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Abstract—Cyber-physical IoT nodes located in environments
which are resource-constrained and physically hard to access,
like the Arctic tundra, must achieve long operational lifetimes
from a single battery and report data over data networks. The
nodes sleep most of the time, and only wake up to perform
mission tasks, including reporting data. However, networks can
become unavailable, or have low bandwidth and require many
re-transmissions for multiple reasons, including a sparse network
infrastructure and adverse weather. The state of the network can
be quantified by the Received Signal Strength (RSS). If nodes
wake up to report data when the signal strength is low they waste
energy, because the reporting of data will require more energy
or take more accumulated time. RSS decreases with increasing
temperature and precipitation. Therefore, nodes should wake up
when the temperature and precipitation are low. We explore four
algorithms for picking a single time to wake up per 24-hr day
over one year. For each wake-up-time, we compute the change in
RSS as a function of the change in temperature and precipitation.
We use historic weather forecasts and measurements from MET
Norway. The data covers 37 locations in Northern Norway
over one year. The weather-forecast-based algorithm is able to
frequently select a timeslot near the highest expected RSS. It also
avoids the large decrease in RSS caused by precipitation more
often than the other algorithms presented.

Index Terms—Cyber-physical system, CPS, edge computing,
energy efficiency, tundra, monitoring;

I. INTRODUCTION

Nodes suitable to be deployed to the arctic tundra comprise

one or more battery-powered microcontrollers, and computers.

Each node has on-node storage, data networks, and sensors.

We call such a node an Observation Node (ON). Nodes are

structured into a set of nodes called neighbourhoods [1].

Data collected by ONs may include multimedia data like im-

ages or small videos [2], or sensor data of ambient conditions

like temperature and humidity[3]. However, the arctic tundra

is a challenging environment for a distributed multi-node

cyber-physical system. The weather is unique, with frequent

precipitation and long, cold winters. Furthermore, the arctic

tundra is resource-constrained. In particular, both networks and

energy are limited resources. In a neighbourhood, at least some

nodes have technologies to reach back-haul networks, while

all nodes may have one or several radios for local area ad hoc

networking. However, the networks cannot be expected to be

available at all times, if at all. When a network does become

available, the connection may be marginal and the bandwidth

can be expected to be low.

The arctic tundra has no infrastructure for delivering energy

to nodes. Therefore, each node is powered by batteries. Fur-

thermore, due to the harsh weather conditions, and the lack

of infrastructure, the common case is that nodes, in practice,

only rarely can be visited by humans. Even for the low-

arctic Varanger peninsula on main-land Norway, visits to a

neighbourhood of nodes happen only about once per year [3].

ONs reduce the energy cost of transmitting data in a

number of ways. One option is to reduce the number of bytes

required to represent the data before sending it. This option

has previously been explored [2]. Another option is to defer

transfer of bulk data until the signal strength is high. This can

reduce the energy usage considerably [4], because the time and

energy required to transmit data increase exponentially with

decreasing signal strength [5]. In an LTE network the power

usage is higher when the received signal strength is lower [6].

Weather-related impact on signal strength may lead to packet

loss [7]. Signal strength also has an effect on communication

range. It has been shown, how it is necessary to correct for the

effect of temperature when using RSSI-based ranging [8]. It

has been proposed that an outdoor sensor network should take

the effects of temperature and rain on wireless communication

into account [9] [10].

In this paper, we first summarize findings from other studies

in terms of the impact of weather conditions on wireless

network performance metrics like RSS. Change in Received

Signal Strength Indicator (RSSI) is often reported in the

literature. RSSI is a radio specific measurement which is then

translated to a signal strength in units of dBm. We separate

the findings in the literature by network type, but find that the

contributions are similar and caused by the same phenomena.

Based on prior art for how temperature and precipitation

influence signal strength, we build a simple model allowing

us to compute the expected change in RSS. We report on

four algorithms for selecting a single time per 24-hr day for

when the RSS is high. One algorithm ignores the changes

in temperature and precipitation, while the other three do

not. One year of temperature and precipitation forecasts, and

measurements for 37 locations in Northern Norway have been

downloaded from MET Norway. We use the data as input to

the algorithms, and as input to the temperature-precipitation-

RSS model to estimate the change in RSS caused by local

weather.

We make the following contributions:

• An analysis of possible improvement of signal strength

by selection of transfer time.
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• A simple model based on prior art for the impact of

weather on signal strength

• A description and implementation of naive as well as

analytics-based algorithms for selection of time for data

transfer based on local weather conditions.

• An insight: It is possible to select a time to communicate

at or near the time with the highest weather-related

increase in RSS. We show how three different algorithms

select better timeslots than randomly selecting a timeslot.

• An insight: A large decrease in RSS can be avoided by

predicting precipitation events. This can be done by a

weather forecast.

The rest of this paper is structured as follows: In section II

we describe the motivating use-case for this paper: The Arctic

tundra and the challenges it poses for a multi-node cyber-

physical system. In section III we summarize the effects of

weather on wireless signals in three different wireless network

types. Section IV-A describes the data used in the analyses

in this work. Section IV-B summarizes the estimated benefit

of predicting future conditions on the Arctic tundra. We then

present strategies for improving the likelihood of communicat-

ing when network conditions are favourable in section IV-C.

We describe results of our analysis in section V. Finally,

we discuss the findings and conclude on our observations in

section VI.

II. MOTIVATING USE-CASE: THE ARCTIC TUNDRA

Monitoring ecosystems and the environmental conditions

on the Arctic tundra is important, as the tundra is highly

sensitive to climate change [11]. Performing these observations

typically requires several phases and considerations.

Small devices with sensors are deployed by humans. The

devices are located both above and below snow and ice. The

sensors can typically sense and measure a range of conditions

including images, temperature, and humidity. The devices are

dependent on batteries, because there is no infrastructure for

power delivery. Solar panels and windmills cannot be used

because of weather conditions and legal restrictions.

A deployment of nodes for an experiment collecting data

in situ at the arctic tundra is, typically, organized into one or

several neighbourhoods. We assume that nodes in the same

neighbourhood are located close enough, physically, such that

they experience the same weather conditions. Inside a neigh-

bourhood, the nodes can do ad hoc networking with each other

when network conditions are favourable. The neighbourhoods

communicate with each other over back-haul networks. The

neighbourhoods can have different weather conditions. Here,

we ignore the multi neighbourhood case.

The ONs are left alone for an extended period of time, e.g.,

one year, to do observations. In some cases, the observations

can be reported over a back-haul network. However, the

common case is that no back-haul network is reachable for

large parts of the arctic tundra. Unless there is a back-haul

network in reach, humans must visit the devices to collect

observational data, and to replace batteries. In practice, many

observations sites cannot be frequently visited, due to the

limited infrastructure, and harsh weather conditions[3]. Several

challenges arise if the devices cannot be frequently visited,

and the nodes have no direct access to a back-haul network.

First, the delay before data becomes available can be many

months. For some missions this is acceptable, for others it is

not. Second, to make data available when it is needed or even

on-demand, several data networks may have to be supported

by the nodes. It is typically necessary to do multi-hopping over

one or more different ad hoc local area networks to carry data

between nodes to reach a node with a back-haul network. This

complicates the software and hardware. It also increases the

energy usage at multiple nodes. Consequently, the nodes must

aggressively save energy. Third, the observational missions

of the nodes become fixed at deployment time, and later

adaptations are in practice not possible. Fourth, without a

network, or human visits, the software for the devices cannot

be updated after deployment. Software bugs which cannot

be repaired can make a whole season of observational data

unusable. Fifth, the state of the devices are unknown until next

visit. This is a problem because it is unknown which spare

parts and software updates are needed for the next visit, and

even if the devices are operating at all. Sixth, the arctic tundra

often has precipitation and temperatures known to influence

radio signal strength and therefore the reachability of data

networks. When the data networks are, already, only sporad-

ically available and with low signal strength, this can result

in lost connectivity. We describe several network technologies

with regard to how they are affected by weather conditions.

Long range networks like 4G LTE and LoRa may be used

as backhaul networks or for transferring data between local

neighbourhoods of observation nodes. Shorter range networks

like ZigBee may be used for communication between nodes

in a neighbourhood. In addition to the above challenges, the

arctic tundra also poses physical challenges to nodes. It is not

uncommon for nodes to be destroyed or damaged even when

housed in weather resistant housing [3]. Nodes can also be

damaged by avalanches, animals, and humans.

In summary, for many of the functionalities of observation

nodes, it is critical that they have access to data networks.

Consequently, nodes should make significant efforts to estab-

lish network connectivity. Nodes can increase the chance of

success of achieving this by always being awake, monitor the

network signal strength, and trying to associate with networks.

However, it is also critical that the nodes are very energy frugal

because they must operate for long periods of time from a

single battery charge. This prevents nodes from always being

awake and have one or more radios turned on. One of the

techniques used by nodes to decrease energy usage is to spend

most of the time sleeping, and be restrictive on when to wake

up to do functionalities.

III. CHANGES IN SIGNAL STRENGTH DUE TO WEATHER

Several studies have examined the effects of weather phe-

nomena on various networking technologies. In this section,

we summarize their results on the effects of three measurable

weather conditions on three networking technologies. The



weather conditions are temperature, humidity (relative and ab-

solute), and precipitation. The radio technologies are ZigBee,

LoRa, and 4G LTE. We focus primarily on signal strength,

and secondarily on other performance metrics, like Packet

Reception Ratio (PRR). This section has four subsections: One

for each of the mentioned weather conditions and a summary.

Each subsection is separated into three parts: One for each

radio type.

A. Temperature

Increase in temperature is known to reduce signal strength.

1) ZigBee: There have been several studies measuring

the relation between temperature and signal strength in Zig-

Bee networks. The signal strength decreases by 0.1 dB to

0.2 dB when the temperature increases by 1 °C. Different

numbers are found in different studies: −0.1996 dB °C−1 [12],

−0.127 dB °C−1 [13], −0.205 dB °C−1 [14], −0.1 dB °C−1

[9]. Temperature also influences other parameters: PRR is

negatively correlated with temperature - especially near the

limit of the communication range [14], [15]. The minimum

transmission power required for successful communication

increases with higher temperatures [16]. The gradient in tem-

perature and humidity has been used to control the power in

the antenna to account for changes in RSSI [17]. It is possible

to improve efficiency of a wake-up radio by considering the

relation between signal strength and temperature [18]. The

deployment of an outdoor sensor networks should take the

current temperature into account [9].

2) LoRa: Like for ZigBee, a negative correlation between

temperature and received signal strength has been found in

LoRa networks [7], [19]–[23]. A relationship is shown with

incline around −0.1 dB °C−1[19], [21]. The change in RSS is

likely due to sensitivity in the radio hardware [20]. It has also

been found, that the Signal to Noise Ratio (SNR) is lower at

higher temperatures [7], [10]. For a node at the edge of its

communication range, the PRR decreases when heating the

node. Eventually, the node becomes unable to communicate

at all [20].

3) 4G LTE: Increasing temperature is found to cause a

”sharp decrease” in signal strength in an LTE network [24].

B. Humidity

Water in the atmosphere at higher humidity could cause

attenuation of a wireless signal.

1) ZigBee: An increase in relative humidity of 10% causes

a change in signal strength of roughly 0.3 dB. However, the

change in signal strength may also be caused by temperature

variation, and the contribution from absolute humidity is small

[13]. For IEEE 802.15.4 links, a negative correlation is found

between absolute humidity and RSSI and PRR, respectively.

After further analysis, it is questioned whether there is a

causal relation between absolute humidity and received signal

strength [15].

2) LoRa: Like was the case for ZigBee networks, it cannot

be concluded that humidity influences signal strength in a

LoRa network [23]. In a LoRaWAN network, a linear relation

between humidity and RSSI is found when the absolute

humidity is in the range 4 gm−3 to 10 gm−3 [19]. Increasing

relative humidity leads to a reduction in both RSSI and SNR

in a LoRaWAN deployment [7].

3) 4G LTE: Some work suggests a decrease in received

signal strength with an increase in relative humidity [24].

However, correction for the relationship between temperature

and humidity was not done.

C. Precipitation

It has been shown that rainfall has an effect on link quality

[4]. However, some studies find a significant negative effect

on RSS from rain, whereas others find a small positive effect.

An energy-efficient transmission scheme for varying

weather conditions has been proposed [25]. Equations are

provided for the attenuation of any wireless signal in rain,

dry, and wet snow. The equations all follow a power-law like

A = αRβ , where A is the attenuation, R is the distance

travelled by the signal, and α and β are parameters specific

to the wireless signal and the medium it travels through. The

attenuation of signal strength due to precipitation is small com-

pared to the influence by temperature [25]. Conversely, several

studies do observe noticeable decrease in signal strength due

to precipitation.

1) ZigBee: A 5 dB to 10 dB decrease in signal strength has

been observed even in light rain or snow [26]. In another study,

a drone was used to connect to IoT modules on the ground.

The results show a 20 dB difference between “Rainy” and

“Sunny (15C)” conditions [27]. A decrease in signal strength

in a ZigBee network may be caused by presence of water on

the device enclosure, rather than attenuation of the signal due

to precipitation [4]. Over a period of six months, variations

in RSSI and PRR for IEEE 802.15.4 links were stronger

correlated with temperature than precipitation [15].

2) LoRa: In a comparison of using ZigBee and LoRa in a

landslide detection system, no correlation was found between

rain rate and RSSI, however a larger rate of packet loss was

detected during rain [28]. Similarly, measurements of RSSI

on a signal day with rainfall, did not show a significant

difference in RSSI at higher rain rates [23]. Significant changes

in SNR and RSS has been found during snowfall compared

to dry conditions [7]. Using multiple radios operating at both

868MHz and 2.4GHz (not specifically with LoRa) rain and

fog is found to have small effect on the RSSI. However, a

significant increase in the packet loss rate, and interruption of

ongoing communication is found [9].

3) 4G LTE: The decrease in received signal strength in an

LTE network has been used to estimate the amount of rainfall.

The difference in received signal level between “no rain” and

“heavy rain” is around 12 dB[29]. Likewise, changes in LTE

network conditions have been used to classify rainfall into “no

rain” and four distinct classes of precipitation intensity[30].

Precipitation can explain some short-term variations in RSRP

in a 4G LTE network [31].



Temperature Relative humidity Absolute humidity Precipitation

ZigBee (−0.1 to −0.2) dB °C−1 (0 to 0.03) dB / RH% {0, (−0.2 to −0.7) dB/(g/m3)} {0, −(5 to 10) dB, −20dB}
LoRa (−0.1 to −0.2) dB °C−1 0 {0, −3.5dB/(g/m3)} Magnitude unclear from literature
4G/LTE ”sharp decrease” [24] Decreasing with RH% [24] Unknown (−8 to −12) dB

TABLE I
EFFECT OF AMBIENT ENVIRONMENT CONDITIONS ON SIGNAL STRENGTH.

D. Summary of changes in signal strength due to weather

Table I summarizes the influence of weather conditions on

signal strength. We have found prior art documenting that

air humidity influences the RSS. However, for an increase in

humidity, some report an increase in RSS, while others report

a decrease. Since the reported effect is inconclusive, we ignore

air humidity as a contributing factor on the RSS in the further

analysis.

There is a relationship between RSS and temperature for

each of the considered network technologies. For the relation

we use eq. (1), which has the same impact from temperature

as [12].

ΔRSST = −0.1996 dB °C−1ΔT (1)

ΔT is the change in ambient air temperature, and ΔRSST

is the temperature-related change in the RSS. It is possible

that part of the decrease in RSS with increasing temperature

is because of a higher noise floor of the radio as it becomes

warmed up, rather than attenuation of the signal through the

air. For a cyber-physical node being awake only for a short

period of time, around 60–120 seconds, after sleeping for

several hours or days, changes in ambient air temperature will

affect RSS.

Prior art documents that precipitation impacts signal

strength. However, some have found larger decreases in signal

strength than others. This can perhaps not be explained just by

attenuation of the signal through air. If accumulation of water

or ice happen on or around the antennae, this may result in

larger decreases of the RSS. It should be expected that water

and ice accumulates on the antennae when nodes are deployed

to cold and wet environments like the arctic tundra.

To account for both the possible effect from water and ice

on the antennae, and the results listed in table I, we propose

eq. (2) for how precipitation causes a decrease of the RSS.

ΔRSSp =

{
(−8− 4 · (1− e−p)) dB , p > 0

0 , p = 0
(2)

p is the precipitation rate in units mmh−1. ΔRSSp is the

decrease in signal strength due to precipitation.

IV. EVALUATION

As described in section II, observation nodes can be ex-

pected to be at the limit of their communication range. This

is a problem because prior art documents that the weather

conditions at and between sending and receiving nodes can

decrease the RSS. This can make borderline networks becom-

ing temporarily unreachable, or result in lower bandwidth and

more re-transmissions, thereby wasting energy.

However, if an observation node can select a time to

transfer data when the RSS is higher it can possibly restore

reachability, increase network bandwidth, and reduce network

disruptions. This will reduce the energy usage for the com-

municating nodes. We note again that the primary influence

of weather can be considered to be local to the observation

nodes.

We have devised and explored four algorithms for deter-

mining when to wake a node. One algorithm ignores weather

conditions, and three have weather conditions as input. The

algorithms are ranked by the relative change in the RSS caused

by weather conditions at the time picked. The highest positive

change in the RSS is considered best. For this paper, we

assume that the cyber-physical observation nodes are located

around the weather stations producing the historic weather data

we use (described in section IV-A). This allows us to assume

that the historic weather data is indeed valid for the weather

conditions that the nodes will experience.

A. Historic Data Set

When the four algorithms pick a wake-up time for a node,

weather measurements are needed to compute the change in

RSS as a result of weather conditions at the picked time.

Having historic data on weather conditions allows for com-

puting the weather-related change in RSS both for the picked

time, and for all other times we have data for. This allows for

comparing how well the four algorithms pick a time with a

high RSS. We use data from MET Norway 1 available under

an open licence2. It comprises weather forecasts as well as

temperature and precipitation measurements for 37 weather

stations located in the low or sub-arctic in northern Norway.

We selected all stations in the area with measurements of

both temperature and precipitation from January 1st, 2021 to

December 31st, 2021.

Temperature data is typically available at 10 minute inter-

vals. Precipitation is typically available at one-hour intervals.

Forecast data is available with one hour between data points.

We only use data from each location taken at the beginning

of every hour. Some locations are missing precipitation data

for one or more periods. When data is missing, it is ignored

in the analyses. For two of the days, the first forecast for the

day is missing. Instead, we use forecasts which were made

1https://frost.met.no and https://thredds.met.no
2Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/



a few hours earlier: On 2021-05-31 and 2021-11-03 we use

forecasts which are 12 and 18 hours old, respectively.

B. Computing change in RSS

The change in RSS due to change in temperature and

precipitation is approximated by eq. (1) and eq. (2), respec-

tively. We apply the equations to the data from MET Norway.

We compute the hourly change in RSS over a year for all

37 locations as follows. 1) For each location, we use the

first temperature measurement for that location as a reference

temperature. 2) To compute the change in RSS, we use the

observations for a time slot and use the difference to the

reference temperature as input to equation eq. (1) and the

precipitation as input to equation eq. (2).

To study how much weather influences RSS for each day

(24 hours), we compute the range of RSS changes for each day

as the dB-difference between the largest and smallest change

in RSS for that day. Figure 1 shows how many days over a

year a range occurs. For about half the number of days, the

range is between approximately zero to four dB. For most of

the remaining days, the range is from approximately 8.5 to 14

dB.

Figure 2 shows the hourly change in RSS over one year due

to changes in temperature and precipitation. The changes in

RSS are found by first computing the hourly changes in tem-

perature relative to the temperature on midnight on 1. January

2021. Then eq. (1) is applied to the temperature change, and

eq. (2) to the precipitation, to find the corresponding changes

in RSS. While this is done for all 37 locations, fig. 2 shows

the results for a single location. An increase or decrease of

the temperature and the precipitation, result in a decrease or

increase of the RSS, respectively. However, the precipitation

results in significantly larger changes of the RSS than the

temperature does. The implication of the observations in fig. 1

and fig. 2 is that there is often precipitation during a day. If a

node wakes up at a time with precipitation, it will experience

a lower RSS than during other times that day. Because there is

precipitation in about half of the days, it is worth considering

precipitation when selecting a time to wake up in order to

avoid a large decrease in RSS. There is also a clear difference

between the seasons in that the RSS decreases by about 5 dB
during the summer compared to winter.

C. Selection algorithms

In this section, we describe four different strategies for

selecting a single one-hour time-slot during a day for waking

up nodes. For the time picked by the algorithms, the change in

the RSS relative to 1. January 2021 is computed as previously

described. The purpose is to see how well the algorithms are

picking a time when the RSS is at or near its highest during

the day.

1) Random time of day: The random time of day strategy

picks a random time per day over one year for when to wake

up nodes. It will serve as a reference for comparison with other

strategies where the timeslot is selected based on observations

and weather forecasts.
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Fig. 1. Histogram of daily range of weather-related RSS changes. The
figure only includes observations where both temperature and precipitation
are available.
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Fig. 2. Expected difference in RSS relative to first measurement on Jan 1
2021 for one location.

2) Fixed time of day: The fixed time strategy inspects

historical weather data to pick the timeslot which most often

results in the highest RSS. A single fixed wake-up time is

selected for all days. To determine the fixed time, first the

historic weather related changes in RSS is computed for all

37 locations over one year for total of 13505 (37x365) 24-hr

days. For each day, the one hour timeslot with the highest

expected RSS is selected. This is when the change in the RSS

causes the RSS to reach its highest value for the day. Finally,

from the 13505 days, the time which most frequently has the

highest expected RSS is the one selected as the wake-up time.

The selected time is not necessarily the one resulting in the

highest RSS for every day, but most often is.

3) Weather forecast: The weather forecast aware strategy

picks a wake-up time per day for when the RSS is at its highest

according to the forecasted conditions. We use the first 24

hours of the weather forecast starting at the beginning of each

day. For each weather station location, we select the closest

forecast grid cell. In practice, for deployed nodes to be able

to benefit from the weather aware algorithm, they must either

have received the wake-up times from a back end or edge

service, or the nodes must have received the relevant forecast

and have done their own computations to pick the wake-up

times. However, in this paper we ignore how to do this, and

just explore if having a weather forecast will aid in picking a

wake-up time when the RSS is high.



4) Time series forecast: The time series forecast strategy

picks a wake-up time per day for when the RSS is at its highest

according to a time series forecast of the temperature from an

autoregressive-moving-average (ARMA) model. ARMA was

used instead of SARIMA because the time series we have is

stationary and non-seasonal. This was determined by using

pmdarima version 1.8.5 [32] with 60 days of temperature

measurements from a single location. The auto arima function

from pmdarima also determined the parameter values (p, q)

for ARMA to be (3,4). Each forecast by the ARMA model

is made by fitting the measurements from the previous 168

hours, and then predicting the conditions up to 24 hours into

the future. We then select the time to wake up a node to be

when the temperature is at its coldest according to the forecast.

V. RESULTS

In this section, we present the results from applying the

prediction strategies presented in section IV-C. The expected

change in RSS at each selected timeslot for each location is

compared to the highest expected RSS in the corresponding

24-hour window. Since the ARMA model requires prior ob-

servations to make predictions, it only makes a selection on

13246 days. Therefore, we compare all the selection strategies

on those days. The results are summarized in fig. 3 and

fig. 4. Figure 3 contains a histogram, for each of the four

selection strategies, of the difference in RSS at the selected

timeslot compared to the timeslot with the highest RSS for the

corresponding day. This difference uses the notation ΔRSS24.

Figure 4 shows how often the selections made by each

strategy has a ΔRSS24 that is more negative than six different

thresholds. In the following subsections, we provide further

information about each selection strategy.

A. Random time of day

Random selection of a timeslot serves as our baseline for

comparison with other strategies. In about 5% of the days, the

randomly chosen timeslot is the one with the highest expected

RSS. We see in fig. 3 that among the four selection strategies,

the random selection makes the fewest selections near the

timeslot with the highest RSS. We also observe from fig. 4, that

it selects timeslots with large decrease in RSS more frequently

than the other strategies.

B. Fixed time of day

For timeslot selection based on a fixed hour, we first

determine, at which hour it is most likely to observe the highest

expected RSS within the used data set. The highest RSS is

most often observed at hour 23. 23 is slightly surprising, as

the temperature should continue to decrease until sunrise. We

can then compare the differences in expected RSS between

always attempting to communicate at 23:00 and the best time

to communicate. In fig. 3 we see, that the strategy using a fixed

timeslot to communicate selects a timeslot with an expected

difference in RSS near zero more frequently than the random

selection strategy. This is expected, since the fixed timeslot

was selected to be the single timeslot, which most frequently
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Fig. 3. Histogram of weather-related expected difference in RSS compared to
the highest RSS in each 24-hour window for the selections made by each of
the prediction strategies. The weather forecast is particularly good at selecting
near the highest expected RSS, as well as not selecting near the lowest.

< −10 < −5 < −2 < −1 < −0.5 < −0.1
ΔRSS24 [dB]

0

20

40

60

80

Fr
eq

ue
nc

y
[%

]

ARMA
Fixed
Forecast
Random

Fig. 4. The frequency of when the expected RSS difference to the highest
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had the highest expected RSS. However, the strategy only

avoids large decrease in RSS slightly more frequently than

the random selection strategy. This can be seen in fig. 4.

C. Weather forecast

Assuming that weather forecasts are accurate, selecting

times for communication based on them can be expected to

result in higher RSS. The weather forecast strategy selects

timeslots with expected RSS near the highest expected RSS

more frequently than the other selection strategies. Figure 3

shows that the difference in expected RSS between the selected

and best time is more often near 0 dB than the other selection

strategies. We see in fig. 4 that the weather forecast is able to

avoid large decreases in RSS (caused by precipitation) more

often than the other three strategies. When it does select a

timeslot with precipitation, it is better able to avoid timeslots

with large decrease in expected RSS than the other strategies.

The weather forecast does perform better than any of our

other selection strategies. In particular, it is worth noting, that
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Fig. 5. Predicted temperature values from the ARMA model. Predictions are
made 1 and 24 hours prior to the shown data points. For readability, only
every 5th point is plotted. The predicted temperatures are later converted to
expected changes in RSS.

it often makes selections at or very close to the best possible

timeslot. Figure 4 does not show the interval where the RSS

is within 0.1 dB of the best RSS of the day. The weather

forecast selects a timeslot in this interval on 48.8% of the days.

For comparison, the random selection strategy selects within

0.1 dB only on 12.8% of the days. Furthermore, as shown in

fig. 4, the weather forecast is better at avoiding large decreases

in RSS than any of the other strategies. It selects a timeslot

with difference in expected RSS of more than 10 dB compared

to best timeslot on 1.8% of the days compared to 5.7% for

the random selection strategy. On those days there is typically

precipitation in most timeslots. A comparison between all the

selection strategies is shown in fig. 4.

D. Time series forecast

To examine how well the ARMA model predicts future

conditions, we plot in fig. 5 the predictions made 1 and 24

hours after the last observation for an arbitrary location. The

predictions deteriorate the further into the future they are made

for. In fig. 3 it is possible to see that the ARMA method selects

a timeslot near the best possible option more frequently than

random timeslot selection and at about the same rate as the

fixed-time selection. On 13 days the fit fails to converge for

one of the locations. No predictions are made on those days.

In fig. 3, and fig. 4 we see, that the ARMA-based selection

strategy performs comparably to the fixed time selection. It has

avoided a few more timeslots with large expected decrease in

RSS than the fixed time selection, but it has fewer selections

close to the best timeslots.

VI. DISCUSSION AND CONCLUSIONS

Prior art argues taking the influence of weather into ac-

count for nodes to be deployed in-situ into resource-limited

environments. We have used historic observations and weather

forecasts for 37 observation sites located in Northern Norway.

We then apply four different strategies for selecting communi-

cation timeslots and use a model to compute expected change

in RSS. The model is based on estimates from related studies

of the influence of temperature and precipitation on the RSS.

Based on our model and prediction strategies, we make the

following observations: It is indeed possible to select times

to communicate close to times with the highest expected

RSS. Large drops in RSS due to precipitation may be better

avoided by selecting a timeslot to communicate based on a

weather forecast. We hypothesize such an improvement can

be beneficial for observation nodes, especially when they are

at the edge of their communication range. Even for nodes

connected to a network, a small increase in RSS can result

in higher bandwidth, and fewer re-transmissions. Our findings

may also prove useful in other locations with larger temper-

ature variations. Furthermore, since the communication range

is dependent on signal strength, the effective communication

range can be increased by selecting times to communicate

with the highest expected RSS. This can increase the number

of nodes which can be reached. The large influence of pre-

cipitation is based on an assumption that water accumulates

near or on the antennae. We make this assumption from our

intended use-case, the arctic tundra, which has unique weather

with high humidity and frequent precipitation.

When the ARMA model makes predictions about future

conditions, it does so at a fixed time. Since the accuracy of

predictions decrease the further into the future they are made,

the selection of when predictions are made may influence

the results. More frequent computation of predictions could

increase the accuracy, at the cost of waking up the node more.

It also adds complexity in ensuring one selection is made per

24 hours if data is updated, pointing to new time slots.

This work can be expanded in a number of ways: More

advanced prediction models like LSTM or Random Forrest

may increase the likelihood of choosing the timeslot with the

highest expected RSS. The real-world energy consumption of

the different prediction strategies should be measured to show

if there is any practical benefit to applying these concepts.

Energy considerations may also need to include the discharge

rate of batteries at varying temperatures. It may be interesting

to study dynamics between using a weather forecast and

relying on local predictions as a fall-back option. Basing

predictions on a weather forecast assumes the availability of

a forecast. This implies either downloading a forecast from

somewhere, or doing a forecast on the nodes. In this paper we

do not expand on the implications of either approach.
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