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Abstract—A Cyber-Physical System (CPS) deployed in remote1

and resource-constrained environments faces multiple challenges.2

It has, no or limited: network coverage, possibility of energy3

replenishment, physical access by humans.4

Cyber-physical nodes deployed to observe and interact with5

the Arctic tundra face these challenges. They are subject to6

environmental factors such as avalanches, low temperatures,7

snow, ice, water and wild animals. Without energy supply8

infrastructures and humans available, nodes must achieve long9

operational lifetime from a single battery charge. They must be10

extremely energy-efficient. To reduce energy costs and increase11

their energy efficiency, cyber-physical nodes sleep most of the12

time, and avoid to communicate when they are unreachable.13

But, a CPS needs to disseminate data between the nodes for14

multiple purposes including data reporting to a back-end service,15

resilient operations, safe-keeping of observational data, and16

propagating nodes updates. Loosely-coupled data dissemination17

policies offer this possibility [1]. Although, investigations should18

be made on their applicability to large-scale CPS.19

In this paper, we evaluate and discuss the efficiency in energy,20

time and number of successful delivery of four data dissemination21

policies proposed in [1]. This evaluation is based on flow-level22

simulations. We study small and large-scale CPS, and evaluate23

the effects of the number of nodes and the size of the disseminated24

data on the nodes energy consumption and the dissemination’s25

delivery success. To mitigate negative effects raised on large-scale26

CPS and large disseminated data sizes, different strategies are27

proposed and evaluated. We show that energy saving strategies do28

not always imply energy efficiency, and better data dissemination29

often comes at a cost. This last result highlights the importance30

of simulation prior to real CPS deployments in constrained31

environments.32

Index Terms—CPS, data dissemination, energy efficiency, scal-33

ability, networks, tundra, monitoring;34

I. INTRODUCTION35

Cyber-Physical Systems (CPS), Wireless Sensors Network36

(WSN) and the Internet Of Things (IoT) are applied in37

various domains [2] such as Environmental [3], Flora and38

Fauna monitoring [4], Habitat monitoring [5], Health Care [6],39

Military [7], Industry and Urban management [8]. To com-40

municate, they rely on various wireless technologies (such as41

LoRa, Wi-Fi, Nb-IoT etc.) to ensure connectivity among the42

nodes and a potential back-haul network. Wireless commu-43

nications offer great flexibility in terms of deployment since44

CPS are meant to reach a degree of autonomy, directing the45

research towards the optimization of communications and node46

operations.47

The Arctic tundra is a particularly harsh environment and 48

pushes existing monitoring solutions to their limits. Monitor- 49

ing the Arctic tundra requires to deploy energy efficient nodes, 50

expected to operate for long time periods. The Arctic tundra 51

offers little to no coverage by cellular networks coupled to 52

extreme weather conditions. The success of this monitoring is 53

driven by the energy efficiency of nodes and the availability 54

of data when and where needed. 55

The Distributed Arctic Observatory (DAO) at The Arctic 56

University of Norway (UiT), is the context of this paper. The 57

DAO project relies on Computer Science research to address 58

the challenges raised by the monitoring of the Arctic tundra. 59

Sensing nodes, called Observation Nodes (ON), are deployed 60

in-situ. ON are expected to operate for months and even years. 61

To ensure the availability of data collected by these nodes, an 62

efficient data dissemination mechanism is required. 63

In [1], four loosely coupled data dissemination policies are 64

proposed in the context of the DAO project. Simulations are 65

carried out and the results reveal a great data dissemination 66

capability on each of these policies. Reasonable amount of 67

energy is consumed by the nodes for relatively small networks 68

(up to 12 nodes). With the aim of extending this work, mea- 69

suring the applicability of such policies on denser networks 70

is important and can enable their usage in other contexts. 71

Similarly, the disseminated data size can vary significantly 72

depending on the context, it is also crucial to quantify its 73

impact on the system. In addition, several energy saving 74

and data dissemination strategies can be used to improve the 75

performance of these policies in terms of energy consumption 76

and data dissemination. 77

In this paper, we propose a study of these four data 78

dissemination policies on large-scale deployments (up to 100 79

of nodes) using flow-level simulations. We also investigate the 80

impact of various disseminated data sizes, ranging from 1KB 81

up to 1GB. Several strategies that aim at improving each policy 82

in terms of energy and data dissemination efficiency are also 83

proposed. 84

The contributions of this paper are: 85

• An analysis of the applicability of loosely coupled data 86

dissemination policies for large-scale deployments and 87

various disseminated data sizes 88

• The evaluation of four energy saving and data dissemi- 89

nation optimization strategies 90
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• A detailed numerical comparison between new proposed91

strategies and our previous work [1]92

• A discussion on the data dissemination when applied to93

CPS in harsh environment94

The paper is organized as follow. Section II details the95

challenges raised by the DAO project. Section III presents96

the related work. Section IV presents the strategies for energy97

saving and data dissemination improvement along with the98

experimental setup used for their evaluation. The Section V99

details the simulation results for the scalability experiments100

that study the number of nodes. Section VI presents the results101

for the data size scalability study. The Section VII presents the102

evaluation of the strategies and a comparison to our previous103

results [1]. A discussion on the simulation results is proposed104

in Section VIII. Finally, Section IX concludes the work.105

II. MOTIVATING USE-CASE: THE DAO PROJECT106

This section presents the use-case of this work: the DAO107

project. First, the Arctic tundra and the difficulties to monitor108

it are covered. Then, the needs and the challenges for a dis-109

tributed observatory are exposed. Finally, a current deployment110

and the importance of data dissemination are described.111

A. The Arctic tundra, a complicated eco-system112

As depicted by Figure 1, the Arctic tundra is a large,113

remote, hard to reach, and potentially dangerous area. It is114

divided into three regions (High, Low and Sub Arctic) that115

are characterized by their unique eco-systems. By observing116

the Arctic tundra flora, fauna and environmental parameters,117

changes can be identified and tracked. Presently, less than 1%118

of the Arctic tundra is monitored. However, it is one of the119

most sensitive eco-system to climate change [9]. Therefore, to120

detect accurately climate changes, larger observations of the121

Arctic tundra are needed.122

The Climate-Ecological Observatory for Arctic tundra123

(COAT1) initiative is responsible for observing the Norwegian124

Arctic tundra, detecting and explain climate related changes125

to advise the public and the authorities.126

To do so, the state of the Arctic tundra is determined127

based on measurements of the flora, fauna, weather, and the128

atmosphere. From these measurements, several layers of data129

sets are generated. For example, species of captured animals130

can be detected from a first data set of images, creating a new131

data set. This new data set is analyzed to extract significant132

information such as the number of foxes and eagles detected133

at the different monitored sites. These insights are used as134

input to climate models. Finally, based on the results history135

of climate models, human understanding and decision making136

take place [9].137

A ground-based observation system can monitor large areas,138

do high resolution measurements at any time and promptly139

react to local events above and below ground. Data might be140

reported back at any time, regularly, or on-demand. To enable141

edge computing, significant processing and storage resources142

1https://www.coat.no/en/
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Fig. 1. North pole circumpolar area representing the Arctic tundra. It is
divided into three regions: High, Low and Sub Arctic.

can be added to the nodes. The DAO project focuses on such 143

ground-based observation approaches. 144

B. Towards a Distributed Arctic Observatory (DAO) 145

There are major obstacles to consider when building an 146

observation system for the Arctic tundra. In this environment, 147

energy is a scarce resource, especially in winter where the sun 148

does not rise. Deep snow makes wind-based energy replenish- 149

ment difficult to achieve. The lack of roads and associated 150

infrastructures makes it impossible to visit deployment sites 151

more than a very limited amount to fetch data, supply energy, 152

do repairs and updates. Availability of a back-haul network 153

to perform automated reporting of data can be limited or 154

non-existent. Thus, it is challenging to have sufficient energy 155

supply for nodes with advanced functionalities while still 156

getting long operational lifetimes. 157

A distributed Arctic observatory system must manage care- 158

fully two fundamental resources: energy and wireless data net- 159

works. Nodes are working on a limited energy budget provided 160

by batteries. As it is a complicated scenario (harsh weather, 161

short periods of sun exposition during winter), swapping bat- 162

teries by humans and regular energy harvesting are not plau- 163

sible solutions. Nodes can also fail after deployment because 164

of harsh weather conditions (snow, ice, low temperatures) that 165

could damage the hardware, or simply prevent nodes from 166

communicating. Consequently, nodes must implement a set 167

of functionalities, including autonomous operations to save 168

energy while still striving to observe and report. 169

While a back-haul network cannot be expected to be avail- 170

able as the common case, a node can have multiple local net- 171

works enabling communication with neighbors. Using a multi- 172

hop approach, data can be reported through multiple units 173

and finally to one that have access to the back-haul network 174

2

https://www.coat.no/en/


GATEWAY

ON0 ONn

Arctic Tundra

Back-End
Admins/Ecologists

Fig. 2. Overview of the system imposed by the Arctic tundra characteristics.
The back-end hosts a set of services [11]. Its connectivity to Observation
Nodes (ON) deployed at the Arctic tundra is sparse and unexpected. The
wireless gateway in the topology is only used for 1:1 communications between
Observation Nodes forming a star topology.

or is located on sites reachable by humans or drones [10].175

However, using the radio is energy-expensive. One approach to176

reduce transmissions is to reduce the number of bits exchanged177

between nodes. But such leverage applies only if the data can178

still provide similar analytic precision [11].179

In this paper we focus on delivering data from one node180

to neighbors in the context of nodes deployed and isolated on181

the Arctic tundra (i.e not accessible by a back-haul network182

as a common case). This work do not consider multi-hopping183

nor modifying the data, as shown in Figure 2.184

C. Data dissemination, a crucial need185

Presently, COAT ecologists use several approaches and186

instruments to observe the Arctic tundra [12], [13]. Typically,187

tens to a few hundreds of small dedicated instruments are188

deployed according to the expected location of interesting189

events. These instruments are deployed for multiple purposes,190

including images capture of animals. For hard to reach instal-191

lations, it takes up to 6-12 months before humans visit the192

site and fetch the data. These deployments are usually done193

in small clusters of 10 to 15 instruments. Each instrument194

is separated from hundreds of meters to kilometers. In such195

deployment context, disseminating data from nodes to their196

neighbors is crucial in many cases.197

a) Backing up important results: Deployed nodes can198

do local computation on local observations. Due to the high199

probability that deployed units crash (e.g through flooding,200

hardware failure) it can be important to duplicate the results201

from these computations. Important results must be dissem-202

inated to as many neighbors as possible, to keep the data203

safe and reduce the chance of loosing results. For example,204

in [11] we ease the dissemination of the data by reducing the205

size of captured pictures to reduce the number of transmitted206

bytes to a remote CNN deep learning application. For some207

deployments, both the full sized as well as the reduced sized208

photos should be disseminated inside a neighborhood for safe209

keeping purposes, until the data can be reported.210

b) Disseminate updates: Few to no nodes are expected211

to have connection with a back-haul network as it would212

be sporadic and unreliable. Since physically accessing to 213

the Arctic tundra is complicated and expensive, updates (e.g 214

configuration files, executable, packets or other newer content 215

for a receiver) must be delivered by the back-end. Updates 216

can come from users of the system such as ecologists or 217

administrators, as shown in Figure 2. When a node finally gets 218

an update, we can expect it to disseminate it to its neighbors. 219

As it is the only one getting the data from the back-end, it is 220

the only node that can be trusted to have a valid version of 221

the update files. 222

In all cases, the size of the disseminated data is not expected 223

to be very high, due the wireless technologies limitations, 224

energy and the availability of computing resources. The con- 225

straints related to batteries and energy consumption are tackled 226

in our previous work [4], [10], [11]. 227

III. RELATED WORK 228

A. Wireless technologies 229

Choosing the right wireless technology depends on the use 230

case. In our work, the use case is the Distributed Arctic 231

Observatory, and we are focusing on three main criteria: 232

1) the energy consumption 2) the communication range 3) 233

the bandwidth. The Arctic tundra is a particularly hostile 234

environment. Nodes are expected to survive for almost a year 235

without humans intervention. Having an energy efficient wire- 236

less technology allows to reduce nodes deployment campaigns 237

and having longer sensing periods. Performing long range 238

wireless communications is crucial and allows to cover larger 239

areas for the scientific measurements. Finally, using a wireless 240

technology with sufficient bandwidth allows to generate finer 241

grained data and improves the quality of measurements. Con- 242

sequently, we selected wireless technologies that provide good 243

compromise between these three criteria. Such technologies 244

are part of the Low-Power Wide Area Networks (LPWAN) 245

category. 246

The DASH7 Alliance (D7A) is an open source wireless 247

solution for WSN [14], [15]. Working at 433MHz, D7A 248

allows to achieve long range communications up to 2 km [16]. 249

It can be used with the D7A protocol allowing for star- 250

based network topology and device-to-device communications. 251

Hence, it offers great flexibility on the network architec- 252

ture. Moreover, D7A has good energy performance compared 253

to others LPWAN technologies [17] while providing up to 254

200kbps of applicative bandwidth [16]. This makes it suitable 255

for use in the Arctic tundra. 256

LoRa is another well known wireless LPWAN technology. 257

In networks that uses LoRa, gateways are deployed to offer 258

communication relay among the nodes and potentially a back- 259

haul network. Depending on the physical layer configuration, 260

LoRa provides long range wireless communications that can 261

reach up to 5-6km distances [18]. LoRa can deliver up to 262

50kbps [19] while being energy efficient. This makes LoRa a 263

good candidate for our use-case. 264

Next, Narrow-Band IoT (Nb-IoT) is an interesting technol- 265

ogy to consider for our use case. It is a derivation of the Long- 266

Term Evolution (LTE) that use the existing LTE infrastructure 267
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as a communication gateway [19]. Since the Arctic tundra is268

scarcely covered by cellular tower as mention in [4], Nb-IoT is269

suitable to our context. Similarly to LoRa, Nb-IoT uses a star270

topology with a gateway that relay the data. In addition, Nb-271

IoT has been designed for low-power and long range wireless272

communications. Despite being more energy consuming than273

LoRa, it provides more bandwidth (up to 200kbps [20]).274

Several other wireless technologies are available in the275

literature [21], [22]. To the best of our knowledge, none of276

them are relevant enough for our use-case. Consequently, we277

choose LoRa and Nb-IoT to conduct our study as they are use278

in DAO prototypes and deployments [10]. These technologies279

offer a good compromise among the three criteria exposed for280

the DAO project.281

B. Data dissemination282

The literature provides multiple data dissemination policies283

that aim at reducing the energy consumed by the nodes. In284

this section, we turn our focus on three of them.285

Achieving energy frugal data dissemination for mobile286

nodes in wireless sensor networks has been proposed by287

basing the dissemination on a grid structure [23]. However, this288

approach requires coordination to maintain the grid structure289

and the coupling in time between nodes. This implies having290

to do more communications, leading to higher energy usage,291

and a faster drain of the battery. In our case, maintaining such292

an overlay network would leads to too many communications293

and drain nodes battery life. Thus, such approach could not294

be used in our context.295

Solutions that deal with reducing redundant transmissions296

to be energy efficient, like in [24], usually comes with the297

hypothesis that sensors are part of a virtual grid and maintain298

a node list. In the case of a deployment in a scarce-resource299

environment such as the Arctic tundra, it will not be beneficial300

to have such a representation as the nodes must implement301

shutdown policies and be OFF most of the time. Thus, nodes302

are mostly unreachable leading to an obsolete virtual grid and303

node list.304

Works such as [25] are providing policies to handle nodes305

that fail on the field. These type of contributions are effective306

for a limited number of failures. However, such failures is307

common in our use-case and the work do not account for308

scenarios where all nodes are failing in a deployment. For309

the Arctic tundra, we are in the opposite case. Most of the310

time, we expect a significant part of nodes to be unavailable.311

This is due to independent shutdown policies embedded on312

each node, trying to last as long as possible. Node suddenly313

shutting down unexpectedly is equivalent to a node failing, for314

a neighboring node.315

A resource limited environment such as the Arctic tundra316

imposes conditions where it is complicated to evaluate if a317

solution to disseminate data have a positive impact on the318

energy consumption. Contributions covered in this section319

use hypothesis that do not match with the requirements of320

our use case. Quantifying the costs (in time and energy) of321

loosely coupled policies from calibrated values extracted from322

the literature under plausible hypothesis such as this work is 323

essential. It allows to establish a relation between researchers 324

works and reality, and having answers to build upon. 325

In a resource limited environment such as the Arctic tundra, 326

existing energy efficient data dissemination cannot be used. 327

Very few assumptions can be made about neighboring nodes 328

and most of the hypothesis used in existing works do not 329

match with this reality. Structure-less based schemes [26] is 330

currently the best approach to disseminate the data in the use- 331

case of the DAO, as propose in [1]. They provide mechanisms 332

to disseminate data without having to maintain a data structure 333

that would require more communications, synchronicity, and 334

higher node availability. This work extends [1] with the aim 335

of improving both energy and data dissemination efficiency. 336

IV. EXPERIMENTAL SETUP 337

This section presents a brief summary of the different 338

data dissemination policies used in the contribution. Then, 339

strategies that aim to improve CPS performance in terms of 340

energy consumption and data delivery success are presented. 341

Finally, the simulation setup along with the metrics used for 342

the analysis are detailed. 343

A. Dissemination policies 344

Our previous paper [1], presents four different loosely- 345

coupled data dissemination policies suitable for our use case. 346

Baseline - This policy corresponds to a sender node that 347

wakes up randomly every hour and tries to send its data to 348

receivers. Since we are in a resource limited environment, 349

sender and receivers nodes are OFF most of the time. They 350

wake up randomly for a duration called uptime. During this 351

uptime, overlap between the sender and one or more receiver 352

can occur. In that case, the sender tries to send its data to the 353

receivers. Having such policy allows to have a baseline for 354

comparison with more complex policies. Figure 3(a) depicts 355

the Baseline policy where a sender start to send its data around 356

time tx to a receiver. 357

Extended - In some baseline scenarios, the uptime duration 358

is not long enough to allow the data to be sent entirely. 359

The communication is then interrupted when the node shuts 360

down. This reduces the data delivery success. Extended policy 361

introduces extra time at the end of every uptime to allow the 362

data to be sent properly. It aims at a higher data delivery 363

success. Figure 3(b) details this policy where a sender and 364

a receiver get their uptime extended. 365

Hints - This policy is an enhancement compare to the 366

Baseline policy. It introduces an additional timestamp that 367

is added to the data. This timestamp, notifies the receiver 368

about the next time at which the sender is expected to 369

wake up. This hint can be forwarded by the receivers during 370

overlap with other receivers uptime to maximize the number 371

of overlap between sender and receivers. Note that the sender 372

occasionally sends separate hint to receivers in addition to 373

normal data communications. From these overlaps, sender can 374

transmit the data to receivers, increasing the delivery success. 375
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Fig. 3. Sender and receivers lifetime, with impact of proposed policies on observation nodes’ uptimes and communication. Messages, uptimes and added
uptimes are represented as arrows, gray and green rectangles, respectively.

Figure 3(c) explains the Hints policy where a hint is delivered376

along with the data to a receiver that forwards it.377

Hints and Extended - This policy is a combination of the378

Extended and Hints policies. Both combined policy behave379

exactly the same as they were introduced. The objective is to380

further improve the delivery success by merging the impact381

of both policies. The Hints and Extended policy allows to382

measure the benefits of combining policies in terms of various383

metrics detailed later in the paper. Figure 3(d) depicts a given384

scenario where Hints and Extended policies are used together.385

The lessons learned from our previous work [1], show386

that, these policies can be greatly improved regarding data387

delivery and energy performance. The following sub-section388

introduces several strategies with the ambition to improve the389

dissemination of the data on these two axes.390

B. Strategies391

Policies presented in [1], provide a solution to disseminate392

data in loosely coupled networks and strive to mitigate the393

energy consumed. To further improve the efficiency of these394

data dissemination policies, this section introduces three dis-395

tinct strategies. The first two aim at optimizing the existing dis-396

semination policies by exploiting simple energy saving ideas.397

The third one proposes a mechanism for communications398

aggregations to leverage the data delivery success and reduce399

the energy consumption.400

Strategy 1: Shutdown on receive401

In the current version of our data dissemination policies402

presented in Section IV, receivers wake up with the hope of403

receiving data from the sender. If a communication occurs and404

the data are successfully received, the receiver keeps on being405

awake for the complete duration of its uptime. It allows to406

communicate with other potential receivers, and being part of407

the hint forwarding mechanism to improve the efficiency of 408

the hints dissemination. 409

However, this approach has a cost for the receiver in terms 410

of energy consumption. Since the receiver already owns the 411

data, the Shutdown on receive strategy turns off the receiver 412

as soon as the data are received. Figure 4(a) depicts a scenario 413

where this strategy is applied. The energy saved depends on 414

the uptime duration left after the data distribution ends (green 415

area). This duration is impacted by: 1) The time at which the 416

communication starts 2) The communication duration 3) The 417

uptime duration. Consequently, having short communications 418

on large uptime scenarios can leads to significant energy 419

saving if the nodes are able to shutdown. 420

But, since the receiver is part of the hint forwarding mecha- 421

nism during the remaining time period (after the data delivery), 422

studying the impact of such strategy on the energy efficiency 423

and the data delivery success is required. 424

Strategy 2: Unschedule on receive 425

426

Among the four studied policies, two of them use the 427

hint forwarding mechanism. This mechanism increases the 428

likelihood of uptime overlaps between sender and receivers. 429

It dynamically schedules a new wake-up time on the receivers 430

to get an uptime overlap with the sender on the next uptime. 431

In many situations, nodes could receive a hint from another 432

node just before receiving the data (on the same uptime slot). 433

As receivers propagate hints (see Figure 3(c) and 3(d)), this 434

new uptime slot is also used by the receivers to propagate 435

hints. Hence, increasing the amount of overlap between sender 436

and receivers uptime. 437

One approach to save energy in these situations is to 438

unschedule the new uptime on nodes that already received the 439

data. This strategy assumes that, the sender disseminate the 440
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Fig. 4. Sequence diagram of the two first energy saving strategies. Green time slots represent additional wake up times due to the receive of hints.

same data on a given day. Receivers that own the data would441

unschedule the new uptime that occurs the same day.442

This strategy, called Unschedule on receive, is presented on443

Figure 4(b). Removing these additional uptimes impacts the444

hint forwarding mechanism, and could lead to lower overall445

energy and data delivery performance. Hence, a study of the446

Unschedule on receive strategy is required.447

Strategy 3: Far hint448

The Hints and Hints and Extended policies, from [1], rely on449

the hint forwarding mechanism to increase the likelihood of450

having uptime overlaps between sender and receivers. A hint451

contains a timestamp that notifies the receivers about the next452

sender uptime, and it is forwarded by the receivers. However,453

the duration between the first transmission of a given hint by454

the sender, and the timestamp contained in this hint may not455

be large enough to ensure proper hint dissemination. Small456

hint duration reduces its chances of propagation within the457

network. On the contrary, large hint duration leads to better458

hint propagation.459

The Far Hint strategy proposes to extend this duration460

to highlight its impact on the energy and data delivery461

performance. Increasing this duration could lead to more462

communications among the nodes and increase their energy463

consumption. As a result, even if an increase of data delivery464

success is noticeable, simulations should be conducted to465

quantify the impact on the nodes energy consumption.466

C. Simulation Setup467

The simulations conducted in this work have three pur-468

poses. First, evaluating the scalability of Baseline, Extended,469

Hints and Hints and Extended in terms of data dissemination470

efficiency and nodes energy consumption while varying the471

number of nodes in the system. Second, providing a similar472

evaluation of the policies scalability when varying the amount473

of data disseminated. Third, quantifying the impact of the474

following strategies: Shutdown on receive, Unschedule on475

receive and Far Hint on the data dissemination efficiency and476

nodes energy consumption.477

Our experiments are based on the network simulator devel-478

oped in [1]. This simulator uses flow-level network models479

provided by the SimGrid simulation framework. Flow-level480

models allow to achieve computationally efficient simulations 481

by making use of abstract network models. In addition, Sim- 482

Grid provides strongly validated models that ensure accurate 483

predictions. Currently, this simulator implements the four data 484

dissemination policies discussed in this paper. This simulator 485

is extended to implement the three strategies presented in this 486

work. With this approach, strategies can be applied directly 487

on top of the dissemination policies, allowing to preserve the 488

exact same simulation environment and initial conditions. All 489

the experiments presented in this paper can be reproduced, and 490

are available online [27]. 491

The simulation parameters are detailed in Table I. They 492

are extracted from the literature and based on our previous 493

deployments [4]. Compared to our previous study, the hint 494

duration has increased from one to three hours [1]. Receivers 495

are notified about the next sender uptime located three hours 496

away from the current one. We choose a hint duration of three 497

hours to represent several wake up times, where nodes are 498

going to sense their environment and potentially communi- 499

cate. We choose a greater duration than [1], to quantify its 500

impact on the dissemination of the data and the nodes energy 501

consumption. 502

For the strategies evaluation, each simulated scenario uses 1 503

sender and 12 receivers. To reproduce the use case presented 504

in Figure 2, each node is considered to be reachable by 505

each others, forming a clique. The sender owns 1 MB of 506

data that should be transmitted to the 12 receivers. This 507

amount of data is fixed for the strategies evaluation scenarios. 508

To communicate, each node wakes up once every hour for 509

a duration called uptime. This uptime lasts 60s or 180s 510

depending on the simulation inputs. The total simulated time 511

for each run is 24 hours. Each run is performed 200 times 512

with a different randomly generated nodes schedule. Hence, 513

all the studied metrics will be averaged over these 200 runs. 514

The scalability study for the number of nodes uses similar 515

parameters. Except that, the number of nodes are varied from 516

12 to 100 and 20 runs are performed for each scenarios. For 517

this evaluation, all the studied metrics are averaged over these 518

20 runs. 519

Parameters from Table I are also used to study the impact of 520

the disseminated data size. The amount of data disseminated 521
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TABLE I
SIMULATION PARAMETERS

Bandwidth (Latency) LoRa 50kbps (0s) [19], [20]
Nb-IoT 200kbps (0s) [20]

Power states
Pidle 0.4W [28]
LoRa +0.16W (+32mA at 5V) [29]

Nb-IoT +0.65W (+130mA at 5V) [29]

Uptime Short 1 min/hour
Long 3 min/hour

Data size Fixed 1MB
Varied 1KB to 1GB

Nodes Fixed 1 Sender, 12 Receivers
Varied 1 Sender, 12 to 100 Receivers

Far hint duration 3 hours

Simulated time duration 24 hours

by the sender varies from 1KB up to 1GB. For each data size,522

all the studied metrics are averaged over 200 runs.523

D. Metrics524

The energy overhead, %eOvhd(p), represents the relative525

energy overhead for a given policy p compared to the Baseline526

policy. It is computed for the sender and the receivers. For527

readability reasons, it is displayed as a percentage.528

%eOvhd(p) =
energyConsumedp ∗ 100
energyConsumedBaseline

− 100 (1)

energyConsumedp and energyConsumedBaseline repre-529

sent the energy consumed (in Joules) during the complete530

simulated scenarios of a policy p and Baseline, respectively.531

An %eOvhd(p) of 0% for a given policy p indicates that no532

additional energy is consumed compared to the Baseline one,533

thus the ”-100”.534

The uptime overhead upOvhd(p) represents the uptime535

added by using policy p compared to the Baseline.536

upOvhd(p) = AccUptimep −AccUptimeBaseline (2)

The accumulated uptime AccUptimep represents the sum of537

all nodes uptimes, during the simulation of policy p in a given538

scenario. It is expressed in seconds.539

The policy efficiency eff(p) represents the energy con-540

sumption (in Joule) per number of delivery success (noted541

J/S).542

eff(p) = energyConsumedp/#Succp (3)

With energyConsumedp representing the average energy543

consumption of the sender node or the receiver nodes, #Succp544

that represents the number of data delivery success for the545

policy p. The lower eff(p) is, the more energy efficient the546

policy p is on the given sender or receiver nodes. Energy547

consumption for sender and receivers are reported separately548

to be able to identify imbalances, for a given or across different549

scenarios.550

V. SCALABILITY: NUMBER OF NODES 551

The scalability results for the four data dissemination 552

policies introduced in [1] are presented on Figure 5. These 553

results show the impact on the energy consumption and the 554

delivery success of the senders and receivers while varying the 555

number of nodes. The colored backgrounds show the standard 556

deviation over the 20 runs for the given number of node. 557

A. Scenario using 60s uptime 558

The results for 60s uptime are presented on Figures 5(a) 559

5(b) and 5(c). These results show a strong correlation between 560

the energy consumption and delivery success of the senders 561

visible on Figures 5(a) and 5(c). This is due to the sender 562

being the only node that propagate the data. Therefore, the 563

sender drives the delivery success while impacting its own 564

energy consumption. On Figure 5(c), Baseline and Hints with 565

LoRa are overlapping with a constant delivery success of 0. 566

Under 60s uptime, LoRa does not provide enough bandwidth 567

to disseminate 1MB of data. 568

The results from Figure 5(c) for the LoRa wireless tech- 569

nology show that, the Baseline and Hints policies are not 570

able to disseminate the data. The Hints policy induces an 571

additional cost on the receivers energy consumption due to 572

the hint forwarding mechanism. But, because of the use of 573

the Extended policy, the Extended and Hints and Extended 574

policies allows to disseminate data and provide better delivery 575

success in this scenario. 576

Figure 5(a) shows that using the LoRa, the sender exhibits 577

a logarithmic grow of the energy consumption on both Hints 578

and Hints and Extended policies. With the Extended, the 579

energy consumption of the sender quickly reaches high values 580

compared to Nb-IoT. In short uptime scenarios, using a 581

wireless technology with a higher bandwidth and a slightly 582

higher energy consumption, could potentially save energy on 583

the sender node. 584

Despite using Nb-IoT, the delivery success of the Hints 585

policy has a bottleneck around 25 nodes. Although the Hints 586

policy improves the likelihood of uptime overlap between 587

senders and receivers, the fact that nodes cannot extend their 588

uptime adds limitations to the dissemination performance. This 589

bottleneck is also visible on the sender energy consumption 590

for Nb-IoT. On the receiver side, the energy consumption is 591

affected by the hint forwarding mechanism. Hence, Nb-IoT 592

increases significantly the energy consumption of the receivers 593

with the Hints and Hints and Extended policies. The lower 594

energy consumption of LoRa allows to mitigate this effect on 595

the receivers. 596

Using a large number of nodes, the Extended policy with 597

Nb-IoT offers the best trade off between energy consumption 598

and delivery success. It has a limited impact on the sender 599

and receiver energy consumption. It is able to provide up to 600

39 delivery successes with 100 nodes. 601

B. Scenario using 180s uptime 602

The 180s uptime results are depicted on Figures 5(d), 5(e) 603

and 5(f). Similarly to previous results, a strong correlation 604
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Fig. 5. Scalability results obtained by varying the number of nodes from 12 to 100. Each run of n nodes is composed of 1 sender and n − 1 receivers.
Standard deviation of each curve over 20 runs are represented with their respective background color.
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between the energy consumption of the nodes and the delivery605

success is visible.606

On Figure 5(f) the results for the LoRa wireless technology607

show a performance bottleneck around 50 nodes with the Hints608

and Extended. In this case, the delivery success does not609

increase any further. This bottleneck shows that LoRa does610

not provide enough bandwidth to disseminate the data to all611

receivers. To further increase the delivery success with LoRa612

and a data size of 1MB, increasing the uptime duration is613

the only leverage. This is also visible on the sender energy614

consumption. But, the energy consumption of the receivers615

keep increasing with a logarithmic trend due to the Hints616

policy. Hence, for this scenario with LoRa, the only policy to617

offer a good compromise between delivery success and energy618

consumption is the Extended.619

Regarding Nb-IoT, the results on the delivery success620

show that the Baseline policy scales better than LoRa. The621

bandwidth of Nb-IoT can be leverage to improve the data622

dissemination. Moreover, the average energy consumption of623

the senders and receivers follows a linear increase up to 100624

nodes. In this case, Nb-IoT provides enough bandwidth to625

disseminate the data to most receivers. Despite being more626

energy demanding, Nb-IoT combined to our four policies,627

offers great performance that allows to disseminate data in628

dense scenarios while mitigating the impact on the energy629

consumption to LoRa.630

The Hints and Hints and Extended policies allow to dis-631

seminate the data to most of the receivers despite introducing632

a slightly higher energy consumption on the sender compared633

to the Baseline and Extended policies. But, their impact on634

the receiver energy consumption is significant. The Baseline635

policy performs well on dense scenarios. Still, the Extended636

policy achieves better delivery success with an energy con-637

sumption similar to Baseline and a narrow standard deviation.638

C. Summary639

These scalability results reveal interesting phenomenons on640

dense network scenarios. Having a too few wireless bandwidth641

leads to a low delivery success and a higher energy con-642

sumption since more uptimes are require for the data to reach643

the receivers. In dense networks, policies that use additional644

communications to improve the delivery success (such as the645

Hints policy) increase significantly the energy consumption of646

the receivers. This is particularly true on the receivers that647

are involved in the hints dissemination. One way to mitigate648

this effect is to use different wireless technology for sending649

the data and the hints. Finally, on large-scale deployments,650

using rather simple policies such as Extended allows to save651

a lot of energy compare to more complex one such as Hints652

and Hints and Extended and offer decent data dissemination653

performance. On the other hand, the Hints policy is useful on654

lower-scale deployment (below 25 nodes in the 180s uptime655

scenario) and allows to achieve better delivery success while656

consuming less energy than the Extended policy. The Hints657

and Extended policy allows to maximize the delivery success658

when the energy consumption is not a critical resource.659

Limiting the impact of a policy on the energy consumption 660

is crucial. For energy consumption reasons, policies that work 661

perfectly on relatively small-scale deployments may not be 662

used on large-scale one (as seen with the Hints policy). 663

Several factors such as the size of the disseminated data can 664

have a major impact on the policies efficiency and must be 665

studied. It is also important to provide strategies that strive 666

to limit the energy consumption of small-scale deployments. 667

This could translate into bigger energy saving on denser 668

networks. The remaining of this work evaluates the impact 669

of the disseminated data size and strategies that could help in 670

this direction. 671

VI. SCALABILITY: DATA SIZE 672

The scalability results for the four data dissemination poli- 673

cies introduced in [1] are presented on Figure 6. These results 674

show the impact on the energy consumption and the delivery 675

success of the sender and receivers while varying the size of 676

the data disseminated by the sender. The colored backgrounds 677

show the standard deviation over 200 runs for a given data 678

size. For clarity, each policy gets a different line shape format 679

to highlight overlaps between results. 680

A. Scenario using 60s uptime 681

The results for 60s uptime are presented on Figures 6(a) 682

6(b) and 6(c). It shows a negative relationship between the 683

energy consumption of the nodes and the delivery success. As 684

the data size increases, communications duration gets longer, 685

leading to fewer amount of communications per day. Data gets 686

disseminated to fewer receivers. 687

The energy consumed with the Extended and Hints and 688

Extended policies gets higher for larger data size. In these 689

cases, sender and receivers communicate for a longer duration 690

due to their extended uptime duration. It increases significantly 691

the energy consumption of the nodes. This increase is particu- 692

larly important on the sender node since it is involved in most 693

communications. Consequently, for large data size, it is critical 694

to ensure that the nodes energy budget is met when allowing 695

nodes to extend their uptime duration. 696

The energy consumed with the Baseline and Hints policies 697

increases as data size increases. It is not visible due to the 698

difference in scale between policies results. With these two 699

policies, communications duration is bounded by the uptime 700

duration combined to the limited bandwidth. For these reasons 701

and for larger data sizes, the energy consumption does not 702

increase further compared to scenarios with extended uptime 703

duration (Extended and Hints and Extended) and similar 704

bandwidth. 705

On the wireless technologies perspective, LoRa has less 706

bandwidth compared to Nb-IoT. A bottleneck is reached 707

around 500KB where the bandwidth of LoRa becomes a 708

limitation. Under 60s uptime, the data cannot reach the re- 709

ceivers. This similar bottleneck is introduced in Section V-A. 710

Nb-IoT offers more bandwidth which shifts this bottleneck 711

to 2MB (Figure 6(c)). The Nb-IoT bandwidth reduces the 712
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Fig. 6. Scalability results obtained by varying the data size disseminated by the sender from 1KB to 1GB. Each run comprises 13 nodes, 1 sender and 12
receivers. Standard deviation of each curve over 200 runs are represented with their respective background color.

10



communications duration and provides higher delivery suc-713

cess. For the energy consumption, LoRa and Nb-IoT consume714

roughly the same for large data size using the Extended and715

Hints and Extended policies. However, this is not the case716

for the Baseline and Hints. Even though it is not visible on717

Figures 6(a) and 6(b), Nb-IoT consumes approximately 30%718

more energy with these policies with large data size. For a719

fine grain exploration of the data, the entire data set and the720

analysis scripts are available online [27].721

B. Scenario using 180s uptime722

Results for 180s uptime are presented on Figures 6(d) 6(e)723

and 6(f).724

Overall, the energy consumed by the nodes increases with725

180s uptime and for both, LoRa and Nb-IoT. Compared to726

the 60s case, the energy consumption trends are similar and727

a negative relationship with the delivery success is visible.728

Both wireless technology consume roughly the same for the729

Extended and Hints and Extended policies. However, for the730

Baseline and Hints, Nb-IoT consumes approximately 75%731

more energy with large data size (not visible on Figures 6(d)732

and 6(e) but can be explored online [27]).733

A 180s uptime duration allows to achieve longer commu-734

nications with the Baseline and Hints policies. For LoRa the735

delivery success bottleneck for the Baseline and Hints policies736

shown on Figure 6(f) shifted from 500KB to 2MB. For Nb-737

IoT, this bottleneck arises at 10MB. Uptime duration is thus738

an important leverage to consider in this context to increase739

the delivery success with large data sizes.740

Finally, larger uptime duration provide a delivery success741

that is more deterministic. Overall, the standard deviation is742

reduced with 180s uptime duration compared to 60s.743

C. Summary744

These scalability results illustrate important leverages to745

consider when disseminating large data size in context like the746

DAO. First, the performance of wireless technology in terms of747

bandwidth and energy consumption has a major impact on the748

delivery success of the policies and the energy consumption749

of the nodes. In these cases, trading energy consumption for750

higher bandwidth can be a good solution to increase the751

delivery success. Second, the uptime duration is a leverage752

that can improve significantly the delivery success of certain753

policies such as Baseline and Hints. Overall, having longer754

uptime duration provides higher delivery success. Third, using755

the correct policy can also be a crucial leverage to meet an756

energy budget and a delivery success target. Works as [30]757

provides early results on predicting which policy must be used758

in this use-case.759

Overall, the scalability experiments show an energy con-760

sumed by nodes that can be drastically increased, on large-761

scale CPS and for large disseminated data size. Thus, provid-762

ing energy saving strategies is a critical need. The following763

section evaluates the energy saving strategies proposed in this764

work.765

TABLE II
ENERGY CONSUMPTION STANDARD DEVIATIONS (STD).

Strategy Table Min Std Max Std Median Std

Shutdown on receive III 6J 203J 41J
Unschedule on receive IV 6J 231J 39J
Far Hint V 6J 301J 46J
Combined VI 6J 223J 43J

VII. STRATEGIES EVALUATION 766

This section analyzes the strategies presented in Section IV. 767

Results for each metric are presented into tables, and corre- 768

sponds to an average over 200 runs conducted with different 769

node schedule. Both wireless technologies and uptime duration 770

are covered. The tables provide comparison between our 771

previous results presented in [1] using color signed numbers. 772

Green indicates positives impacts and red negatives impacts. 773

To highlight the stability of the energy consumption results, 774

a summary about the energy consumption standard deviations 775

for all results are reported on Table II. Note that the median 776

standard deviations are all low compared to the actual energy 777

values presented in the tables. Thus, the standard deviation 778

for each individual energy consumption results in tables III, 779

IV, V, VI are omitted for clarity and readability. To further 780

explore these standard deviations, the datasets are available 781

online [27]. 782

A. Strategy 1: shutdown on receive 783

The Table III shows the results for the Shutdown on receive 784

strategy for both 60s and 180s uptime duration and using 785

LoRa and Nb-IoT. 786

Using Shutdown on receive with LoRa and an uptime of 60s 787

has no impact compared to our previous results. This policy 788

does not introduce any change on the energy consumption, the 789

delivery success nor the accumulated uptime. With an uptime 790

of 60s the performance for LoRa does not allow to transmit 791

1MB of data. In this scenario, nodes essentially rely on the 792

extended policy to allows for data transmission. Although the 793

Shutdown on receive shutdown the receiver when the data are 794

received, since nodes never receive the data, this strategy has 795

no impact on the simulation outcomes. 796

Overall, the results using Nb-IoT and 60s show a small im- 797

provement on the energy consumption of the receivers with up 798

to 7.21J saved on the receive side for the Hints and Extended 799

policy. This energy saving means that Nb-IoT provides faster 800

data transmission that leads to early shutdown of the receivers. 801

Despite the energy saved, this scenario provides less energy 802

efficiency overall. The average delivery success of each policy 803

is reduced at worst by 0.26 which is too high to benefit from 804

the energy saved. 805

For 180s uptime using LoRa, results show improvement 806

of the receivers energy consumption with up to 45.18J saved 807

with the Shutdown on receive strategy and the Hints policy. 808

However, compare to our previous results, the Hints policy 809

gives worse energy efficiency (+2.35J/S) with a significant 810

drop in the data delivery success (−0.38). It shows that the 811
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TABLE III
SIMULATION RESULTS USING THE Shutdown on receive STRATEGY. COMPARISON BETWEEN OUR PREVIOUS RESULTS [1] ARE IN COLOR. GREEN

INDICATES IMPROVEMENTS, RED SHOWS REGRESSIONS AND BLUE INDICATES NO CHANGE.

Uptime Scenario #Succp
Energy Consumption (J) eOvhd(p) (%) eff(p) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =
extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =
hintandextended 6.54 = 1035.76 = 619.62 = +67.77 = +6.62 = 158.25 = 94.67 =

180

baseline 2.18 = 2032.69 = 1763.96 -1.05 0 = 0 = 932.43 = 809.16 -0.48
extended 10.86= 2201.59 = 1764.07 -2.93 +8.31 = +0.01 -0.11 202.82 = 162.51 -0.27

hint 10.8 -0.38 2133.02 +1.35 2028.98 -45.18 +4.94 +0.07 +15.02 -2.49 197.59 +6.84 187.96 +2.35
hintandextended 11.85 -0.04 2251.64 -7.45 1879.74 -19.96 +10.77 -0.37 +6.56 -1.07 190.01 +0.01 158.63 -1.14

Nb-IoT

60

baseline 2.44 = 714.79 = 592.29 -1.22 0 = 0 = 292.35 = 242.25 -0.5
extended 6.38 = 760.83 = 588.96 -2.32 +6.44 = -0.56 -0.19 119.25 = 92.31 -0.36

hint 4.69 -0.11 777.89 +6.03 608.42 -6.39 +8.83 +0.84 +2.72 -0.86 165.86 +5.23 129.73 +1.77
hintandextended 7.32 -0.26 785.91 -4.95 602.98 -7.21 +9.95 -0.69 +1.8 -1.01 107.29 +3.09 82.32 +1.92

180

baseline 10.37= 2034.67 = 1729.62 -35.49 0 = 0 = 196.3 = 166.87 -3.42
extended 11.12= 2026.21 = 1717.55 -35.28 -0.42 = -0.7 = 182.3 = 154.53 -3.17

hint 11.79 -0.06 2054.06 +0.27 1937.27 -130.97 +0.95 +0.01 +12.01 -5.17 174.22 +0.83 164.31 -10.29
hintandextended 11.85 -0.06 2041.5 -1.05 1916.28 -123.44 +0.34 -0.05 +10.79 -4.77 172.35 +0.78 161.78 -9.55

Hints policy is very sensitive to the Shutdown on receive812

strategy has the hint forwarding mechanism is impacted. The813

sender is also affected (+6.84J/S in energy efficiency for the814

Hints policy) since more hints are sent. Still, the Hints and815

Extended policy is less sensible to this strategy and has a816

slightly better energy efficiency (−1.14J/S).817

Results for the 180s uptime and Nb-IoT show a clear im-818

provement of the receiver energy consumption. Up to 130.97J819

is saved with the Hints policy. Despite a minor reduction of the820

delivery success (−0.06) for the Hints and Extended policy,821

the energy efficiency has improved up to −10.29J/S for the822

receivers with a small increase on the energy efficiency on the823

sender side (up to +0.83J/S).824

Results demonstrate that the Shutdown on receive strategy825

is not energy efficient on low uptime scenarios. In such826

scenarios, the energy saved by shutting down the nodes is827

so small, that a slightly lower data delivery success reduces828

the energy efficiency of the system. On long uptime scenarios,829

the energy efficiency is improved in most cases. The duration830

of the data transmission should also be taken into account. If831

this duration exceed the uptime duration (scenarios with the832

extended policy), no energy can be saved with this strategy.833

The time left between the reception of the data and the end834

of the uptime should be considered to ensure a good energy835

efficiency.836

The Shutdown on receive strategy has a side effect. The837

sender energy efficiency is equal or worst (up to +6.84J/S)838

in all studied cases. Nodes that previously rely on receivers to839

get hints are now more likely to communicate directly with the840

sender, leading to a higher energy consumption for the sender.841

But, in most cases, the energy efficiency improvement on the842

receiver side is much higher and balance this drawback.843

B. Strategy 2: Unschedule on receive 844

Table IV shows the results for the Unschedule on receive 845

strategy. The results for this strategy show that only on the 846

Hints and Hints and Extended policies get impacted. Since the 847

unscheduled uptimes are solely used by the hint forwarding 848

mechanism, only the policies that uses hints are impacted. 849

With LoRa and 60s uptime, the Hints policy is not impacted. 850

No data are delivered thus no unscheduled uptimes. Results 851

for Hints and Extended show that not enough energy are saved 852

by senders and receivers to achieve better energy efficiency. 853

Results for Nb-IoT with 60s uptime show an improvement 854

on the nodes energy consumption with up to −5.01J saved 855

on the Hints and Extended policy. The energy improvement is 856

also visible on the sender side since less hints are forwarded 857

to the receivers due to fewer amount of uptime (unscheduled). 858

The energy overhead is also lower with up to −0.84 on the 859

Hints and Extended policy compared the previous results. 860

However, these improvements are not sufficient to be energy 861

efficient. This is due to the lower data delivery success that 862

range between −0.14 and −0.15 for both Hints and Hints and 863

Extended policies. 864

With LoRa and 180s uptime a greater energy is saved. 865

This is particularly visible on the Hints and Extended policy 866

that saves in average 28.34J on the receivers and 6.92J on 867

the senders. The delivery success is slightly higher with the 868

Hints policy. This is caused by the receivers unscheduled time 869

slots that allow the sender to reach other potential receivers 870

and deliver either hints or data, leading to a higher delivery 871

success. Even if this increase is very small on the Hints policy 872

(+0.01) and the sender is consuming more energy (+1.69J), 873

this allows better energy efficiency on both sender and receiver. 874

Results for Nb-IoT and 180s uptime show improvements in 875
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TABLE IV
SIMULATION RESULTS USING THE Unschedule on receive STRATEGY. COMPARISON BETWEEN OUR PREVIOUS RESULTS [1] ARE IN COLOR. GREEN

INDICATES IMPROVEMENTS, RED SHOWS REGRESSIONS AND BLUE INDICATES NO CHANGE.

Uptime Scenario #Succp
Energy Consumption (J) eOvhd(p) (%) eff(p) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =
extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =
hintandextended 6.46 -0.08 1031.35 -4.41 617.27 -2.34 +67.05 -0.71 +6.22 -0.4 159.53 +1.28 95.48 +0.81

180

baseline 2.18 = 2032.69 = 1765.01 = 0 = 0 = 932.43 = 809.64 =
extended 10.86= 2201.59 = 1767 = +8.31 = +0.11 = 202.82 = 162.78 =

hint 11.19+0.01 2133.37 +1.69 2073.37 -0.79 +4.95 +0.08 +17.47 -0.04 190.73 -0.02 185.37 -0.24
hintandextended 11.85 -0.04 2252.17 -6.92 1871.36 -28.34 +10.8 -0.34 +6.03 -1.61 190.14 +0.14 157.99 -1.79

Nb-IoT

60

baseline 2.44 = 714.79 = 593.52 = 0 = 0 = 292.35 = 242.75 =
extended 6.38 = 760.83 = 591.28 = +6.44 = -0.38 = 119.25 = 92.68 =

hint 4.66 -0.14 768.19 -3.67 612.71 -2.1 +7.47 -0.51 +3.23 -0.35 164.67 +4.03 131.34 +3.39
hintandextended 7.44 -0.15 786.55 -4.31 605.19 -5.01 +10.04 -0.6 +1.97 -0.84 105.72 +1.52 81.34 +0.95

180

baseline 10.37= 2034.67 = 1765.11 = 0 = 0 = 196.3 = 170.3 =
extended 11.12= 2026.21 = 1752.83 = -0.42 = -0.7 = 182.3 = 157.7 =

hint 11.8 -0.04 2053.65 -0.13 1994.3 -73.95 +0.93 -0.01 +12.98 -4.19 174.04 +0.65 169.01 -5.6
hintandextended 11.84 -0.07 2041.39 -1.16 1965.96 -73.76 +0.33 -0.06 +11.38 -4.18 172.49 +0.92 166.11 -5.22

the energy consumption, the energy overhead and the energy876

efficiency. Both impacted policies have a lower delivery suc-877

cess (at least −0.04) leading to worse sender energy efficiency.878

But, the energy saved on the receiver nodes allows for a more879

energy efficient CPS. For example, the Hints and Extended880

policy has a worse sender energy efficiency (+0.92J/S) still,881

the receiver energy efficiency has improved with −5.22J/S.882

To summarize, the Unschedule on receive strategy impacts883

the policies that use extra uptimes to propagate hints namely884

the Hints and Hints and Extended policies. In theory, these885

extra uptimes can drastically increase the energy consumption886

of receiver nodes. However, the Unschedule on receive strategy887

shows a limited impact on the results compare to Shutdown888

on receive. This means that, scenarios with extra uptimes are889

rare in that case. Overall, this strategy has a positive impact on890

the energy consumption of the senders and the receivers. But,891

on low uptime scenarios (60s), this impact is not sufficient to892

compensate a lower delivery success.893

C. Strategy 3: Far Hint894

The results for the Far Hint strategy are presented in the895

Table V. As this strategy impacts policies that use hints, only896

the Hints and Hints and Extended policies will be covered.897

The results for the LoRa wireless technology and 60s898

uptime show an impact only on the Hints and Extended policy.899

Since data cannot be send successfully in this scenario with900

the Hints policy, the simulation are most likely to be the same901

and only hint can be exchange among the nodes. The Hints902

and Extended policy shows great improvements in terms of903

energy efficiency. Even if the energy consumption and the904

energy overhead compare to the Baseline is worse (+97.74J905

on the energy consumption of the receivers and +15.83 on906

the energy overhead of the senders), the number of delivery 907

success has increase significantly with +1.56. Therefore, this 908

strategy is a good approach to improve data dissemination on 909

low delivery success scenarios. 910

Similarly, the results for the Nb-IoT wireless technology 911

using 60s uptimes show a significant improvement in the 912

delivery success with up to +2.92 of increase. Both impacted 913

policies suffer from an increase in the energy consumption of 914

the sender (up to +84.31J for the Hints policy) and the receiver 915

(up to +51.62J for the Hints and Extended policy) leading 916

to worse energy overhead. It is the consequence of three 917

factors. First, hint are located further away in the future, thus 918

hints are propagated for a longer time (more communications), 919

which increases the energy consumption. Second, since the 920

delivery success increases, there is more data transmission, 921

leading to more energy consumed. Finally, since hints are 922

further away in the future, the Shutdown on receive strategy 923

tends to delay the moment were all receivers receive the data 924

(#Succp = 12). Consequently, senders and receivers take 925

more time to reach 12 successful deliveries and thus consume 926

more energy. Nonetheless, the energy efficiency of the system 927

is greatly improved. Taking into account all the scenarios, the 928

average energy efficiency has improved with −49.73J/S and 929

−41.8J/S for the sender and the receiver respectively. 930

The results for the LoRa wireless technology and 180s 931

uptime are balanced. The delivery success of the Hints and 932

the Hints and Extended policies are already good. Thus, it is 933

more difficult to perform better in terms of energy efficiency 934

with this strategy. As explain before, the Far Hint strategy 935

adds delay in scenario that reach 12 successful delivery. The 936

slight +0.5 delivery success improvement for the Hints policy 937

makes it more energy efficient on the sender and the receiver. 938
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TABLE V
SIMULATION RESULTS USING THE Far Hint STRATEGY. COMPARISON BETWEEN OUR PREVIOUS RESULTS [1] ARE IN COLOR. GREEN INDICATES

IMPROVEMENTS, RED SHOWS REGRESSIONS AND BLUE INDICATES NO CHANGE.

Uptime Scenario #Succp
Energy Consumption (J) eOvhd(p) (%) eff(p) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =
extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =
hintandextended 8.11 +1.56 1133.5 +97.74 642.2 +22.58 +83.6 +15.83 +10.51 +3.89 139.85 -18.4 79.24 -15.44

180

baseline 2.18 = 2032.69 = 1765.01 = 0 = 0 = 932.43 = 809.64 =
extended 10.86= 2201.59 = 1767 = +8.31 = +0.11 = 202.82 = 162.78 =

hint 11.68+0.5 2137.52 +5.85 2140.98 +66.82 +5.16 +0.29 +21.3 +3.79 183.01 -7.75 183.3 -2.3
hintandextended 11.99+0.1 2254.61 -4.48 1985.64 +85.94 +10.92 -0.22 +12.5 +4.87 187.96 -2.04 165.54 +5.77

Nb-IoT

60

baseline 2.44 = 714.79 = 593.52 = 0 = 0 = 292.35 = 242.75 =
extended 6.38 = 760.83 = 591.28 = +6.44 = -0.38 = 119.25 = 92.68 =

hint 7.72 +2.92 856.17 +84.31 665.08 +50.27 +19.78 +11.8 +12.06 +8.47 110.9 -49.73 86.15 -41.8
hintandextended 10.22+2.63 864.57 +73.72 661.81 +51.62 +20.96 +10.31 +11.51 +8.7 84.55 -19.64 64.72 -15.67

180

baseline 10.37= 2034.67 = 1765.11 = 0 = 0 = 196.3 = 170.3 =
extended 11.12= 2026.21 = 1752.83 = -0.42 = -0.7 = 182.3 = 157.7 =

hint 11.98+0.14 2057.18 +3.39 2259.92 +191.67 +1.11 +0.17 +28.03 +10.86 171.65 -1.74 188.56 +13.95
hintandextended 11.99+0.09 2044.79 +2.24 2237.9 +198.18 +0.5 +0.11 +26.79 +11.23 170.54 -1.03 186.65 +15.31

Using Nb-IoT with an uptime of 180s leads to worse939

energy efficiency. Without any strategy enabled, these policies940

perform well in these scenarios with more than 10 delivery941

success. The Far Hint strategy is an overhead in such case942

and have a negative impact on the energy consumption. This943

strategy adds around 200J to the receiver energy consumption944

corresponding to more than two complete idle time slots945

leading to a worse receiver energy efficiency.946

The key feature of the Far Hint strategy is its ability to947

improve the delivery success of all policies. The additional948

time used to propagate the hint allows to reach more receivers,949

leading to a better data deliveries. The main down side of this950

strategy is its impact on the node energy consumption that can951

increase significantly. Since hints timestamps are further away952

in the future, the Far Hint strategy is delaying the data delivery953

that impact the scenario with high delivery success. Hence,954

this strategy perform better in terms of energy efficiency on955

scenario with low delivery success.956

D. Strategy 4: Combined957

Results for the Combined strategy are presented in Table VI.958

Using the LoRa wireless technology and 60s uptime, the959

results show an improvement for the Hints and Extended960

policy on the delivery success with +1.51, the energy effi-961

ciency of the sender (−17.88J/S) and receiver (−15.27J/S).962

As expected, Hints and Extended is the only impacted policy.963

The Shutdown on receive and Far Hint strategies are the964

only ones to affect this scenario (negatively and positively).965

Since, Combined combines the effects of both, it perform966

slightly worse compared to Far Hint alone. Still, the energy967

performance has improved.968

The results for the Nb-IoT wireless technology and the 969

60s uptime show an increase of the delivery success. Using 970

Shutdown on receive allows to save energy on the Baseline 971

and Extended policies by reducing the energy consumption 972

of the receivers. Then, the Combined strategy increases the 973

delivery success of the Hints and Hints and Extended policies 974

up to +2.23 and improves their energy efficiency. Still, the 975

Combined strategy offers less improvement on these policies 976

compare to the Far Hint strategy. For example, the energy 977

efficiency for the Combined strategy improves by −26.21J/S 978

for the Hints policy where the Far Hint policy provides an 979

improvement of −49.73J/S (cf. Table V). 980

The results for the LoRa wireless technology and the 180s 981

uptime show better energy efficiency for most cases except 982

for the Hints and Extended policy. Even if a small increase of 983

+0.08 in the delivery success is noticeable, it is not enough 984

to compensate for the expense of the sender (+21.51J) and 985

the receiver (+26.79J). Since the strategies are combined, it 986

mitigates the negative effects that the Far Hint strategy has on 987

the Hints and Extended policy. 988

Finally, the results for the Nb-IoT wireless technology and 989

the 180s uptime show an improvement with all policies. 990

Despite a high delivery success for each policy, the energy 991

consumption of the receiver for the Baseline and Extended 992

policies has decrease up to 3.9J. Combining strategies allow 993

to benefit from their individual effects. 994

To summarize, combining strategies allows to merge the 995

effects of each individual strategy. It allows to leverage more 996

scenarios. In this case, most of the scenarios improved in terms 997

of delivery success and energy efficiency. In some scenarios 998

such as the Nb-IoT/Hints/60s, individual policy may perform 999

better in terms of delivery success, energy overhead and 1000
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TABLE VI
SIMULATION RESULTS USING THE Combined STRATEGY. COMPARISON BETWEEN OUR PREVIOUS RESULTS [1] ARE IN COLOR. GREEN INDICATES

IMPROVEMENTS, RED SHOWS REGRESSIONS AND BLUE INDICATES NO CHANGE.

Uptime Scenario #Succp
Energy Consumption (J) eOvhd(p) (%) eff(p) (J/S)

Sender Receiver Sender Receiver Sender Receiver

LoRa

60

baseline 0 = 617.37 = 581.14 = 0 = 0 =
extended 6.02 = 1004.36 = 612.06 = +62.68 = +5.32 = 166.84 = 101.67 =

hint 0 = 628.74 = 586.07 = +1.84 = +0.85 =
hintandextended 8.05 +1.51 1130.67 +94.91 639.55 +19.93 +83.14 +15.37 +10.05 +3.43 140.37 -17.88 79.4 -15.27

180

baseline 2.18 = 2032.69 = 1764.97 -0.04 0 = 0 = 932.43 = 809.62 -0.02
extended 10.86= 2201.59 = 1766.76 -0.24 +8.31 = +0.1 -0.01 202.82 = 162.76 -0.02

hint 11.57+0.39 2136.67 +5 2096.91 +22.75 +5.12 +0.25 +18.81 +1.29 184.67 -6.08 181.24 -4.37
hintandextended 11.97+0.08 2280.6 +21.51 1926.49 +26.79 +12.2 +1.06 +9.15 +1.52 190.53 +0.53 160.94 +1.17

Nb-IoT

60

baseline 2.44 = 714.79 = 593.47 -0.05 0 = 0 = 292.35 = 242.73 -0.02
extended 6.38 = 760.83 = 591.14 -0.14 +6.44 = -0.39 -0.02 119.25 = 92.65 -0.02

hint 6.11 +1.31 821.32 +49.46 627.96 +13.15 +14.9 +6.92 +5.81 +2.22 134.42 -26.21 102.78 -25.18
hintandextended 9.82 +2.23 858.74 +67.89 635.36 +25.17 +20.14 +9.5 +7.06 +4.25 87.45 -16.75 64.7 -15.69

180

baseline 10.37= 2034.67 = 1761.97 -3.14 0 = 0 = 196.3 = 169.99 -0.3
extended 11.12= 2026.21 = 1748.93 -3.9 -0.42 = -0.74 -0.04 182.3 = 157.35 -0.35

hint 11.96+0.12 2055.21 +1.43 2028.09 -40.16 +1.01 +0.07 +15.1 -2.07 171.84 -1.55 169.57 -5.04
hintandextended 11.97+0.07 2044.19 +1.64 2019.51 -20.2 +0.47 +0.08 +14.62 -0.94 170.71 -0.87 168.64 -2.69

energy efficiency. Combining strategies is a promising idea to1001

maximize the performance of the system. Carefully selecting1002

the strategies to combine is important, as it can strongly impact1003

the performance outcomes1004

VIII. DISCUSSION1005

This section discusses the conclusions and future directions1006

of the work. A summary of the results, including the ones1007

from previous work [1] is given. Table VII summarizes the1008

results of policies and strategies studies and, Table VIII the1009

ones of the scalability studies.1010

A. Impact of the number of nodes1011

In the DAO context (i.e., having small cliques of nodes1012

isolated from each other usually of size 10-15 [1]), 1001013

reachable nodes is large scale. The scalability evaluation for1014

the number of nodes shows that it is challenging to achieve1015

similar performance in small and large networks. Despite an1016

increase of the uptime overlap likelihood with the number of1017

node, reaching all the receivers is still challenging. The more1018

receivers there is, the longer it takes to disseminate data to1019

all of them, the more energy is consumed by the CPS. If1020

delivering data to the same proportion of nodes on small and1021

large networks is critical, policies such as Hints and Hints and1022

Extended must be used as they provide additional uptimes to1023

disseminate the data.1024

The results also show that policies relying on hints lead to an1025

increase of the receiver energy consumption. This phenomenon1026

is even more significant on dense networks. Hence, for large-1027

scale CPS deployments, the Extended policy is the best com-1028

promise between data dissemination and energy consumption.1029

Multiple solutions can be used to mitigate the impact of the1030

policies on the receivers energy consumption. First, using a1031

technology such as LoRa to disseminate hints and Nb-IoT to 1032

transfer the data. Further studies must be conducted on this 1033

regard. Second, our evaluation does not investigate scenarios 1034

where part of the nodes use different policies. This approach 1035

of using heterogeneous policies may reduce significantly the 1036

energy consumed by the receivers while maintaining good 1037

dissemination performance. Performing such extended studied, 1038

with an increased number of scenarios to investigate, is a 1039

future work. A model that chooses the correct policy to use 1040

on the fly can also be contributed as a future work. 1041

The strong correlation between the delivery success and the 1042

sender energy consumption reveals that, allowing a subset of 1043

receivers to forward the data (such as most data dissemination 1044

solutions) may help to avoid draining the sender’s node battery. 1045

This approach could help to reduce the amount of data 1046

transmitted on the sender side. Experimentation is required 1047

to test these hypothesis on loosely coupled CPS. 1048

B. Impact of the data size 1049

The data size scalability experiments demonstrate that the 1050

wireless technology, uptime duration and policies play a major 1051

role for having high delivery success and energy efficient 1052

nodes. More studies are required to provide trade-offs between 1053

these different parameters for a given data size. 1054

Depending on the use case, the size of the disseminated 1055

data can vary significantly for a given system. In that case, 1056

dynamically changing the policies, uptime duration and wire- 1057

less technology of the nodes according to the size of the 1058

disseminated data could ensure higher delivery success and 1059

lower energy consumption of the nodes. Further experiments 1060

are required on this regards. 1061
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TABLE VII
SUMMARY OF RESULT’S TRENDS FOR POLICIES, STRATEGIES AND WIRELESS TECHNOLOGIES.

Energy

Sender Receiver #Succ

Policies

Baseline = = =
Extended -- = ++
Hints - - ++
Hints and Extended --- - +++

Strategies

Shutdown on receive - ++ -
Unschedule on receive + + -
Far Hint -- -- +
Combined --- = +

Wireless LoRa = = =
NbIoT ++ = +++

+ good, ++ very good, +++ excellent, = fair, - bad, -- very bad, --- worst
Policies comparisons use Baseline as reference. Wireless technologies comparisons use LoRa as reference.

Strategies comparisons depict overall results trends.

TABLE VIII
SUMMARY OF SCALABILITY RESULT’S TRENDS FOR POLICIES AND WIRELESS TECHNOLOGIES

Many nodes Large data sizes

Energy Energy

Sender Receiver #Succ Sender Receiver #Succ

Policies

Baseline = = = = = =
Extended -- = ++ --- --- ++
Hints - --- + - - +
Hints and Extended --- -- +++ --- --- +++

Wireless LoRa = = = = = =
NbIoT = -- +++ - - ++

+ good, ++ very good, +++ excellent, = fair, - bad, -- very bad, --- worst
Policies comparisons use Baseline as reference. Wireless technologies comparisons use LoRa as reference.

Strategies comparisons depict overall results trends.

This work shows the importance of reducing and compress-1062

ing data in constraints environment contexts like the DAO.1063

Works such as [11] provide valuable results on this leverage.1064

C. Energy consumption and delivery success trade-off1065

The strategies evaluation results show that, improvements in1066

the delivery success often lead to higher energy consumption.1067

A trade-off between both metrics must be found. Figure 7(a)1068

and Figure 7(b), detail these existing trade-offs obtained sec-1069

tion VII using Nb-IoT and 60s uptime. The figures show a1070

parallel between the average energy consumed by the sender1071

and the delivery success, achieved by each data dissemination1072

policy and strategy. All configurations on the Pareto-front are1073

highlighted and linked together with a dashed line. Among1074

these configurations, 18 are from Far Hint, 15 from Shutdown1075

on receive, 18 from Unschedule on receive, 13 from Combined1076

and 17 when no strategy is used. Concerning the policies, 51077

are from Baseline, 5 from Hints, 55 Extended and 16 from1078

Hints and Extended.1079

As expected, the Extended policy offers a good trade-off1080

between the energy consumption and the delivery success.1081

However, choosing one of the strategies to balance the energy1082

consumption and delivery success depends on the objective1083

trade-off. In addition, different wireless technology and uptime 1084

duration, lead to different configurations on the pareto-front. 1085

These results also demonstrate that, better dissemination is 1086

often associated with a higher energy consumption. 1087

D. Predicting the impact of a strategy 1088

The analysis of the results reveal that, predicting the impact 1089

of a strategy on the simulation outcomes is difficult. A strategy 1090

that appear to save energy can leads to lower delivery success 1091

and in turn, leverage the energy efficiency. Other factors such 1092

as the wireless technology and the uptime duration have a 1093

non-negligible impact on the simulation results. Performing 1094

simulations and real deployments is important to have a full 1095

understanding of an energy saving strategy. Having a strategy 1096

that saves energy is not sufficient to conclude that it is more 1097

energy efficient. 1098

E. Choosing the correct strategy combination 1099

In this work, we choose to combine all the strategies 1100

to study collective impact. Although, carefully choosing the 1101

strategies to combine is a better approach. Results show that, 1102

among the strategies, Unschedule on receive strategy is the one 1103

that provides least significant improvements. Removing this 1104
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Fig. 7. Comparison between the average sender node’s energy consumption and the average delivery success for each policies and strategies, using Nb-IoT
with 60s uptime. Pareto-front is highlighted, by a dashed line.

strategy from the Combined one could lead to better overall1105

improvements. But, this work aims to be as general as possible1106

and provides new research insights and directions.1107

F. Strategies adaptability1108

Another concern that needs to be addressed is the adaptabil-1109

ity of the proposed strategies to various changes in network1110

conditions and node behavior over time. After deployment,1111

nodes reachability and network performance can vary. Clock1112

drifts, energy shortage and node failures are phenomenons1113

that affect nodes behavior during their operation. These un-1114

certainties can affect the performance of the strategies in1115

terms of energy consumption and delivery success. This1116

work investigates the best that can be leveraged from these1117

strategies in a stable network scenario, but with nodes being1118

autonomously turned On (for a short amount of time) and1119

Off. To further evaluate the strategies under more variable1120

conditions, additional simulations must be performed along1121

with the deployment of prototypes.1122

G. Far hint timestamp1123

Choosing the correct duration to use with the Far Hint strat-1124

egy is not trivial. Far hint uses a hint duration of three hours.1125

Receivers are informed of the next sender uptime, located1126

three hours away from the current one. But, using different1127

hint duration may produce different results. A too short hint1128

duration may result in small to no improvements in terms of1129

delivery success and energy consumption. The results show1130

that, having larger hint duration induces more communications1131

(due to the hint forwarding mechanism) causing higher energy1132

consumption for both senders and receivers. But, long hint1133

duration can significantly increase the delivery success, since 1134

hints have more time to propagate. Meanwhile, on scenarios 1135

that converge quickly toward a complete data dissemination 1136

(12 successful data deliveries), a long hint duration just results 1137

in higher energy consumption. The take-away message is that, 1138

choosing the correct hint duration depends on the use case, and 1139

whether trading energy consumption for delivery success can 1140

be afforded. 1141

In real scenario, the density of the network should be 1142

taken into account. In this work, we use classical flooding 1143

to forward timestamps. In very dense networks such as dense 1144

Wireless Sensors Network, this could leads to broadcast storm 1145

effects [26]. Our case assumes that we are using less dense 1146

networks with sporadic data transmissions. The fact that hints 1147

forwarding stops as soon as the duration expires, allows to 1148

limit those effects and mitigate re-transmissions. 1149

IX. CONCLUSION 1150

The Arctic tundra is a very hostile environment. Deploying 1151

nodes and ensuring proper power supply can be difficult, 1152

specially on hard weather conditions. It is important to provide 1153

energy efficient solutions to disseminate data to neighbor- 1154

ing nodes and remotely located servers. In this work, we 1155

investigate such dissemination policies on small and large- 1156

scale networks. We quantify the impact of the size of the 1157

disseminated data. In addition, we propose several strategies 1158

to optimize data dissemination and energy saving. This study 1159

is conducted using flow-level network simulations. 1160

The scalability study for the number of nodes reveals that 1161

the Extended policy is able to handle large-scale networks 1162

and consume a reasonable amount of energy. Other polices 1163
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such as the Hints and Extended have a significant impact1164

on the receiver energy consumption but are more efficient1165

at data dissemination. The scalability study for the size of1166

the disseminated data highlight the importance of the wireless1167

technology and the uptime duration. Policies that extend the1168

nodes uptime duration (e.g: Extended and Hints and Extended)1169

can drastically increase the nodes energy consumption.1170

This work also evaluate the effects of the proposed strategies1171

with each data dissemination policies. A direct comparison1172

to the previous results details in [1] is exposed. The results1173

reveal that, predicting the effects of a given strategy is very1174

difficult and experimentation must be conducted prior to real1175

CPS deployments. Strategies such as Shutdown on receive and1176

Unschedule on receive appear to save energy. However, they1177

impact the data delivery performance which may lead to lower1178

energy efficiency. Similarly, the Far Hint strategy has counter1179

intuitive effects since it increases nodes energy consumption1180

but on the overall improves the energy efficiency. Finally,1181

the Combined strategy shows that combining strategies have1182

hardly predictable effects. Consequently, providing simulation1183

tools to studied such trade-offs is important and enable the1184

development of more efficient Cyber-Physical Systems.1185

As a future work, experiments on dense networks with1186

heterogeneous policies should be done to reduce the energy1187

consumption of receiver nodes. Regarding the use of multiple1188

strategies, the effects of different strategies combinations must1189

be studied. The goal would be to optimize the energy and1190

the dissemination performance of the system. Measuring the1191

impact of energy saving strategies on the scalability study1192

is envisioned. Investigating the effects of other parameters1193

could help in the comprehension of such data dissemination1194

approach. For example, the impact of environmental variables1195

such as weather conditions (e.g: temperatures, rain, snow)1196

must be modeled and integrated to the simulations. This will1197

provide results that account for deployment challenges such as1198

node failures. Finally, test-bed experiments are planned [31]1199

for a having a transition from simulation to prototyping and a1200

real-world deployment.1201
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