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Abstract—Studying Distributed Systems (DS) is important.
They are used in many computer systems such as Internet of
Things (IoT), Wireless Sensor Networks (WSN), Cyber-Physical
Systems (CPS). Conducting research studies on DS is possible
with simulation. However, depending on the research context,
having access to the proper simulator is challenging. Existing
simulation frameworks can be complex and not suitable to study
DS outside of commonly seen contexts, such as systems deployed
in constrained environments. Often, authors from state of the art
rely on building their own simulator. This is a time consuming,
delicate and dangerous approach, especially when such simulators
are not validated.

This paper presents the Extensible Simulator for Distributed
Systems (ESDS) in the context of systems deployed in constrained
environments. In our case, the Arctic Tundra. This simulation
framework is simple to use and suitable for the study of DS.
The architecture of the simulation framework is detailed at
a fine grain level. Results show that, ESDS can be used to
conduct energy consumption and network performance studies
of distributed systems such as CPS.

Index Terms—Simulation, distributed systems, networking, en-
ergy consumption, Cyber-Physical System, arctic tundra, Internet
Of Things, Wireless Sensor Networks

I. INTRODUCTION

Distributed System (DS) is a widely used paradigm [1]. A
DS comprises networks of communicating computers which
can be wired, wireless or both, like in Fog infrastructures.
The Internet of Things (IoT) [2], Wireless Sensors Networks
(WSN) [3] and Cyber-Physical Systems (CPS) [4] are timely
examples of DS. But these systems are complex, with numer-
ous factors affecting computers (also called nodes) such as the
network infrastructure quality, failures, battery depletion.

Being able to study DS to assess behaviors of the nodes,
and the system as a whole is important. To conduct these
studies, different approaches are used. One of them consists
in performing test-bed experiments. This approach requires
to have access to a test-bed and can be time consuming as
the experiments need to be deployed on real nodes. Another
approach is to build node prototypes. This is useful if no
test-bed is available, but it is time consuming and potentially
costly. Another approach to study DS is through simulation.
It allows to save time and potentially money. Compared to
test-bed and prototyping, simulations are not limited by any
physical platform. It also permits to study systems in various
conditions such as varying the network performance, the en-
ergy characteristics, the number of nodes and several use-case

related parameters. However, having access to a simulation
framework that fits with the intricacies of the studied use case
can be challenging.

The Distributed Arctic Observatory (DAO) project com-
prises a group of researchers working on the use of DS to
create a monitoring infrastructure for the Arctic Tundra (AT).
To build this infrastructure, the DAO uses nodes that are
interconnected by wireless communications. Because of the
harsh weather conditions (temperatures, rain and snow), nodes
are most of the time not able to communicate and be humanly
accessible. Thus, nodes are expected to operate for a long time
period, while being isolated and constrained in energy budget.
Being able to perform in-depth studies of DS characteristics
in the DAO context is crucial to ensure their compatibility.

In the literature, hundreds of simulators are available [5].
But having access to a simulation framework that is suitable
for the DAO context is difficult. Existing frameworks are
complicated, and most works related to the DAO fallback to
prototyping [6], [7]. Other authors build a simulator specific
to a given study [8]. Nevertheless, creating a simulator is time
consuming and error prone. The implemented models must be
carefully validated before being used in a research context.

The Extensible Simulator for Distributed Systems (ESDS)
is an open source simulator written in Python, available
online [9], with its wireless and power consumption model
validated [10]. In this paper, we present the usage of ESDS
to simulate distributed systems deployed in scarce resource
environments. More specifically, we apply ESDS to the context
of systems deployed in the Arctic Tundra, within the DAO.

This paper is organized as follow. Section II presents the
arctic tundra use-case. Section III presents the approaches used
in the literature to study DS in the DAO context. Section IV
presents the architecture of ESDS, its models and API. Sec-
tion V details the simulated scenarios used to evaluate the
capabilities of ESDS in the DAO context. Section VI presents
the results and Section VIII concludes the work.

II. USE-CASE

A. The Arctic tundra

The Arctic Tundra (AT) is one of the largest terrestrial
biomes located at the Northern part of Earth [11]. It forms
a circumpolar area on the north pole. The AT is characterized
by its extremely cold temperatures with an annual mean
around -15°C to 1.5°C. Several regions of the AT have a
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ground temperature that remains below 0°C, also known as
permafrost. Despite these extremes conditions, the AT has
a diverse ecosystem. It is divided into three regions (high
Arctic, low Arctic and sub-Arctic). Each one has their own
environmental characteristics and ecosystem [12].

The AT biome is sensible to climate changes. By the end
of the century, its average temperature is expected to raise up
to 10°C [13]. Significant changes on the vegetation are docu-
mented with an increase of the plants biomass, a phenomenon
known as Arctic greening. Due to warmer weather conditions,
the number of invasive species is expected to increase leading
to a significant impact on the ecosystem. Other key indicators
of the AT climate change are presented in [14]. It includes
changes in the permafrost, the carbon cycling, precipitations,
humidity etc. Observing these key indicators is crucial to
measure, and forecast the impact of climate change.

B. The COAT initiative

The Climate-Ecological Observatory for Arctic Tundra
(COAT) [13], is in charge of providing an observation system
for the AT. COAT is an initiative for long-term and adaptive
monitoring of the AT based on a food web approach. It focuses
on the study of two Norwegian regions namely, the Low
Arctic Varanger and the high Arctic Svalbard. To conduct
their monitoring campaigns, scientists from COAT rely on
several techniques [15]. They use technologies such as ground-
based nodes, drones and satellites. These technologies allow
for higher resolution compared to traditional on-site, human
measurements. In particular, the use of ground-based nodes
provides in-situ observations. Coupled to the hard weather
conditions (low temperatures, snow, ice etc.), the design of
such monitoring is challenging. Having access to ground-based
nodes is difficult in such an environment. Nodes are expected
to operate for a long time period and be energy efficient.
Moreover, the AT provides low to no network coverage,
making wireless communications challenging.

C. The Distributed Arctic Observatory

The Distributed Arctic Observatory (DAO) project tackles
these issues. It comprises several interdisciplinary research
groups that aims at providing the next generation of monitoring
system for the AT. The DAO focuses on using Cyber-Physical
Systems (CPS) as an in-situ monitoring infrastructure. Such
an infrastructure aims at being energy efficient and offering
a level of resiliency in communications. An overview of this
monitoring infrastructure is presented in [16].

This architecture comprises Observation Nodes (ON) de-
ployed in the Arctic Tundra. ONs are energy efficient moni-
toring nodes. They are reachable remotely using wireless tech-
nologies. They are accessible by DAO and COAT scientists,
using a dedicated API. Scientists are able to send Unmanned
Aerial Vehicles (UAV) on the deployment site to perform
various operations on ON, such as energy replenishment.

A detail picture of an ON prototype is shown on Figure 1.
An ON is based on Single Board Computers (SBC) that
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Fig. 1. Observation Nodes (ON) from the DAO project.

allow the use of a complete software development stack and
more resources compared to micro-controller-based (MCU)
ONs. The prototype on Figure 1 comprises a Raspberry-Pi
SBC combined to a Sleepy-Pi MCU 6 . Regarding sensors,
this prototype provides optical and proximity cameras 5 ,
temperature and humidity (inside 2 and outside 1 ) and a
GPS 3 . From the Raspberry-Pi, several wireless technologies
are available such as 4G 4 , Wi-Fi, Bluetooth, 4G LTE and
LTE Cat M1. ONs are battery-powered 7 . Nodes software
are implemented in Go and Python.

Using well-known hardware and software technologies al-
lows to build a monitoring system for the AT relatively
easily with commonly available Information Technology (IT)
resources. From the deployment of such ONs, practical ex-
periences can be derived [6]. However, prototyping and de-
ployments of ONs are time consuming. Having a simulation
environment for the DAO can greatly improve the research.

III. STATE OF THE ART

This section presents existing simulation works in the DAO
context and in general, alongside the motivation of this work.

A. Simulation for scarce resource environments

For scarce resource environments, it is crucial to evaluate
contributions by performing experiments. Two approaches are
possible: building prototypes [6], [7], [16], [17] or performing
simulations [8], [18]–[20]. Creating a prototype allows for
accurate studies. But it is time consuming and costly. For
these reasons, simulation is often used as an alternative (or
combined [21]) to prototyping.

In [20], the authors propose to study the use of WSN for
animal tracking in a scarcely resourced environment. This
works includes a study the ON/OFF strategy to increase the
nodes lifespan. To perform an energy consumption study of
this strategy, an ad-hoc simulator is built using C++. In
[19], a reduction of image dimension, taken from battery-
powered devices, is proposed. An ad-hoc simulator is used to
estimate the energy consumption of the devices and model the
network performance. In [8], an alternative to LoRaWaN called
LoRaLitE is proposed. Similarly to previous works, an ad-hoc
simulator is used to perform DS simulations. In [22], a study
of the impact of images compression on the CNN classification
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performance in the DAO context is proposed. The impacts of
image compression on a monitoring system deployed in the
AT are not covered. Performing this study using an adapted
simulator can greatly improve the contribution with a small
implementation time overhead. Finally, in [18], a study of the
impact of loosely coupled data dissemination on nodes energy
consumption and dissemination efficiency is proposed. The
experiments are conducted with a simulator for distributed sys-
tems called SimGrid. The simulator implemented by authors
provided in1 is complex as SimGrid is not primarily design for
studying wireless DS. This suggests that, a significant amount
of time must be invested into understanding the simulation
framework, to implement scenarios from the DAO context.

Discussed papers show that the current state of the art related
to simulating scarcely resourced environment can be greatly
improved by using the proper simulation tool.

B. Simulation models and frameworks

Most state of the art simulators fall into the following
categories [23]: 1) Packet-level 2) Flow-level, which signifi-
cantly impacts the simulator performance and accuracy. It also
constrains its domain of application.

A packet-level simulator (e.g: ns-3 [24], OMNET++/INET 2

etc.) is able to simulate networks at a fine grain. It reflects the
impact of network protocols and the physical layer of wire-
less communications. Since they provide fine-grained models,
they are slower compared to flow-level simulators. They are
not suitable for large-scale network studies. Configuring and
calibrating a packet-level simulator requires advanced network
knowledge. It can be time consuming and error prone due to
the granularity of the models and the complex simulators API.

Flow-level simulators (e.g: SimGrid, FLEO [25] etc..) were
introduced to mitigate these issues. They aim at simulating
large-scale networks with coarse-grained models. Despite us-
ing these types of models, their accuracy is sufficient for
numerous domain of applications such as Cloud [26], [27],
HPC [28], [29], P2P [30], FoG. Flow-level simulators tend
to extend their models granularity towards the one previously
exclusive to packet-level simulators [31]. Simplicity is another
key aspect of flow-level simulators, as they are using coarse
grained models, which are simpler to instantiate and less error
prone compare to packet-level simulators.

Despite the large amount of existing simulators [5], none of
them is particularly used and adapted to model scenarios from
the DAO-CPS.

C. Motivations

Packet-level simulators provide programming frameworks
that are heavy and difficult to control when modeling complex
scenarios. To simplify the programming interface, simulators
such as CupCarbon [32], use DSLs as a programming language
for nodes implementation. In the DAO context, this is limit-
ing as nodes are implemented with programming languages

1https://gitlab.com/manzerbredes/loosely-coupled-dss
2https://inet.omnetpp.org/

such as Python or Go. Thus, relying on existing packet-level
simulators to study the DAO is fairly complicated.

Flow-level simulators offer simpler programming interfaces,
allowing control over the entire simulation environment and
parameters. However, to the best of our knowledge, no flow-
level simulators from the literature is designed for the simula-
tion of wireless distributed systems while supporting simula-
tion of extremely constrained scenarios. Implementing wireless
DS with existing simulators is thus challenging.

This work proposes a simulation study of a ONs deployment
in the DAO-CPS context. This study uses ESDS, proposed and
validated in [10]. This simulator aims to be simple, modular
and intuitive. It provides flow-level models for the simulation
of DS. The remaining of the work presents its intricacies and
its applicability to constrained environments, such as the DAO.

IV. ARCHITECTURE OF ESDS
This section presents the architecture of ESDS. Its compo-

nents, models, API and plugins mechanism are detailed.

A. Components

The ESDS simulator comprises two major components: the
simulated nodes (SN) and the Simulation Orchestrator (SO).
The SNs are agents that runs concurrently. Their implementa-
tions are provided by the user and reflect the simulated sce-
nario. The SO is in charge of coordinating the SNs execution.

Start

Initialize network

Start nodes

No

Collect nodes events

Any new event?

Any registered event? Process non-blocking

events

Any new blocking event?

Register blocking events

Update simulated time with

next registered event timestamp

Process registered events

for current simulated time 
Stop

Yes

YesNo

YesNo

Fig. 2. Flow diagram of the ESDS Simulation Orchestrator (SO).

Figure 2 depicts the SO flow diagram. At the beginning of
the simulation, the SO initializes the network settings provided
by the user. These settings contain networks parameters used
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TABLE I
ESDS API CALLS AVAILABLE IN THE SIMULATED NODES

Call Blocking Description

send() yes Send data
sendt() yes Timed out send data
receive() yes Wait for and fetch incoming data
receivet() yes Timed out wait for and fetch incoming data
wait() yes Wait for a specific amount of simulated time
wait_end() yes Wait until the end of the simulation
log() no Print a message in the SO standard output
read() no Read in the SO current state
turn_on() no Turn the node on
turn_off() no Turn the node off

by SNs during the simulations (e.g, bandwidth, latency, nodes
reachability). Next, the SO starts SNs execution by running the
implementations written by the user. Then, the SO enters the
simulation main loop and performs the following actions: 1)
Collects the events generated by the SNs 2) Processes the non-
blocking events (the ones that can be processed immediately
such as log events) 3) Registers the blocking events (the ones
processed at later simulated time such as communications
events) 4) Processes the events for the current simulated time
5) Updates the simulated time accordingly. This main loop is
repeated until no more events are generated by SNs.

B. Wireless network model

As in real computer networks, SNs can be part of several
networks through different interfaces. Each of them with their
own characteristics. In ESDS, a network is characterized by
two matrix: a latency matrix L and a bandwidth matrix B.
Similarly to [33], the duration Tc of a communication c from
SN i to SN j, transmitting n bytes of data is defined as:

Tc =
n

B(i,j)
+L(i,j) (1)

In the case where B(i,j) = 0, the SNs i and j are
considered unreachable. A set of validation experiments for
this wireless communication model implemented in ESDS is
available in [10]. By default, ESDS does not provide models
for network protocols such as TCP/UDP. The aims is to give
the user control over the data that are transmitted during
communications. But, these protocols can be implemented on
the SNs using SN plugins, as detailed later. The model defined
by Equation 1, allows to simulate the majority of scenarios
from the DAO, and more generally, from CPS networks.

C. Simulated Nodes: API

SNs implementations provided by the user follow a common
API. This API offers entry points to interact with ESDS.
Table I reports all the available blocking and non-blocking
API calls. The following gives details about their intricacies:

a) Communications: send() and receive() are used by the
SNs to communicate with each other. When a call to send()
occurs, a communication from the calling SN to the receiver(s)
is created by the SO by registering a new communication
event. When the communication ends, the data transmitted by

the sender are added to the receiver(s) queue. Data can then be
accessed by the receiver(s) via the receive() call. Calls sendt()
and receivet() are equivalent, but bounded with a timeout.

b) Wait calls: wait() call allows SNs to wait for a specific
amount of simulated time. This call is crucial to implement
scenarios with actions occurring at specific times. wait end()
allows SNs to wait for the end of the simulation.

c) Logging: log() call prints a message in the SO stan-
dard output. It allows the user to report various information
during the simulation.

d) Access to the SO internal state: read() call provides
access from the SN, to the SO internal variables. It can be
used to read the current simulated time (e.g: read("clock")).

e) Node operating state: Nodes can switch between the
on and off state using the turn on() and turn off () calls. This
affects the reachability of SNs and its energy consumption.

D. Simulated Nodes: plugins
SN plugins allow to implement reusable features, usable

by all SNs during the simulation. Network communication
protocols are examples of features that can be implemented as
SN plugins. Each SN can have its own set of active plugins.

Plugin A Plugin B

SO

SN API

ESDS

SN  user implementationi

Fig. 3. Interactions of SNi implementation supplied by the user with the
ESDS API and plugins system. Two plugins, noted A and B are used by a
given SNi implementation.

The plugins system is presented Figure 3. This figure shows
the interactions between a given user supplied SN implementa-
tion (written in Python) with the ESDS API and plugin system.
This SN labeled i, has two active plugins noted A and B. The
SN implementation interacts with them using their respective
plugin API. The SN implementation can interact directly with
ESDS using its SN API.

Currently, ESDS provides plugins that measure the energy
consumed by the node. They are based on the power state
model [34]. This model approximates the SN energy con-
sumption by assuming that, physical nodes go through several
discrete power consumption states during their operation. By
keeping track of each power state, and the duration spent by the
nodes in each states, the energy consumption can be estimated.
Hence, for a set of power states S = {P1, .., Pn}, the energy
consumed by a SN is expressed as:

ESN =

∫ t

0

P (t)dt ≈
n∑

i=1

Pi ×∆i (2)
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With ∆i corresponding to the duration spent by the SN on
the power state i with a power consumption of Pi. Validation
of this model implemented in ESDS is available in [10]. Using
this model, the overall energy consumption of a given com-
municating system can be studied. More specifically, energy
constrained scenarios can be studied.

V. SIMULATE THE DAO-CPS

This section presents the use of ESDS for studying DS in
scarcely resourced environments, like the DAO-CPS.

A. Simulation scenario

To document the use of ESDS in the DAO context, this work
proposes to reproduce various DS experiments from [18]. This
work contributes to the DAO by providing loosely coupled data
dissemination policies. Based on this contribution, this work
implements the Baseline policy using ESDS. Other policies
are extensions and can be derived from Baseline. For space
reasons, only Baseline related experiments are covered.

The scenario presented in [18] consists in having 13 nodes
comprising one sender and 12 receivers. Nodes are off most of
the time. With the Baseline policy, nodes wake up every hours
at a random time for a short up-time duration of either 60s or
180s. During its up-time, the sender strives to transmit 1MB
of data to the receivers that are available (overlapping up-time
period between sender and receivers). This work focuses on
the 180s case for space reasons.

Regarding wireless communications, technologies from LP-
WAN are used in the DAO-CPS context. Either LoRa with a
bandwidth of 50kbps or NbIoT with 200kbps. During the ex-
periment, the nodes energy consumption is estimated. In [18],
the hardware used by the nodes is based on a Raspberry Pi
Zero that consumes 0.4W on idle time. The energy consumed
during communications is also accounted. For LoRa, 0.13W
is consumed during transmission and reception. For NbIoT,
0.64W is consumed during transmission and reception. The
values of each simulation parameters are extracted from [18].

B. ESDS implementation of Baseline

To perform this implementation with ESDS, two files are
required. The first one, called platform file uses the YAML
syntax. It is used to configure ESDS. It sets up the simulation
parameters, the simulated nodes and their communication
interfaces. The second file, contains the nodes implementation
written in Python where the ESDS API (presented in Sec-
tion IV-C) is used to implement node behaviors. It is where
the user is able to implement the nodes logic.

The platform file used for the implementation of the Base-
line policy is presented in Listing 1. This listing contains two
main sections: A nodes and an interfaces section.

The nodes section does defines the number of SNs (line 3).
In our case, 13 nodes are simulated. It binds the implemen-
tation files to each SN (line 5). Here, node.py is used by all
the SNs. It defines the arguments given to each SN (line 7-
8). These arguments are accessible in the SNs implementation

Listing 1: Platform file configured to use LoRa

1 ##### Nodes Setup #####
2 nodes:
3 count: 13
4 implementations:
5 - all node.py
6 arguments:
7 0: { "type": "sender", "uptime": 180, "

datasize": 1000000, "wireless": "lora"}
8 1-@: {"type": "receiver", "uptime": 180, "

wireless": "lora"}
9

10 ##### Nodes Interfaces #####
11 interfaces:
12 lora:
13 type: "wireless"
14 nodes: all
15 links:
16 - all 50kbps 0s all
17 txperfs:
18 - all 50kbps 0s
19 nbiot:
20 type: "wireless"
21 nodes: all
22 links:
23 - all 200kbps 0s all
24 txperfs:
25 - all 200kbps 0s

file. The arguments set node 0 as the sender, and the remaining
nodes as receivers. It sets the up-time duration of the SN to
be 180s and the amount of data transmitted by the sender for
each communication to 1MB. Finally, the interface used by
the SNs to communicate is set to be ”lora”.

The interfaces section defines two communication interfaces
usable by the SNs: LoRa (line 12) and NbIoT (line 18). Each
of these interfaces is wireless (line 13 and 20). All nodes
that belong to the network, accessible using the interface, are
referenced on line 14 and 21. For each interface, the communi-
cations performance are provided. As an example, line 15 set
the latency and bandwidth matrices presented in Section IV-B.
In this case, all communications, from all nodes, to all nodes,
have a bandwidth of 50kbps and a latency of 0s. For wireless
interfaces, an additional performance parameter called txperfs
is required. It defines the transmission performance of each
SN on the given interface. It is used to estimate the duration
of the wireless transmissions on the interface for each SN.
In this implementation, all nodes have the same transmission
performance (bandwidth of 50kbps and a latency of 0s).

The Listing 2 provides the implementation of the SNs. Each
implementation must define an execute() function with an api
argument. This argument, provides access to the ESDS API
detailed in Section IV-C. In this listing, the power state plugin
is initialized on line 9, to set up the node power consumption.
At each node state change (line 19 and 29), the node power
consumption is updated accordingly. On line 11 and 12, the
power consumption of network interfaces is defined for LoRa
and NbIoT. Each of the three power states (idle, transmission
and reception) is given to the plugin that will automatically
switch to the correct power state during communications.
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Listing 2: Node implementation for the Baseline
communication policy working with LoRa or NbIoT

1 #!/usr/bin/env python
2
3 import random
4 from esds import RCode
5 from esds.plugins.power_states import *
6
7 def execute(api):
8 ##### Setup node power consumption ####
9 node_cons=PowerStates(api, 0)

10 comms_cons=PowerStatesComms(api)
11 comms_cons.set_power("lora", 0, 0.16, 0.16)
12 comms_cons.set_power("nbiot", 0, 0.65, 0.65)
13 ##### Start node implementation #####
14 rand=random.Random(api.node_id) # Reproducible
15 api.turn_off() # Node off on start
16 for hour in range(0,24): # 24 hours
17 api.wait(rand.randint(0,3600-api.args["

uptime"]))
18 api.turn_on()
19 node_cons.set_power(0.4)
20 wakeat=api.read("clock")
21 wakeuntil=wakeat+api.args["uptime"]
22 while api.read("clock") < wakeuntil:
23 if api.args["type"] == "sender":
24 api.sendt(api.args["wireless"],"my

data",api.args["datasize"],None, wakeuntil-api.
read("clock"))

25 else:
26 code, data=api.receivet(api.args["

wireless"],wakeuntil-api.read("clock"))
27 if code == RCode.SUCCESS:
28 api.log("Receive "+data)
29 node_cons.set_power(0)
30 api.turn_off()
31 api.wait(3600*(hour+1)-api.read("clock"))
32 node_cons.report_energy()
33 comms_cons.report_energy()

The implementation of the Baseline scenario starts on line
15 where all the nodes are turned off. Then, for each hour of
the day (line 16), the nodes stay off for a random duration (line
17). They then turn on (line 18). When being up (up-time),
nodes idle power consumption is set to 0.4W (line 19). When
being the sender (line 23), the node sends the data (line 24).
When being a receiver, the node strives to collect the data that
it potentially received for the duration of its up-time (line 26).
Finally, nodes are turned off at the end of their up-times (line
30), and their idle power consumption is set to 0W (line 29).
At the end of the simulation, the nodes energy consumption
are reported by ESDS (line 32 and 33).

C. Running simulations

To execute a simulation, the command ”esds run [plat-
form file]” is executed. 1000 runs are performed for each
wireless interface (LoRa and NbIoT). For each run, the seed
parameter (line 14 in Listing 2) is changed. Hence, a different
node schedule is used in each run, and the impact of the node
schedule on the results is quantified.

VI. SIMULATION RESULTS

This section presents results obtained from ESDS simu-
lations. These results document the possibilities of ESDS

to study DS in terms of energy consumption, network per-
formance and nodes behaviors. All results presented in this
section are derived from the ESDS standard output.

A. Energy consumption

The Figure 4(a), shows the nodes energy consumption
results using LoRa, extracted from the ESDS standard output.
For each node specified in Listing 1, its average energy con-
sumption over 1000 runs is shown. This energy consumption
comprises the idle (in yellow) and communications part (in
dark blue). The standard deviations for the communications
part, obtained over the 1000 runs, are in red.

These results show that, with LoRa, the major part of the
energy consumed by the nodes comes from the idle. The power
state model estimates that, each node consumes 1728J per day
for the idle part. This value is constant across runs. On the
receiver nodes, the estimated energy consumed by communi-
cations is relatively small (less than 100J with a small standard
deviation) compared to the idle. However, on the sender (node
id 0), the energy consumed during communications is higher. It
represents around 30% of the energy consumed by the sender.
As the sender is continuously transmitting during its up-time,
the energy consumed by the sender during communications is
constant across runs, thus it has standard deviation of 0J.

Similarly, the Figure 4(b) depicts the nodes energy con-
sumption results using the NbIoT wireless technology. The
estimated energy consumed during idle periods is similar to
the results using LoRa. However, NbIoT offers better commu-
nication performance but consumes more energy, compared to
LoRa. It translates into a significant increase on the energy
consumed during communications. This has a major impact
on the sender, as it is continuously sending data during its
up-time. In addition, an increase in its standard deviation of
energy consumed during communication is visible.

B. Network performance and nodes behavior

Table II provides results extracted from ESDS. It shows the
estimated value of various metrics, using LoRa and NbIoT.
Standard deviations are in parenthesis.

In a day, for an up-time of 180s, if a node turns on every
hour, it is on 5% (1h12m) off 95% (22h48m) of the time.
Using LoRa, the sender sends 48MB of data each day with a
standard deviation of 0MB, since the nodes up-time ratio per
day is constant and data are sent continuously. This confirms
the results of Figure 4, where the sender have a constant
energy consumption for the communications over the 1000
runs (standard deviation of 0J).

These results reveal that, in average, with LoRa, over the
48MB of data transmitted, only 2MB are received by the
receiver nodes (id 1 to 12, with ±1.1MB). Only 4% (with
±2%) of the data transmitted by the sender are received. The
remaining transmitted data (≈ 46MB) are lost and lead to an
increase of the energy consumed by the sender. These results
show that in average, for each run, 1.9 nodes receive the
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(a) Nodes energy consumption using LoRa
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(b) Nodes energy consumption using NbIoT

Fig. 4. Simulated nodes energy consumption using LoRa and NbIoT. Results are an average over 1000 runs for each wireless technology. The standard deviation
of the energy consumed during communications is given in red.

TABLE II
SIMULATIONS RESULTS USING LORA AND NBIOT. THE STANDARD DEVIATIONS OF THE GIVEN METRICS ARE IN PARENTHESIS.

Wireless Technology

Description LoRa NbIoT Difference

Number of runs 1000 1000 -
Simulated duration for each run 86400s or 24h00m0s 86400s or 24h00m0s -

Cumulative up-time per node 4320s or 01h12m0s 4320s or 01h12m0s -
Cumulative off-time per node 82080s or 22h48m0s 82080s or 22h48m0s -

Up-time ratio per day 5.0% 5.0% -
Off-time ratio per day 95.0% 95.0% -

Average amount of data sent per day 48.0MB(0.0) 120.0MB(0.0) +72.0MB
Average amount of data received per day 2.1MB(1.1) 46.2MB(10.4) +44.1MB

Average percentage of data received per day 4.0%(2.0) 38%(9.0) +34.0%
Average number of node that receive the data per day 1.9(1.0) 10.1(1.3) +8.2

data. This quantifies the (in)efficiency of the Baseline policy
at propagating data in a network using LoRa.

Using the NbIoT wireless technology, these results show
a significant increase in the data transmitted by the sender
(+72MB compared to LoRa). Since NbIoT offers better net-
work performance, more data are received on the receiver
nodes. In average, 38% of the transmitted data are received.
In addition, ESDS estimates that an average of 10 nodes per
run received the data transmitted by the sender. Consequently,
this scenario offers a better dissemination of the data.

VII. DISCUSSIONS

A. Simulations results

The results provided by the ESDS allow for the study of
DS over several aspects: node behaviors, network performance
and energy consumption. The implementation of the Baseline
policy from [18] permits to compare LoRa or NbIoT as a
wireless technology. It documents the nodes behavior (e.g up-
time and off-times), the network performance (e.g amount of
data transmitted per day) and the nodes energy consumption
(e.g idle and network communications).

From these observations, research directions can be derived.
The impact of the Baseline policy on the sender energy
consumption is not negligible compared to its impact on the
receiver nodes. Increasing the number of nodes that receive the
data per day is a possible optimization (e.g: fine tuning up-time
duration, node schedule). A trade-off between the node idle
energy consumption, and the average percentage of data re-
ceived per day can be derived. Conducting these studies allow
to characterize the system on various performance metrics (e.g:
network performance, energy efficiency). Thus, in the DAO-
CPS context, ESDS allows to anticipate and optimize energy
budget, prior node deployments.

B. ESDS architecture and API

The experiments conducted show that the architecture of
ESDS is adapted to the study of DS in the context of the
DAO-CPS. Experiments show that the SN API is sufficiently
versatile to implement various distributed systems scenarios
that involve: network communications, change of nodes op-
erating states (turning on and off) and energy consumption
estimations, even in resourced constrained environments.

7



C. Current limitations

ESDS can simulate various scenarios that involve wireless
distributed systems. However, it has limitations. ESDS does
not provide a validated model for wired networks. Studying
wired distributed systems is not currently possible.

As ESDS is a relatively new, the amount of available plugins
is not high. Several other use-case specific features need to
be implemented. As an example, the design of a battery
plugins can improve the study of scenarios with nodes that
have a limited budget. Studying energy variability is also
critical [35] and requires an additional plugin. Introducing
communications error models, based on physical parameters
such as temperature and humidity, is an interesting research
axis for simulating DAO-CPS-like contexts.

VIII. CONCLUSION

In systems deployed in constrained environments, like the
DAO-CPS, existing state of the art packet-level and flow-level
simulators are not adapted. Prior works use ad-hoc simulators.
This approach is time consuming and models used by these
simulators are most of the time not validated.

This work uses the Extensible Simulator for Distributed
Systems (ESDS). This simulator framework aims at, being
simple to use and versatile, to perform studies on distributed
systems. This paper details the architecture of ESDS along
with its network models, energy models and nodes API. A
scenario that is specific to the DAO-CPS, a CPS deployed in
constrained environments [18], is implemented with ESDS.

Details of the proposed implementation shows that ESDS
can be used to model systems in the DAO-CPS context with
ease. The results document that ESDS is suitable to perform
research studies on energy consumption and network perfor-
mance of distributed systems. An open source implementation
of ESDS, in Python, is available online [9]. We are panning
to tackle the limitations presented in Section VII-C.
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J. Gross, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[25] Anggono et al., “A Flow-Level Extension to OMNeT++ for Long
Simulations of Large Networks,” IEEE Communications Letters, 2017.

[26] M. Zakarya, “PerficientCloudSim: A tool to simulate large-scale compu-
tation in heterogeneous clouds,” The Journal of Supercomputing, 2021.

[27] Courageux-Sudan et al., “Automated performance prediction of mi-
croservice applications using simulation,” in 29th International Sympo-
sium MASCOTS. Houston, TX, USA: IEEE, 2021.

[28] A. B. M. Fanfakh, “Predicting the Performance of MPI Applications
over Different Grid Architectures,” Journal of University of Babylone
for Pure and Applied Sciences, Apr. 2019.

[29] F. C. Heinrich and Cornebize et al., “Predicting the Energy-Consumption
of MPI Applications at Scale Using Only a Single Node.” IEEE, 2017.
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