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Abstract—A Cyber-Physical System (CPS) deployed to a
resource-constrained environment can face multiple challenges
like (i) no or limited network coverage, (ii) no or limited
possibility of energy replenishment, (iii) no or limited physical
access by humans, (iv) nodes must cope with environmental
factors including avalanches, low temperatures, snow, ice, water
and wild animals. Devices being part of such a CPS must
be battery powered and be energy efficient to achieve long
life-time. However, the CPS still has to disseminate data to
increase resiliency, safely keep results or update nodes. A trade-
off between energy spent and data dissemination needs to be
found, ideally by minimizing the energy usage and maximizing
the relevant data dissemination performance metrics. In this
paper, we evaluate and discuss the efficiency (in energy, time and
number of successful distributions) of multiple data distribution
policies by mean of flow-level simulations. We report on the trade-
off between (i) successful data dissemination and (ii) energy and
uptime overheads resulting from the usage of loosely coupled
policies. To fully explore the scope of possibilities, we simulate a
wide range of scenarios extracted from real measurements and
previous deployments. Characteristics of CPS devices developed
by the Distributed Arctic Observatory (DAO) are used as
simulation platforms. Results show that an efficient policy in
a given scenario can perform worse in another scenario. We
also show that simple policies, especially when combined, can
help in minimizing the energy consumed by most of the devices
composing the CPS and maximizing the relevant dissemination
performance metrics.

Index Terms—CPS, data dissemination, energy efficiency, tun-
dra, monitoring;

I. INTRODUCTION

Recent literature shows that the number of Cyber-Physical
Systems (CPS), wireless sensor networks (WSN), Internet of
things (IoT), edge and extreme edge deployments explode in
the last couple of years for multiple areas such as monitoring
the environment [1], health care [2], crowd-sensing [3], [4],
military [5], agriculture [6], gas-monitoring [7] and many
others [8]–[11]. Low-Power Wide-Area Network (LPWAN)
technologies have gained in popularity, making it possible
and accessible to use and monitor larger areas especially the
ones in scarce network coverage environments. Choosing these
technologies imply having a wide coverage but low bandwidth
and low energy overheads during communication phases [12].

We are interested in monitoring the Arctic tundra, one
of the most sensitive eco-system to climate change. It is a
large area with presently too few large-scale deployments of
systems made of too few observation sites [13]. Gathering,
processing and reporting of observations are limited by the

availability of sufficient energy, and a data network with
enough bandwidth and latency. The opportunities provided are
consequently constrained by critical resources: energy and data
networks.

The Distributed Arctic Observatory (DAO) project at the
University of Tromsø, the Arctic University of Norway, is the
use case of this paper. The project develops a CPS of devices
called Observation Nodes (ONs) for the Arctic tundra. The
DAO system observes the tundra and reports the observations.

As nodes are deployed in an isolated environment, we
assume that the nodes can only exchange with neighbours and
are supposed to save their energy. Thus, data dissemination
must be carefully studied to reduce the energy overhead but
still maximize the number of successful disseminations.

In this paper, we evaluate how loosely coupled dissemina-
tion policies can help when used in resource-scarce environ-
ments such as the one imposed by the Arctic tundra. The goal
is to limit the energy overhead while increasing the number of
successful disseminations when using LPWAN technologies.
We focus on policies that do not impose a strict coordination
between nodes (i.e loosely coupled). This is because (i) full
coordination (i.e waiting for everyone to be up and running,
ready and available, schedule current and future tasks and do
it regularly) would be very costly both in time and energy;
(ii) instruments deployed in the field are conservatively using
their energy budget, as they need to survive during very long
period of times.

The contributions of this paper are the following ones:
• Document and evaluate the effect of loosely coupled data

dissemination policies in scarce-resource deployments;
• Quantify the impact of these policies on energy and

uptime through simulation of previous deployments;
• Underline a range of possible trade-offs between energy

overhead and successful distributions under various sce-
narios;

• Applying loosely coupled policies for data dissemination
on a unique use-case: the Distributed Arctic Observatory
(DAO) project.

The remaining of this paper is structured as follows. Sec-
tion II presents the use case of this paper: the Arctic tundra,
the DAO project, previous Arctic tundra deployment and their
characteristics. Section III presents the related work. Sec-
tion IV presents the experimental setup and details the policies,
the metrics, the simulation tool and scenarios. Section V
presents the results of simulated scenarios on explored metrics.
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Section VI presents the lessons learned from the simulation
campaigns. Finally VII concludes this work.
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Fig. 1. Overview of the system imposed by the Arctic Tundra’s character-
istics. Back-end hosts a set of services [14]. Its connectivity to Observation
Nodes (ON) deployed at the Arctic Tundra is sparse and unexpected. The
wireless gateway in the topology is only used for 1:1 communications between
Observation Nodes forming a star topology.

II. MOTIVATING USE-CASE: THE DAO PROJECT

This section presents the use-case of this work: the DAO
project. First, the Arctic tundra and the difficulties to monitor
it are covered. Then, the needs and the challenges for a dis-
tributed observatory are exposed. Finally, a current deployment
and the importance of data dissemination are described.

A. The Arctic tundra, a complicated eco-system

The Arctic tundra is a very large, remote, hard to reach,
and potentially dangerous eco-system. By observing its flora,
fauna and environmental parameters, changes can be identified
and tracked. Presently, much less than 1% of the Arctic tundra
is monitored. However, it is the most sensitive eco-system to
climate change [13]. Therefore, to accurately detect climate
change, larger observations of the Arctic tundra are needed.

The Climate-Ecological Observatory for Arctic Tundra
(COAT1) initiative is tasked with observing the Norwegian
Arctic tundra, detect and explain climate related changes to
advise the public and the authorities. First, the state of the Arc-
tic tundra is determined based on measurements of the flora,
fauna, weather, and the atmosphere to create multiple data
sets. Second, the data sets are processed to detect interesting
events, like the species of animals captured in images, creating
multiple new data sets. Third, the new data sets are analyzed
to extract significant information, like the number of foxes
and eagles detected at the different monitored sites. These
insights are then used as input to climate models. Finally,
based on previous results, human understanding and decision
making take place [13]. A ground-based observation system
can observe large areas, do measurements at any time and
rapidly react to local events both above and below ground,
snow and ice, and do measurements at very high resolutions.
Data can be reported back at any time, regularly, or on-
demand. Significant processing and storage resources can be

1https://www.coat.no/en/

added to the devices to enable edge computing. The DAO
project focuses on such ground-based observation approaches.

B. Towards a Distributed Arctic Observatory (DAO)

There are three major obstacles to consider when building
an observation system for the Arctic tundra: (i) The lack of
roads and associated infrastructure implies the impossibility to
realistically visit by humans more than a very limited number
of sites in order to fetch data, supply energy, or do repairs
and updates; (ii) The limited or non-existing availability of a
back-haul data network for doing automated reporting of data;
(iii) The lack of energy working against using devices with ad-
vanced functionalities and still get a long operational lifetime.
A distributed Arctic observatory system must carefully manage
two fundamental resources: energy and wireless data networks.
Devices are working on a limited energy budget delivered from
batteries. As it is a complicated scenario, with bad weather
and no long sun exposition during winter, swapping batteries
by humans and regular energy harvesting are not plausible
solutions. In addition, a set of functionalities are needed by
the devices, including autonomous operations to save energy
while still striving to observe and report.

While a back-haul network cannot be expected to be avail-
able as the common case, a device can have multiple local
networks enabling communication with neighbours. Using a
multi-hop approach, data can be reported through multiple
units and finally to one or more units having access to back-
haul networks or which are located to be reachable by humans
or drones [15]. However, using the radio is energy-expensive.
One approach to reduce transmission related energy consump-
tion is to reduce the number of bits to exchange between
devices, but such leverage is only applicable if the data can
still be used to get close to the same analytic precision [14].

In this paper we focus on delivering data from one node to
neighbours in the context of nodes deployed to and isolated on
the Arctic tundra (i.e not accessible by a back-haul network
as a common case), without multi-hopping nor modifying the
data, as shown in Figure 1. Such a focus is interesting for
multiple different cases.

C. Data dissemination, a crucial need

COAT ecologists presently use several approaches to ob-
serve the Arctic tundra [16], [17]. Tens to a few hundreds of
small dedicated instruments are typically deployed according
to where interesting events are expected. These instruments are
deployed for multiple purposes, including to capture images
animals. For hard to reach installations, it can take up to 6-12
months before humans visit the site to fetch the data. These
deployments are usually done in small clusters, with 10 to
15 instruments per cluster. Each instrument is separated by
at least hundreds of meters, to kilometers. Disseminating data
from nodes to their neighbours, in such a deployment context
could be crucial in multiple cases.

a) Important results backup: Deployed nodes can do
local computation on local observations. It can be crucial to
duplicate the results from these computations, due to the high
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probability of crash of deployed units (e.g through flooding,
hardware failure). As a direct implication, to keep the data
safe and reduce the chance of loosing results, we want to dis-
seminate important results to as many neighbours as possible.
For example, in [14] we reduce the size of captured pictures
to reduce the number of bytes to be transmitted to a remote
CNN deep learning application. Both the full sized as well as
the reduced sized photos should (for some deployments) be
disseminated inside a neighborhood for safe keeping purposes,
until the data can be reported.

b) Update dissemination: Few to no nodes are expected
to have a connection to a back-haul network (which would be
sporadic and unreliable). As it is complicated and expensive
to physically access the Arctic tundra, updates (e.g configu-
ration files, executables, packets or other newer content for
a receiver) need to be delivered from the back-end (when
possible and needed). Updates can come from users of the
system such as an ecologist or an administrator, as shown in
Figure 1. When a node finally gets an update, we can expect
it to disseminate it to its neighbours. As it is the only one
getting the data from the back-end, it is the only node that
can be trusted to have a valid version of the update files.

In both cases, the size of the disseminated data is not
expected to be very high, due the wireless technologies lim-
itations, energy and computing capabilities available. These
constraints related to batteries and energy consumption are
tackled in our previous work [14], [15], [18].

III. RELATED WORK

This section presents the related work concerning the net-
work technologies usable in the Arctic tundra and the data
dissemination policies, with a focus on energy efficient ones.

A. Network technologies

When choosing a network technology, the architect must
have a systematic approach starting by looking at 3 main
characteristics: (i) throughput, (ii) range (iii) energy efficiency
requirements. Choosing a network topology turns out to be a
trade of between these 3 dimensions. When a technology has a
high throughput (e.g WiFi, Bluetooth), it has a low maximum
range. When a technology has a high energy efficiency (e.g
LoRa), it has a low throughput [12], [19], [20].

We noticed that very few network technologies allow for
having peer to peer connections and wide range coverage. On
top of our knowledge, only DASH7 Alliance [21], [22] pro-
poses a wide range coverage and peer-to-peer possibility. Most
of the LPWAN technologies (including LoRA and NbIoT) rely
on a star topology, with a dedicated gateway as the center of
the star topology [12], [19], [20], [23].

As previously stated, for our use-case, it is crucial to cover
large areas. Nodes are usually separated by couple hundreds
of meters. They are also supposed to be energy efficient, to
survive for almost a year. They cannot have a heavy set-ups
(antennas, batteries) because they are physically carried by
humans and deployed in protected environments. In the few
areas where they are, the monitored areas are scarcely covered

by cellular towers. The only relevant and possible choice is to
use Low Power Wide Area Network (LPWAN) technologies,
that includes LoRa and NbIoT, with the hypothesis that a
local-gateway is available for a given deployment to create
an isolated star topology, depicted in Figure 1.

B. Large scale deployments and literature hypothesis

Large scale deployments can be understood in two dimen-
sions: (i) number of devices or (ii) area covered. Such de-
ployments can be found in different domains such as Wireless
Sensor Networks (WSN), Internet of Things (IoT) with edge
deployments (or so called extreme-edge deployments).

The hypothesis of WSN are usually linked to the fact that (i)
nodes are only monitoring their environment to send data back
to a centralized point, (ii) network coverage is not excellent,
forcing them to connect through ad-hoc technologies [5], [24].

For edge related deployments, hypothesis are the following
ones (i) connection to back-end and good coverage with
usually multiple network technologies are expected, (ii) a
strong connection with the cloud is expected (for services
usage such as computation and data gathering) [10], [25].

In our use-case, we are in the middle of these two literature.
We are large scale in the area covered. We want to be large
scale in the number of devices but we are limited with the
regulations in terms of deployment [15]. We want to have
back-end connections to deliver the data to the scientist, but
we do not have good coverage (in the most optimistic cases)
to allow every node to have such a characteristic. We want to
have an ad-hoc connection through neighbour nodes but unlike
WSN deployments, we have very few nodes. Furthermore,
they are deployed under snow and rocks, separated from each
other by a couple of hundred meters as a minimal distance,
avoiding the ad-hoc capabilities that technologies used in WSN
literature (e.g WiFi, Bluetooth) could offer.

C. Data dissemination in large scale deployment

Multiple energy efficient policies can be found in the
literature for large scale deployments. We focus on 4 types
of contributions.

Authors in [26] targeted the connectivity for mobile nodes
and energy conservation in WSN. They propose energy effi-
cient protocols for data dissemination in dense sensor envi-
ronment, where failure of multiple sensing devices is not a
problem for the overall sensing. Energy efficient choices on
data dissemination are done in function of the observations
needs. It is not our case, as we do not want to disturb the
scheduled and unexpected observations. Thus, such solution
could not be used in our context. First, we need to quantify
the impact of one instrument that needs to disseminate data to
its neighbours on both its own and the overall energy budget.

Solutions that deal with reducing redundant transmission
to be energy efficient, like in [27], usually comes with the
hypothesis that sensors are part of a grid. In the case of a de-
ployment in a scarce-ressource environment such as the Arctic
Tundra, it won’t be beneficial to have such a representation as
the nodes are (i) few in numbers, (ii) far from each other and
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Fig. 2. Sender and receivers lifetime, with impact of proposed policies on observation nodes’ uptimes and communication. Messages, uptimes and added
uptimes are represented as arrows, gray and green rectangles, respectively.

most importantly (iii) must implement shutdown policies and
thus be OFF most of the time.

Works like [28] are providing policies to deal with nodes
that fail on the field. These type of contributions are effective
for a limited number of failures, which is expected as authors
don’t expect to see all nodes failing in a deployment. For the
Arctic tundra, we are in the opposite case. We expect all nodes
to not be available most of the time, because of independent
shutdown policies embedded on each node, trying to live as
long as possible. Node suddenly shutting down unexpectedly
is equivalent to a node failing, for a neighbour.

A resource limited environment such as the Arctic tundra
imposes conditions where it is complicated to evaluate when
available ideas to disseminate data in an energy efficient way
have a positive impact, as chosen hypothesis cannot match our
realities. Quantification of loosely coupled policies costs (here
in energy and time) from calibrated values extracted from the
literature under plausible hypothesis such as this work provides
is essential to map realities to have answers to build upon.

IV. EXPERIMENTAL SETUP

This section presents the evaluated policies and the metrics
used to evaluate them. A simulator description developed to
experiment with communication related energy consumption
is depicted, along with the simulated parameters and scenarios.

A. Policies

In this paper, we want to compare multiple loosely coupled
policies for data dissemination in the context of our use-case.
This section describes the chosen policies and their relevance
in our context. Figure 2 presents a graphical representation of
the following policies. Exchanged messages, original uptimes
and modified uptimes are depicted with arrows, white and

green rectangles, respectively. Undrawn time periods repre-
sents OFF periods of Observation Nodes.

Baseline represents the devices waking up randomly. We are
simulating a set of devices in resource limited environment
with randomly picked uptimes. The devices are OFF most
of the time to save energy. We simulate a short wake-up,
once every hour, to model a device that must wake-up to do
observations. The chosen duration represents the time needed
to boot, monitor the environment and finally go back to sleep.
Depending on the bandwidth and size of distribution, the data
distribution will either be a success or a failure.

Figure 2(a) presents the Baseline policy on a given example
with three Observation Nodes. Only one uptime of the sender
overlaps with the one of the receivers. A distribution from
Sender to Receiver0 starts around time tx.

Baseline is essential to evaluate the impact of the use-case
on relevant metrics when no policy is activated. Thus, the
following policies are compared to Baseline.

Extended implies that when an exchange starts (i.e when
the sender overlaps with a receiver and starts communication),
the duration of the uptime for both sender and receiver are
extended, until the exchange finishes.

Figure 2(b) presents Extended policy with the same Obser-
vation Nodes and uptimes as Figure 2(a). Here, we consider
that the overlap is not enough to have a successful distribution.
This policy extends the uptime of both sender and receiver
Observation Node until the distribution is successful.

Extended is essential to evaluate how much we can leverage
the overlap between sender and receivers to maximize the
successful distributions.

Hints implies that receivers share hints they received from
the sender, when their uptimes overlap. A hint is given by the
sender at the start of a delivery by adding the time-stamp (only
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a few bits) of its next uptime. Even if the hints are very small
size-wise, we include them in the simulated energy overhead.
When a node has a hint and do not have a successful delivery
yet, it adds to its schedule a new uptime, starting at the hint
timestamp.

Figure 2(c) presents Hints policy with the same Observation
Nodes and uptimes as Figure 2(a). The data are prefixed with
a hint about the next uptime of the sender. Around tx, Sender
starts a distribution with a hint about its next uptime (tz) to
Receiver0. Then, the hint gets distributed from Receiver0 to
ReceiverN , thanks to an overlap at time ty , independently
from the Sender. As a consequence, ReceiverN creates a
new uptime around tz , the given hint. This policy is essential
to evaluate how much we can leverage the overlap between
receivers, independently from the sender.

Combination Hints and Extended implies that both Ex-
tended and Hints policies are activated.

Figure 2(d) presents Combination Hints and Extended pol-
icy with the same Observation Nodes and uptimes as Fig-
ure 2(a). As it is a combination of both Extended and Hints
policies, the combined effect of their respective impacts can
studied. Around time tx, the uptime of both Sender and
Receiver0 are extended, to have a successful distribution.
At time ty , a hint previously received from the Sender, is
delivered from Receiver0 to ReceiverN . This hint is used by
ReceiverN to schedule a new uptime around tz , to overlap
with Sender. This policy is essential to evaluate the impact
of leveraging both policies on the relevant metrics.

B. Metrics

The energy overhead, %eOvhd(p), represents the relative
energy overhead for a given policy p compared to the Baseline
policy. It is computed for the sender and the receivers. For
readability, it is displayed as a percentage.

%eOvhd(p) =
energyConsumedp ∗ 100
energyConsumedBaseline

− 100 (1)

energyConsumedp and energyConsumedBaseline repre-
sent the energy consumed (in Joules) during the complete
simulated scenarios of a policy p and Baseline, respectively.

The uptime overhead upOvhd(p) represents the uptime
added by using policy p compared to the Baseline.

upOvhd(p) = AccUptimep −AccUptimeBaseline (2)

The accumulated uptime AccUptimep represents the sum of
all uptimes, during the simulation of policy p in a given
scenario. It is expressed in seconds.

The policy efficiency eff(p) represents the energy con-
sumption (in Joule) per number of delivery success.

eff(p) = energyConsumedp/#Succp (3)

With #Succp that represents the number of data delivery
success for the policy p. The policy efficiency metric helps
to evaluate the energy efficiency of each policy where a low
value means better energy efficiency.

TABLE I
SUMMARY OF SIMULATION PARAMETERS

Bandwidth (Ltnc) LoRa 50kbps (0s) [29], [30]
NbIoT 200kbps (0s) [29]

Energy states
Pidle 0.4W [31]
LoRa +0.16W (+32mA at 5V) [32]

NbIoT +0.65W (+130mA at 5V) [32]

Uptime Long 3 min/hour
Short 1 min/hour

Data size 1MB

# Receivers 12

C. Simulation

To evaluate the different policies, we propose to use flow-
level network simulations. This approach has several benefits.
First, it allows to save time compared to real experimentations.
Indeed, we were able to simulate more than 8 years of uptimes
for a set of Observation Nodes (i.e 1 sender and 12 receivers).
Then, simulation offers reproducibility which is crucial to
compare the policies based on the same initial conditions.
Hence, by using real parameters from the literature, simulation
offers accurate results that can be analyzed. Simulation cam-
paigns are done to show how much energy, uptime overhead
and successful update distributions can be expected by using
a given policy instead of Baseline.

Simulation aim and metric computation:
The aim is to simulate: (i) 24 hours of sparse random

uptimes (one each hour, for a given duration) for both sender
and 12 neighbours potential receivers, (ii) a sender that is
the only owner of the data, tries to successfully deliver a
distribution to each 12 neighbours, (iii) 12 neighbours that
randomly wake up once every hour to do observations and
listen to potential messages, (iv) following a given policy
chosen at start of simulation for both receivers and sender.

The metrics will be presented as averages of 200 runs. Each
run will have a different uptime distribution for sender and
receivers. Each set of distribution (receiver and senders) is run
for each defined policy. For each simulation, receivers value
for each metric will be an average of all 12 receivers.

Network and energy simulation:
In this work, the simulations are implemented using the

SimGrid simulation framework [33], [34]. SimGrid is a flow-
level network simulator which allows for efficient simulation
of distributed applications by mean of strongly validated
models. Network performance are express in terms of band-
width and latency. Besides implementing our policies and
simulating the network, SimGrid offers energy models that
we can instantiate with energy parameters from the literature
to predict the energy consumption of the Observation Nodes.

D. Simulation parameters:

Due to the characteristics of our use-case, LPWAN tech-
nologies is the only usable family of network technologies to
achieve node to node communications, in the Arctic tundra.
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Thus, we assume that each simulated deployment has an al-
ready deployed local wireless gateway to form a star topology
to create local neighbourhoods, as depicted in Figure 1.

The values of the simulation parameters are displayed
Table I. It is important to note that we considered the latency
to be 0 sec in our scenarios. Indeed, despite the fact that NbIoT
or LoRa may reach 10s of latency under dense scenarios [29],
[32], we make the hypothesis that there is only one sender
under an isolated environment (the Arctic tundra). To this end,
we assume that there is no concurrency to access the wireless
medium and thus, no latency except for the signal propagation
speed in the air that we neglect.

For the idle state, we simulate a Raspberry Pi Zero [31].
This device has the advantage of having characteristics be-
tween a regular Raspberry Pi and a micro-controller based
device. The worst case scenario for communication energy
consumption would be that receiving and sending consume the
same amount of energy (as receiving typically consumes less
energy). Thus, when a device communicates (send or receive),
we add 0.16W and 0.65W to Pidle to simulate a communi-
cation phase using LoRa or NbIoT , respectively [31], [32].

We are simulating how an Observation Node located at the
Arctic Tundra can randomly wake up, without coordination
with others, to observe an event, monitor the observed event
and go back to sleep to save energy. We consider a long uptime
and short uptime to be equal to 3 and 1 minutes respectively.
Uptimes are randomly picked, one every hour. 3 minutes is
considered to be long because it is enough for all scenarios to
have a successful delivery, if overlap starts at the beginning of
both uptimes. We simulate one day (24 hours) on each run.

In both network technologies cases, and as previously
discussed, the size of the disseminated data is not expected
to be very high. In our case, we will simulate 1 MB as the
size of the expected distribution. Due to the low bandwidth of
possible network technologies (here LoRa and NbIoT), 1MB
could already be a worst case scenario.

V. EVALUATION

In this section, we present the results of simulation for
previously described scenarios and parameters. We simulate
200 random uptime distributions, on which we apply the 4
described policies. From these runs, we measure each studied
metric from the simulator. For each scenario, we display two
types of bar chart. One related to the energy metrics and
the other to the accumulated uptime. Regarding the energy
metrics bar charts, four values are shown. First, the average
energy consumption, then eOvhd(p) is in parenthesis, eff(p)
in curly brackets and #Succp in square brackets. For the
accumulated uptime bar charts, two values are shown. First,
the accumulated uptime and then upOvhd(p) is in parenthesis.
All these metrics are computed as an average of the 200 runs
for the senders and the receivers. The standard deviations are
represented with error bars. Results for 1 minute and 3 minutes
uptimes are depicted in Figure 3 and Figure 4, respectively.

A. Scenario 1: Short uptime duration, LoRa

The first studied scenario comprises: (i) LoRa as the chosen
network technology and (ii) an uptime duration of 1 minute.
The simulation results are visible under the LoRa part on
Figure 3. Since we chose a file size of 1 MB, 1 minute is
not enough to have a successful delivery.

As expected, Baseline does not successfully deliver any file.
This explains why the efficiency metric is not available (inf)
for this scenario. But no success doesn’t mean no overlaps
and no tries. When overlaps exist between the sender and a
receiver, the sender tries to make a delivery. This phenomenon
can be seen with the non-null standard deviation for Energy
on both sender and receivers.

Similarly, Hints does not successfully deliver any file, as it
does not change the uptime duration. Hints adds new uptimes
to the receivers. For these reasons, Hints is only an overhead
when compared to Baseline in this context, with no benefits
when it comes to number of successful deliveries.

Extended successfully delivers an average of 6 receivers
over the 12 expected. It is expensive in terms of energy
consumption for the sender, with +62.7% of energy overhead
(when compared to Baseline). But the energy consumed by the
receivers only have an average overhead of +5.3%. This policy
adds, in average, 11 min 25 sec (685.6 sec) and 58 sec to the
senders and receiver’s accumulated uptimes, respectively.

Combination Hints and Extended successfully delivers an
average of 6.5 receivers. It is expensive for the sender as it
adds +67.8% of energy overhead when compared to Baseline.
For the receivers, it is more expensive than Extended, with an
overhead of 6.6%. This policy adds, in average, 12 min 10 sec
(730.5 sec) and 1 min 11 sec (71.6 sec) to the sender and the
receiver’s accumulated uptimes, respectively.

Thus, in such a context (where bandwidth and uptime
duration are not enough to deliver the chosen size), choosing
Hints or Baseline would have been a mistake as they only
add overhead. A policy using Extended is necessary to have
successful deliveries. Combined Hints and Extended is useful
to reach most of the receivers, with an important uptime
overhead especially for the sender.

B. Scenario 2: Short uptime duration, NbIoT

The second studied scenario comprises: (i) NbIoT as the
chosen network technology and (ii) an uptime duration of 1
minute. The simulation results are visible under the NbIoT
part of Figure 3. Thanks to the bandwidth of NbIoT, 1 min is
enough to transmit a file of 1 MB.

Even if the scenario allows successful deliveries very few
successful deliveries are witnessed on Baseline (2.4). This
is due to the sparse and independent distribution of uptimes
leading to few overlaps between sender and receivers.

With Extended, more receivers get the data successfully
(6.4, in average). An energy overhead of 6.4% and −0.4% is
measured for sender and receivers, respectively. Hence, due
to less transmission failures, receivers perform better than
baseline in terms of energy consumption. This policy adds,
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Fig. 3. Simulation results for 1 minutes uptime (average of 200 seeds with standard deviations as error bars). The upper bar charts display energy metrics,
the other the uptime metrics. Each energy bar charts has four values: (i) the average energy consumption, (ii) eOvhd(p) in parenthesis, (iii) eff(p) in curly
brackets and (iv) #Succp in square brackets. For the uptime bar charts, two values are shown: (i) accumulated uptime and (ii) upOvhd(p) is in parenthesis.

in average, 47 sec and 4 sec to the sender and receivers
accumulated uptimes, respectively.

Now that the uptime duration permits of having successful
distribution, the Hints policy has 4.8 data delivery success. It
has an energy overhead of +8% for the sender and +3.6% for
the receiver. This policy do not adds accumulated uptime for
the sender but adds 27s for the receiver.

Combination Hints and Extended reaches 7.6 successful
deliveries (closer to the Extended policy). Although, it is more
expensive compare to the Hints policy for the sender with an
energy overhead of +10.6% and cheaper for the receivers,
with 2.8% of energy overhead. This policy adds, in average,
44 sec and 23 sec to the accumulated uptime of the sender
and receivers, respectively.

Thus, for this scenario and for all policies, we notice that
all senders have a bigger overhead in terms of time and energy
than the receivers. Combination Hints and Extended is the best
trade-off to maximize the number of successful deliveries and
minimize the overhead of energy consumed by the receivers, at
the expenses of the sender. Moreover, this policy has the best
energy efficiency which range from 104.2 to 158.3 Joules per
delivery success for the sender and from 80.4 to 94.7 Joules
per delivery success for the receiver.

C. Scenario 3: Long uptime duration, LoRa

The third studied scenario comprises: (i) LoRa as the chosen
network technology and (ii) an uptime duration on the field
equal to 3 minutes. The simulation results are shown under the
LoRa part of Figure 4. In this context, with 3 minutes uptime,
it is enough to have successful distributions of 1MB files.

Even if the scenario allows successful deliveries, very few
success are witnessed on Baseline (2.2). Again this is due to
the sparse and independent distribution of uptimes leading to
few overlaps between sender and receivers.

Extended is, in such a context, very good concerning
successful deliveries, with an average of 10.9. An energy
overhead of +8.3% and 0.1% are shown for sender and
receivers, respectively. This policy adds, in average, 8 min
9 sec and 39 sec to the sender and receivers accumulated
uptimes, respectively.

Hints delivers 11.2 distributions successfully, with and en-
ergy overhead of +4.9% and +17.5% for sender and receivers,
respectively. This policy adds, in average, 9 min 16 sec to the
receivers accumulated uptime. No added uptime is measured
at the sender. This policy do not perform well regarding the
receivers energy efficiency with 185.6 Joules per delivery
success. Indeed, since the Hints policy adds new uptimes and
hint forwarding, it induces more energy consumption.
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Fig. 4. Simulation results for 3 minutes uptime (average of 200 seeds with standard deviations as error bars). The upper bar charts display energy metrics,
the other the uptime metrics. Each energy bar charts has four values: (i) the average energy consumption, (ii) eOvhd(p) in parenthesis, (iii) eff(p) in curly
brackets and (iv) #Succp in square brackets. For the uptime bar charts, two values are shown: (i) accumulated uptime and (ii) upOvhd(p) is in parenthesis.

Combination Hints and Extended reaches almost all deliver-
ies, with an average of 11.9. An energy overhead of +11.1%
and +7.6% is measured for sender and receivers, respectively.
This policy adds, in average, 9 min 26 sec and 4 min 43 sec
to the accumulated uptime of the sender and the receivers.

For this scenario, Extended is the best compromise between
high deliveries and reduced energy consumption for the re-
ceivers. Hints reduces the energy consumption of sender, at the
expenses of the receivers. Combination Hints and Extended is
the best compromise to reach all deliveries and low receiver
overheads, at the expenses of the sender.

D. Scenario 4: Long uptime duration, NbIoT

The fourth studied scenario comprises: (i) NbIoT as the
chosen network technology and (ii) an uptime duration equal
to 3 minutes. The simulation results are displayed in the NbIoT
part of Figure 4. As a reminder, we chose a fixed file size
of 1MB. In such a context, 3 minutes is enough to have a
successful distribution.

Such a context allows Baseline to reach 10.4 successful
deliveries. Thus, the impact of the sparse and independent
distribution of uptimes is not as strong as in previous scenarios.

Extended successfully delivers 11.1 for an energy overhead
of −0.4% and −0.7% for sender and receivers, respectively.
Notice that the overheads are negative, meaning that in average

we reduced the energy consumption because of less transmis-
sion failures. This policy adds, in average, 23 sec and 2 sec
to the accumulated uptime. Notice that greater accumulated
uptime does not necessarily mean greater energy consumption.
Here, Extended is slightly more efficient than Baseline and
reduces the energy consumption of the Observation Nodes.

Hints reaches 11.8 successful deliveries, with an energy
overhead of +0.9% and +17% for the sender and receivers.
This policy adds, in average, 3 min 48 sec to the accumulated
uptime of the receivers. No uptime overhead is measured at the
sender side. We note that the use of hint has a clear impact on
the receiver energy efficiency. Indeed, this policy performs the
worse with an average efficiency of 174.6 Joules per delivery
success for the receivers.

Combination Hints and Extended also reaches almost all de-
liveries with an average of 11.9. An energy overhead of +0.4%
and +15.6% is measured for sender and receivers, respectively.
This policy adds, in average, 12 sec and 3 min 29 sec to the
accumulated uptime of the sender and receiver, respectively.

Thus, for this scenario and when a policy is activated, the
successful deliveries all hovers around the 12 (i.e between
10.4 and 11.9). Globally when a policy is activated, a lower
overhead is measured when compared to Baseline (between
−0.4% and +0.9% for the sender and between 0.7% and
+17% for the receivers). The best compromise to reduce the
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energy overhead at the receiver side and maximize the number
of successful deliveries is either choosing Combination Hints
and Extended or Extended. Similarly to the short uptime
scenario, Combination Hints and Extended policy offers the
best energy efficiency ranging from 171.6 to 190 Joules per
delivery success for the sender and from 159.8 to 171.3 Joules
per delivery success for the receiver.

VI. LESSONS LEARNED

This section presents the lessons learned from the results of
this simulation campaign.

A. Choosing a policy, under several scenarios

From the 4 previously studied scenarios, we can noticed
common behaviours. Regarding energy consumption, Ex-
tended is expensive for the sender but has low overhead for the
receivers. Hints adds a non negligible amount of accumulated
uptimes to the receivers, which does not always translate
into a bigger energy overhead for the receivers compared to
the sender. Combination Hints and Extended always has an
energy overhead for the sender close to the one measured on
Extended. For the receivers, Combination Hints and Extended
has an overhead closer to the one seen on Extended, for a
number of successful deliveries closer to Hints.

In a Cyber-Physical System like ours, where most of the
nodes are independent and deployed in a scarce resources
environment, we want the energy consumed by an Observation
Node to depend on itself first. When a node asks the group
for help, it should have the largest energy overhead. It would
not be fair to consume the groups’ energy to absorb the
impact of its own actions (except maybe in very critical
cases). In such a context, we should aim for maximizing the
number of successful deliveries and reducing the overhead of
energy consumption for the receivers. Combination Hints and
Extended seems like the best compromise.

In fact, as seen on previous simulated scenarios, this policy
permits to achieve good number of data deliveries even on
short uptime scenarios. In addition, this policy allows to be
very close to the number of deliveries given by Hints (when
Hints outperforms all others) with the minimum of impact on
the receivers energy overhead.

B. Choosing a network technology

These experiments permit to compare the impact of choos-
ing either LoRa or NbIoT when a node aims at disseminating
data to its neighbours. Except for the baseline (in both chosen
uptime duration), the average energy consumption of the
senders is almost always lower for NbIoT. Similar trends can
be observed for the energy consumed by the receivers, except
for ”1 min - Hints+Extended”, ”1 min - Hints” and ”3 min -
Hints” scenarios, where Lora is negligibly better than nbIot.

Concerning the number of successful deliveries, when poli-
cies are not activated, NbIoT is obviously better. When policies
are activated, both LoRa and NbIoT are comparable and within
the standard deviation, except when the uptime is not enough
for LoRa to have any successful delivery (i.e ”1 min - Hints”).

For slightly energy efficient receivers and successful deliveries,
choosing NbIoT seems to be the right choice.

This paper does not investigate about the uptime duration.
We assume that the duration of an uptime, for an Observation
Node, is static and includes constraints such as boot-up times
or sensors that needs to warm-up. There is room for improve-
ment in this dimension, especially in the policies involving
Hints. Indeed, in this paper, we simply added an uptime with
the same duration as the one set for the experiment. By
doing so, the energy overhead for the receivers for Hints and
Combination Hints and Extended would be even lower (which
is already an argument for choosing these policies).

The energy efficiency depends on (i) the network technol-
ogy, (ii) the consumption of the nodes (idle and during wireless
communications), (iii) the size of the data to transmit, (iv) the
current bandwidth between two nodes. We explored (i) - (ii) in
our simulation, and fixed (iii)-(iv) with realistic values for our
use-case. From the presented results, it is not obvious what are
the good choices for these parameters. Thus, our next future
work includes a model that determined what policy should
be chosen for given values for these parameters, to be energy
efficient and maximize successful deliveries.

VII. CONCLUSION

Connected devices working from batteries are flourishing
everywhere around us. Reducing the energy consumed during
communication periods is crucial. It is even more crucial
when it comes to large scale battery based deployments done
in scarce resources environments such as the Arctic Tundra.
The DAO-CPS project is in this specific case. We propose to
quantify the energy and time overhead for data dissemination
in this context. We study 3 loosely coupled policies that we
compare to a baseline, where no policy is activated.

We simulate an existing deployment with randomly picked
uptimes, that allows nodes to wake-up randomly every hour,
for a very short duration (1 and 3 minutes) and potentially
communicate. We simulate communication through plausible
network technologies, LoRa and NbIoT. One node needs to
disseminate its data to its neighbours. We compare the number
of successful distributions achieved by each policies over their
respective overheads, in energy and time.

Evaluation shows that the best choice concerning the pol-
icy depends on the characteristic of the environment. When
the uptime is too small for the size of the delivery and
bandwidth to be sent, Hints and Baseline policies are very
bad in terms of successful deliveries. When the uptime and
bandwidth is enough to have a successful delivery a trade-
off exists between Extended, Hints and Combination Hints
and Extended, depending on which overhead is prioritized
(sender or receivers). When the uptime is more than enough
to have a successful delivery under the chosen bandwidth, the
policies still help to acheive more successful deliveries, for
low overheads. An overall good choice, in all cases, stays the
Combination Hints and Extended one, which usually has a
slightly higher overhead than Extended policy for the sender
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but a lower overhead than Hints policy for the receivers, for
a very good number of successful delivery.

As a future work, we plan to extract a model that will
dynamical help a node to choose a policy according to current
or predicted environmental characteristics. Such a model could
be embedded in instruments used in real life deployments.
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