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Abstract—For IoT and edge systems, measuring, predicting
and optimizing energy consumption is an open field. It is
important to accurately and precisely characterize power and
energy consumption of edge nodes, as energy can be a scarce and
key resource. However, there are no fine-grain studies that aim
at understanding the potential variability of power and energy
consumption of edge nodes. Existing research works give minor
or no significance to this potential variability.

This paper addresses this problem by quantifying the vari-
ability of power and energy consumption on a single edge
node, and among multiple homogeneous edge nodes, for three
scenarios: Idle, CPU intensive ”matrix product” and RAM
intensive ”flip”. These scenarios are found in edge applications.
Identical controlled experiments are repeated thoroughly, for
each scenario.

Results show that power and energy variability exist for all
studied scenarios. On a single node, power and energy variability
measurements are relatively low. On multiple homogeneous
nodes, the variability can be significant. For example, for CPU
intensive ”matrix product”, the variability in energy is equivalent
to an idle up-time, in a month, of 7 hours and 52 hours, when
considering single and multiple homogeneous nodes, respectively.

Index Terms—IoT, edge computing, power, energy, consump-
tion, measurement, variability, analysis

I. INTRODUCTION

Systems of small connected nodes are built to solve various
problems. They can help for example in monitoring environ-
ment [1], [2], health care [3] and crowd-sensing [4]. These
systems are part of the “Internet of Things (IoT)”. Combined,
edge nodes can form ”distributed edge systems”. The number
of IoT systems is massively increasing [5], leading to an
inevitable overall increase in energy consumption by edge
nodes and systems.

Edge nodes can be resource-constrained, powered by bat-
teries, or with a limited energy budget. As the number of
IoT nodes keeps rising, it becomes challenging to be en-
ergy efficient and scale (e.g with maintenance and the need
of potential batteries replacement). With extreme scenarios,
nodes can also be not accessible for several months [1].
Consequently, systems should be frugal when it comes to
energy consumption, to limit energy consumption and sustain
long operational lifetime. A first step to achieve these goals
is to be able to accurately characterize and predict energy
consumption for nodes.

Understanding and evaluating possible energy-saving tech-
niques at the scale of small edge nodes being part of a large
distributed system is an open field [6]. However, literature
gives no or minor importance to potential power and energy

consumption variability on single edge node or among homo-
geneous edge nodes.

Understanding the accuracy and precision of power and
energy consumption allows for detailed and accurate studies.
It becomes especially critical when: (i) making and using
models to predict energy consumption of nodes; (ii) doing
comparisons with related works for results that differ within
the not considered variability; (iii) the system is deployed in
extreme conditions where nodes, not accessible during several
months, need to accurately predict their limited lifetime; (iv)
using monitoring results to calibrate simulator inputs. Thus,
it is crucial to understand the accuracy of power and energy
consumption measurements.

In this paper, we study power and energy consumption
variability on single and multiple homogeneous edge nodes,
for specific scenarios. Experiments are conducted on a remote
open access testbed, Fit IoT-LAB [7], for its external and ultra
precise energy consumption monitoring. External monitoring
is very important for the energy variability study, as it does
not add any workload to the nodes.

We conduct our experiments using Raspberry Pies, all 3 B
available in the testbed, as these nodes are highly studied in
literature for prototyping [8] and deployments of IoT and edge
systems [9]. However, fine-grain studies of power and energy
variability are not conducted on these types of nodes.

We quantify the variability of idle state, RAM and CPU
components. We uniformly stress one specific component
several times, which results in power and energy consump-
tion measurements for the same scenario, under controlled
conditions. We evaluate the variability of power and energy
consumption, for these states and components used in every
application. This study is a first step towards understanding
potential variability in edge applications.

The contributions of this paper are:

• A thorough and fine-grain study of power and energy
variability on a single edge node

• A thorough and fine-grain study of power and energy
variability on multiple homogeneous edge nodes

This paper is organized as follows: Section II presents
related work. Section III presents experimental setup. Section
IV presents results and observations. Section V presents dis-
cussions. Finally, section VI presents conclusions and future
work.
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II. RELATED WORK

Power and energy consumption metrics are used in multi-
ple papers to study specific characteristics of IoT and edge
systems [6], [10]–[14]. These papers use values from litera-
ture [10], local unique [9] or average [12], [13] measurements.
Simulations can be an alternative for experiments [10], [15].

Papers from large-scale infrastructures show that nodes, ho-
mogeneous in hardware, can be heterogeneous in power [16].
However, papers generally use average power measurements
from a single node [17].

In [18], authors analyze and evaluate variability of energy
consumption among different external and internal power
monitoring devices, tested with several benchmarks, on two
types of nodes: server and desktop. Energy consumption of
idle state is subtracted from energy consumption of benchmark
runs. However, potential energy variability on a single node is
not considered and only one run per experiment is conducted.
These papers shows that energy variability has been studied
in an established field: large-scale infrastructures. It highlights
the need to address this concern in the edge context.

In [19], authors conduct experiments with OpenCV based
benchmarks on a Raspberry Pi 3B. Energy consumption is
measured using external monitoring. The goal is to conclude
optimal configuration, from energy consumption perspective,
per benchmark. For some benchmarks (e.g circle detection),
measurements from different configurations (e.g single and
multi thread) are close to each other (by 2.9412%). Exper-
iments are neither repeated on the node nor conducted on
multiple homogeneous nodes.

In [9], authors characterize Raspberry Pi 3B nodes, that are
part of an agricultural monitoring wireless sensor network,
from a power perspective during different workloads: idle,
sensing, transmitting, and file logging. The goal is to estimate
minimum and maximum lifespan of the battery powering
sensor nodes. Experiments are conducted with 4 nodes, run-
ning workloads for 15 seconds and measuring power with
external monitoring. Power varies from one node to another.
Reported measurements are used in linear regressions to build
models. To evaluate the model, authors monitor the remaining
percentage of node batteries, once per hour. Linear regression
with these measurements is used to build another model,
predicting remaining up-time of the sensor nodes. This metric
is used as a base to compute the accuracy of the power model,
reporting an accuracy of 80%. Power measurements are taken
by conducting only one run per workload, on each node.
Reported accuracy, and consequently expected lifetimes, needs
to be tested on larger sets of experiments.

In [20], authors present a framework to analyze energy
consumption on Raspberry Pi 3B+. The framework runs
benchmarks stressing several components on a node: proces-
sor, memory, storage, connectivity, and network usage. Energy
measurements are carried out by external monitoring. System
performance metrics are collected. All experiments are made
of 3 iterations, 15 minutes each. Average energy consumption
is reported and standard deviation is graphically presented.

Energy measurements are analyzed or used in linear regres-
sions to build a model that predicts energy consumption of
an application. When analyzing an experiment for one com-
ponent, estimated energy consumption of other components
is subtracted from total energy measurement. The model is
claimed to be reusable for other types of nodes after recom-
puting its constants. To evaluate it, authors run 2 experiments
in 2 different scenarios. 2 nodes are used per experiment. Cor-
responding 4 energy measurements, obtained from different
workloads, are compared to the model predictions, to compute
4 different accuracy levels.

Reported model average accuracy, 95%, does not represent
all benchmarks. Potential delta in energy consumption, from
each component, can influence computed remaining energy
consumption. Idle energy measurement, which has the lowest
accuracy level (91%), is subtracted from all experiments
measurements used to build the model. Conducted experiments
are made of only 3 runs. The assumption for having 15 minutes
per iteration, with only 3 runs, on a unique node is not
validated. Furthermore, the model is calibrated with only one
node, evaluated on only two homogeneous nodes, and assumed
to be reusable on all nodes of the same hardware. This
previous enumeration underlines the fact that the model does
not account for possible heterogeneity in energy consumption
among multiple homogeneous or single nodes.

In [21], authors propose a methodology to characterize vari-
ability of performance and power, on a single edge node and
across multiple homogeneous edge nodes, for both NVIDIA
Jetson AGX and Nano AI edge platforms. The study is
conducted for a set of CNN and Rodinia benchmarks. The
experimental protocol tries to limit variability sources (e.g by
fixing CPU frequency). The paper focuses on power, without
energy. Reported power variability varies from one benchmark
to another. As the study is conducted for high level and
complex benchmarks, it does not explore the variability for
separate node components (e.g CPU and RAM). A fine-grain
study, for individual components, can help in understanding
different degrees of power variability across benchmarks.

As a summary, characteristics of energy consumption is
studied at the edge without a detailed attention to its potential
variability, on a single node or multiple homogeneous nodes.
This can be noticed in experimental protocols, simulators
calibrations, and contributions comparisons. Few papers mea-
sure power and energy variability for multiple homogeneous
edge nodes, but with only one single run per node, or with
few nodes. Paper [21] is the closest to our contribution, as
it thoroughly studies power variability. However, it focuses
on high level benchmarks. Its results highlight the need to
have low level power variability analysis, as a first step for
understanding power and energy consumption variability on
edge nodes. Furthermore, research work aiming at conducting
fine-grain power analysis on a single node do not thoroughly
investigate or consider observed variability of energy con-
sumption.

On top of our knowledge, no paper with edge as a context
thoroughly and accurately quantifies power or energy variabil-
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ity for specific node components, on a single edge node or
homogeneous edge nodes. This paper starts to address these
problems by quantifying the variability of power and energy
consumption on edge nodes, for fine-grain scenarios stressing
specific components of edge nodes.

III. EXPERIMENTAL SETUP

This section presents the used testbed, nodes, experimental
protocol, stress scenarios, and evaluation metrics.

A. Testbed

Testbeds are important part of literature that facilitate re-
search around IoT and edge systems [7], [22]. We conduct our
experiments using a remote large-scale open access testbed,
FIT IoT-LAB [7], to conduct automated real experiments with
external power monitoring devices. We use the testbed for its
ultra precise external power monitoring setup, that does not
add overhead to nodes.

The testbed is composed of more than 1500 edge nodes
deployed across 6 sites in France. It allows access to monitor-
ing tools and provides SSH connections to nodes, through a
front-end. An API allows interactions with the testbed. In our
experiments, we use all available Raspberry Pi 3B, 5 nodes at
Grenoble, widely used in edge and IoT research [8], [9].

IoT-LAB nodes hardware setup1: An IoT-LAB node is an
edge node connected to a gateway and to a control node, by
its serial ports. The gateway2 is a small Linux computer that
is responsible for reprogramming the edge node and linking
it to the front-end. It also has a control node connected, an
autonomous on-board system that measures the power of the
edge node and controls it. This setup makes the edge nodes
available for experimentation, from the front-end.

Power measurements: The described set-up guarantees
real-time execution of power measurements. The measure-
ments are for the Raspberry Pi 3 B and the gateway’s USB
port. The external monitoring setup does not add workload
on the node. It does not add variable overhead to power
measurements. This is very important for our energy variability
study. The power monitoring device is the INA2263. It is ultra
precise: a maximum of 10 µmV offset and a maximum of 0.1%
Gain Error. We retrieve one power measurement every 0.2
second.

Raspberry Pi 3B nodes: A Raspberry Pi 3B is a single
board computer with a quad core 1.2 GHz CPU and a memory
of 1 GB RAM. In the testbed, a Raspberry Pi 3B Ethernet
interface is used for both power supply and LAN connectivity.
Thus, network connection cannot be avoided, as shutting down
Ethernet port will cut power. The nodes’ supply voltage is
measured to be very close to 4.8 V.

There are no other peripherals connected to the nodes. We
specifically asked, for our experiments, to remove additional
hardware 4 that are usually connected to the nodes.

1https://www.iot-lab.info/docs/getting-started/design/
2https://github.com/iot-lab/iot-lab/wiki/Hardware-Iotlab-gateway
3https://www.ti.com/lit/ds/symlink/ina226.pdf
4https://www.iot-lab.info/docs/boards/raspberry-pi-3/

The nodes operating system is a Linux distribution built
by the Yocto Project5, an open-source project that allows the
creation of embedded Linux distributions. The nodes’ Linux
distribution is based on ”Poky” reference distribution.

B. Experiments

We define an experiment as an extensive uniform 100 runs
of one scenario, on an edge node. We conduct the experiments
on five identical raspberry Pi 3B edge nodes. Each experiment
is repeated 10 times on each node.

time

(1) (2)

(4) (5)
(3)

experiment n

Fig. 1. Experimental Protocol: (1) node reservation and setup, (2) initial
cooling, (3) cooling before stress, (4) iteration and (5) stress. An iteration (4)
is made of a cooling (3) and a stress (5) period.

Experimental protocol: Figure 1 presents the experimental
protocol for stressing an edge node. Before an experiment, the
node is turned off. An experiment starts by reserving a node,
turning it on, installing the OS, and starting power monitoring.

After setting up the node, it is idle for 3 minutes to cool
down. Then, consecutive 100 stress iterations for the scenario
are run. Each iteration is one minute of stress preceded by one
minute of idle for cooling down.

To start an iteration, we SSH into the node, start the
iteration and SSH out. During a stress, there is no open SSH
connection on the node and only the stress command from our
experimental setup is running. We take timestamps before the
stress starts and after it ends to retrieve power measurements
for the stress, from timestamped power measurement logs
recorded by the testbed.

We focus on quantifying variability of power and energy
related metrics. Several potential sources of variability on
the node are eliminated: (i) WiFi interface is shutdown,
(ii) Bluetooth is disabled, (iii) LEDs are turned off, (iv) and
CPU frequency is set to a fixed performance mode, as default
powersave mode can cause sudden frequency changes that
influence performance, and thus consumed energy [23].

Therefore, our experimental protocol aims at (i) reducing
its impact on power and energy consumption on the node (ii)
and eliminating existing variability, to reduce possible noise,
for measuring variability from the stresses.

Stress scenarios:
Linux stress-ng version 0.11.17 is used to generate stresses

on edge nodes. stress-ng is selected because it contains several
workloads to stress specific components of a node, indepen-
dently. It is popularly used in literature [18], [20]. Each stress
scenario is selected to stress the node in a specific state or
specific component, used in every application: idle, CPU and
RAM. This is a first step towards understanding potential
variability in edge applications.

5https://www.yoctoproject.org/
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Idle: a node is in the idle state when it is ON but it
is not doing any useful work [17]. To reach this state, the
experimental protocol (Figure 1) has an initial cooling down
period. It is followed by a ”sleep 60” command to wait for
the end of the supposed ”stress” period, while the node is not
doing any useful work.

CPU intensive, matrix product: ”stress-ng --cpu 4 --cpu-
method matrixprod -t 60” command is used to stress the CPU.
4 workers stress the 4 cores available on a node. Each worker
continuously do matrix product of two 128 × 128 matrices of
long doubles.

RAM intensive, flip: ”stress-ng -m 4 --vm-method flip -t
60” command is used to stress the RAM. 4 workers are started
in this workload, in order to avoid thread migration between
cores. A worker initially sets its subset of memory to a random
pattern. Then, it works sequentially through memory 8 times.
At each time, only one bit of a byte is flipped, effectively
inverting each byte in 8 passes.

C. Evaluation Metrics

The metrics time, power, and energy are in seconds (s),
watts (W ), and joules (J), respectively.

Power: The stress iteration average power, noted
AvrgPow(stress), is computed from the power measured
during the stress of an iteration (noted 5 in figure 1). The
Experiment Average Power, noted AvrgPow(exp), is the
average of 100 AvrgPow(stress). For each stress scenario,
there are 10 AvrgPow(exp).

The Percentage of Change [24] in AvrgPow(exp) mea-
surements for a scenario, noted %∆AvrgPow(exp), shows
the percentage that the maximum delta(∆) in AvrgPow(exp),
noted ∆AvrgPow(exp), represents with regards to the mini-
mum AvrgPow(exp). It is defined as:

∆AvrgPow(exp) =

max(AvrgPow(exp)) −min(AvrgPow(exp)) (1)

%∆AvrgPow(exp) =
∆AvrgPow(exp)

min(AvrgPow(exp))
× 100 (2)

AvrgPow(stress) and AvrgPow(exp) are used to make
results comparable with related works using average power
(e.g in calibrations).

Energy: The stress iteration energy, noted E(stress), is
the energy consumed during the stress of an iteration. It is
computed using the trapezoidal rule, as follows:∫ N

0

P (t)dt (3)

where N is the stress duration of one iteration. P is
measured power at a specific time t.

For an experiment, variability of energy consumption
is presented using the following metrics: minimum (noted
min(E(exp))), lower quartile (Q1), second quartile (median),
upper quartile (Q3), maximum (noted max(E(exp))), and

average of E(stress) measurements. Experiment Median En-
ergy (noted MdnE(exp)) is the median of 100 E(stress)
measurements in an experiment. Each stress scenario has 10
MdnE(exp).

For a stress scenario, the Percentage of Change in
MdnE(exp) measurements (noted %∆MdnE(exp)) repre-
sents the maximum ∆ in MdnE(exp) (noted ∆MdnE(exp))
to the minimum MdnE(exp). It is defined as:

∆MdnE(exp) = max(MdnE(exp)) −min(MdnE(exp))
(4)

%∆MdnE(exp) =
∆MdnE(exp)

min(MdnE(exp))
× 100 (5)

equiv∆Emonth is a rough estimation of measured
∆MdnE(exp), for a month. We make the assumption that
stress duration is increased to a month (30 days, each of
24 hours, each of 60 minutes, each of 60 seconds). Thus,
equiv∆Tmonth is a rough estimation of variability, translated
in idle up-time, for a month. They are defined as:

equiv∆Emonth =
∆MdnE(exp) × 30 × 24 × 60 × 60

duration(stress)
(6)

equiv∆Tmonth =
equiv∆Emonth

IdlePow(exp)
(7)

where duration(stress) is stress duration in an iteration.
IdlePow(exp) is calibrated using AvrgPow(exp) from
conducted experiments, for single node and multiple ho-
mogeneous nodes analysis, separately. It can be max or
min measured values, to compute min(equiv∆Tmonth) and
max(equiv∆Tmonth), respectively.

Translating power and energy related metrics to time makes
it easier to represent and understand variability. It helps the
reader perceive how far expectations of remaining lifetime for
edge nodes can be, when variability is not considered.

The median, MdnE(exp), is chosen as in most experiment
results, E(stress) distributions are skewed. Median metric
is therefore more representative than average [25]. When
developing the metrics, we analyzed the impact of choosing
median or average, for our experiments. We measured a low ∆
between these two metrics. In idle scenario experiments, it is
a maximum of 0.1407 J, with an equivalence of only 0.8674 h
as an idle up-time, for a month.

IV. RESULTS AND OBSERVATIONS

For single node analysis, variability is quantified from
experiments conducted on one node. For multiple homoge-
neous nodes analysis, for each scenario, experiments with the
minimum and maximum average power are selected, per node.

A. Idle observations

Power observations: Figure 2(a) presents 10
AvrgPow(exp) measurements for 5 homogeneous nodes.
From each node, 2 experiments are selected out of 10 uniform
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(a) Average power and standard deviation. Experiments with
min and max average power, out of 10 experiments per node.
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(b) Energy measurements. Experiments with min and max average power,
out of 10 experiments per node. Boxes represent interquartile-range. Error
bars show min and max measurements for an experiment.

Fig. 2. Idle scenario experiments on 5 homogeneous raspberry pi 3b nodes. An experiment has 100 iterations. Identical experimental protocol.

experiments: the experiments having min(AvrgPow(exp))
and max((AvrgPow(exp))).
AvrgPow(exp) from multiple similar experiments

varies. Considering a single node, rpi3-2 for example,
%∆AvrgPow(exp) is only 0.4213 %, for a ∆AvrgPow(exp)
of 0.006 W. Across multiple homogeneous nodes,
%∆AvrgPow(exp) is 5.9582 %, for a ∆AvrgPow(exp) of
0.0798 W. Furthermore, one node, rpi3-2, has higher average
power measurements than the other 4 nodes.

Energy observations: Figure 2(b) presents 10 boxplots of
energy consumption measurements, for 5 homogeneous nodes.
Each boxplot represents 100 E(stress), for the same experi-
ments as in figure 2(a). Such box-plots permit a detailed graph-
ical representation of variability, it summarizes 5 statistical
values: min(E(exp)), Q1, median, Q3, and max(E(exp)).
A box spans from Q1 to Q3 and is split by the median (Q2).

Several boxplots are not symmetric, which reflects a non
normal distribution in E(stress) measurements. Median is
used in energy analysis, as it is more representative than the
average, for central tendency, in skewed distributions [25].

On a single node, repeated thorough experiments can have
no overlapping E(stress) measurements (e.g rpi-3 and rpi-5).
On rpi3-2, %∆MdnE(exp) is 0.3966%, for a ∆MdnE(exp)
of 0.3355 J, with an equiv∆Tmonth estimated between 2.0521
and 2.0685 h, only. Furthermore, boxplots show that the delta
between minimum and maximum E(stress), on a node, can
be 3 times the measured ∆MdnE(exp) (e.g rpi3-2 or rpi3-4).

Across multiple homogeneous nodes, several nodes do not
have any overlapping E(stress) measurements. For example,
it is the case for measurements from rpi3-2 not overlapping
with any other node, and for rpi3-1 and rpi3-3 not overlapping
with rpi3-5. %∆MdnE(exp) is 6.13 %, for a ∆MdnE(exp)
of 4.9043 J. The corresponding equiv∆Tmonth is estimated
between 30.0008 and 31.1439 h, meaning that remaining
lifetime predictions of one month can be off by 31.1439 h
for identical idle edge nodes.

Discussion: On a single node, for idle scenario, energy
measurements from repeated experiments, of 100 iterations,

can be not overlapping. Conducting one experiment on a node,
even if it is thorough, is not enough to represent possible
variability.

Power and energy consumption variability metrics are rela-
tively low, on a single node. In multiple papers [18], [20], idle
power or energy is a baseline, deducted from total measure-
ment to do a fine-grain analysis for workloads, without taking
variability into account. Furthermore, power is multiplied by
time in several works to get total energy consumption [15],
multiplying the impact of non considered variability. Quan-
tifying idle power and energy consumption variability on a
single node can be important, even when it is considered low.

Across multiple homogeneous idle nodes, %∆MdnE(exp)
(6.13 %) is higher than its value on a single node (0.3966 %).
Similar pattern is observed with the power variability metric,
%∆AvrgPow(exp). Conducting experiments on one node is
not enough to characterize power and energy consumption for
multiple edge nodes, of identical hardware. Adding nodes to
the analysis could show higher variability, as energy consump-
tion measurements for one node can be notably higher than
others (e.g rpi3-2).

This high variability, across multiple homogeneous nodes,
shows that power models calibrated and validated using only
one or few homogeneous nodes can be surprisingly less
accurate, on other identical edge nodes. The accuracy of
remaining lifetime predictions can then be affected by this
delta, as a node continuously uses idle power. Unexpected
shorter lifetime of battery-powered edge nodes can be crucial
to avoid in real deployments of edge systems, especially when
nodes are not always reachable by humans. Critical examples
are sensor nodes used for monitoring difficult environments
for crises predictions and warnings [1], [2], [14].

We show that variability of power and energy on a single
idle node exists and is relatively low. Homogeneous idle
edge nodes can be operating at different power and energy
values, showing a possible overall heterogeneity in energy
consumption and efficiency. The insights derived from our
experiments for Idle scenario are critical for analyzing and
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(a) Average power and standard deviation. Experiments with min
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(b) Energy measurements. Experiments with min and max average power,
out of 10 experiments per node.

Fig. 3. CPU intensive ”matrix product” experiments on 5 raspberry pi 3b nodes. An experiment has 100 iterations. Identical experimental protocol.

understanding energy characteristics of single and multiple
homogeneous nodes, in a distributed edge system.

B. CPU intensive ”matrix product” observations

Power observations: In figure 3(a), on a single node, rpi3-
2 as an example, %∆AvrgPow(exp) is 0.8018 %, for a
∆AvrgPow(exp) of 0.0204 W. Across multiple homogeneous
nodes, min(AvrgPow(exp)) and max(AvrgPow(exp)) of
several nodes are not overlapping (e.g rpi3-1, rpi3-4, and rpi3-
5). %∆AvrgPow(exp) is 5.6331 %, for a ∆AvrgPow(exp)
of 0.1369 W.

Energy observations: In figure 3(b), examining variability
on a single node, rpi3-2, %∆MdnE(exp) is 0.7684 %, for a
∆MdnE(exp) of 1.1739 J, with an equiv∆Tmonth estimated
between 7.1808 and 7.2381 h. Comparing minimum and max-
imum E(stress) measurements, from a single node boxplots,
reveals more variability than when comparing medians.

Boxplots show that several nodes do not overlap in
E(stress) measurements. For example, it is the case for rpi3-2
and rpi3-5 (these nodes also do not overlap for idle scenario).
E(stress) measurements from rpi3-2 overlap with rpi3-1 and
rpi3-3 for CPU intensive scenario, when it does not for idle.
Thus, variability for CPU intensive scenario can have different
characteristics than idle scenario.

Across multiple homogeneous nodes, %∆MdnE(exp)
is 5.6387%, for a ∆MdnE(exp) of 8.217 J, with an
equiv∆Tmonth estimated between 50.2648 and 52.1801 h.

Discussion: Results show that on a single node, also for
this CPU intensive scenario, one experiment does not describe
power and energy variability completely, even when consider-
ing 100 iterations.

On a single node, there is a low variability. On rpi3-2,
equiv∆Tmonth for ∆MdnE(exp) is 3.499 times its value
for idle scenario. In literature, energy measurements for CPU
workloads, from a node, can be subtracted from total energy
measurements of the node, without taking variability into ac-
count [20]. For studies aiming at high accuracy and precision,
especially fine-grain analysis, understanding CPU component
variability, on a single node, is needed.

Across multiple homogeneous nodes, equiv∆Tmonth for
∆MdnE(exp) in CPU intensive scenario (52.1801 h) is
(i) 7.209 times its value on a single node (7.2381 h) (ii) and
is 1.6754 times its value for multiple homogeneous idle
nodes (31.1439 h). This demonstrates that power and energy
consumption variability for CPU intensive scenarios can be
important among multiple homogeneous nodes.

It is interesting that across multiple homogeneous nodes,
%∆MdnE(exp) for CPU intensive scenario (5.6387 %) is
lower than its value for idle scenario (6.13 %). In fact, (i)
∆MdnE(exp) for CPU intensive scenario is higher. However,
(ii) %∆MdnE(exp) is relative to its scenario measurements
(E(stress) for CPU intensive scenario can be 1.9 times its
value for idle scenario, using figures 3(b) and 2(b)). This
demonstrates that the proposed equiv∆Tmonth can make it
easier to perceive variability, especially when it is compared
among multiple scenarios.

Variability exists for the CPU intensive scenario. It can be
significant across multiple homogeneous nodes. Research in
edge computing with power and energy concerns is ongo-
ing [6]. Understanding variability, on a single node and among
homogeneous nodes, especially for a power hungry scenario,
is necessary. It is a first step to accurately characterize energy
consumption of edge nodes, and to conduct fine-grain studies.

C. RAM intensive ”flip” observations

Power observations: In figure 4(a), on a single node,
rpi3-2, %∆AvrgPow(exp) is equal to 0.5659 %, for a
∆AvrgPow(exp) of 0.0152 W. Across multiple nodes,
AvrgPow(exp) varies, again. Where %∆AvrgPow(exp) is
4.8822 %, for a ∆AvrgPow(exp) of 0.1255 W.

Energy observations: In figure 4(b), on a single node,
repeated identical experiments, of 100 iterations, have no
overlapping E(stress) measurements (e.g rpi3-3 and rpi3-5).
On rpi3-2, %∆MdnE(exp) is 0.5591 %, for a ∆MdnE(exp)
of 0.8984 J, with an equiv∆Tmonth estimated between 5.4955
and 5.5394 h. Again, on a node, comparing minimum and
maximum values of E(stress) reveals higher variability, com-
pared to using MdnE(exp).
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Fig. 4. RAM intensive ”Flip” experiments on 5 raspberry pi 3b nodes. An experiment has 100 iterations. Identical experimental protocol.

Across several nodes, experiments can have no overlap-
ping E(stress) measurements (e.g experiments across rpi3-
1, rpi3-2 and rpi3-5). %∆MdnE(exp) is 4.9329 %, for a
∆MdnE(exp) of 7.5954 J, with an equiv∆Tmonth estimated
between 46.4624 h and 48.2328 h. Nodes with lowest and
highest energy measurements in idle scenario (rpi3-2 and rpi3-
5) keep the same order in RAM intensive scenario. Nodes 3
and 5 have overlapping E(stress) measurements, but it is
not the case for idle scenario. Variability for RAM intensive
scenario can have different characteristics from idle scenario.

Discussion: On a single node for this RAM inten-
sive scenario, a low power and energy variability exists,
equiv∆Tmonth for ∆MdnE(exp) (5.5394 h) is 2.6779 times
its value for idle scenario. In literature, energy consumption
from idle state and CPU workloads are subtracted from total
measurements to get RAM energy consumption [20]. Even
when the variability on a single node for RAM intensive
scenario is low, it is needed for fine-grain studies, especially
focusing on memory consumption.

Across multiple homogeneous nodes, the variability is im-
portant. equiv∆Tmonth for ∆MdnE(exp) (48.2328 h) is (i)
8.7072 times its value on a single node (5.5394 h), and (ii)
1.5487 times its value across multiple idle nodes (31.1439 h).
Thus, statistical measurements from one node, average power
and standard deviation, commonly used in related work [12],
[13], are not enough to represent existing variability. Memory
intensive applications are being deployed at the edge [26].
Acknowledging and understanding variability of power and
energy for RAM intensive scenarios is necessary.

V. DISCUSSIONS, IMPLICATIONS AND USAGE

Edge nodes can have a limited energy budget. Quantifying
the variability of power and energy consumption among ho-
mogeneous edge nodes can be a leverage to increase energy
efficiency and availability in edge systems. For example,
when provisioning system deployments and nodes selection, a
critical node, that needs to be highly available, can be chosen,
among identical hardware, taking into account its energy
consumption characteristics. Another example is to consider

variability in energy-aware scheduling algorithms for the edge
(for clusters, up to 17 % power savings are achieved using
this approach [27]). Quantifying power and energy variability
can also be used to (i) increase accuracy and precision of
power models and simulators, (ii) have a fine-grain analysis
of energy consumption, and (iii) predict or analyze variability
of complex applications. This detailed and thorough study of
power and energy variability for idle, CPU and RAM intensive
scenarios is needed.

The main strength of this study is that it reveals fine-
grain power and energy variability, by thorough empirical
experiments. Another strength is the use of ultra precise
external monitoring, in addition to detailed analysis. The main
weakness is the number of nodes, due to available resources.
However, this means that using more nodes could reveal higher
variability. Experiments for studying other node components
and nodes are being designed and will be conducted in the
near future.

VI. CONCLUSION

IoT and edge systems are adopted widely in various sciences
and domains, where energy can be a key constraint, affecting
availability and scalability. Energy can play a major role in
the choice of edge technologies, architectures, and resources.

Many related works focus on measuring, predicting and op-
timizing energy consumption at the edge. However, variability
of power and energy consumption for basic and fine-grain
scenarios is not thoroughly investigated. Worst, several works
do not account for potential power and energy variability.

We investigate, on a single and across multiple homo-
geneous edge nodes, the variability of power and energy
consumption, under various scenarios (i.e Idle, CPU, and
RAM intensive scenarios). We control experiments to limit po-
tential variability that can exist (e.g by fixing CPU frequency,
disabling WiFi, Bluetooth, LEDs) to extract variability only
from our scenarios.

We quantify variability by repeating thorough experiments
for the same scenario, while retrieving power and energy
measurements, using ultra precise external monitoring. The
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study is done for Raspberry Pi 3B edge nodes, highly adopted
in literature, for prototyping and real deployments.

Results show that power and energy measurements of a
scenario can be different, from one node to another. On a
single node, for idle, CPU and RAM intensive scenarios, the
variability in energy consumption can be up to an equivalence
of 2.0685 h, 7.2381 h and 5.5394 h of idle up-time, in
a month, respectively. On multiple homogeneous nodes, the
variability for these scenarios can be up to an equivalence of
31.1439 h, 52.1801 h and 48.2328 h of idle up-time, in a
month, respectively.

Power and energy variability, when not considered, can
impact lifetime predictions or lead to misleading energy con-
sumption conclusions. This is especially true for IoT and edge
systems, where energy can be limited. Understanding power
and energy consumption variability is crucial.

For future works, we plan to assess the variability of other
components on edge nodes (e.g I/O and network interfaces).
We also plan on evaluating the variability of other types of
nodes. Finally, we plan to assess the variability for multiple
components stressed together, representing an application.
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