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Abstract—Cyber-physical systems (CPS) deployed in scarce
resource environments like the Arctic Tundra face extreme
conditions. Nodes in such environments are forced to rely on
batteries and sleep most of the time to maximize their lifetime.
While being autonomous, nodes have to collaborate to make
scientific observations. As a result, their deployments and updates
are subject to coordination (e.g., prevent interruption of a service
used by other nodes). In this paper, we study analytically and
experimentally, to what extent using relay nodes for commu-
nications reduces the deployment and update durations, and
which factors influence this reduction. Intuitively, as dealing with
sleeping nodes with low chances of uptime overlaps (no uptime
synchronization), a coordinated deployment or update takes very
long to finish if nodes have to communicate directly.

Index Terms—CPS, Deployment, Update, Coordination.

I. INTRODUCTION

Cyber-physical systems (CPS) are systems where physical
instruments are combined with digital devices and software
components to achieve smart observations, computations, and
decision-making. They are used in a large variety of use cases
such as health care [1], agriculture [2], and environmental
monitoring [3].

The Arctic Tundra is one of the most sensitive ecosystems
to climate change. While studying this environment is of
high importance, its monitoring is nowadays very limited.
The Distributed Arctic Observatory (DAO)1 project proposes
a CPS observing the Arctic Tundra. It is mainly composed
of Observation Nodes (ONs), responsible for monitoring the
ecosystem through physical instruments, gathering data, and
running small computations. ONs can also collaborate for
observations when located close to each other through local
or temporary network connections.

This use case imposes extreme constraints on the CPS. Be-
cause the Arctic Tundra is a protected area, no infrastructure is
present on the field. Nodes have to rely on batteries exclusively.
Due to bad weather conditions and very short sun exposition
during winter, swapping batteries or harvesting energy on a
regular basis are not plausible solutions. Thus, to maximize
their lifetimes, each node has its own frequency of short
uptime and long sleeping periods. In this paper, we consider
the realistic scenario where ONs are not synchronized in
their uptime periods, as synchronizing them has an important

1https://en.uit.no/project/dao

cost in a dynamic environment. We want to study the case
where ONs wake up when required for scientific observations
only, i.e., randomly according to dynamic requirements from
scientists, or according to dynamic external events (e.g., a
moving animal).

Because nodes are collaborating, available services on a
node might have dependencies with services hosted on other
nodes. When such services have to be deployed or updated,
coordination is required to reach the new target configuration.

Intuitively, considering direct communications between ONs
and due to the very low chances of uptime overlaps between
ONs, deploying or updating services in the DAO might take
a very long time to finish. However, specific nodes (denoted
relay nodes) of the DAO can be equipped with powerful bat-
teries, thus being more frequently available to relay messages
between nodes. Leveraging those specific nodes for exchang-
ing messages between ONs offers an opportunity for indirect
asynchronous communications which should intuitively speed
up deployments and updates.

In this paper, we want to study how direct or indirect
communications (with and without a relay node) affect the
deployment and update durations. More precisely, we answer
the following research questions.

RQ1: When deploying or updating interdependent services
hosted on different sleeping ONs, to what extent does using
indirect communications, by leveraging relay nodes, reduces
the duration of the process compared to direct communications
between nodes?

RQ2: Which factors influence the deployment and update
duration, in both cases?

The contributions of the paper are: (1) the modeling of our
case study, and an analytical answer to our questions; (2) an
experimental evaluation conducted on a real infrastructure with
Raspberry Pis on both the deployment and update to validate
our analytical study. The rest of this paper is organized as
follows. Section II details the considered CPS in the Arctic
Tundra. Section III presents the modeling of a deployment
or an update when having sleeping nodes with and without
relay nodes. In Section IV the experimental setup is detailed,
and in Section V are presented the results of our experiments.
Section VI presents the related work. Finally, Section VII
concludes this work, and opens to some perspectives.

https://en.uit.no/project/dao
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Fig. 1: DAO-CPS in the Arctic Tundra.

II. THE ARCTIC TUNDRA USE-CASE

The Arctic tundra is a very large, hard-to-reach, and poten-
tially dangerous ecosystem. Presently, much less than 1% of
the Arctic tundra is monitored. Therefore, to accurately study
climate change, larger observations of the Arctic tundra are
needed. Figure 1 gives an overview of a DAO-CPS observing
the Arctic Tundra [4]. For our study, we put the nodes in two
categories: the observation nodes (ON) and the relay nodes
(RN).

First, ONs typically embed computing capabilities and
physical instruments to observe the environment and are
deployed at scale in the Tundra. When waking up, an ON
can perform several actions including performing measure-
ments, doing small computations, deploying new services
for future measurements, or updating existing services. The
uptime frequency of each ON is not known in advance and
is considered random [4]. Indeed, ONs wake up according
to dynamic requirements from scientists, or according to
events occurring in the Tundra (e.g., moving animals, CO2
threshold). It is essential to notice that each ON can perform
multiple types of measurements and computations and may
wake up dynamically according to their own local events and
decisions. In cases where services on multiple nodes are inter-
dependents (i.e., collaborating), nodes have to synchronize
their deployments and updates.

Second, RNs are notably used to help ONs communicate,
rather than compute and observe. RNs are also under a limited
energy budget but are equipped with more powerful batteries,
making them more likely to be reachable by ONs. In particular,
we consider that an RN has the knowledge and enough energy
to be awakened simultaneously as the ONs connected to
it [5]. RNs can be costly as they need powerful batteries.
Consequently, the number of RNs to deploy in the Tundra
has to be studied and limited. Such a detailed study will be
the subject of another paper. In the rest of the paper, we
consider one clique of multiple ONs around one RN. This
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Listing 1: Deployment of Figure 2 modeled as a strict partially
ordered set with two order relations ă and ⋖

paper exclusively focuses on the study of deployment and
update durations when introducing one RN.

III. MODELING

In this section, we give a generic model of both a de-
ployment and update process when facing sleeping nodes.
This model leads to an analytical answer to RQ1 and RQ2,
experimentally validated in the rest of the paper.

A. Deploy and update modeling

Many languages exist in the literature to model the configu-
ration of a system and apply changes to this configuration, i.e.,
reconfiguration [6]. The goal of such languages is to offer the
programming support to write well-structured programs that
express how to move from the current state of the system to
a new desired state. Reconfiguration languages can be used
to write either deployment or update procedures. In [7], [8] a
reconfiguration is modeled as a graph of actions to apply on
a system. We follow this idea in the following modeling.

A deployment or an update procedure on multiple nodes can
be modeled as a partially ordered set pAr,ă,⋖q where ă is
the order relation used between two actions on the same node,
and ⋖ is the order relation used between actions executed on
two different nodes.

The ⋖ relation models a required communication between
two nodes of the CPS to solve the remote dependency.

A deployment or an update procedure, as being a strict
partially ordered set, can also be modeled as a directed acyclic
graph (DAG) pAr, Dr Y D˚

r q with Ar the nodes of the graph
representing actions, Dr the edges representing dependencies
between actions on the same node, and D˚

r the edges repre-
senting dependencies between actions on two different nodes.

Example: Figure 2 and Listing 1 give an example of deploy-
ment with three nodes: Figure 2 depicts the DAG modeling,
while Listing 1 represents a subpart of the partially ordered set
modeling (with two nodes). The actions are denoted installji ,
configji , and runj

i , where i represents the ON number on
which the action is executed, and j identifies the action to
execute.

The duration of a deployment or an update is the time spent
to execute all actions on all nodes. In other words, the duration
is the longest path, LP , in pAr, Dr Y D˚

r q: LP pAr, Dr Y

D˚
r q [7].
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Fig. 2: A deployment modeled as a DAG partitioned into
three subgraphs, one for each ON. Plain edges represent
dependencies between actions of a single ON in Dr. Dashed
edges represent dependencies between actions of two different
ONs in D˚

r . This also illustrates our deployment case study of
Section V (three services distributed on three ONs).

The duration of each edge in D˚
r is W pai⋖ajq: the waiting

duration before the node responsible for aj is informed that the
dependency ai ⋖ aj is solved. W is in particular the element
of interest in this paper. Indeed, if using direct (without RN)
or indirect (with RN) communication between ONs, W is
impacted, while other weights of the graph are unchanged.

B. Sleeping nodes and overlap modeling

In this subsection, we introduce a model of the sleeping
nodes of our Arctic Tundra use case. An ON of the DAO-
CPS alternates sleeping and uptime periods, without a regular
frequency (see Section II).

Considering the infinite time as R`, and the sets of sleeping
and uptime periods of a node S, U such that U Y S “ R`

and U X S “ H. A period in either U or S is a pair ps, eq,
where s, e are respectively the starting and ending points of
the period. The period duration is d “ e ´ s.

There exists an overlapping period o P O between two nodes
(here i, j) if and only if it exists at least one pair of uptime
periods, psi, eiq P Ui on node i, and psj , ejq P Uj on node j,
such that si ď sj ď ei or the opposite sj ď si ď ej . The
duration of o is then minpei, ejq ´ maxpsi, sjq.

Direct communications between two nodes of the CPS can
happen if and only if there exists at least one overlapping
period o P O between the two nodes i, j, denoted opi, jq.

Figure 4 illustrates an example of uptime and sleeping
periods as well as overlapping periods between two nodes.

C. Waiting duration modeling

In this subsection, we link the waiting duration W of a
deployment or an update duration to the sleeping frequency of
ONs in the CPS.

We denote tai
the instant where the action ai is finished

on node i, and tai⋖aj the instant where node j needs ai to
be finished on node i before being able to apply action aj .

The waiting duration induced by the dependency ai ⋖ aj with
direct communications between nodes (i.e., without the RN)
is

W pai ⋖ ajq “

#

soi,jptai
q ´ tai⋖aj tai ą tai⋖aj

soi,jptai⋖aj
q ´ tai⋖aj

otherwise
(1)

where soi,jptai
q and soi,jptai⋖aj

q are, after tai
(resp. tai⋖aj

),
the starting points of the current or next overlap period between
nodes i and j, with in both cases sopi,jq ě tai

and sopi,jq ě

tai⋖aj
.

Intuitively, the node j has to wait from the instant it requires
ai to be finished on node i (tai⋖aj

), until the overlap period
between i and j (sopi,jq). In one case this overlap period should
happen after tai , in the other case after tai⋖aj . Note that node
i is not blocked and can continue its local execution while j
is waiting.

We now study the waiting duration in case of indirect
communications between nodes through an RN, meaning that
nodes do not have to overlap to communicate.

The waiting duration induced by the dependency ai ⋖ aj
with an indirect communication is

W pai ⋖ ajq “

#

sujptai
q ´ tai⋖aj

tai
ą tai⋖aj

0 otherwise
(2)

where sujptai
q is, after tai

, the starting point of the next uptime
period of node j.

With indirect communication by using the RN, as soon as ai
is finished on node i the information is stored in the RN (which
is considered awakened). Hence, on the one hand, if node j
needs ai to be finished after node i ends ai (i.e., tai

ą tai⋖aj
),

the waiting duration is null for j. On the other hand, if node
j needs ai to be finished before node i ends ai, node j has to
wait from the instant it requires ai (tai⋖aj

), until an uptime
period after tai

(sujptai
q).

By analytically comparing the equations (1) (i.e., direct
communication without RN) and (2) (indirect communication
with RN), the following statements stand:

‚ RQ1: by definition, we always have the relations
soi,jptai

q ě sujptai
q and soi,jptai

⋖ajq ě sujptai
q because

in best case the next uptime instant of j is also an uptime
period for i. Thus, the waiting duration in the direct case
should always be greater than or equal to the indirect
case. Consequently, the deployment and update durations
should always be faster if using an RN to communicate
between ONs.

‚ RQ2: from both equations, we can extract that the waiting
duration, thus the deployment and update duration, de-
pends either on the frequency of overlaps between nodes
(soi,j

in Eq. 1) when using direct communications, or on
the uptime order between nodes (i.e., sujptai

q in Eq. 2)
when using indirect communications (i.e., an RN is used).
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IV. EXPERIMENTAL SETUP

In the rest of this paper, we will validate the analytical
expectations concerning our research questions through exper-
iments. We first describe the experimental setup.

A. Deployment and update language

To experiment and answer our research questions, we need
a language that is able to (1) model and execute deployment
and update across multiple nodes in a decentralized manner,
and (2) handle communications between nodes either directly
or indirectly.

In the literature, as far as we know, only a few contributions
offer a language able to model and execute deployment and
update in a decentralized manner (see Section VI). Among
the decentralized approaches we have found, µs [9] (called
Muse in the rest of this paper) is a decentralized orchestrator
that relies on the DevOps tool Pulumi. It aims to help DevOps
teams to coordinate their changes in the cloud. Muse, unlike its
concurrent solutions [10], [11] is not restricted to deployments
and can handle more advanced changes such as updates,
scaling, etc. Muse handles direct communications between
nodes: each node hosts a gRPC server and communicates
with others by making requests to remote APIs. For these
reasons, in addition to experimenting with Muse, we have
chosen to implement a decentralized version of the reconfig-
uration language Concerto [8] that embeds both direct and
indirect communications between nodes2. The indirect version
of this code uses the decentralized message broker Zenoh3. We
call these two versions of the decentralized Concerto direct
for direct communications without RN, and rn for indirect
communications with one RN.

B. Use cases

Our use cases are inspired from [4] and from [8]: one ON
is running an aggregator service and relies on the output of

2https://github.com/Concerto-D/concerto-decentralized/tree/cpscom2023
3https://zenoh.io/

n others ONs running measurement services. Five ONs are
running measurement services. We have dependencies between
the aggregator and the measurement services.

In this context, we experiment with two different pro-
cedures: deploy and update. Figure 2 and 3 respectively
illustrate the dependency graph of actions for deploy and
update procedures, with only two measurement services and
the aggregator (i.e., three nodes). For interested readers, the
procedures are detailed in [8] as well as in the publicly
available source code4. During the deployment, the aggregator
has two synchronizations with each measurement service (or
node): one at the configuration level of the services and one
to start the services. During the update, all services have to
suspend, do the update, then run again. Two synchronizations
are also required here: measurement services need to wait for
the aggregator to stop using their services before stopping their
own; then, before running again the aggregator needs to wait
for measurement services to ensure that they are running again
before being able to use them.

Note that these synchronizations are automatically handled
by Muse, direct and rn, but we detail them to give an intuition
on the level of coordination required by each case, thus the
required communications between nodes.

To cover a larger spectrum of cases, to avoid favorable cases,
and to favor reproducibility, we do not execute real commands
within our actions but instead randomly generate action dura-
tion, as stated in [4]. To be realistic, the duration of actions
is generated between 1 and 30 seconds, using a lognormal
distribution. In other words, low values are more represented
than high values. Our experiments use two different random
draws denoted ard0 and ard1 in the rest of the paper.

C. Uptime scenarios

During one experiment, nodes follow a predefined sce-
nario made of uptime and sleeping periods. To be faithful
to reality [4], we set the uptime duration of nodes at 50
seconds. Our experiments have a deadline of 3 hours and
each node wakes up a total of 45 times. To generate the
scenarios, we use a combination of two parameters: (1) the
total number of overlaps that nodes hosting a measurement
service have with the aggregator (Nb.Ovlp. for short), this
parameter influences soi,j

of Eq. 1; and (2) the order of uptime
periods between nodes hosting a measurement service and the
aggregator (Upt.Order for short), this parameter influences
sujptai

q of Eq. 2. Both uptimes and overlaps are uniformly
distributed throughout the time slots of the experiment.

Figure 4 illustrates how these parameters influence the
generation of scenarios. In the base scenario, we see that ON1
always wakes up before ON0, and that there are two overlaps
in the time slots (TS) 2 and 4. Scenario 1 shows a change
with three overlaps instead of two. This should have an impact
when using direct communications (i.e., direct). In Scenario 2,
the order of uptime between ON0 and ON1 is changed. This

4https://github.com/Concerto-D/evaluation/tree/cpscom2023

https://github.com/Concerto-D/concerto-decentralized/tree/cpscom2023
https://github.com/Concerto-D/evaluation/tree/cpscom2023
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Fig. 4: Illustration of three different uptime scenarios with
two ONs. A scenario is divided into time slots (TS). The first
scenario is the base to compare to others. The second scenario
differs from the base in the number of overlaps, while the third
differs in the order of uptime periods.

should have an impact when using indirect communications
(i.e., rn). We generated two categories of scenarios that aim at
studying the sensitivity of direct and indirect communications
to these two different parameters (Nb.Ovlp. and Upt.Order).
The number of overlaps can take three values: 7, 15, or 30.
Regarding the uptime order, we have triggered three different
orders randomly uto0, uto1, uto2.

D. Metric and Infrastructure

In our experiments, we measure the overall deployment and
update duration, i.e., the maximum total uptime and sleeping
periods needed by the nodes to complete the procedure.
This includes the time spent to complete actions, the waiting
duration between nodes, and the sleeping periods.

Our experiments are conducted on a cluster of seven Rasp-
berry Pi 4, running on a Cortex-A72 CPU. These Raspberries
have been connected to the Grid50005 network, a scientific
test-bed to run and facilitate the reproducibility of experiments.
Note that this paper does not study the impact of low band-
widths or packet losses on the procedure duration. This is the
subject of future work.

V. RESULTS

In this section, we discuss the results of our experiments.
Table I and Table II respectively gather the results of the
experiments that vary the parameters Upt.Order and Nb.Ovlp.
Each of our experiments has been executed four times and a
mean is represented in tables. We have observed a maximum
standard deviation of 0,06% for Concerto-D and 7% for Muse
(due to a fully loaded CPU, as discussed later).

5https://www.grid5000.fr/w/Grid5000:Home

A. Results on uptimes’ orders

Table I presents the results obtained by varying the uptimes’
orders and fixing the number of overlaps to 15. Overall,
the deployment and update duration using rn (i.e., indirect
communications) is lower than using direct, which is expected
from our analytical study (see Section III). When comparing
rn with direct, the minimum reduction is 19% (from 1036,81s
to 841,01s), while the maximum is 90% (from 2604,93s to
267,04s). When comparing rn with Muse, the minimum reduc-
tion is 50% (from 1674,58s to 841,01s) while the maximum
is 93% (from 3746,20s to 267,04s).

On one hand, the durations when using direct remain
stable among the three uptime orders. Even if the uptime
order is supposed to affect more the procedures with indirect
communications, we may expect that the results with direct
communications are also affected by the uptime order, which
is not the case here. It is due to the fact that waiting for the next
overlap (required in the direct case only) largely overshadows
the uptime order parameter.

On the other hand, for rn, the results are very sensitive to
the uptime order. For deploy the maximum variation is 151%
(from 257,41s to 645,38s). For update the maximum variation
is 224% (from 259,88s to 841,01s). This is expected from our
analytical study, as the deployment and update duration using
indirect communications is mainly sensitive to the uptime
order (Equation 2).

B. Results on the number of overlaps

Table II presents the results obtained by varying the number
of overlaps during experiments and fixing the order of uptimes
to uto0.

Compared to direct, the results of rn reduce the deployment
and update durations by a minimum of 13% (from 269,64s to
233,20s), and a maximum of 96% (from 6441,27s to 266,99s).
For 7 overlaps, on the deployment case, Muse reaches the
three-hour limit before finishing its procedures. Notice that,
when using 30 overlaps, the direct results get closer to the rn
results. However, regarding the Arctic Tundra use-case, this
is a very high number of overlap for an ON, thus not very
realistic. On one hand, for rn, the deploy and update durations
remain stable for 7, 15 and 30 overlaps. On the other hand, for
direct, the results vary drastically: the maximum variation is
693% (from 812,35s to 6441,27s) for deploy, and 869% (from
629,66s to 6100,69s) for update.

In all the above experiments, Muse is very slow to complete
deployments and updates compared to direct while both ver-
sions use direct communications between nodes. Our goal in
this paper is not to compare tools but to compare deployment
and update durations when using direct and indirect communi-
cations. However, we observed during our experiments that the
Raspberry Pi’s CPU was loaded to 100% in the case of Muse.
This is not the case for Concerto which has its CPU loaded at
30% maximum during the execution on Raspberry, leading to
the observation that Muse puts drastically more stress on the



Upt.Order. uto0 uto1 uto2
Version muse direct rn muse direct rn muse direct rn

Deploy
ard0 3737,02 1832,47 257,41 3744,02 1832,52 645,38 3740,68 1830,66 450,39
ard1 3746,20 2604,93 267,04 3753,42 2604,83 654,12 3749,90 2602,96 459,12

Update
ard0 1661,14 1035,20 250,72 1661,23 1036,73 831,84 1657,52 1033,60 829,88
ard1 1674,74 1036,71 259,88 1674,58 1036,81 841,01 1670,92 1034,97 828,44

TABLE I: Deployment and update durations (in seconds) when varying uptimes’ orders: results for Muse, direct and rn versions,
for two random draws of actions duration ard0 and ard1.

Nb.Ovlp. 7 15 30
Version muse direct rn muse direct rn muse direct rn

Deploy
ard0 Notfinished 6090,51 274,50 3737,02 1832,47 257,41 2280,93 656,48 240,05
ard1 Notfinished 6441,27 266,99 3746,20 2604,93 267,04 2577,25 812,35 248,74

Update
ard0 6465,42 2623,03 250,72 1661,14 1035,20 250,72 1643,79 269,64 233,21
ard1 6479,01 6100,69 259,86 1674,74 1036,71 259,88 1656,98 629,66 242,34

TABLE II: Deployment and update durations (in seconds) when varying number of overlaps: results for Muse, direct and rn
versions, for two random draws of actions duration ard0 and ard1.

CPU than Concerto when executing deployments and updates.
We did not dig further into this result but Muse is a declarative
tool that compares the current and targeted states and infers
the set of actions within the procedures while running them,
while Concerto takes these actions as an input (an inference
tool exists but is external [12]).

These results give an experimental answer to our research
questions. On RQ1, the deployment and update durations when
using indirect communications are always shorter than using
direct communications, with a reduction going from 13% to
96%. On RQ2, we see that indirect is sensitive to the uptime
order with a maximum variation of 224% across the three
different uptime orders, while direct and Muse are sensitive
to the number of overlaps. The maximum variation for the
number of overlaps for direct is 869%.

VI. RELATED WORK

This section is divided into three parts: (1) our related
work regarding particular CPS deployment for scientific ob-
servations; (2) a related work on delay-tolerant-networks and
intermittent computing that can be compared to our case study;
and (3) our related work on CPS reconfiguration.

A. Observatory CPS

Cyber-physical systems are used in a wide variety of use-
cases such as health care [1], agriculture [2], monitoring the
environment [3]. However, very few environments impose hard
constraints on nodes composing the CPS. Notably, in [13],
authors present a design and architecture to use IoT for animal
ecology. Nodes are accessible through satellite or base stations
and can potentially have solar panels to refill their batteries.
Configuration of observation nodes should be done manually
by experts of the domain, dedicating each node to a specific
observation. In [14], authors study vegetation using an IoT de-
ployment. Again, nodes are fully accessible through common
networks and batteries can be replenished using solar panels.
No possibility of reconfiguration is presented. In [15], authors
consider that ocean observatories are deployed in a “harsh

environment”. The solution promises automatic integration of
nodes in the existing system, by being able to configure the
network of nodes, dynamically. However, most nodes in this
observatory (except autonomous underwater vehicles) seem
to be accessible from a network (at least satellite) and have
access to a reliable energy source (as they come with large
batteries when they are not connected by wire to the electrical
grid). In a sensibly similar hard-to-reach environment as the
arctic tundra, in [16] authors contributed a stand-alone geo-
monitoring system for harsh environments, in the Alps. In this
deployment, observation nodes form a wireless sensor network
where simple sensor measurements are done on the local node.
At least one node has access to a base station through a GPRS
network. Sensor nodes are pre-configured before deployment
and can duty cycle to save energy with synchronization on
wake-up.

Compared to the combined constraints seen and imposed
by the Arctic Tundra, the environments previously discussed
can be considered relaxed. In particular, nodes composing
the observation system do not need to both: sleep most of
the time; and be adapted through time (i.e., be subject to
dynamic deployments and updates). Furthermore, none of
these works study how direct and indirect (i.e., with an RN)
communications can affect the duration of the procedures.

B. Delay-tolerant-networks and intermittent computing

Works toward delay-tolerant networks (DTNs) and inter-
mittent computing do not specifically address the deployment
and update problems in a system with collaborative nodes.
However, these domains handle specific constraints on network
and computing with sporadic availability that could be useful
when facing sleeping nodes in the Arctic Tundra.

Regarding DTNs first, in [17] the authors propose a sur-
vey for the routing strategies to propagate messages from
sources to destinations in networks with scarce communica-
tions. Works mentioned in the survey consider the message-
passing aspect between nodes, but not the actual coordination
when deploying and updating multiple services across the



network. Of course, we could have used some of these results
to exchange messages between ONs, this could be the subject
of future work. We have instead favored a contribution at the
application level, thus being much more specific to our case
study, instead of using a generic protocol-oriented approach.
Indeed, in DTNs researchers are working mostly on new
network protocols rather than at the application level of the
OSI model. The work most relevant to what is presented here
is in [18]. The authors aim to adapt a protocol for distributed
transactions to make it suitable for DTNs. A coordinator node
is introduced to store, carry, and forward protocol messages
during the transaction. This contribution is comparable to
our indirect vision with one clique of ONs communicating
through one RN. In [19], authors surveyed the challenges
of intermittent computing including energy harvesting, power
failure, data consistency, programming support, and distribu-
tion. However, it appears that the current challenges addressed
in this field focus on the hardware and software design of
an “intermittent” device (e.g., ensuring execution progress,
maintaining a coherent memory state) rather than on the
coordination problem between multiple “intermittent” devices.

C. Reconfiguring CPS

In the literature when dealing with deployments and updates,
one interesting domain is the domain of component-based
reconfigurations [6]. However, as far as we know, only a
few contributions offer a language able to model and execute
deployments and updates in a decentralized manner. Most
of the time the reconfiguration programs are centralized,
and a single authority handles the execution of actions by
sending them to the nodes. This is notably the case in many
decentralized orchestration tools based on Kubernetes [20]–
[22], but also in more generic reconfiguration languages [6],
[8], [23]. Some generic reconfiguration frameworks or recon-
figuration languages are adapted to (or specifically designed
for) IoT and CPS systems. In [24], [25] an extension of
the well-known component model BIP with reconfiguration
capabilities is presented, namely DR-BIP for dynamic recon-
figurable BIP. The concepts introduced in DR-BIP make it a
suitable candidate to reconfigure various IoT systems made of
components organized in different motifs (topologies). Each
motif is able to reconfigure locally and to apply coordinated
reconfiguration rules with other motifs which makes this
solution close to a decentralized reconfiguration. However,
communications are not directly handled by the model and
are not discussed. In [26], [27] is presented the tool R-Mozart
to design and reconfigure IoT applications while verifying
some formal properties of their behaviors. However, unlike
DR-BIP the execution of a reconfiguration with R-Mozart
is centralized with a deployment manager thus not adapted
to more autonomous agents in a CPS system, particularly
with intermittent connectivity and sleeping nodes. In [28] an
extension of the component model SCA is presented to handle
dynamic QoS of IoT applications, thus their reconfiguration.
As for R-Mozart, this solution is centralized with the concept

of a Middleware manager, responsible for sending execution
orders to nodes’ daemons.

Another related domain of the literature is the concept of
choreography, i.e., decentralized deployments, and updates.
The literature on choreographies is, as far as we know, quite
small and none of the existing contributions tackle the spe-
cific case of CPS with both hard energetic and networking
constraints such as the Arctic Tundra [9]–[11].

Overall, none of the above reconfiguration or choreography
approaches have considered IoT and CPS systems with con-
straints as hard as in the Arctic Tundra use case (energy and
network). In particular, none of them have explicitly studied
reconfigurations with sleeping nodes, and consequently how
direct (i.e., without an RN) and indirect (i.e., with an RN)
communications could be leveraged to speed up reconfigura-
tions.

VII. CONCLUSION

Cyber-physical systems deployed in scarce resource envi-
ronments, like the Arctic Tundra, face difficult conditions.
Nodes deployed in such environments are forced to sleep
most of the time to save energy and rarely overlap. In such
conditions, the coordination of a service deployment or update
might take a long time to complete. The considered CPS has
a few nodes (RNs) equipped with more powerful batteries.
These nodes could be leveraged to relay messages, allowing
asynchronous and indirect communications.

In this paper, we conduct an analytical and experimental
study to understand which parameters of sleeping scenarios
influence the time needed for deployment and update to
complete, using either direct (i.e., without an RN) or indirect
(i.e., with an RN) communications. Our results show that
indirect communications always perform better than direct
communications. Moreover, we show that while the uptime
order influences the durations when using indirect communi-
cations, the number of overlaps has only consequences on the
procedures using direct communications.

In future work, we plan on measuring the energy cost of
using RNs for communications instead of direct communica-
tions to have a better understanding of the existing trade-off
between time and energy consumption. Moreover, in this paper,
one clique is considered with one node to carry asynchronous
communications. We plan to extend this work to more cliques
by using a decentralized broker (Zenoh6) on RNs and to
measure the energy consumption of such a solution. Finally, it
could be interesting in future work to use protocol-oriented
contributions of DTNs to solve communications between
sleeping nodes at the protocol level and compare results to
our application-level solution.
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