Distribution of Updates to IoT Nodes in a
Resource-Challenged Environment

Roberth Tollefsen, Issam Rais, John Markus Bjgrndalen, Phuong Hoai Ha, Otto Anshus
Department of Computer Science, UiT The Arctic University of Norway, Tromso, Norway
Corresponding author: roberth.tollefsen @uit.no

Abstract—IoT nodes need to be updated after deployment.
However, doing so for nodes deployed to resource-challenged
environments, like the arctic tundra, is a challenge. Because
humans as the common case cannot physically visit the nodes,
updating must be done from a remote update service over a
back-haul data network. However, most nodes are not in range
of a back-haul data network. Even when nodes are in range,
they probably sleep to conserve energy and the remote cloud
back-end therefore cannot communicate with them.

We report on an approach and a prototype system for
distributing updates from a cloud update distribution service
to nodes. We assume that nodes carry one or several local area
network technologies supporting short-lived point-to-point ad-
hoc communication between two nodes at a time in range of
each other. We assume that a single node in each neighborhood
has a back-haul network, and delegate to this node to further
distribute updates inside the neighborhood.

A series of performance measuring experiments were con-
ducted on the update distribution system when it executes on
nodes with behaviors from always-on to mostly-off. We document
how the distribution system behaves through a set of performance
metrics. The results are very sensitive to the behavior of the
nodes.

Index Terms—Arctic tundra, Resource-challenged environ-
ments, loT, Cyber Physical System, Updates, Distribution,
Scheduling

I. INTRODUCTION

An IoT cyber-physical system can be used to observe the
state of the arctic tundra. Such observations are vital for
research on climate change because it is f rst observable in the
northern polar region. However, the arctic tundra is a resource-
challenged environment, and the system cannot expect to have
available the resources necessary to successfully operate there
over time. These resources include energy, data networks,
and humans. We focus on how the lack of these resources
complicates updating the nodes after deployment. Nodes save
energy by sleeping most of the time. Updates have to be done
either by awaken sleeping nodes or when they are otherwise
awake.

Without humans physically at the nodes, updates must
be brought into a neighborhood over a back-haul network.
While all nodes will have one or several local area network
technologies on-node, at least one must also have a back-haul
network available. This makes it possible for updates to both
enter and be distributed inside a neighborhood.

For IoT systems the frequency of distributing updates after
deployment vary. We identify two types of updating scenarios
of special interest. Type 1 adds new functionality, repair bugs,

and do conf guration changes. The frequency of updates is
low, perhaps every few weeks or months. Consequently, the
distribution system can save energy by taking its time to
distribute the updates. Type 2 distribute updates soon after
deployment to do the initial update and conf guration of the
nodes, and to debug the software. The frequency is high for a
short time after initial deployment. We expect that nodes need
to be updated several times per hour or day for a period of a
few days. To do so the distribution system must spend extra
energy for a short time to reduce the time it takes to get the
updates distributed to the nodes.

We report on an actual prototype system, the Update Dis-
tribution System (UDS), and its performance, for distributing
updates to a neighborhood of nodes exhibiting a range of
behaviors with regards to when they wakeup, and for how long
they stay awake each time. Based on the results from the ex-
periments and viewed in the context of the resource-challenged
arctic tundra, we have identif ed suitable conf gurations to be
used for the Type 1 and Type 2 update scenarios described
above.

The paper is organized as follows. Sec. II details the related
works. Sec. III details the update distribution system. Sec. IV
details the experiments. Sec. V the results are discussed. Sec.
VI discusses the node behaviours for suitability of use by the
update distribution system. Sec. VII draws the conclusion.

II. RELATED WORK

Delay/Disruption Tolerant Networking (DTN) is NASA’s
solution for reliable inter networking for space missions [1].
It works within an environment that are subject to frequent
disruption, possibly long delays and high error rates. Several
DTN protocols exist which focus on the routing between
nodes [2] [3] [4] [5]. Direct routing has the lowest energy
consumption at the cost of lower delivery probability [5]. We
use direct routing for the update distribution system. However,
we document that the delivery probability is signif cantly
impacted by the behaviour of the nodes.

Sleep/wake-up scheduling aims to minimize idle listening
time. It can be divided into four categories: on-demand wake-
up [6], synchronous wake-up [7], asynchronous wake-up [8],
and duty cycling [9]. We document how synchronous and
asynchronous sleep/wake-up scheduling impact the update
distribution system.

Self-adapting sleep/wake scheduling has been proposed
where a node chooses its action (sleep, transmit, listen) from a

Ad-hoc loca
area network

Ad-hoc loca
area network
@

Ad-hoc local
area network

Back-haul network . i ‘ Drdne
A I . 4

Cloud Back-end Source of
updates

Fig. 1. The Distribution Model

probability distribution [9]. If a node decides to transmit and it
fails, it will be less likely to choose to transmit the next time.
One assumption in sleep/wake-up scheduling research is that
idle listening is a waste of energy. We propose that updates
should be distributed when nodes wake-up to do their regular
tasks.

Manet and Mesh networks focus on the routing algorithm
between nodes. The main characteristics are a dynamic topol-
ogy, where each node is a router [10]. This paper does not
focus on the routing between nodes, but rather the impact
of sleep behaviours of nodes. The node topology is a star
network.

III. UPDATE DISTRIBUTION SYSTEM

In fg.1, three neighborhoods of nodes are shown. A solid
black circle is a distribution node for a neighborhood. This
node receives the content of an update either directly over a
cloud back-haul network, or from a drone. Dotted lines for
the cloud back-haul network case are possible communication
paths which generally cannot be used because the nodes do
not have such a network available. The dotted line from the
drone to the nodes are possible ad-hoc paths to the nodes, but
they cannot generally be used because nodes are sleeping for
longer than the drone can be in the neighborhood.

The update distribution system (UDS) comprise a content
distribution push side and a receiving node side. The design
is based around a client/server model. The distribution node
executes a server (UDS-S) actively pushing the content of
updates out to its counterpart, the UDS-C, executing on the
nodes.

The UDS-S has a discovery functionality to fnd nodes
both in range and also running UDS-C. These nodes be-
come the neighborhood. The UDS-C nodes detected by a
discovery becomes targets for receiving updates. The UDS
implementation comprises two Go programs. The UDS-S Go
program executes at the distribution server node. The UDS-
C Go program executes at each of the other nodes in the
neighborhood.

For discovery, the UDS-S Go program has a list of the IP
addresses to each node in the neighborhood (for this paper we
ignore how this list is populated.) The UDS-S concurrently
tries to get a response from all UDS-C nodes in this list. When
responses come back from UDS-C at nodes which are awake,
they become the targets to receive the content of an update.

Presently, the implementation assumes that the server must
establish an ad-hoc network with a single UDS-C node at
a time. This to avoid needing to have a router functionality
at one or several nodes consuming energy. Consequently, the
server does sequential distribution of updates to each UDS-C
in turn.

The UDS-C runs the concurrent HTTP server package
supplied by Go. The client has two HTTP methods that
it listens to. The frst method is listening for a GET (the
discover message) from the UDS-S. A response tells UDS-
S that the UDS-C is awake. The second method listens for a
POST request from UDS-S carrying the content of the update.
UDS-C sends a response to the POST request if the transfer
completed successfully.

The nodes in a neighborhood will behave in a number of
ways. Always-on behavior is considered a base line behavior.
It is a worst-case behavior with regard to energy consumption,
we assume it is a best-case behavior with regards to minimiz-
ing the time it takes the server to send updates to all nodes.
Can not realistically expect to be possible to do in a resource-
challenged enviornment.

Fixed wakeup times for all nodes. This can be achieved by
pre-determining the wakeup times and telling each node when
to wake up. We assume that the node clocks in a neighborhood
have been synchronized with each other.

Behavior where autonomous nodes themselves decides to
wake up and for how long. Can result in low energy con-
sumption, but also in increasing both the time the server spend
trying to send out the updates, and the waiting times for the
clients. However, we belive this behavior can be realstically
used by a system of autonomous nodes deployed into a
resource challenged environment.

UDS can modify the behavior of the nodes it executes
on. We report on the behavior modif cation of extending the
uptime once a node starts receiving an update. By doing so the
nodes will not suddenly sleep while in the middle of sending
or receiving data.

IV. EXPERIMENTS

We use three node behaviors for the experiments. All the
nodes have the same behavior per experiment. We conduct f ve
performance measuring experiments on the UDS prototype
while it executes on real computers (for details see later)
following one of the three node behaviors.

To manage and control the experiments, we devised a
software test-bench (for details see later). The test-bench is
a set of tools. Some tools execute on a computer external to
the experiment. This computer aids in doing the initial setup
of the nodes and in collecting the results from an experiment.
Other tools are executing on the nodes themselves. The UDS-
S and UDS-C interacts with these tools to behave according
to the behaviors.

A. Experiment Design

The f ve experiments are detailed in Table 1. Node behavior
for experiment 1 is that all nodes are always on. For exper-
iment 2 and 3 all nodes wake up at approximately the same

TABLE I
FIVE EXPERIMENTS AND THREE NODE BEHAVIORS.
(S: IS SERVER, C: IS CLIENT)

Wakeup times Uptimes Extf: nd Num. of
uptimes | wakeups
1 S: Always on S: Always on S: N/A S: N/A
C: Always on C: Alwayson | C: N/A | C: N/A
N S: Every 30min S: 60sec S: No S: 12
C: Every 30min C: 60sec C: No C: 12
3 S: Every 30min S: 60sec S: Yes S: 12
C: Every 30min C: 60sec C: Yes C: 12
4 S: Always on S: Always on S: N/A S: N/A
C: Every 30 min | C: 60 seconds | C: No C: 12
5 S: Always on S: Always on S: N/A S: N/A
C: Every 30 min | C: 60 seconds | C: Yes C: 12

time every 30 minutes for 60 seconds each time. The clocks at
each node are synchronized to each other. For experiments 4
and 5 the server node is always on, while the client nodes all
wake up every 30 minutes for 60 seconds. Experiments 3 and 5
explore the effect on the performance metrics from letting the
UDS modify a node’s behavior by forcing extended uptimes
on the node. A node’s uptime is extended if it has an ongoing
transmission of an update. The extension lasts until the transfer
completes. The effect of extended uptimes is that nodes does
not start sleeping in the middle of sending or receiving an
update. Each experiment ends when all nodes with an UCS-C
have received the content of an update.

The node behavior used for experiments 2 and 3 is inspired
by actual deployments done to the arctic tundra. Nodes typi-
cally wake up every hour to do measurements. They also wake
up when interesting events happen, like an animal passing
ahead of a proximity sensor. The content of the update is not
of relevance for the results reported on in this paper, only the
size is. The size of an update is f xed at 1 MB. The reason for
f xing the size to 1 MB is that the nodes we have developed
and deployed to the arctic tundra execute software of 1 MB
or less. We expect the size of updates to increase as the nodes
become more advanced. However, we can always distribute the
updates in 1 MB chunks. The results we report on is therefore
useful even when the size of updates increases.

B. Metrics

We report on the behavior of the UDS when it executes
on nodes behaving as previously described. The behavior of
UDS is quantif ed through a set of performance metrics. Each
experiment has a clock initialized to zero at the beginning of
the experiment. The clock increases by one every second.

For the experiments, the following is of relevance when
def ning the performance metrics:

Each experiment ends when all nodes with an UDS-C have
received the content of an update. A wake-up event happens
when a node starts or resumes execution of either UDS-S or
UDS-C. The wakeup time is the clock value when a wake-up
event happens during an experiment.

A sleep event happens when a node temporarily suspends
or pauses its execution of either UDS-S or UDS-C. A node is
def ned to be up while it executes either UDS-S or UDS-C.

A complete distribution is a distribution of an update sent
from the server and fully received by a client. An incomplete
distribution is a distribution of an update sent from the server
but not fully received by the client.

The uptime is the elapsed time from a wake-up event until
a sleep event. It is measured by subtracting the time of the
sleep event from the time of the wake-up event.

A number of performance metrics quantify the behavior
of the UDS distribution system: The accumulated server
uptime is the sum of all its uptimes during an experiment. The
accumulated client uptime is the sum of all its uptimes during
an experiment. The server completion time is the elapsed
time on the experiment clock until the server has completed
distributions to all clients. The client completion time is the
elapsed time on the experiment clock until a client has a
complete distribution. The number of complete distributions
per time unit is a measure of how fast the updates on average
spread in a neighborhood. The number of incomplete distri-
butions per time unit is a measure of the effectiveness of
the system in spreading updates. Higher number means lower
effectiveness and more time spent without getting updates to
clients. The number of complete distributions per time
unit during accumulated server uptime can be interpreted
as how effective updates are spread during server uptime.
Higher numbers means less energy spent per distribution. The
number of incomplete distributions per time unit during
accumulated server uptime can be interpreted as how much
server uptime is wasted without getting updates delivered.
High numbers means more wasted uptime and consequently
more wasted energy.

C. Experiment Testbench

The UDS expects to execute on nodes that are sleeping
and waking up. This complicates controlling the experi-
ments. Therefore, while the physical nodes are always on,
the testbench emulates node sleep and awake periods. The
testbench tools, see Fig. 2, include the Timekeeper and the
Available State Coordinator (ASC). The Timekeeper and the
ASC executes at each node. The Timekeeper is responsible for
scheduling wake-up and sleep events for the node it resides
on. The ASC is responsible for emulating if a node is awake
or not. UDS will interact with ASC to get to know if the node
is meant to be awake or not.

The Timekeeper has two event alarms, wakeup and sleep.
When an event alarm triggers, the Timekeeper will notify
the ASC of the event. The ASC will process the event. If
the current Node awake state is sleeping, upon receiving a
wakeup event the state will change to awake. The sleep event
is dependent on if Extend uptime is active or not. A sleep
event will be denied as long as Extend uptime is active in the
ASC. The status of Extend uptime is changed by the UDS.

D. Hardware and Software Platform

The hardware platform comprises 29 computers. The com-
puters are Raspberry Pi 3B+, running Raspbian GNU/Linux
9 (Stretch, under Linux 4.19.58-v7+ armv7l). One computer

Timekeeper

Available state coordinator Experiment interface

P Get
ut Node awake Get
Yes/No 1\ available
Put | /ransfer uDs
Get
Sleep alarm |

complete
Comer |

@

Extend uptime

Put

Transfer
started

Fig. 2. Experiment testbench. Timekeeper and Available state coordinator
executes on each node concurrently with the UDS.

executes the UDS-S, the remaining 28 computers execute a
UDS-C each. The computers are interconnected between a
wired network and a wireless network.

A wired Ethernet is used to manage the nodes and the
experiments. It comprises a RouterBOARD 750 router and
two Netgear GS116 switches. A WIFI network is used to
provide communication between the UDS-S and the UDS-
C nodes. It comprises a single Asus RT-AC66U (with QoS
off) access point to which all 29 computers are associated.
The communication between the UDS-s and the UDS-C nodes
are isolated to the wireless network. However, the network
we expect to be used on the arctic tundra is not necessarily
a WIFI network with a central router. Examples of current
radio technology available for IoT systems include NB-IoT
(150 Kbps) and LTE CAT M1 (1 Mbps). Therefore, on top of
the WIFI network, we emulate a more realistic bandwidth for
the arctic tundra. We use Wondershaper! to restrict the WiFi
bandwidth to 512 Kbps.

The experiments also assumes that the communication be-
tween the server and the clients happen as an ad-hoc network
between server and a singel client at a time and with no central
router. Consequently we restrict the server to do a transfer of
an update to a single client at a time.

V. RESULTS
A. Server completion time

The server completion time is the elapsed time on the
experiment clock until the server has completed distributions
to all clients, see f g. 3a. Experiment 1 takes about 600 seconds
(10 minutes) to complete all distributions. All nodes are awake
during the experiment. Experiment 2 and 4 take 18000 seconds
(5 hrs) to complete. The nodes wake up at fxed 30 minutes
intervals and have 60 seconds uptime after each wakeup.
Experiment 3 and 5 take 12700 seconds (3.5 hrs) to complete.
The nodes wake up at fxed 30 minutes intervals and have
60 seconds uptime after each wakeup. In addition, once a
transfer to a node starts, the node uses extended uptime until
the transfer completes.

The always-on behavior of the nodes has a very signif cant
effect in achieving a low completion time. This is because both
the server and all nodes are ready all the time to participate
in the distribution of updates. When nodes sleep most of the
time and they wake up at overlapping f xed intervals, applying

Thttps://github.com/magnif cO/wondershaper

17500

200
15000

150
12500 N

10000 2 100.

Time(Seconds)

g
Number per
EREERS

5000 E

2500

1 2 3 a 5 1 2 3 4 5
Experiment name Experiment name

(a) Server completion time

Red is incomplete.

Fig. 3. (a) Server completion time and (b) Number of complete and
incomplete distributions per hour.

the technique of extending uptimes has a signif cant effect on
reducing the completion time. This is because the server can
only establish an ad-hoc connection with a single client at a
time, and consequently transfer the update to a single client at
a time. With the chosen size of the update and the bandwidth
of the network, the server can complete at maximum three
transfers before its 60 seconds of uptime expires. It will start
on the fourth, but both it and the client will go to sleep in
the middle of the transfer. Extending the uptime for both has
the effect of getting a fourth transfer across before the nodes
sleep.

B. Number of complete and incomplete distributions per hour

The number of complete distributions per time unit
is a measure of how fast the updates on average spread in
a neighborhood. The number of incomplete distributions
per time unit is a measure of the effectiveness of the
system in spreading updates. Higher number means lower
effectiveness and more time spent without getting updates to
clients. Fig. 3b shows the results. Experiment 1 does around
200 distributions/hour. Experiments 2 and 4 does 5-6, and
experiments 3 and 5 does 8. Experiment 2 and 4 does around
2 incomplete distributions/hour.

Having nodes always-on is signifcant in spreading an
update fast. When nodes sleep most of the time and they
wake up at overlapping f xed intervals, the updates spread at
least one order of magnitude slower than for the always-on
case. This is because the server is only allowed to complete a
distribution to three or four clients every 30 minutes.

When the server is always-on and clients sleep most of the
time, the updates spread at the same rate as when all nodes
sleep most of the time and they wake up at overlapping f xed
intervals. Resulting in idle waiting for the server.

While applying the technique of extending uptimes has
some effect on increasing how fast updates spread, it is still
more than one order of magnitude slower than the always-on
node behavior. If we do not apply extended uptimes, there
will be one incomplete distribution for every wakeup. Ex. if
the uptime is 20 seconds. Can complete 1 distribution in 17
seconds and start a new distribution which will be incomplete.
If the uptime is 40 seconds. Can complete 2 distributions in 34
seconds and start a new distribution which will be incomplete.

(b) Number of complete and incomplete
distributions per hour. Blue is complete.

17500 17500

15000 15000

12500 3 12500
10000 & 10000
7500 S 500

Time(Seconds)

Time(s

5000

2500

1 2 3 a H 1 2 3 4 5
Experiment name Experiment name

(a) Client completion time. Square
points is average for all clients. Lines
indicate minimum and maximum com-
pletion time.

(b) Accumulated server uptime.

Fig. 4. (a) Client completion time and (b) Accumulated server uptime.

C. Client completion time

The client completion time is the elapsed time on the
experiment clock until a client has a complete distribution.
Fig. 4a shows the average completion time over all clients per
experiment. For experiment 1 the average client completion
time is 252 seconds. For the other experiments the average
client completion time is two orders of magnitude higher
than for experiment 1. Experiment 2 and 4 have average
client completion times of 10 000 seconds (almost 3 hours).
Experiment 3 and 5 are lower by about 1/4 at 7500 seconds
(about 2 hours). Experiments 2, 3, 4 and 5 have the same
minimum client completion time seen by the frst client to
complete a distribution. Applying extended uptimes reduces
the average completion times by 1/4.

D. Accumulated server uptime

The accumulated server uptime is the sum of all its
uptimes during an experiment. Fig. 4b shows the results.
Experiments 1, 2 and 3 have accumulated server uptimes
being close, 487, 558 and 495, respectively. Compared to
these, experiments 4 and 5 have an order of magnitude higher
accumulated server uptime at 17500 and 12500 seconds,
respectively. The results for 1, 2 and 3 are similar because the
server in all three cases only needs to be awake approximately
equally long. For experiment 1 the server is awake all the time,
but the experiment ends fast.

For experiment 2, while the experiment lasts for much
longer, the server sleeps most of the time. When it wakes up, it
manages to three complete distributions each time during the
uptime. For experiment 3 the same situation as for experiment
2 happens. However, now the server manages four complete
distributions each time by extending the uptime. So experiment
2 sees shorter uptimes, but more wakeups, while 3 sees longer
uptimes, and fewer wakeups. For each, this adds up to the
accumulated server uptime being close.

Experiments with the server always on (4 and 5) accu-
mulates signif cantly more server uptime compared to ex-
periments where the server wakes-up every 30 minutes (2
and 3). Experiment 5 has a lower accumulated server uptime
than experiment 4 because 5 applies extended uptimes for the
clients. This makes the experiment end sooner.

E. Number of complete and incomplete distributions per hour
over the accumulated uptime for the server

The number of complete distributions per time unit
during accumulated server uptime can be interpreted as
how effective updates are spread during server uptime. Higher
numbers means less energy spent per distribution. The num-
ber of incomplete distributions per time unit during
during accumulated server uptime can be interpreted as
how much server uptime is wasted without getting updates
delivered. High numbers means more wasted server uptime
and consequently more wasted energy. Fig. 5a shows the
results. Experiments 1, 2 and 3 can do 206, 180, and 203
complete distributions per hour of server uptime, respectively.
Experiments 4 and 5 can do an order of magnitude less
complete distributions at 6, and 8, respectively.

For experiments 4 and 5 when the server is awake much
of the time is used idle waiting for the clients to wake up.
For experiments 1, 2 and 3 when the server is awake it has
a client to distribute to at all times. There is no idle wait
time for the server. Only experiment 2, and 4 have incomplete
distributions, at about 60, and 2, respectively. For experiment
2 each time the server wakes up, it will have one incomplete
distribution. In experiment time this happens every 30 minutes,
but in uptime this happens every 60 seconds. For experiment
4 the server is always-on but it has to wait for the clients to
wake up. For each time the clients wake up it will have one
incomplete distribution. In experiment time and in uptime for
the server this happens every 30 minutes.

F. Accumulated client uptime

The accumulated client uptime is the sum of all its uptimes
during an experiment. Fig. 5b shows the average accumulated
client uptime over all clients per experiment. It also shows the
spread of accumulated client uptimes. Overall, even if there
are small variations, all experiments measure rather similar
accumulated client uptimes. All experiments also have about
the same accumulated client uptime for the frst client to
complete a distribution.

Experiment 1 has a slightly higher value than experiments
3 and 5 because the clients are always-on. However, the
accumulated client uptime is still close to the results for 3
and 5 because experiment 1 ends faster with all distributions
complete. Experiment 2 and 4 have the highest average value
and highest max value, while experiment 3 and 5 both have the
lowest average value as well as the smallest max values. This
is because 3 and 5 both apply extended uptimes. Extended
uptimes result in a shorter experiment completion time.

VI. DISCUSSION

We rank the node behaviors and their impact on UDS based
on the results from previous sections. We have two types of
updating scenarios. Type 1 adds new functionality, repair bugs
and do conf guration changes. The frequency of updates is low.
Type 2 includes debugging the software and adds the initial
conf guration of the nodes. The frequency of updates is high.
The results show that with regards to accumulated uptimes,

(a) Number of complete and (b) Accumulated client uptime. Square
incomplete distributions per hour over points is average for all clients. Vertical
the accumulated uptime for the lines indicate the spread of accumulated
server. Blue is for complete client uptimes.

distributions, Red is for incomplete

Fig. 5. (a) Number of complete and incomplete distributions per hour over
the accumulated uptime for the server and (b) Accumulated client uptime.

and by implication the energy consumption, it does not matter
a lot for the clients which of the fve node behaviors that
we have explored are used. However, 3 and 5 are slightly
preferable to clients occupied with their own accumulated
uptimes and energy consumption. On the other hand, for the
server, experiments 4 and 5 are costly, and with 4 as the most
costly. All in all, the experiments point at the node behavior
used in experiment 3 as the one best suitable for Type 1. It
provides both the lowest client and server cost with regards to
accumulated uptimes and therefore also energy.

Other performance metrics explores other aspects with node
behavior 3. It does well in all of them compared with 2, 4,
and 5. Only versus 1 is it lacking in that it has much longer
client and server completion times. However, for a Type 1
deployment, node behavior 3 is the one to use for nodes in a
resource-challenged environment. For Type 2, both low server
and client low completion times are needed. This is achieved
with increased cost in accumulated uptime and energy usage.
Node behavior 1, always-on nodes, is clearly the most suitable.
Even if the cost is high, it will only be used for a short time.
For Type 2, when the number of nodes in a neighborhood
increases, the node behavior best suited will be the one able
to spread the updates fast. Again, this is node behavior 1.
When more dimensions than the few we have explored are
explored, other node behaviors will turn out to improve on
behavior 1 and 3 in most or all ways.

VII. CONCLUSION

The arctic tundra is highly sensitive to climate change and
the impact of climate change will frst be seen there. IoT
systems must be deployed in resource-challenged environ-
ments, like the arctic tundra, to gather observations needed for
climate research. In this paper we focus on some aspects of the
distribution of updates to IoT system nodes. We report on the
performance-related effect a few different node behaviors have
on the distribution of updates. The node behaviors range from
always-on to mostly-off. We conduct performance measuring
experiments on an actual prototype system executing on the
nodes. We explore the effect of letting the update distribution
system extend the uptime of nodes to prevent them from
sleeping in the middle of receiving an update.

Having always on nodes consumes energy all the time. The
time to complete distribution of updates to all nodes is the
lowest compared to other node behaviors. Because the system
rapidly fnishes doing the updates the uptime and therefore
the energy consumed are the lowest. Having nodes on all the
time can be activated for a short period of time while doing
time sensitive updates. For a resource-challenged environment,
always-on behavior cannot be used all the time.

If the nodes wakes up on a fxed schedule, the clients
will see much longer waiting times before they receive an
update. This is improved by applying the technique of letting
the system extend the uptime for the nodes in the middle
of sending or receiving updates. For situations where long
waiting times before all clients receive an update is acceptable,
there is no need to activate always-on node behavior.

Future work includes exploring more node behaviors and
their performance-related effect on the update distribution
system.

ACKNOWLEDGMENT

This work is supported by the Distributed Arctic Obser-
vatory (DAO) project supported by the Research Council of
Norway (RCN) IKTPluss program, project number 270672.

REFERENCES

[1] A. Schlesinger, B. M. Willman, L. Pitts, S. R. Davidson, and W. A.
Pohlchuck, “Delay/disruption tolerant networking for the international
space station (iss),” in 2017 IEEE Aerospace Conference, March 2017,
pp. 1-14.

[2] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad
hoc networks,” Duke University, Tech. Rep., 2000.

[3] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing
in intermittently connected networks,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 7, no. 3, p. 19-20, Jul. 2003. [Online]. Available:
https://doi.org/10.1145/961268.961272

[4] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
wait: An eff cient routing scheme for intermittently connected mobile
networks,” in Proceedings of the 2005 ACM SIGCOMM Workshop on
Delay-Tolerant Networking, ser. WDTN ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 252-259. [Online].
Available: https://doi.org/10.1145/1080139.1080143

[5] E. A. A. Alaoui and M. Lamhamdi, “Study of the energy performance of
dtn protocols,” in 2017 Intelligent Systems and Computer Vision (ISCV),
April 2017, pp. 1-7.

[6] R. Piyare, A. L. Murphy, C. Kiraly, P. Tosato, and D. Brunelli, “Ultra
low power wake-up radios: A hardware and networking survey,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2117-2157,
Fourthquarter 2017.

[7]1 A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling
in wireless sensor networks,” in Proceedings of the 7th ACM
International Symposium on Mobile Ad Hoc Networking and
Computing, ser. MobiHoc 06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 322-333. [Online]. Available:
https://doi.org/10.1145/1132905.1132941

[8] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad hoc
networks,” in Proceedings of the 4th ACM International Symposium
on Mobile Ad Hoc Networking & Computing, ser. MobiHoc ’03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
35-45. [Online]. Available: https://doi.org/10.1145/778415.778420

[9] D. Ye and M. Zhang, “A self-adaptive sleep/wake-up scheduling ap-
proach for wireless sensor networks,” IEEE Transactions on Cybernetics,
vol. 48, no. 3, pp. 979-992, March 2018.

[10] S. Bhushan, A. K. Singh, and S. Vij, “Comparative study and analysis
of wireless mesh networks on aodv and dsr,” in 2019 4th International
Conference on Internet of Things: Smart Innovation and Usages (IoT-
SIU), 2019, pp. 1-6.

