Fast Choreography of Cross-DevOps Reconfiguration
with Ballet: A Multi-Site OpenStack Case Study

Jolan Philippe!, Antoine Omond"?, Hélene Coullon!, Charles Prud’Homme!, Issam Rais?

IIMT Atlantique, Nantes Université, Ecole Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, F-44000 Nantes, France

{firstname.lastname }@imt-atlantique.fr
2Department of Computer Science, UiT The Arctic University of Norway, Tromsg, Norway
{firstname.lastname}@Quit.no

Abstract—In the context of Edge Computing or
Cyber-Physical Systems, cross-functional, and cross-
geographical DevOps teams are in charge of automating
deployments, configuration, and management (i.e., re-
configuration) of complex, large-scale, highly dynamic,
and geo-distributed service-oriented software systems.
In this context, DevOps teams cannot reasonably man-
ually coordinate their reconfiguration operations in a
global manner. Furthermore, as disconnection is the
norm in these paradigms, a central entity responsible
for reconfiguration should be avoided, and the set of
changes to apply should be as fast as possible. This
paper presents Ballet, a fast tool to automate decen-
tralized choreographies (i.e., coordination) of cross-
DevOps reconfiguration. We show a gain of 42.6% for
a deployment scenario and 24% for an update scenario
on an OpenStack case study.

Index Terms—DevOps, Infrastructure-as-Code, De-
centralized Reconfiguration, Constraint Programming

I. INTRODUCTION

In recent years, mainly because of the advent of dis-
tributed paradigms such as Cloud computing, service-
oriented (SO) software architectures have become the
norm and have evolved towards microservices applica-
tions and systems, sometimes made of thousands of small
components. At the same time, the DevOps profession
has gradually taken shape. The DevOps concept fills the
gap between development and operation concerns, which
often conflict. One targets very fast integration of new
software features, while the other targets reliability and
stability. DevOps are in practice responsible for automat-
ing and accelerating every possible procedure between the
development and the operation. One important aspect
of this job is the process of deploying and configuring
(initial commissioning), and then reconfiguring (updating,
managing) long-running services while avoiding their in-
terruptions, which is made easier through Infrastructure-
as-Code (IaC) techniques. In IaC, procedures are defined
as well-structured and easy-to-read codes. In particular,
declarative approaches have become widely used for their
interesting abstraction level: DevOps users specify what
is required, not the imperative program (or plan) to get

it. This program is instead automatically inferred by a
planner, which avoids errors.

With the growing complexity and scale of SO dis-
tributed software systems, DevOps teams have also
evolved into collaborating cross-functional teams, denoted
cross-DevOps in this paper. Furthermore, in massively
geo-distributed infrastructures (e.g., Edge Computing and
Cyber-Physical Systems paradigms), centralizing informa-
tion (e.g., the state of the system) of all DevOps teams
is not possible due to the scale, geo-distribution, and
dynamic nature of systems and applications. Moreover,
in this environment network disconnection has become
the norm [1] which has led to avoiding a central entity
responsible for coordinating deployments and reconfigura-
tions. Hence, in this context, cross-geographical and cross-
functional DevOps teams are naturally formed. In this
context, a DevOps team is responsible for the deployment
and reconfiguration of its own services [2], [3]. Most of
the existing DevOps declarative tools are designed in
a centralized manner: (1) a unique declarative file has
to be specified, thus requiring a global knowledge of all
services; (2) the inference of the reconfiguration plan and
its execution are handled by a central entity that must
store the state of all services and that must be accessible
by all services. In practice, instead of having a single
declarative file and a central tool, cross-DevOps teams use
local instances of IaC tools that cannot collaborate (as
being designed in a centralized fashion).

However, a change in one service often depends on
the availability of other services. Hence, if dependencies
span across DevOps teams, their reconfiguration has to
be coordinated to ensure the global correctness of the
procedure. In practice, this coordination is often done
manually (i.e., phone, email) [4]. We may refer in this pa-
per to decentralized reconfiguration, or to the choreography
of cross-DevOps operations [5]—[7].

On the one hand, offering a decentralized declarative
TaC tool is important to reduce errors and manual coor-
dination between DevOps teams. As far as we know (see
Section Muse [4] (implemented on top of Pulumi [8])
is the only tool that automates the decentralization of
provisioning. With Muse, each DevOps team can push cre-

ation, destruction, or update operations on their services.
The required actions for other DevOps teams are then
automatically inferred in a decentralized manner through
automated coordination.

On the other hand, reducing the duration of the recon-
figuration in massively geo-distributed infrastructures is
a crucial issue that needs to be addressed. The dynamic
nature of both the applications and the underlying in-
frastructures (i.e., mobility, frequent disconnections, new
nodes, etc.) necessitates fast deployments and reconfigu-
ration of hosted services. Concerto [9], [10] and its declar-
ative tool [11] is, as far as we know, the tool that offers
the best execution time for reconfiguration operations in
the literature thanks to parallelism and asynchrony in its
definition of services’ life cycles and its reconfiguration
language.

In this paper, we present a new decentralized declarative
reconfiguration tool called Ballet which combines the ideas
of both Muse and Concerto to improve the following as-
pects: offering more flexibility in cross-DevOps operations
(i.e., not limited to deploy, update, and destroy as
in Muse); reducing the execution time of cross-DevOps
operations by leveraging parallelism and asynchrony. The
contributions of Ballet are a new simple declarative goal
language for DevOps; a decentralized version of Concerto;
a decentralized planner on top of Concerto; and an evalu-
ation based on a real case study.

In particular, by using the motivating case study of a
multi-site OpenStack (see Section , we seek to answer
the following research questions:

o RQ1: Are we able to generate an efficient distributed
plan in a decentralized manner for cross-DevOps oper-
ations while keeping a strictly local information level?

« RQ2: Can we reduce the execution time of DevOps
operations compared to Muse [4] without adding
complexity to the input provided by DevOps?

The rest of this paper is organized as follows. Section [[I]
presents our motivating use case that will be used through-
out the paper. Section[[I]| presents the usage of Ballet from
developers and DevOps perspectives. In Section [[V] we
present Ballet’s engine to infer reconfiguration plans and
execute them in a decentralized manner. Section [V] eval-
uates Ballet in comparison with Muse [4], and Section
studies the related work. Finally, Section [VII] concludes
this work and opens to some perspectives.

II. MOTIVATING USE-CASE

As a motivating example, we use a decentralized version
of OpenStack on multiple sites. OpenStack is the standard
open-source solution to address the IaaS level of the Cloud
paradigm. When handling large-scale geographically dis-
tributed Cloud infrastructures (e.g., Edge computing), it
is required to handle multiple OpenStack sites in a collab-
orative manner to support the load, and to be relatively
resilient to network disconnections [1]. One possible way is
to decentralize the MariaDB database that handles data

Master node

Worker node

Fig. 1: Assembly of a multi-site OpenStack with a Galera
cluster of distributed MariaDB databases. One node holds
a Galera master and is connected to n sites. Each site is
composed of three nodes. The content of the blue rectan-
gles is not detailed, as not impacted by our choreography
scenarios |12]. The content of the green rectangle is hidden
in additional sites for the sake of readability.

required by the authentication service (i.e., Keystone) and
to replicate other services over the sites. In our case, a
Galera cluster is used. Galera Cluster is an overlay for
MySQL DBMS engines that enables replication between
databases [13]. This use-case was showcased during the
2018 Vancouver OpenStack summitﬂﬂ

Figure [1] gives an overview of the assembly of services
corresponding to this use-case with the different sites and
nodes, and using the usual use/provide UML notation.
Deploying and managing such a large-scale distributed
software system is notably difficult [12], [14]. Multiple De-
vOps teams (typically one per site, and one for the master
database) would be deployed to manage and operate such
multi-site OpenStack. Our reconfiguration scenarios are
to deploy and update the master database, which induces
many changes to be triggered in other services as there is a
chain of dependencies. Indeed, by following the topology
classification of [11], this case study follows a stratified
topology that mixes central users, central providers, and
linear topologies. With n as the number of sites, a total
of 1 + 3 x m reconfiguration programs are required to
handle this update in a decentralized manner, and a total
of 34 20 x n changes are required in 1 + 5 x n services.

First, this use case illustrates why a single DevOps
team cannot manually handle, without errors, such a
complex set of changes with, for ten sites, more than 200
reconfiguration instructions to coordinate and write, thus
requiring declarative IaC tools. Second, analyzing the state

HOpenStack summit video (https://youtu.be/AUzaJ8rBvEg)
2blog article

https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://beyondtheclouds.github.io/blog/openstack/cockroachdb/2018/06/04/evaluation-of-openstack-multi-region-keystone-deployments.html##galera-in-multi-master-replication-mode-and-keystone

behaviors .

deployed

behaviors .
service

)

service

master

registered

interrupted

common common

haproxy haproxy

deploy deploy
pause
update
uninstall

pause
update
uninstall

mariadbmaster:MariaDB_master
Fig. 2: Control components of MariaDB master and
MariaDB worker. State example when applying the re-
configuration plans of Fig. @

mariadbworker0:MariaDB_worker

of the system among ten sites, and making appropriate
reconfiguration decisions would be very difficult, which is
why multiple DevOps teams would typically handle such
complex cases. Third, it would also be hard and error-
prone for more than ten DevOps teams (i.e., at least one
per site) to manually coordinate more than 200 changes
in their local areas, e.g., via phone, chat, or email, thus
requiring a decentralized tool. Indeed, using a centralized
declarative DevOps tool in this scenario (such as Pup-
pet [15], Pulumi [§], or Terraform [16]), the DevOps team
responsible for the master node would initiate an update
on its MariaDB master service with its local instance of
the tool. Local changes would be automatically generated
by the local tool. However, to spread these changes to
other DevOps teams, human exchanges would be required.
Indeed, each team concerned by these changes (in this case
all the other teams) would have to be informed and would
have to manually write the new target state of their local
services so that their own local declarative tool calculates
the associated changes. This could once again lead to the
need for additional human exchanges, etc. In contrast,
a decentralized declarative tool such as Muse or Ballet
automates this coordination process.

III. USAGE OF BALLET

From a user perspective, Ballet is a simple declarative
tool to use in PYTHON and YAML, where developers stat-
ically specify their component’s life cycles and interfaces,
and where DevOps teams submit reconfiguration goals on
services. Then, Ballet automatically infers and executes in
a decentralized manner the required instructions for each
DevOps team (each node). Hence, the usage of Ballet is
divided into two main concerns: the services developers’
concern; and the DevOps concern.

A. Developers’ concern

Developers in Ballet have to define the control com-
ponents (components, for short) associated with their
services as defined in Concerto [9], |10]. Components are
not intended to represent the functional aspects of services
but instead to pilot their life cycle. In other words, a Ballet
component is a proxy around a new or legacy piece of
software, written by its developer, that can be considered
as a replacement for usual control scripts (installation,
maintenance, suspension of service, etc.).

The topological interface of a component is specified
by its provide ports and use ports. Provide ports denote
services or data provided by a component when ports are
active. Use ports denote requirements that the component
has when ports are active. Internally, the components are
characterized by places representing milestones in the life
cycle, and transitions between places, mapped to concrete
actions (e.g., starting a virtual machine, downloading a
Docker image, etc.). Each port is bound to a set of places
(namely a group), representing the subpart of the life cycle
where the port is active. The last characteristic attribute
of a component is its set of behaviors, its operational inter-
face. A behavior is a subset of transitions in a component.
At execution, a component instance is associated with a
behaviors queue, and the component can be requested to
execute a behavior that is pushed in the queue. Then,
similarly (but different) to Petri nets [10] tokens evolve
through places and transitions associated to the current
behavior, activating and deactivating ports when entering
or leaving groups of places.

Figure [2| gives a graphical representation of two control
component instances, mdbmaster for a MariaDB master,
and mdbworkerO0 for a MariaDB worker. Seven places (e.g.,
configured, deployed) are specified in the control com-
ponent type MariaDB_master, and ten transitions (arrows
between places) that belong to five different behaviors,
each represented by one color of transition and listed in
the bottom right corner of the component (e.g., deploy,
interrupt). The provide port service is bound to the
place deployed, while use ports are bound to groups
of places (gray rectangle). Listing [1| gives a subpart of
the PYTHON code corresponding to the MariaDB master
control component of Figure 2] In this listing only the
transitions configure0, configurel, and configure2,
are specified. They correspond to the three initial parallel
transitions of the deploy behavior. Hence, each one is
defined by the source place initiated, the destination
place configured, the behavior deploy, and a callback
function to write concrete actions associated with this
transition (e.g., self.configure0). This code is written
by the developer of the service. Writing this code can be
compared to writing usual installation and update scripts
for a service in a more structured and composable way.

1
>
3

Listing 1: Control component MariaDB master in PYTHON

class MariaDB_master (Component):
def create(self):
self.places =

["initiated", "configured", "

bootstrapped", "restarted", "registered", "
deployed", "interrupted"]
self.transitions = {

"configureO": ("initiated", "configured",

"deploy", self.configure0),
"configurel": ("initiated", "configured",
"deploy", self.configurel),
"configure2": ("initiated", "configured",
"deploy", self.configure2),
}
self.dependencies = {
"service": (DepType.PROVIDE, ["deployed"]l),
"haproxy": (DepType.USE, ["bootstrapped","
restarted"]),
}

'initiated'

self.initial_place =
= 'deployed'

self.running_place

def configureO(self):
concrete actions

B. DevOps’ concern

In Ballet, DevOps teams only use the interfaces of the
control components, i.e., ports and behaviors, and do not
have to be aware of the internal life cycle of each compo-
nent. The work of the DevOps is purely declarative. First,
DevOps are responsible for specifying the new targeted as-
sembly of components (i.e., required component instances
and their connections). The process of assembling compo-
nents is a standard practice in component-based software
engineering [17], thus, because of space limitations, we do
not detail this process. Second, determining an inventory
of addresses and ports to contact components is required.
This can be done by DevOps, or system operators, or
can be automatically generated through placement and
scheduling algorithms [18]. Third, DevOps teams are re-
spomnsible for giving reconfiguration goals. To this purpose,
Ballet offers a novel declarative goals language in which the
DevOps manipulates: behaviors, statuses of ports, and the
two specific places representing the initial place and the
running place of components.

Listing [2] gives the grammar of this goal language. In
Ballet, a goal contains (1) the definition of one or more
desired behaviors to execute on control components; (2)
optionally the required state of the ports (i.e., active
inactive) after the reconfiguration; or (3) if components
should reach their initial or running state after the
reconfiguration. Ballet also offers a forall quantifier in
the goal language. In this language, the order of statements
is not important and component statements override the
goals that are defined using forall.

Listing [3] gives the goals used in the update scenario of
our case study in YAML (Fig. [1): the behavior update

Listing 2: Language to define reconfiguration goals for

DevOps usage

<goals> 1= behaviors: <bhvr_list>

ports: <port_list>

components: <comp _list>

<bhwvr_list> = <bhvr_item>

<bhvr_item> <bhvr_list>

— forall: <bhvr_name>

— component: <comp__name>
behavior: <bhvr_name>

<bhvr_item> ::

<port_list> = <port_item>

<port_item> <port_list>

— forall: <port_status>

— component: <comp__name>
port: <port_ name>

status: <port__status>

<port__item> ::

<comp _list> 1= <comp__item>

<comp__item> <comp __list>

<comp _item> = — forall: <comp _ status>
— component: <comp_name>
status: <comp_ status>

Listing 3: Example of goals for updating mdbmaster in
Fig. [T]in YAML

behaviors:

— component mdbmaster
behavior update
components:
— forall running

should be applied on mdbmaster); all components should
be running after the reconfiguration.

IV. CHOREOGRAPHY ENGINE OF BALLET

The architecture of Ballet is depicted in Figure 3] Ballet
is composed of three pieces of software to solve choreogra-
phies: (1) the gateways are responsible for parsing the
set of inputs of Ballet submitted to a front interface by
DevOps (i.e., assembly, goals, inventory) and collaborate
to exchange information needed to initiate the choreog-
raphy; (2) the planners are responsible for inferring the
n reconfiguration programs associated with the inputs
in a decentralized manner; and (3) the executors are
responsible for executing in a distributed manner the n
reconfiguration programs, hence terminating the reconfig-
uration. Note that, as depicted in the figure, there is one
gateway, one planner, and one executor on each node, and
a DevOps team can be responsible for more than one node,
thus submitting its inputs to a front-end.

Since the gateway does not present a significant sci-
entific challenge, the rest of this section only focuses on
Ballet’s planner and executor. While DevOps inputs are
declarative, the role of planners is to generate imperative
programs (i.e. a reconfiguration plan) for the executors.
So, to facilitate understanding, we begin by detailing the
imperative language used by executors, followed by an
explanation of planners.

é DevOps lii DevOps
assembly; assembly;
inventory; inventory;

local goals local goals

@ont

goals 5 goals : goals

ERPI RP; RP;
@* - > Executor F -- d’ Executor ‘
""" Node, Node, Node;

Fig. 3: Overview of Ballet and its three components:
gateway, planner, executor. The dashed arrows represent
collaborations, while the plain arrows represent the inputs
and outputs of each component.

A. Ezecutor

For its executor, Ballet extends the reconfiguration lan-
guage Concerto [9], [10] that offers very efficient reconfigu-
ration execution times thanks to the fine-grain granularity
of components’ life cycles dependencies, and to the offered
level of parallelism.

In contrast to Concerto, where a single Reconfiguration
Program (RP) is executed by a single central entity, and
where transitions are executed remotely on distant nodes,
the decentralized executor of Ballet handles n local sub-
programs directly executed on distant nodes with neces-
sary communications for coordination.

The executor imperative reconfiguration language offers
four commonly used topological instructions to create or
modify an existing assembly of components [17]: add(id, t)
creates a new component instance id of type t; del(id)
instruction deletes a component instance id; for estab-
lishing connections between components con(idl, p,id2, u)
connects two components via the provide port p of the
component instance id1l and the use port u of the compo-
nent instance id2; finally, dcon(idl,u,id2,p) disconnects
previously connected components.

In addition to these four instructions, two additional
instructions are possible in Ballet and Concerto. The
instruction pushB(id, bhv) pushes the request of executing
the behavior bhv in the queue of the component instance
id, while wait(id, bhv) ensures synchronization by waiting
for the completion of the behavior bhv on the component
instance id. As the pushB instruction is a non-blocking
instruction that introduces concurrency of execution, the
wait instruction is a synchronization that ensures proper
coordination and the appropriate order among component

instances during the overall reconfiguration process.

When a control component instance executes a behav-
ior, transitions associated with this behavior are triggered
while respecting port synchronization, with semantics
close (but different) to Petri nets [10]. Transitions are
triggered until the component reaches a state where no
further transitions can be fired for the current behavior.

At this point, the behavior request is considered com-
plete and is popped from the behavior queue. The control
component then proceeds to execute the next behavior in
the queue.

Concurrency between component instances when exe-
cuting behaviors leads to a need for coordination between
components when connected through their ports. Indeed,
a use port cannot be activated (i.e., entering the group
bound to the port) unless connected to an active provide
port (i.e., at least one token is present within the group
bound to the port), and a provide port cannot be deac-
tivated while connected to an active use port. Then, in
Ballet, a component provides synchronization information
to distant components in the following cases: (1) when the
current con or dcon action is locally finished and involves
another node; (2) when an expected behavior (i.e., wait
instruction) is finished; (3) when a provide or use port
within a local component is activated; (4) when a provide
or use port within a local component is deactivated.
Contrary to Concerto, from which our execution engine
is inspired, synchronization information is shared through
communications on the network.

Recall that this language does not have to be manipu-
lated by either the developers or the DevOps in Ballet and
is strictly used by the planner in an automated way.

Reconfiguration ezample: Figures [fa] and [b] provide
the reconfiguration programs for a master node and a
worker node within a Galera cluster of databases. In this
specific scenario, four messages will be exchanged: first,
when the worker node stops using the master’s service
(triggered by worker’s interrupt behavior); second, when
the master node disables its service port (triggered by
master’s interrupt behavior); third, when the master
node starts providing its service (deploy behavior); and
finally, when the worker node resumes using the ser-
vice (deploy behavior). Figure [2f illustrates a possible
scenario when executing these programs with associated
tokens: mdbmaster has finished and popped the behaviors
interrupt and update and is executing its deploy behav-
ior; and concurrently mdbworker is finishing the behavior
interrupt, reaching the ending place of this behavior.

B. Planner

From the assembly given by a DevOps team, the planner
is responsible for building the reconfiguration plan of each
node. To this purpose, the current local assembly (i.e.,
state) is compared to the one submitted by the DevOps
team. If a component is missing or should not exist in
the assembly, a add or del instruction is added for the

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

(b) worker

Fig. 4: Example of reconfiguration plans of MariaDB
master and one MariaDB worker

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

(a) master

concerned node (inventory). If a connection is missing or
should not exist in the assembly, a con or dcon instruc-
tion is added to the two concerned nodes. Then, Ballet
adopts a classical structure of reconfiguration program [17]
with three blocks: the first block contains add and con
instructions; the middle block contains the pushB and wait
instructions (see below for details on this block); the third
block contains dcon and del instructions. By following this
three-block structure, topological changes in the assembly
cannot interfere with the result of the decentralized plan-
ners. Generating the correct ordered set of pushB and wait
instructions (4.e., middle block) is the most calling part of
the planner. Unexpected emergent behaviors or deadlocks
may arise due to interactions between components and
behaviors.

Example of failing reconfiguration: To exemplify this
difficulty, let us consider the same programs of Figure []
containing pushB instructions but with the wait in-
struction after the pushB(worker,deploy) in the worker.
Although the execution might seem to follow the same
order, the non-deterministic order of parallelism makes the
same output impossible to guarantee in this second case.
Indeed, in the worst case, the worker could complete its
entire reconfiguration, before the master begins its process.
Hence, the efficiency introduced by the level of parallelism,
and concurrency induces more complexity when inferring
RPs.

To infer the middle block, Ballet’s planner uses Con-
straint Programming (CP). CP is a declarative paradigm
for solving combinatorial problems [19]. It allows a user to
state a problem by describing the constraints (relations)
holding on variables (unknowns). A domain of allowed
values is defined for each variable by the user, and each
constraint is equipped with a filtering algorithm (given by
the CP community) that removes impossible values from
the variable’s domain. The purpose is to find a solution
as a mapping of values to variables that satisfy specified
constraints.

1) Local Resolution: The local resolution consists of
inferring a local valid sequence of behaviors for each
component to satisfy local reconfiguration goals. For each
control component, the planner builds a labeled automa-
ton in which it is going to find a valid word according to
some constraints given by the goals. In this automaton,
each state corresponds either to a starting or ending place
of a control component behavior, and each transition

state 1 2 3 4 5

common v v X X X

haproxy x X

SNEIEN
X
X

master v v

service v X X x X

uninstall

1)

Fig. 5: Automaton representation of Mariadb worker
component’s life cycle with its associated incidence matrix
for ports statuses.

corresponds to the associated behavior to move from one
state to another. Each transition is also associated with a
cost representing the number of transitions in the control
component to apply this behavior. In other words the
automaton models from which to which behavior it is
possible to move and at which cost. As a result, a valid
word in this automaton is a valid sequence of behaviors
in the control component of Ballet. Each state in the
automaton also indicates the state of the port (active
or inactive) at the beginning or the end of a behavior,
hence the automaton also permits to meet specific port
constraints. Figure [5] gives an example of the automaton
associated with the mariadb control component presented
in Figure[2] Each transition is labeled by its corresponding
behavior and weight. The table on the right side of the
figure represents the port statuses associated with each
state of the automaton.

The problem of finding a sequence of behaviors con-
strained by reconfiguration goals can be modeled and
solved using CP techniques. The formulation of the prob-
lem includes several variables and is given by Model [1} (i)
B denotes a sequence of behaviors of size m (m being an
integer with a fixed maximal size where all behaviors are
applied), b; € B is the behavior of the control component
at step ¢; (ii) S denotes an array of size m+1, s; € S (resp.
si+1 € S) the automaton state at step 4, before (resp. after)
executing b;; and (iii) C' denotes a global cost for executing
all behaviors in B.

In the following, sini and Sgea: respectively denote the
current state of the modeled component, and the accepted
states at the end of the reconfiguration. The constraint
ensures that the sequence of behaviors represented by B
is accepted by the given finite automaton II [20], starting
from state s;ni. To specify the state goals, the set Sgoq; is
reduced, according to the provided goals. By default, Sgoa
contains all the states of the automaton. Equation
(which is also considered as a constraint in CP) is used to

Minimize C subject to

REGULAR(B, 11, Sinit; Sgoal) (1)
Si+1 = inen|si][bi], Vie l.m (2)
CounTt(b, B, >,0) (3)
status(p, sm+1) =I'p (4)

where T', € {active,inactive}
¢i = cost(s;, b;), Yiel.m

C = SuM([¢; | i€ 1..m])

Model 1: A CP model for finding a sequence of behavior
to execute from an automaton.

define the state after applying a behavior b; from a state
s; by using the incidence matrix of the automaton. The
behavior goals are expressed using the Count(v,V,r, L)
constraint [21]. This constraint holds if the number N
of variables in V assigned to the value v verifies NrL,
with r being a relational operator and L a limit. For
instance, Constraint states that the behavior b must
be executed at least once. Furthermore, Constraint
models objectives on the status of ports, specifying the
status a port p should have after running the last behavior
of the reconfiguration sequence. The cost of running each
behavior is represented by the variable ¢;, taking into
account the current state s;, captured in .S, from which the
behavior is executed. The cost function estimates the cost
by considering the transitions of the component model.
(e.g. in Fig. the associated cost for running deploy from
state 5 is greater compared to executing it from state
1). The objective function aims at minimizing the variable
C, which represents the sum of costs for executing all
behaviors in the resulting sequence.

The above model is purely local, thus it does not include
some constraints related to external ports. These missing
constraints will be addressed thanks to a distributed pro-
tocol, described below.

2) Constraint propagation: Intuitively, when handling
the planning problem in a decentralized fashion, applying
behaviors in one component on a given node may lead
to the deactivation of a provide port, which results in
the need for another component (hosted on another node)
to execute additional behaviors, typically to disable their
using ports. Consequently, Ballet adopts a distributed
protocol inspired by gossip [22] to propagate constraints
throughout the system, enabling concerned components to
adjust their behaviors based on port statuses.

When a behavior changes the status of a control com-
ponent’s port, a message is sent to the connected neighbor
components. A message contains the identifier of the
source component, the port that is affected and how
(i.e., active or inactive), and the name of the behavior
responsible for this change. These messages are interpreted
as additional constraints. The new constraints are used to
extend the local automaton and the CP model to ensure

that the locally connected ports also change their statuses
during the local resolution. In other words, the locally
connected ports have a count greater than zero in the
sequence of states obtained during local resolution. This
extension is achieved using the following constraint, where
s, can take values of either active or inactive:

COUNT(sy, [status(p, s;) | i € 1.m + 1],>,0)

This propagation mechanism has to reach a convergence
and ending point. To this purpose, an acknowledgment
protocol is employed during this phase. It is inspired by
distributed consensus algorithms such as Paxos [23] or
Raft [24].

3) Final plan inference: When all constraints have been
propagated (i.e., acknowledgment received), a final resolu-
tion has to be applied. The previously received messages
are used once again in the final resolution to enrich the
automaton with synchronization instructions (i.e., wait).
Intuitively, when a constraint is received from a con-
nected component, meaning that the status of a connected
external port will change during a given behavior, the
external behavior responsible for this change has to be
waited before the local application of a behavior that also
changes the local connected port status. To ensure this
synchronization, all local automaton states related to the
concerned port are enriched with a new transition labeled
as wait cpnt bhv, with a cost of 0. The domain of each
b; (behavior) now includes new wait instructions in the
CP model. Furthermore, an additional COUNT constraint
is declared on the sequence. This constraint ensures that
at least one occurrence of wait cpnt bhv appears in the
sequence. This last constructed model is used to locally
find a planning solution.

V. EVALUATION

Our implementation of Ballet, the experimental sce-
narios, and the results are all accessible at the following
Zenodo link https://doi.org/10.5281/zenodo.10472116.

Ballet is implemented in 8400 LoC using Python 3.9.2
with packages grpcio (version 1.47.0) for communications
between the planners, and flask (version 2.2.2) for the
executor’s coordination. To solve our CP problems we
have chosen the high-level solver-independent constraint
modeling language MiniZinc |25] (version 2.7.6), and the
PYTHON package minizinc (version 0.9.0) as an interface
for it. Among all possible solvers available with MiniZinc,
the open-source C++ constraint solver GECODE [26] (ver-
sion 6.3.0) has shown better performances in our case and
is used in the following.

A. Experimental setup

We conducted a series of experiments on Ballet and
Muse by using the multi-site OpenStack use-case detailed
in Section[[Il We have evaluated two choreography scenar-
ios, one to deploy a full multi-site OpenStack and another
to update the MariaDB master node of an already deployed

https://doi.org/10.5281/zenodo.10472116

multi-site OpenStack. For the running scenario, the defi-
nition of the goals is shown in Listing [3] Our experiments
range from 1 to 10 sites following the assembly of Figure
(i.e., maximum of 31 nodes for 10 sites).

For the sake of simplicity and reproducibility, we have
decided to use traces of third-party previous real ex-
periments on OpenStack and Galera [10], [12]. Traces
are available onlindﬂ Our experiments, while using past
traces, are performed on a real infrastructure offered by
the experimental platform Grid’5000, thus facing real dis-
tribution and communications between nodes. Evaluations
were conducted on the Gros and Paravance clusterd Gros
is composed of 124 hosts equipped with one 18-core Intel
Xeon Gold 5220 CPUs, 96GB RAM, 480 GB + 960 GB
SSD, and a network interface with a transfer rate of 2 x
25 Gbps (SR-IOV); Paravance has 72 hosts equipped with
two 8-core Intel Xeon E5-2630 with 128 GiB of memory,
2x600 GB HDD, and a transfer rate of 2 x 10 Gbps
(SR-IOV) on the network. EnosLib [27] scripts have been
used as a front interface for Ballet’s nodes.

B. Results

1) Inference of the reconfiguration plans: For both our
deployment and update scenarios, from 1 to 10 sites,
Ballet can correctly generate the reconfiguration programs
of each node in a decentralized manner. The programs
generated for each node are strictly local to the con-
cerned nodes. The order of instructions is correct (checked
manually) and the execution of the generated plans has
successfully been performed without any deadlock or un-
willing emergent behavior. Table | gives an overview of the
work achieved by the planner on the update scenario. The
number of messages, that are responsible for propagating
constraints, reflects the number of synchronizations that
would be needed between DevOps teams to complete the
design of the reconfiguration plan. Considering n sites, the
reconfiguration goal leads to n x 9 required messages, and
8 + 11 x n inferred constraints. This scenario also leads
to a total of 3 + 20 x n instructions distributed among
1 + 3 x n reconfiguration programs, all inferred by the
planners from a few lines of YAML goals (Listing [3)
with a strict local information level. Then, thanks to the
inference of constraints and a communication protocol, we
can generate an efficient distributed plan.

2) Execution time: For both the deploy and update
scenarios, Ballet consistently outperformed Muse. Table ||
illustrates the average execution times for 10 runs for each
configuration, i.e., from 1 to 10 sites and one extra master
database node, with a standard deviation lower than 0.1s.
Note that both Ballet and Muse automatically infer the set
of reconfiguration plans, however, in Muse this inference
is computed progressively when executing changes, while
Ballet calculates all the plans in a decentralized manner

3https://doi.org/10.5281/zenodo.10472116
4https:/ /www.grid5000.fr /w/Hardware

#Sites | #£Messages | #Constraints | #Instructions
1 9 19 23
2 18 30 43
5 45 63 103
10 90 118 203

TABLE I: Results of the planning phase for the update
scenario when varying the number of Mariadb workers
in a Galera cluster. The number of messages sent in the
gossip algorithm, the associated number of constraints,
and reconfiguration instructions inferred by the planners
are given.

Ballet

‘ Se. ‘ # Sites Planning | Execution || Total ‘ Muse | Gain ‘
> 1 1.69s 306.02s 307.71s | 536.57s | 42.7%
2 2 1.78s 306.09s 307.86s | 536.69s | 42.6%
% 5 1.77s 306.19s 307.97s | 537.09s | 42.7%
A 10 2.02s 306.14s 308.19s | 538.13s | 42.7%
8 1 3.36s 416.84s 420.20s | 555.56s | 24.4%
_Cg 2 4.39s 416.92s 421.31s | 555.70s | 24.2%
A 5 6.05s 417.17s 423.22s | 556.08s | 24.0%
=} 10 5.97s 417.46s 423.43s | 556.77s | 24.0%

TABLE II: Comparison of durations (seconds) for plan-
ning and executing a deployment of a multi-site Open-
Stack (from 1 to 10 sites) and an update of the
MariaDB master instance with Ballet and Muse. Results
have shown a very low standard deviation (< 0.1s) for
running any scenarios with both engines.

before execution which is why planning and execution
phases are not dissociated for Muse. On average, Ballet
takes about 307 seconds to plan and perform a deployment
for any number of sites, and 424 seconds to plan and
perform the update. It represents a gain of 42.6% (resp.
24%) for the deploy (resp. update) scenario, compared to
Muse for all number of sites.

Unlike the deploy scenario, the update does not offer a
lot of opportunity for parallelism which partly explains
the differences in gain. Furthermore, in contrast to Ballet,
Muse adopts an immutable approach in the update case
where components are recreated before old versions are
destroyed. Indeed, the granularity of the life cycles in Muse
(on-off) does not offer as much flexibility as Ballet to
interrupt services, update them, or restart them. Hence,
the set of instructions for Muse and Ballet in the update
scenario are not strictly identical. In particular, some
update commands on databases, performed by Ballet only
(extracted from real traces), are long compared to others.
In other words, this case is not very favorable to Ballet,
but still Ballet shows a performance improvement of 24%
thanks to its concurrency and parallelism.

As illustrated in Table[[T} the computation time of Ballet
is driven by the time to execute the reconfiguration plan.
Contrary to the deploy scenario, planning an update needs
communications between nodes. Table[[T]] provides average
times, and its standard deviation, for inferring plans for
the update scenario. On the one hand, the Solving column
includes the time required for behavior inference, and for

https://doi.org/10.5281/zenodo.10472116
https://www.grid5000.fr/w/Hardware

#Sites Solving Communications Total
1 1.58 (0.06) 1.78 (0.44) 3.36 (0.43)
2 1.53 (0.13) 2.85 (1.62) 4.39 (1.72)
5 1.59 (0.06) 4.47 (0.92) 6.05 (0.91)
10 2.61 (0.17) 0.26 (0.01) 5.97 (0.63)

TABLE III: Average duration in seconds (and standard
deviation) to calculate the plans for the update scenario.

solving the CP model to generate the final plan. On the
other hand, the Communications column reflects the time
taken for data exchanges between nodes in our distributed
protocol. The results reveal stable values for solving, but
some variations in the Communications phases. As the
proportion of work involved in the planning phase is low
compared to execution, these variations have little impact
on the overall results.

Overall, our experimental results show that the granu-
larity adopted by Ballet (through the decentralization of
Concerto) to control the component’s life cycle, and the
concurrency introduced by its reconfiguration language,
improves the performance of a decentralized reconfigura-
tion compared to Muse, both for the deploy and update
scenarios. This was not obvious because the granularity
and concurrency introduced by Concerto also increase the
plan inference complexity compared to Muse.

3) Expressiveness and flexibility: While both Muse and
Ballet aim to facilitate DevOps operations, they differ in
their usage. First, from the developer perspective, Muse
offers a fixed life cycle of resources and services with three
functions create, destroy, and update coupled with internal
parameters. Muse also requires an additional function
from the developer (i.e., diff) to indicate which function
to trigger in which cases when the parameters of the
service or resource are changed. In contrast, in Ballet,
the life cycle is fully programmable, and a clear model
and programming support are offered to developers to
express in which case (i.e., behavior) a set of actions
(i.e., transitions associated to the behavior) have to be
executed. Ballet also automatically handles parallelism
of actions in the life cycle. Thus, the expressiveness at
the developer level is improved with Ballet as offering
a programmable life cycle with associated models and
semantics.

Second, from a DevOps viewpoint, Muse requires De-
vOps to give a new assembly of services/resources and a
set of modified parameters in each of those services and
resources. In contrast, with Ballet, DevOps also gives a
new assembly but, instead of changing the values of inter-
nal parameters, a goal language with clear semantics that
manipulates the interfaces exposed by control components
(i.e., ports, behaviors) is used. It is difficult to claim that
the expressiveness is improved by Ballet at the DevOps
level as the same set of actions seems possible through
parameters and behavior requests. But we can claim that
the complexity is not increased by Ballet.

The above results give elements to answer our research
questions on our multi-site OpenStack case study. First,
(RQ1) Ballet correctly generates an efficient distributed
plan in a decentralized manner for cross-DevOps opera-
tions while asking the DevOps a strictly local information
level. Second, (RQ2) Ballet reduces the execution time
of cross-DevOps operations compared to Muse, thanks to
programmable life cycles, without adding complexity to
the input provided by DevOps, thanks to its goal language
and associated planner.

4) Threats to validity: As in any empirical study, there
are threats to the validity of our work. First, Ballet has
been experimented on a single real case study, presented
above, and additionally some synthetic use cases not
presented here for space reasons. To further validate our
approach, we intend to evaluate Ballet on additional real
use cases in an extended version of this paper. Second,
there may be errors in our design and implementation
of Ballet. If additional use cases may help detect such
problems, we intend to cover a larger set of tests as
well as explore a formal study of Ballet (as done with
Concerto [10]). Finally, it is clear in the above evaluation
that the complexity of using Ballet is difficult to establish.
A survey and test campaign with DevOps teams would be
needed to evaluate this metric.

VI. RELATED WORK

First, when applying a reconfiguration to a set of inter-
connected services (i.e., component assembly), the life cy-
cle of the services has to be manipulated (e.g., on, off, up-
dated, interrupted, etc.). The simplest way of handling this
life cycle is to consider that a component is either on or
off 117], [28]. However, such a simple model is too limited
in many cases (for instance, the stop propagation [29]).
The life cycle flexibility also influences the granularity
of the dependencies between components. When the life
cycle is programmable (i.e., freely coded and specified by
the user), more parallelism can be exposed, thus reducing
the duration of reconfiguration [10], [30]. In the literature
and in DevOps tools, the life cycle modeling can either be
fixed or programmable. The life cycle modeling is our first
metric of interest. Second, as already explained, we target
decentralized declarative reconfiguration in this paper.
The decentralization of declarative dynamic reconfiguration
is our second metric of interest split into three parts in
Table [[V} the fact of offering an automated planner, thus
a declarative approach; the fact of offering a cross-DevOps
mechanism for both the planner and the execution, hence
a decentralized approach. Table [[V]sums up the presented
related work below.

As already mentioned in the introduction, DevOps 1aC
solutions offer reconfiguration capacities in a declarative
manner. Examples of widely used solutions include An-
sible [31], where a declarative approach is not strictly
possible but where idempotence is possible by using mod-
ules; Terraform [16], Puppet [15], or Pulumi [8] that offer

Ansible | Puppet | Terraform | Pulumi | Kubernetes Aeolus Concerto 5 6] Muse Ballet
131] [15) [16 8] [32] [30], 33] | [10], [11] 4]
Life cycle prog prog fixed fixed fixed prog prog fixed | prog | fixed prog
Planner X v v v v v v X X v v
CDO plan X X X X X X X X X 4 v
CDO exec X X X X X X X v v v 4

TABLE IV: Comparison of tools in the literature according to the metrics of interest. The life cycle can either be fixed
or programmable. Planner denotes the fact of having (or not) an automated planning phase within the tool. The CDO
plan and CDO exec denote the fact of having a cross-DevOps decentralized mechanism for either the planner or the

executor.

declarative provisioning of various kind of resources, thus
where a planning phase exists; orchestration tools, like
Kubernetes [32], that offer automatic scalability features,
and automatic restart after failure for instance. However,
such tools adopt a centralized vision, where both the plan
computation (i.e., the imperative program associated with
the declarative requirements) and its execution are done
by a single central entity.

Dynamic reconfiguration, alongside DevOps tools, is
also a domain of component-based software engineering
(CBSE) |17]. Aeolus [30] and Concerto [10] are the com-
ponent models offering the highest degree of flexibility to
define life cycles and are exclusively made for this purpose.
Both offer a declarative way of handling reconfiguration
thanks to their respective planners |11], [33] that automat-
ically infer reconfiguration programs from a specified goal.
However, these solutions adopt a centralized approach.

In [5] and [6] solutions to coordinate and deploy an ap-
plication made of multiple components are presented. Each
component of the application expresses its dependencies
with the other components in a central plan, distributed
to the corresponding nodes, deploying their part of the
application. The executions of the deployments are then
coordinated between the nodes according to their depen-
dencies. Here, the execution is decentralized. The plan
however is manually written in a centralized manner. In [5]
the solution uses TOSCA descriptions for services, hence
having a non-customizable life cycle [9], [10], while in [6]
a generic specific language is used to model the system by
creating custom elements, dependencies, and life cycles.
Muse [4] allows the deployment; update and destruction
of multiple services and resources in a coordinated way.
Furthermore, the creation of the plan is automated and
decentralized. In Muse, the life cycle modeling is fixed,
thus limiting the level of parallelism and concurrency
between reconfiguration plans.

A set of contributions in the literature try to decen-
tralize container-based orchestrators, such as Kubernetes.
However, the proposed solutions focus on decentralizing
the scheduler of Kubernetes that assigns jobs to resources,
not how to execute and coordinate in a decentralized man-
ner multiple reconfiguration requirements from DevOps
teams (i.e., manifests). For this reason, those contributions
are out of our scope [34]-(36].

Finally, many tools exist to automatically decide the
set of requirements without the intervention of DevOps

teams [17]. In particular, in [37], [38] constraint program-
ming and SMT solvers are leveraged in this purpose. In
this paper, we consider this information as input coming
from DevOps teams or from such a tool, and we focus
on the step after this decision: from a declarative set of
requirements, how to compute the required program to
reach it, and then how to execute it, both in a decentral-
ized manner. Those approaches are thus complementary
to our contribution.

VII. CONCLUSION

In this paper, we have presented Ballet, a declarative
tool to coordinate cross-DevOps reconfiguration proce-
dures decentrally. Ballet takes as inputs a set of declarative
goals from DevOps teams. It automatically performs the
following actions: (1) computes in a decentralized manner
the set of reconfiguration plans on all nodes directly or
indirectly affected by the goals from a simple declarative
file; (2) executes the set of reconfiguration plans in a decen-
tralized manner, by automating required communications
between nodes; (3) speeds up the overall reconfiguration
procedure. Ballet has been evaluated on the real use case of
a multi-site OpenStack with a Galera cluster of MariaDB
databases for two scenarios: the full deployment of the
system, and an update of the master database that induces
many changes in other services. First, results have shown
the interest of the approach from a DevOps perspective:
with n the number of sites, from a few lines of goals,
3+ 20 x n reconfiguration instructions have automatically
been generated within 1 + 3 x n nodes, and n x 9 mes-
sages (originating 8 + 11 x n inferred constraints) have
been avoided between DevOps teams. Second, results have
shown that Ballet is faster to perform the choreography
than Muse (choreography tool of the literature on top of
Pulumi) with a gain of 42.6% for the deployment scenario,
and 24% for the update scenario. We plan in the future to
plug upgrade Ballet with an automated and decentralized
way to decide the set of DevOps goals [39]. Furthermore,
we plan to formalize both the executor’s and planner’s
semantics and use it to certify Ballet. For instance, we
may verify the correctness of the generated plans, the
correctness of the generated automaton for CP, etc.

ACKNOWLEDGEMENT
The authors acknowledge the support of the French
Agence Nationale de la Recherche (ANR), under grant
ANR-20-CE25-0017 (SeMaFoR. project)

(1]

2]

3]

[5]

(10]

(11]

(12]

[13]
(14]

(15]
(16]

(17]

(18]

19]

20]

(21]

REFERENCES

R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J. M.
Soares, “Edge Computing Resource Management System: a
Critical Building Block! Initiating the debate via OpenStack,”
in HotEdge 2018 - USENIX Workshop on Hot Topics in Edge
Computing, 2018.

L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A
survey of devops concepts and challenges,” ACM Comput. Surv.,
2019.

K. Nybom, J. Smeds, and I. Porres, “On the impact of mixing
responsibilities between devs and ops,” in Agile Processes, in
Software Engineering, and Extreme Programming, 2016.

D. Sokolowski, P. Weisenburger, and G. Salvaneschi, “Automat-
ing serverless deployments for devops organizations,” in Pro-
ceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021.

K. e. a. Wild, “Decentralized cross-organizational application
deployment automation: An approach for generating deploy-
ment choreographies based on declarative deployment models,”
in Advanced Information Systems Engineering, 2020.

H. Herry, P. Anderson, and M. Rovatsos, “Choreographing con-
figuration changes,” in Proceedings of the 9th International Con-
ference on Network and Service Management (CNSM 2013),
2013.

L. Cruz-Filipe, E. Graversen, L. Lugovi¢, F. Montesi, and
M. Peressotti, “Modular Compilation for Higher-Order Func-
tional Choreographies,” in 87th European Conference on Object-
Oriented Programming (ECOOP 2023), 2023.

“Pulumi,” https://www.pulumi.com/, 2023, accessed: 2023-24-
10.

M. Chardet, H. Coullon, and C. Pérez, “Predictable Effi-
ciency for Reconfiguration of Service-Oriented Systems with
Concerto,” in CCGrid 2020 : 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, 2020.
M. Chardet, H. Coullon, and S. Robillard, “Toward Safe and
Efficient Reconfiguration with Concerto,” Science of Computer
Programming, 2021.

S. Robillard and H. Coullon, “SMT-Based Planning Synthesis
for Distributed System Reconfigurations,” in FASE 2022 : 25th
International Conference on Fundamental Approaches to Soft-
ware Engineering, 2022.

M. Chardet, H. Coullon, C. Pérez, D. Pertin, C. Servantie, and
S. Robillard, “Enhancing Separation of Concerns, Parallelism,
and Formalism in Distributed Software Deployment with
Madeus,” 2020, working paper or preprint. [Online]. Available:
https://inria.hal.science/hal-02737859

“Galera cluster,” https://galeracluster.com/, 2023, : 2023-24-10.
H. Coullon, D. Pertin, and C. Pérez, “Production Deployment
Tools for TaaSes: an Overall Model and Survey,” in The IEEE
5th International Conference on Future Internet of Things and
Cloud (FiCloud), 2017.

“What is puppet,” http://puppetlabs.com/puppet/
what-is-puppet) 2014, : 2023-24-10.

Y. Brikman, Terraform: Up and Running.
Inc., 2022.

H. Coullon, L. Henrio, F. Loulergue, and S. Robillard,
“Component-based distributed software reconfiguration: A
verification-oriented survey,” ACM Comput. Surv., 2023.

F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Comput.
Surv., vol. 53, 2020.

F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Con-
straint Programming, ser. Foundations of Artificial Intelligence,
2006.

G. Pesant, “A regular language membership constraint for finite
sequences of variables,” in Principles and Practice of Constraint
Programming - CP 2004, 10th International Conference, CP
2004, Toronto, Canada, September 27 - October 1, 2004, Pro-
ceedings, ser. Lecture Notes in Computer Science, M. Wallace,
Ed., vol. 3258, 2004.

“count,” |https://sofdem.github.io/gccat/gccat/Ccount.html,
2014, accessed: 2023-07-12.

O'Reilly Media,

22]

23]

[24]

25]

(26]

27]

(28]

29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Trans. Comput.
Syst., vol. 23, no. 3, p. 219-252, aug 2005. [Online]. Available:
https://doi.org/10.1145/1082469.1082470

L. Lamport, “Paxos made simple,” ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 (Whole Number 121, Decem-
ber 2001), pp. 51-58, 2001.

D. Huang, X. Ma, and S. Zhang, “Performance analysis of the
raft consensus algorithm for private blockchains,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 50,
no. 1, pp. 172-181, 2019.

“Minizinc 2.7.6,” |https://www.minizinc.org/resources.html,
2023, accessed: 2023-07-12.

“Gecode 6.3.0,” |https://www.gecode.org/index.html, 2021, ac-
cessed: 2023-07-12.

R.-A. Cherrueau, M. Delavergne, A. van Kempen, A. Lebre,
D. Pertin, J. R. Balderrama, A. Simonet, and M. Simonin,
“Enoslib: A library for experiment-driven research in distributed
computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 6, pp. 1464—-1477, 2022.

A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-
H. Nguyen, and J. Sifakis, “Rigorous component-based system
design using the bip framework,” IEEE Softw., 2011.

L. Henrio and M. Rivera, “Stopping safely hierarchical dis-
tributed components: application to gcm,” in CBHPC ’08:
Proceedings of the 2008 compFrame/HPC-GECO workshop on
Component based high performance, 2008.

R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro, “Ae-
olus: A component model for the cloud,” Information and
Computation, 2014.

“Ansible,” https://www.redhat.com/en/technologies/
management/ansible, 2023, : 2023-24-10.

B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes:
up and running. O'Reilly Media, Inc., 2022.

T. A. Lascu, J. Mauro, and G. Zavattaro, “Automatic deploy-
ment of component-based applications,” Science of Computer
Programming, 2015.

M. A. e. a. Tamiru, “mck8s: An orchestration platform for geo-
distributed multi-cluster environments,” in 2021 International
Conference on Computer Communications and Networks (IC-
CCN), 2021.

Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to
edge with kubeedge,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC), 2018.

L. L. Jiménez and O. Schelén, “Docma: A decentralized or-
chestrator for containerized microservice applications,” in 2019
IEEE Cloud Summit, 2019.

J. A. Hewson, P. Anderson, and A. Gordon, “A declarative
approach to automated configuration,” in Proceedings of the
26th international conference on Large Installation System Ad-
ministration: strategies, tools, and techniques, 2012.

E. Abraham, F. Corzilius, E. B. Johnsen, G. Kremer, and
J. Mauro, “Zephyrus2: On the fly deployment optimization
using smt and cp technologies,” in Dependable Software Engi-
neering: Theories, Tools, and Applications, 2016.

A. Alidra, H. Bruneliere, H. Coullon, T. Ledoux,
C. Prud’Homme, J. Lejeune, P. Sens, J. Sopena, and
J. Rivalan, “SeMaFoR - Self-Management of Fog Resources
with Collaborative Decentralized Controllers,” in SEAMS 2023
- IEEE/ACM 18th Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2023. [Online]. Available:
https://hal.science/hal-04043471

https://www.pulumi.com/
https://inria.hal.science/hal-02737859
https://galeracluster.com/
http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet
https://sofdem.github.io/gccat/gccat/Ccount.html
https://doi.org/10.1145/1082469.1082470
https://www.minizinc.org/resources.html
https://www.gecode.org/index.html
https://www.redhat.com/en/technologies/management/ansible
https://www.redhat.com/en/technologies/management/ansible
https://hal.science/hal-04043471

	Introduction
	Motivating Use-Case
	Usage of Ballet
	Developers' concern
	DevOps' concern

	Choreography Engine of Ballet
	Executor
	Planner
	Local Resolution
	Constraint propagation
	Final plan inference

	Evaluation
	Experimental setup
	Results
	Inference of the reconfiguration plans
	Execution time
	Expressiveness and flexibility
	Threats to validity

	Related Work
	Conclusion
	References

