
Model Baseline Hint Extended Hint+Extended OAcc
KNN 0.83 0.73 0.90 0.79 0.69
DT 090 0.75 0.86 0.79 0.70

Table 2 summarize the prediction performance of the KNN and
DT, for the offline approach. F1-Score of each class and the overall
model accuracy for both models are shown. For our use case, we
consider that having a F1-Score of at least 0.8 is sufficient. This
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Figure 5: Overview of the decision tree used by the DT model.

table shows that both, KNN and DT, have similar overall accuracy
(0.69 and 0.7 respectively). F1-Score for Baseline and Extended are
accurate (greater than 0.8, using both models). For Baseline, F1-Score
for DT is greater than KNN. For Extended, F1-Score of the KNN is
greater than DT. However, both models have a lower F1-Score on
Hint.

In fact, Figure 3 shows that both Hint and Hint+Extended provide
similar coverage in the scenarios with NbloT and 180s or 60s up-
time. For the scenario using LoRa and 60s up-time duration, Hint
and Baseline have similar results since neither of them is able to
improve the coverage. For this scenario, even if, in most cases, Hint
increases the energy consumption compared to Baseline, there is
still a significant overlap in terms of coverage and energy consump-
tion between both classes. These observations suggest that Hint,
Baseline and Hint+Extended have similar behavior in many cases
which contributes to reducing models’ prediction accuracy.

Figure 5 depicts the complete decision tree produced by the DT
model. This tree represents the set of rules followed by the model
to perform its predictions. It contains two types of vertices. The
decision vertices and the leaf vertices. Starting from the top of the
tree, the decision vertices determine the next decision vertex based
on a decision criteria. In our case these criteria are the coverage, the
energy consumed by the nodes, the up-time duration and the wire-
less technology used. This process continues until a leaf vertex is
reached. The class of this leaf vertex determined the predicted class.

This figure shows that Baseline, Extended and Hint+Extended
have distinct distributions in the tree compared to Hint, that is part
of both main branches of the tree. As shown by the leaf vertices,
Hint is part of at least one of the leaf nodes that are classified as
Baseline, Extended or Hint+Extended. Its proportion is significant
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in Baseline (up to 0.33) and Hint+Extended (up to 0.18) as pointed
by the green arrows of Figure 5. Consequently, to improve the pre-
diction accuracy of both classification models, we removed Hint
from the data set. Training models offline allows to perform this
type of optimizations. Two reasons justify this approach: (i) Hint
provides similar coverage than Hint+Extended in most cases, while
increasing the energy consumption of nodes; (ii) In the scenario us-
ing LoRa with 60s as up-time duration, Hint is an overhead in terms
of energy consumption compared to Baseline, while not improving
the coverage.

Table 3: F1-Score and accuracy of KNN and DT (no Hint)

F1-Score
Model Baseline Hint Extended Hint+Extended OAcc
KNN 0.88 NA 0.89 0.91 0.81
DT 0.93 NA 0.86 0.92 0.83

The Table 3 presents the F1-Score and the accuracy of both
models when Hint is removed from the data set. These results show
a significant improvement in F1-Score of each class and the accuracy
of the models. The lowest F1-Score is 0.86 (Extended class of the
DT model) and the lowest accuracy is 0.81 (KNN). Given the better
performance of KNN and DT using this new data set, the analysis
of this section assumes that Hint is not taken into account.

5.2 Evaluation Through Simulations

Table 4: Offline Learning Simulation Results

. . - A Network
Wireless Up-time Model A Eiopar () Coverage
KNN -171.89(120)  -0.78(0.88)
60s
DT -207.11(123)  -1.05(0.90)
LoRa
KNN  -2629.47(203)  0.11(0.44)
180s
DT -2924.29(173)  -1.44(0.38)
KNN -560.44(68)  -0.53(0.38)
60s
DT -521.77(62)  0.19(0.35)
NbIoT
KNN -1543.86(378)  1.51(0.43)
180
S pr -1874.18(357)  1.36(0.41)

As presented in Section 3, the data used to train and test our
KNN and DT models are simulation results extracted from related
work [3]. To evaluate both models with the offline training approach
in a similar context, the simulator proposed in [3] is reused. The
simulation’s parameters are identical to [3] and reported in Table 1.

For each wireless technology tuple (LoRa or NbloT) and up-
time duration (60s and 180s), 100 random energy consumption and
coverage targets are uniformly selected between their respective
minimum and maximum values from the results of Figure 3. The
goal is to replicate the selection of an energy consumption and a
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coverage target for a real node deployment. For a given target, a
prediction using one model (KNN or DT) is derived and used by all
nodes of the simulation. Similarly to [3], each simulation is run 200
times with the aim of evaluating each scenario with 200 random
node up-time schedules.

The simulation results are aggregated in Table 4. This table
presents the average difference between the simulated metric (en-
ergy consumption of the nodes and coverage) to random target
values. Negative values means that the simulated metric is lower
than the chosen target and positive values means that the simulated
metric is greater than the chosen target. Standard deviations over
the 200 runs are reported in parenthesis.

The results show that the node’s up-time duration has a ma-
jor impact on the model predictions. When using LoRa and the
KNN model, the average A for the energy consumption varies from
—171.89] with 60s up-time to —2629.47] with 180s up-time (a small
increase in the standard deviation is also visible). This variation of
the average A for the energy consumption is also visible for the DT
model and, similar trends are shown by the results with NbIoT.

Regarding the average delta in coverage, it never exceeds more
than +£1.51 nodes with a small standard deviation (lower than 1).
Half of the scenarios cover more nodes than the chosen target.

From these observations, two major conclusions can be derived.
First, there are parameters that impact significantly the differences
between the target and the results obtained by simulation. In this
case, the wireless technology and the up-time duration have an
important impact. This difference is visible on Figure 3, where the
data distribution is significantly different according to these two
parameters. Second, the performance of the two models at pre-
dicting the target energy consumption and coverage is dependent
on whether the target can be reached. The targeted energy con-
sumption and coverage must be chosen within reachable ranges, to
ensure comparable and meaningful predictions.

Concerning the comparison between the KNN and DT, there is
no significant difference in using one or the other. As an example,
when using LoRa with an up-time of 180s the KNN predictions
leads to an increase in energy consumption (greater average E;ozq1)
compared to the DT, but with a better coverage. In most cases, KNN
predicts classes with a greater coverage compared to DT while DT
predicts classes with lower energy consumption. Thus, in scenarios
where energy consumption is the priority, DT is a better choice
compared to KNN whereas in scenario where the coverage is more
important, KNN should be used.

Both models consume less energy than the target, with a cover-
age close to the target. In scenarios such as NbloT with an up-time
of 180s, the KNN model predictions achieve a better coverage com-
pared to the target, while providing a lower average E;;4;. These
results show that these methods can be a leverage to extend nodes
lifespan, while maintaining a coverage close to the target.

5.3 Discussion

Choosing the correct data dissemination policy to use in deploy-
ment with the offline approach is promising. It allows an energy
and coverage aware node deployment. It permits optimisations
that are not easy to implement using in situ (e.g removing Hint
from the dataset). As the model outcomes are based on existing
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data, it is crucial that it reflects the behavior of real deployments.
Data can be collected through simulations, test-beds experiments,
real deployments or from related works. In addition, the energy
consumption and the coverage target must be reachable based on
the collected data to ensure accurate predictions of the models.

6 Conclusion

Disseminating data in a extremely constrained environment is a
challenging task. The design of loosely coupled data dissemination
policies in such context is proposed in [3] and it is a first attempt
to answer this challenge. However, choosing the appropriate policy
to match a given coverage and energy consumption target is an
unanswered challenge. To solve this problem, this paper proposes
to use classification algorithms and two training methodologies.

A study of an in situ learning approach of two classification mod-
els is provided. This study reveals that, even with relaxed assump-
tions (concerning the costs of communications during the training
period), models can take several months to reach a threshold of 0.8
accuracy and F1-Score of 0.8. In situ learning can still be interesting
in terms of coverage and energy consumption, when compared to
fixed policies in given scenarios (e.g Hint+Extended using NbIoT).
However, in situ has a significant energy consumption overhead,
compared to other policies such as Baseline or Extended policy.

An offline approach, based on the same classification models,
is proposed. Its analysis shows that classification models are able
to predict the data dissemination policy that can match a given
energy consumption budget and coverage target. For constrained
environments, using offline trained models is a better trade-off, as
in situ training has significant energy consumption overhead, even
with relaxed assumptions concerning the costs of communications
during the training period.

Future works include the investigation of the evolution of model
learning curves on various network scales and compare them against
real deployments. Learning curves of un-evaluated classification
models should be studied, as it is a potential leverage to reduce the
models training duration.
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