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Abstract—In cyber-physical systems (CPS), data can be col-
lected and pre-processed at the edge nodes before being sent
to a back-end server. However, for environments like the Arctic
tundra, both energy and data networks are constrained. The
nodes must save energy to have long operational lifetime from
a single battery charge. Consequently, the size of the data to be
sent should be reduced as much as possible without losing the
information needed to perform the analysis at the back-end.

This paper evaluates the effects of data size reduction at edge
nodes on the analysis performance at a back-end server. The
use-case considers edge nodes deployed in the Arctic tundra to
take pictures of animals. These images are then transmitted to
a back-end server to determine the species of the animals using
a convolutional neural network (CNN). We identify 17 functions
for reducing the data size of an image series. We run several
combinations on a series of images collected on the tundra. Our
experimental results show a possible reduction in the number of
bytes required to represent the images between 90.2% and 92.1%
with decrease in mean precision and mean recall by less than
0.03. Re-scaling images is required to reach large size reductions
on the image series.

Index Terms—Cyber-physical system, CPS, CNN, edge com-
puting, energy efficiency, tundra, monitoring;

I. INTRODUCTION

A distributed multi-node cyber-physical system can be de-
ployed into a hostile and resource-constrained environment
to observe on-ground events. Each node comprises one or
multiple battery-powered microcontrollers and computers with
storage, multiple data networks, and sensors. In the DAO
project!, we call such a node an Observation Unit (OU).

In this paper, we focus on OUs deployed to the arctic tundra
to take pictures of animals. The pictures are sent to a CNN at
a back-end for determining the species of the found animals.
However, because the OUs have just a single battery charge
and need to stay operational for a year or more, they must
aggressively save energy. They do this by sleeping most of
the time, and by being frugal when they are awake. Because
the OUs primarily send the data they collect from the sensors
over a data network, smaller data-size provides for a shorter
transmission time and therefore less energy spent. In addition,
energy consumption is reduced because the nodes can go to
sleep again sooner.

We are not reporting on running the CNN in the OUs, which
would let the OUs report only the predictions from the CNN to
a back-end. There are multiple reasons for transferring images
from the Arctic tundra to a back-end. It enables more frequent
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monitoring by a back-end of the state of the tundra as well
as of the node itself. Also, data that has been transferred will
not be lost due to a node failing. Finally, having the data at
the back-end allows for improving the CNN and for back-end
re-analysis.

The amount of data to transfer can be reduced by compress-
ing and filtering the data. However, this can result in some
loss of information. The objective is to reduce the size of the
data but avoid having a significant impact on the annotations
produced by the CNN compared to analyzing the original full-
sized data. This paper reports on several functions and many
combinations of functions to reduce the data size of images.
It also reports on the change in results from the CNN when
giving it full-size vs. reduced-size data. We select a number
of filter and compression functions and combine them into a
number of variable length pipelines. We run the functions and
pipelines on the full-sized data to get reduced-size data. We
compute the reduction in size achieved by the pipelines as
well as the execution time. We then run the CNN on the full-
sized and the reduced-size data. We use the CNN predictions
to compute the mean precision and mean recall.

The main contributions of this paper are:

o An evaluation of the performance (in time, size reduction,
and change in CNN performance) for individual functions
and combinations of them in pipelines.

o An evaluation of the functions most commonly present
among pipelines yielding high size reduction and good
CNN performance.

o Documenting that a significant reduction in the size of
images (in bytes) through multiple functions can have
insignificant impact on the CNN performance metrics.

o Documenting that the CNN may get low precision and
recall on the output from combinations of size-reducing
functions, even when the precision and recall are high on
the output of each of the functions separately.

o Documenting that the order of functions is important for
both execution time, and CNN performance.

This paper is structured as follows: Section II presents the
motivating use-case. Section III describes the CNN and data
sets. Section IV presents how we reduce the size in bytes of
the images. Section V presents the experiments we run and
the metrics used for evaluation. Section VI present the results
of the experiments. In Section VII we discuss the results of
the experiments.



II. MOTIVATING USE-CASE: THE ARCTIC TUNDRA

The arctic tundra is a vast, remote area with a harsh
environment, especially with regards to weather and lack of
sunlight during the winter [3]. The lack of infrastructure on the
tundra limits the amount of ground-based observation sites that
realistically can be visited to retrieve data or replace batteries.
In certain areas, it may even be impossible to reach the sites
for a prolonged duration of time due to weather and other
conditions. To scale an on-ground observation system with
regards to the number of nodes and coverage, automation of
observations and reporting is needed.

The COAT program (which collaborates with DAO) mon-
itors ecosystems on the arctic tundra, which is one of the
areas most sensitive to climate change [3]. Monitoring the
ecosystems on the tundra includes capturing images of local
wildlife to detect their presence and count occurrences of
different species. Results from these observations are input
to climate and ecological models.

There are several types of camera traps in deployment on
the tundra. In this paper, we use images from traps designed to
observe small rodents. These are constructed using aluminium
boxes with an opening at each end, which lead to a larger space
in the middle where the camera is attached. The images used in
the experiments are captured in gray-scale using a Reconyx™
SM750 HyperFire™ at 1280 x 720. A full description of the
setup can be found in [6][14]. A typical deployment period is
up to 1 year during which the camera trap produces 1500-3000
JPEG images for a total size of 120-250 MB per trap.

On the tundra, data networks are limited, unreliable, and
often unavailable for long durations of time. UAVs can in
limited cases provide networking for shorter periods for areas
without other infrastructure[10]. Using satellite communica-
tion does not scale with regards to bandwidth and the number
of nodes. For wireless networking, transmitting and receiving
are energy costly. Consequently, reduced data size means
shorter transmission time and reduced energy use.

III. CNN FOR IDENTIFYING SPECIES IN IMAGES

We use a CNN to identify and classify species in the
images collected from the camera traps. For this paper, we
use a YOLOv3 [12] model implementation from ImageAl [7]
trained on images from the COAT camera traps.

For the training set, the images are selected from different
camera traps at different locations from deployments in 2018.
The training set consists of 1328 images that were classified
by a human. It comprises 400 images of voles, 381 images
of shrews, 376 images of lemmings, 76 images of birds, and
95 images of stoats. Birds and stoats are found infrequently
in the camera traps. They are over-represented in the training
set. The validation set contains images of 89 voles, 92 shrews,
103 lemmings, 16 birds, and 19 stoats , which is again selected
arbitrarily among the available images from 2018. There is no
overlap with the training set. Each of the images contains at
most one animal. On the validation set, we get mean precision
0.970 and mean recall 0.921.

For the experiments, we need a typical sequence of images
from a camera trap. The selected images are 1896 images
from a single camera trap during a 1-year deployment from
2017. We add 255 images of lemmings from two other camera
traps for a total of 2151 images. We call this image set the
production set. The added images of lemmings are selected
from a different area than the production set and therefore
from a different camera trap. The production set comprises
371 images with voles, 409 images with shrews, 255 images
with lemmings, and 1116 images with no animals.

IV. REDUCING THE SIZE OF TRANSFERRED IMAGES

The collected images can be processed by an OU to reduce
data size. The size-reduced images are then sent to the back-
end, which runs the CNN. The size of data to transfer can be
reduced in several ways.

We identify three types of data reductions used in this paper:

1) Selecting the images to transfer. Images with no animals
do not need to be transferred.

2) Reducing the size of individual image files by combining
one or more functions (e.g cropping and scaling to
produce smaller files to transfer).

3) Aggregation. Similar images can be better compressed
if we aggregate them and only save the differences
between the images.

Images can be selected by, for instance, detecting changes
between subsequent images. An aggregation function uses
methods for combining multiple images and compressing the
results. An example is to make a small video file from the im-
ages. A sequence of functions can be combined into a pipeline
to provide better aggregated compression. Each stage in the
pipeline is a chosen function and a parameter that controls
the function. An example of a pipeline is image cropping,
followed by a re-scale function with a size parameter. Figure 1
illustrates a pipeline with an aggregating function.

Different combinations of functions, as well as the order
of functions can potentially influence both the size of the
resulting images and the information loss. In this paper, we use
the 17 functions detailed in Section V-C, of which 11 accept
a parameter value. Each stage of the pipeline is chosen from
87 different function-parameter combinations. The pipelines
range from 1 to 4 stages. Running all possible pipelines on
the entire dataset is intractable as we would have to run on
the order of 6 - 107 pipelines on the dataset, and the CNN on
the resulting size-reduced data. It is, therefore, necessary to
reduce the number of pipelines.

We assume that running the same function multiple times
does not produce a significantly different output than run-
ning it once in a pipeline with a different parameter value.
For example, re-scaling an image to half pixel count twice
produces a similar output to re-scaling to quarter pixel count
once. We, therefore, reduce the number of pipelines to explore
by choosing to use permutations of functions instead of
combinations.

Three of the functions encode the images. When the images
are encoded, they must be decoded to arrays of pixel values,
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Fig. 1: An example pipeline which includes an aggregating
function. Multiple images are processed through the first
functions in the pipeline (gauss and resize in this example)
before the results are combined using the aggregating function
(video). When the images have been processed by all the
functions in the pipeline the output may be sent to the remote
CNN.

before they can be passed to the next function in a pipeline.
This causes a loss of image quality without the benefits to size
reduction from the encoding. We, therefore, require that the
encoding functions are used as the last stage in each pipeline.
To further reduce the number of pipelines to explore, we
introduce three phases to evaluate and discard functions and
pipelines. The phases are covered in detail in Section V-B.

V. EXPERIMENTS AND METRICS

This section describes the experiments done to reduce the
number of candidate pipelines and to evaluate the final can-
didate pipelines. The metrics used to select pipelines between
each phase are described in further detail in Section V-A.

Experiments measuring the execution time are run in a
Docker container running on an Intel i7-7700K CPU with
32GB RAM and an NVidia GTX 1080 GPU. The container
is based on the nvidia/cuda:10.0-cudnn7-devel image.

A. Metrics

The pipeline performance is defined by four metrics:

Size reduction. The size reduction is reported as the total
size in bytes of the output files relative to the input files size.
A reported reduction of 90% means that the sum of the sizes
of the output files is 10% of the sum of the sizes of the input
files.

Execution time of pipeline per image. We report the
average execution time per image. To measure the execution
time, one timestamp is taken before the first image is processed
by the pipeline and another timestamp after the last image is
finished. We then divide the elapsed time by the number of
images. The execution time of functions and pipelines does
not include the time to read or write the images to storage.

Mean precision. To quantify the trade-off in model preci-
sion and data size reductions, we measure the mean precision,
mP, from running the CNN on the output from a pipeline. For

a prediction to be counted as a true positive, its intersection
over union, [oU, with the reference annotation must be larger
than 0.5. When there are multiple overlapping predictions for
the same object as determined by IoU > 0.5, we consider the
prediction with the highest confidence score to be the only
prediction for the object. We report the change between the
mean precision on the pipeline outputs and the original image
series, AmUP.

Mean recall. The mean recall, mR, is computed similarly
to mean precision. Some functions remove parts of the images
or entire images from the output image series. When the
functions remove an image with an animal or a region of an
image containing an animal, the animal cannot be detected by
the CNN. This is counted as a false negative.

B. Experiment phases

The experiments are conducted in three phases for selecting
candidate pipelines. The main objective for the first two phases
is to reduce the number of pipelines to evaluate in the final
phase by discarding potential pipelines that are unlikely to
perform well in the final phase. The third phase evaluates
the size reduction, and CNN performance of the remaining
pipelines.

The first phase reduces the solution space by removing
functions and possible parameter values. The pair (function,
parameter value) is called a candidate function. We select
candidate functions based on three criteria: Execution time,
AmP, and AmR. For each candidate function we measure
the time to process all 2151 images in the production set. Can-
didates with a significantly higher execution time than other
functions are discarded. The threshold is set to 0.1 seconds
per image. The output images are then passed directly to the
CNN for prediction without saving them to external files. The
effect is to evaluate the CNN performance directly from the
candidate functions without adding an extra encoding function.
AmP and AmR are then calculated and used to discard
candidate functions. Candidate functions with AmP < —0.03
or AmR < —0.03 are discarded.

The second phase combines the remaining candidate func-
tions into pipelines with up to four functions. The pipelines
are evaluated for size reduction and execution time on the first
100 images of the production set. We only run the pipelines on
the first 100 images for practical reasons. For each pipeline,
we note the size of the output and the time required to process
all the images. Pipelines with a size reduction of less than 90%
and execution time of more than 0.02 seconds per image are
discarded. The requirement for execution time is set based on
observation of the results presented in Section VI.

The third phase evaluates the mean precision and mean
recall of the CNN on the output images from each remaining
pipeline as well as the size reduction and execution time on
the entire production set.

C. Function description

Below is a description of each of the functions used.
The functions are implemented in Python using Numpy and
OpenCV.



resize: Re-sizing an image to a lower resolution reduces
the number of bytes representing the image. The function
is implemented using the resize function in OpenCV. The
parameter is a factor for scaling the output dimensions. We
use {0.1,0.2,...,0.8,0.9}.

cropCenter: Cropping removes a fraction of the image
from each edge. A parameter of 0.1 keeps the middle 10%,
i.e. removing 45% of the image from each side. We use
{0.1,0.2,...,0.8,0.9}.

seamCarving: Seam carving is using genetic algorithms to
perform content-aware re-scaling [1]. The parameter value is a
real number between 0 and 1 representing the fraction of lines
to remove in both horizontal and vertical directions. We use
{0.1,0.2,...,0.8,0.9}. For the implementation we use [15].

fourierTransform: We use the discrete Fourier transform
function dft in OpenCV on a gray-scale version of the image.
We select low-frequency components, effectively removing
details from the image while preserving large-scale features.
We use {0.1,0.2,...,0.8,0.9} for the parameter value.

blackWhite: Gray-scale conversion lowers the color infor-
mation from 3 channels to 1. The grayscale conversion is done
by OpenCV.

JPEG: Encodes the images in the JPEG format. The quality
setting of the JPEG encoding determines the level of compres-
sion. We use the quality settings {10, 20, . ..,90}.

keepEveryNPixels: Keeps every n’th pixel of the image in
width and height. The parameter is an integer for which pixels
should be kept: Every 2, every 3, etc. We use {2,3,...,9}.

removeHigh: The image is modified to keep all pixel values
below the selected threshold and set the values above to the
threshold value. We use {128, 160,192, 224}.

removeLow: Like removeHigh, but uses a lower bound on
pixel values. Values below the threshold are set to zero. As a
lower bound we set {32, 64,92, 128}.

halfpixels: Divides every pixel value by two, rounding
down. The pixel values are multiplied by two before prediction
by the CNN. No parameters.

gauss: Applies a Gaussian Blur using the GaussingBlur
function in OpenCV. We use a kernel of size {3 x 3,5 X
5,7%x 7,9 x 9}

hidePics: Hide 6 gray-scale images in one color image,
keeping only the most important bits of six images allows
hiding another image in the lower bits, thereby storing more
data in one image.

mergelmages: Select n subsequent images from the series.
For each pixel coordinate (x, y, channel) calculate the mean
pixel value from each of the images. Select the pixel value
with the largest absolute difference from the mean. We use
n=1{3,4,...,9}

HEIF: Stores the image files in the High Efficiency Image
File Format [2]. We first store the JPEG encoded files with
quality setting 100. The images are then converted to HEIF
using heif-enc version 1.6.1. We use {10,20,...,90} for the
HEIF quality setting.

changeDetectionl: This function selects rectangular areas
bounding the regions where change is detected. First, a Gaus-

sian blur with a 25 x 25 kernel is applied to the latest image.
Then the difference between the image and a running average
of previous images is calculated. Contours in the difference
are then detected. If the area covered by a contour is larger
than a threshold value, it is registered as a detected change.

changeDetection2: Like changeDetectionl but if change is
detected, the entire image is selected.

videoFromImages: Each image is inserted as a frame in an
H.264 encoded video.

VI. RESULTS

In this section, we present the results from each of the
phases described in Section V. In practice, the trained model
does not perform as well as expected from the validation set.
We get mR = 0.851 and mP = 0.844 on the production set.

A. Phase 1: Discarding candidate functions and parameters
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Fig. 2: Execution time per image for each candidate function
on the images in the production set. Each of the used param-
eter values are plotted as separate dots. Candidate functions
with execution time higher than 0.1 seconds per image are
discarded. The red line marks the cutoff point.

The measured execution time per image for each candidate
function is shown in Figure 2. The differences in execution
time span several orders of magnitude. The fastest candidate
functions cropCenter and keepEveryNPixels select pixels from
the original image without other modifications. We discard
the following candidate functions that have an execution time
longer than 0.1 seconds per image from further consideration:
seamCarving, HEIF, hidePics, and mergelmages. The cutoff
point of 0.1 seconds per image is selected because there
appears to be a gap in execution time of more than an order
of magnitude between functions above and below the cutoff
point. There are still significant differences in execution time
of the remaining candidate functions, which may impact the
execution time of pipelines. This is addressed in phase 2.

Figure 3 shows the change in CNN performance on the
output from the candidate functions. The worst performers,
in the lower-left corner of the figure, are cropCenter and
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Fig. 3: CNN performance metrics on output from the candidate
functions. The red lines indicate the selection criteria of
AmP > —0.03 and AmR > —0.03

removeLow. The cropCenter function removes parts of the
images, which could have contained animals. The removeLow
function sets many of the colors to completely black, thereby
removing animals from the images. We discard candidate
functions with AmP < —0.03 and AmR < —0.03 to further
decrease the number of candidate functions to include in the
next phases. The accepted functions and parameter values for
phase 2 are shown in Table L.

Function Parameter values Encoding
JPEG 30, 40, 50, 60, 70, 80, 90 v
videoFromImages No parameter v
blackWhite No parameter

resize 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

halfpixels No parameter

gauss 3,5

keepEveryNPixels 2,3,4,5,6

removeHigh 128, 160, 192, 224

fourierTransform 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9

TABLE I: Remaining candidate functions after phase 1. The
encoding functions produce image or video files. The other
functions produce arrays of pixel values.

B. Phase 2: Discarding pipelines

The functions resize and keepEveryNPixels both re-scale
the images but with different implementations. Because of
the similarity between the functions, we discard pipelines that
include both functions. We create 60736 pipelines of up to
four stages comprised of the candidate functions remaining
after phase 1.

Figure 4 shows the execution time and size reduction for
each pipeline on the first 100 images of the production set.
Some pipelines produce output with a larger size than the
JPEG-encoded input files. Figure 4 highlights pipelines where
JPEG 90 is used. This explains the majority of the pipelines
with negative size reduction.

Since we are primarily interested in pipelines with large size
reductions, we discard pipelines that reduce the input by less
than 90%. This reduces the number of pipelines to 23427.
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Fig. 4: Execution time and size reduction for each pipeline in
phase 2. The pipelines are executed on the first 100 images
of the production set. The red line shows a size reduction of
90%.

We further reduce the number of pipelines by com-
paring similar pipelines. If a pipeline extends an existing
pipeline by adding stages, it should improve its size re-
ductions. Otherwise, it will be discarded. For example, the
pipeline blackWhite — gauss 3 — resize 0.5 — JPEG 80
must have output with data size smaller than both black-
White — gauss 3 — JPEG 80, and blackWhite — JPEG 80.
With this requirement, the number of pipelines is reduced to
20755.

Re-scaling influences execution time of the functions fol-
lowing in a pipeline. Figure 5 highlights pipelines where resize
is the first function. When resize is the first function, the
execution time is shorter for a pipeline than when it is not. A
similar pattern is observed for the keepEveryNPixels function.

There is a clear distinction between two groups of pipelines.
The group with longer execution time is explained by running
the slowest candidate function, fourierTransform, before re-
scaling. We discard pipelines with an execution time longer
than 0.02 seconds per image. The remaining number of
pipelines for evaluation on the CNN is reduced to 12527.

All of the 12527 remaining pipelines include either resize
or keepEveryNPixels. The survival of the pipelines depends on
how much the two re-scaling functions reduce the number of
pixels in each image. Smaller output images generally lead to
a higher number of surviving pipelines for both functions.

The last stage of each pipeline is an encoding function.
Using a low quality setting for the JPEG encoding gives
larger size reduction and thereby more selections. Whether
a pipeline is discarded or not, is primarily determined by the
parameter for the re-scale function and the choice of encoding
function and its parameter. While the other candidate functions
contribute to reducing the output sizes, they are not the primary
reason.
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the output of each pipeline compared to the original image
series. Red: AmP > —-0.03,AmR > -—0.03, Orange:
AmP > —0.1, AmR > —0.1

C. Phase 3: Evaluating CNN impact from pipelines

The images from the camera traps have a Reconyx™ logo
in the lower right area. Making predictions on the logo is
a possible error, which we in practice can ignore because
we know the location of the logo in every image. When we
evaluate the performance of the CNN, we disregard predictions
overlapping this logo.

The change in mean recall and mean precision compared
to the original image series is shown in Figure 6. In phase
1 we required, for each candidate function, that the mean
precision and mean recall does not decrease by more than
0.03. Only 12 pipelines meet that requirement. Therefore we
also show pipelines, where mean precision and mean recall do
not decrease by more than 0.1.

The relationship between size reduction and AmR for the
pipelines with AmP > —0.1 and AmR > —0.1 is shown
in Figure 7. In Figure 7 we see that a larger size reduction

comes at the cost of worse CNN performance. The pipelines
meeting criteria AmP > —0.03 and AmR > —0.03 for the
CNN performance yield a size reduction between 90.2% and
92.1%. If we allow a decrease in mR and mP of —0.1, the
size reductions range from 89.8% to 97.3%.

The pipelines meeting the criteria AmP > —0.03 and
AmR > —0.03 are shown in Table II. The largest size
reduction is reached by the pipeline blackWhite — remove-
Highl28 — resize 0.5 — videoFromImages. It is the only of
the remaining pipelines which include the videoFromImages
encoding function. The size reduction from the pipeline with
videoFromImages is noticeably larger than the other pipelines,
but the change in mean precision and mean recall is compa-
rable to most of the other pipelines. There are several other
pipelines containing the same four candidate functions in a
different order, which fall just short of the requirements for
either AmP or AmR. They give comparable size reduction.
The pipeline blackWhite — removeHighl28 — keepEveryN-
Pixels — videoFromImages where resize 0.5 is replaced by
keepEveryNPixels 2 was not selected from phase 2, because
the size reduction did not meet the requirement. There are,
however, other pipelines comprising keepEveryNPixels 2 and
videoFromlmages along with one or two other candidate
functions, which show results comparable to the selected
pipeline. Although, they do not meet the requirements for
CNN performance.

The smallest change in mean precision is from the pipeline
blackWhite — resize 0.4 — fourierTransform 0.5 — JPEG
40. However, it has the largest change in mean recall. The
smallest change in mean recall is from the two pipelines
keepEveryNPixels 3 — removeHigh 192 — fourierTransform
0.8 — JPEG 50 and removeHigh 192 — keepEveryNPixels 3
— fourierTransform 0.8 — JPEG 50. Those two pipelines
produce exactly the same output images and therefore get
the exact same CNN predictions. The pipeline beginning with
keepEveryNPixels has a shorter execution time. However, the
ten pipelines with keepEveryNPixels have markedly higher
execution times than the other pipelines in the table. The
difference is not because the keepEveryNPixels function is
slower than resize. In fact, we observed it to be faster in
phase 1. Rather, the difference is caused by fourierTransform,
because keepEveryNPixels 3 re-scales to an odd-sized resolu-
tion. The dft in fourierTransform operates faster on even-sized
resolutions than odd-sized.

11 of the 12 pipelines include the fourierTransform can-
didate function. There are pipelines which include the same
functions, but leave out the fourierTransform. They have
noticeably lower execution time but fall short on some of
the other requirements. We also notice from the remaining
pipelines, that the lower the resolution of the output images
is, the higher the quality setting of the encoding function.
Since this pattern is present, it may be possible, we can create
pipelines meeting our performance criteria entirely by the
selection of output resolution and encoding function.



TABLE II: Pipelines with AmP > —0.03, AmR > —0.03 evaluated on the 2151 images in the production set. Execution
time is per image.

Pipeline

blackWhite — removeHigh128 — resize 0.5 — videoFromImages
blackWhite — resize 0.4 — fourierTransform 0.5 — JPEG 40
keepEveryNPixels 3 — removeHigh 192 — fourierTransform 0.6 — JPEG 50
keepEveryNPixels 3 — removeHigh 192 — fourierTransform 0.7 — JPEG 50
keepEveryNPixels 3 — removeHigh 192 — fourierTransform 0.8 — JPEG 50
keepEveryNPixels 3 — removeHigh 224 — fourierTransform 0.6 — JPEG 60
keepEveryNPixels 3 — removeHigh 224 — fourierTransform 0.7 — JPEG 60
removeHigh 192 — keepEveryNPixels 3 — fourierTransform 0.6 — JPEG 50
removeHigh 192 — keepEveryNPixels 3 — fourierTransform 0.7 — JPEG 50
removeHigh 192 — keepEveryNPixels 3 — fourierTransform 0.8 — JPEG 50
removeHigh 224 — keepEveryNPixels 3 — fourierTransform 0.6 — JPEG 60
removeHigh 224 — keepEveryNPixels 3 — fourierTransform 0.7 — JPEG 60

Size reduction AmP AmR  Execution time [ms]
92.1% -0.025  -0.026 2.88
90.8% -0.005  -0.030 4.14
90.7% -0.029  -0.029 7.18
90.8% -0.025  -0.028 7.18
90.6% -0.027  -0.019 7.06
90.2% -0.021  -0.028 7.05
90.2% -0.016  -0.027 7.05
90.7% -0.029  -0.029 10.5
90.8% -0.025  -0.028 10.5
90.6% -0.027  -0.019 10.3
90.2% -0.021  -0.028 10.2
90.2% -0.016  -0.027 10.2
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Fig. 7: Size reduction for varying AmR. AmP > —0.1,
AmR > —0.1

VII. DISCUSSION

The added images of lemmings are from two other camera
traps with slightly different interiors. We only include the
images of lemmings. This means the differences between those
images are larger than between the first 1896 images. Both
changeDetection2 and changeDetectionl, which exploit dif-
ferences between images, will therefore detect more changes.
This should improve Am R, because fewer images would have
been discarded. Still, too many images containing animals are
discarded.

The HEIF function uses an external tool, which requires
encoding to a JPEG file which is then read and re-encoded as
a HEIF image. This adds execution time and some information
loss in the image. Furthermore, we have not explored using
HEIF to store multiple images in one file similar to video
encoding. When HEIF-encoding is available in OpenCV, we
may re-evaluate the function.

The images from the cameras are already grayscale except
for the Reconyx™ watermark. Therefore applying blackWhite
does not change the image contents outside the watermark. If
the camera traps had captured color images, we would expect
a higher impact on file sizes. There could also be an impact

on CNN performance if color information is necessary for the
classification.

The removeHigh function does not modify the image con-
tents significantly. There are no white animals and only a few
images with snow or other white features, which could have
been removed by the function. The camera adds metadata to
the images in the form of a black bar with white text. The
white color of the text is modified by the removeHigh function.
Without the white text, many of the images would not have
been changed by the removeHigh function. While blackWhite
and removeHigh allow a slightly higher size reduction on our
images, they may not work as well for bright or colored image
series.

Re-scaling to half width and height corresponds to a de-
crease in the number of pixels by 75%. In combination with
encoding, a size reduction around 90% makes sense. When
using JPEG encoding, the quality setting needs to be reduced
to reach the 90% size reduction.

For video encoding to exploit similarities between images,
we need several images. We find that 10-25 images per video
file is sufficient to reach the largest size reductions from video
encoding. The actual size reductions vary depending on the
difference between images. We do observe a smaller size
reduction from pipelines with the video encoding in phase 2
than in phase 3. In phase 2, we only used the first 100 images
of the image series. At the time those images were captured,
it was possible for light to enter the box. Therefore there is
a change of brightness between the images near the entrances
to the box. This may have the effect of reducing the size
reduction from the videoFromImages function. It is therefore
possible, we have discarded pipelines with videoFromlmages
in phase 2, which we would otherwise not have discarded. It
is however realistic and not uncommon for light to enter the
boxes. Generally, choosing cutoff points in each of the three
phases means, we are discarding functions or pipelines, which
only barely miss the criteria.

VIII. RELATED WORK

In this paper, we follow up on the work in [11], which
considers the effects of image re-sizing on energy consumption
and CNN confidence score but does not explore other ways



of modifying images. The size in bytes of a series of images
can be changed in several ways. In [8] k-means clustering is
used to reduce the color space of images. This reduces file
sizes and the cost of sending the images to a back-end. They
also found that the cost of running the k-means learning on
edge nodes may consume more energy from processing the
images than what can be saved due to the lower number of
bytes for transmission. The work in [5] explored the energy
cost of running JPEG compression at different quality setting
as well as exploiting differences between images to encode
successive images. We apply the considerations for execution
time when discarding and evaluating pipelines. In [8] and [5]
image quality was evaluated on the mean squared error and
peak signal to noise ratio. We focus on CNN performance for
evaluation of image quality instead. Similarities between mul-
tiple overlapping images from different cameras are calculated
in [4] to reduce image size. We only use images from a single
camera in a trap, but we do attempt functions, which exploit
similarities between images.

In [9] the effects of image degradation on CNN-based
classification is described. They compared different types of
degradation such as low resolution, motion blur, and Gaussian
blur on both real and synthetic image sets. A similar exper-
iment is conducted in [13], which also considered the effect
of JPEG encoding. The change in performance for Gaussian
blur and decreasing JPEG quality appear to be consistent
with our experiments. Neither [9] nor [13] combined multiple
image modifications in their evaluations. We consider multiple
modifications to the image series as well as the order, in which
they are applied. When multiple modifications are applied to
a series of images, the CNN performance is altered differently
than when only considering single modifications.

IX. CONCLUSION

The Distributed Artic Observatory (DAO) researches cyber-
physical systems on the Artic Tundra. Connectivity and band-
width are limited in the area, restricting how much data can
be transferred. This paper explores compressing and filtering
images to conserve bandwidth when transferring images from
camera traps to backend computers for later CNN analytics.

We explore how pipelines constructed from 17 functions
change data size of an image series from the Arctic tundra,
and how the performance of a CNN on the output is affected
by the results of each pipeline. We measure the reduction in
the number of bytes required to represent the image series (size
reduction), the execution time of the pipelines, the change in
mean precision (AmP), and the change in mean recall (AmR)
compared to doing nothing to the images.

From a solution space of 6 - 107 pipelines, we reduce the
number of pipelines in three phases and evaluate the resulting
pipelines. We find 12 pipelines with AmP > —0.03, AmR >
—0.03, execution time between 2.88 - 10~3 and 10.5 - 103
seconds per image, and size reduction between 90.2% and
92.1%.

We find that re-scaling and the choice of encoding contribute
the most to size reduction. Other functions either do not

contribute much to size reduction, or reduce CNN performance
too much.

The best pipelines should in the future be evaluated for the
combined energy consumption when running the pipeline and
sending the output images.
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