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Abstract—In a context of Cyber-Physical Systems (CPS),
energy-efficiency is a critical factor to achieve long operational
life-time. The constraint of using battery-powered devices adds
degrees of complexity, especially in a hard to reach environment
with scarce network and energy resources. The reporting of data
consumes large amount of energy, reducing the life-time of both
individual nodes and the CPS as a whole. One way to reduce
the energy cost of communication is to reduce the number of
Bits to transmit. However, this is a viable approach only if the
transmitted data remain suitable for further analysis.

In this paper, we report on the effect of reducing the image
dimensions on the confidence score computed by a convolutional
neural network (CNN) determining the species of animals present
in images. We also report on the energy consumption of trans-
mitting full vs. reduced dimensions of images. CPS devices and
CNNs developed by the Distributed Arctic Observatory (DAO)
project are used as experimental platforms.

The results show that the energy needed to report the images
can be reduced by up to 98% while only reducing the average
confidence of determining the species correctly by 0.10%.

Index Terms—CPS, machine learning, energy efficiency, tun-
dra, monitoring, ;

I. INTRODUCTION

The arctic tundra is one of the most sensitive eco-system to
climate change. It is a large area with presently too few large
scale observation sites [1]. Scientific observatories provide
on-field data to researchers in order to observe and model
complex environments with rapidly changing conditions [2]–
[7]. Gathering, processing and reporting of observations are
often limited by the availability of sufficient energy. The re-
porting is also limited by the availability of a data network with
sufficient bandwidth and latency. The opportunities provided
by the data are consequently limited by the availability of the
critical resources: energy and back-haul data networks.

One approach to implement a scientific observatory is to use
a cyber-physical system (CPS) comprised of multiple devices
with a set of sensors and actuators. The CPS is deployed
onto an environment and used to observe its flora, fauna,
atmospheric conditions and many other ecological parameters.
By increasing the number of CPS devices, increasingly larger
areas of the environment can be observed and manipulated. To
do so, devices must be integrated to form a distributed system.

The Distributed Arctic Observatory (DAO) project at the
University of Tromsø, the Arctic University of Norway, is the
use case of this paper. The project develops a CPS of devices
called Observation Units (OUs) for the arctic tundra. The DAO

system observes the tundra and reports the observations, at
near live delays. Convolution Neural Networks (CNN), an
implementation of the paradigm for classification of images,
are used to determine the species of animals captured.

This paper focuses on the need to reduce the energy
consumption when reporting images from the devices. Lossy
compression is used to reduce the size in Bits of images.
This energy leverage can be achieved either by the camera
itself, or by edge computing. The first approach is studied,
by configuring the cameras to produce images of reduced
dimensions. We document the energy saved when transmitting
the reduced vs. full images. By decreasing image dimensions,
the CNN will eventually produce lower confidence scores for
animal species prediction. We document the impact of various
image dimensions on the confidence scores. Finally, the trade-
off between chosen image dimensions, confidence scores and
energy savings is highlighted.

The contributions of this paper are:

• Combining a CNN and a CPS to reduce the commu-
nication costs (energy, storage and bandwidth usage) of
devices taking and sending images to a trained CNN

• Reducing the energy consumption and increasing the
lifetime of devices on the field while only using the
dimensions of images as an energy leverage

• Documenting that a significant reduction in the com-
munication related energy consumption through image
dimensions has insignificant impact on the confidence
scores

• Documenting the relationship between image size in Bits
and communication related energy savings

• Applying the proposed energy leverage on a unique use
case: the Distributed Arctic Observatory (DAO) project

The remaining of this paper is structured as follows. Sec-
tion II presents the use case of this paper, the Distributed
Arctic Observatory while section III describes the CNN ap-
plication used in the DAO project to detect animals. Sec-
tion IV presents the experimental setup with used metrics and
simulation setup and scenarios. Sections V and VI present
experimental results concerning losses for CNN confidence
scores and simulated energy consumption results on various
scenarios, respectively. Section VII presents the related work.
Finally, Section VIII concludes this work.
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II. MOTIVATING USE-CASE: THE DAO PROJECT

This section presents the use-case of this work: the DAO
project. First, the arctic tundra and the difficulties to monitor
it are covered. Then, the needs and the challenges for a
distributed observatory are exposed. Finally, the current bait-
cameras and our Observation Unit (OU) forming the basic
block of the DAO system are presented.

A. The arctic tundra, a complicated eco-system

The arctic tundra is a very large, remote, hard to reach,
and potentially dangerous eco-system. By observing its flora,
fauna and environmental parameters, changes can be identified
and tracked. Presently, much less than 1% of the arctic tundra
is monitored. However, it is the most sensitive eco-system to
climate change [1]. Consequently, to accurately detect climate
change, larger observations of the arctic tundra are needed.

The COAT initiative is tasked with observing the Norwegian
arctic tundra, detect and explain climate related changes to
advise the public and the authorities. First the state of the
arctic tundra is determined based on satellite and ground-
based measurements of the flora, fauna, weather, and the
atmosphere to creates multiple data sets. Second, the data sets
are processed to detect interesting events, like the species of
animals captured in images, creating multiple new data sets.
Third, the new data sets are analyzed to extract significant
information, like the number of foxes and eagles detected at
the different monitored sites. These insights are then used as
input to climate models. Finally, based on previous results,
human understanding and decision making take place [1].

Both satellite and ground-based observation platforms pro-
vide useful data to track the state of the arctic tundra. But a
ground-based observation system can observe larger areas, do
measurements at any time and rapidly react to local events both
above and below ground, snow and ice, and do measurements
at very high resolutions. Data can be reported back at any
time, regularly, or on-demand. Significant processing and
storage resources can be added to the devices to enable edge
computing. Thus, the DAO project focuses on ground-based
observation approaches.

B. Towards a Distributed Arctic Observatory (DAO)

There are three major obstacles to consider when building
an observation system for the arctic tundra : (i) The lack of
roads and associated infrastructure implies the impossibility to
realistically visit a limited number of sites in order to fetch
data, supply energy, or do repairs and updates. (ii) The limited
or non-existing availability of a back-haul data network for
doing automated reporting of data. (iii) The lack of energy to
use devices with advanced functionalities and still get a long
operational lifetime.

A distributed arctic observatory system must carefully man-
age two fundamental resources: wireless data networks and
energy. Devices are working on a limited energy budget
delivered from batteries. As it is a complicated scenario,
with bad weather and no long sun exposition during winter,
swapping batteries by humans and regular energy harvesting

are not plausible solutions. In addition, a set of functionalities
are needed by the devices, including autonomous operations
to save energy while still striving to observe and report.

While a back-haul network cannot be expected to be avail-
able as the common case, a device can have multiple local
networks enabling communication with neighbours. Using a
multi-hop approach, data can be reported through multiple
units and finally to one or more units having access to
back-haul networks or which are located to be reachable by
humans or drones [8]. However, using the radio is energy-
expensive. One approach to reduce transmission related energy
consumption is to reduce the number of Bits to exchange from
devices, but such leverage is only applicable if the data can
be used to get close to the same analytic precision.

C. The bait-cameras

COAT researchers presently use several approaches and
instruments to observe the arctic tundra [9], [10]. Tens to
a few hundreds of small dedicated instruments are typically
deployed according to where interesting events are expected.
One significant event is the presence of animals ahead of a
meat bait. These bait-cameras are deployed to capture images
of the animals. For hard to reach installations, it can take up
to 6-12 months before humans visit the site to fetch the data,
while an easy to reach installation can be reached in the span
of 1-2 months.

Such stand-alone instruments with limited functionalities
are based on micro-controllers. They are cheap, small and
use little energy. Such characteristics make them well suited
for embedded non-advanced tasks like reading a sensor and
storing its value locally. However, micro-controller based
instruments have none or limited network and computing
resources compared to computer-based instruments making it
impossible to build a complete system only relaying on them.

(1) (2)

(3)

(4)

(5)

(6)

(7)

Fig. 1: Prototype Observation Unit (OU), Raspberry Pi based

D. The DAO Observation Unit (OU)

For advanced functionalities, instruments with tiny com-
puters are needed, allowing more resources and better pro-
gramming support. Figure 1 introduces the basic block of
the DAO system, the Observation Unit (OU). It comprises a
combination of Raspberry Pi computers and Sleepy Pi micro-
controller (annotated (6) in Figure 1). Sensors include optical
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Fig. 2: Structure of the Convolutional Neural Network (CNN) designed to classify animals from the Arctic Tundra [11]

and proximity cameras (5), temperature and humidity inside
(2) and outside the OU (1) and GPS (3). A range of network
technologies are available from the Raspberry Pi and the 4G
stick (4), including WiFi, Bluetooth, 4G LTE and LTE Cat
M1. OUs are built with internal and external batteries (7).
Functionalities are implemented in Go and Python.

These well-known components, platforms, languages and
tools enable us to build systems relatively faster, have sig-
nificant edge compute resources available, gain experience
with network and energy issues, and get practical experience.
We presently have 11 units deployed on the arctic tundra
and around 50 units in the laboratory being used to develop
functionality both for individual units and for integrating units
into the DAO system.

III. CLASSIFICATION OF ANIMALS : DESCRIPTION, USAGE

This section describes the CNN used by the DAO project
to detect animal species from bait-camera images. We then
describe the usage of the CNN together with OUs on the arctic
tundra.

A. CNN for bait-camera pictures

Convolutional Neural Networks (CNN) are commonly used
to analyze and automatically annotate images. They are or-
ganized as layers, set of mathematical functions to apply on
the input. The output of one layer is fed as input to the next
layer. Figure 2 illustrates the layered architecture of the CNN
used in this paper. For image analysis, the first layer reads the
input image, while the last layer outputs the animal species
predictions.

CNNs are trained by running a set of already annotated
images through the CNN, comparing the output prediction
against the provided ground truth and feeding adjustments
back into the network. The process is repeated several times
to gradually improve the CNN’s ability to give correct pre-
dictions. When a limited number of annotated images are
available as ground truth for training, pre-trained models are
used to reduce training time and to improve the CNN output.
Feature classification can be refined from a pre-trained model,
rather than trained from scratch.

The CNN used for this paper is the Single Shot MultiBox
Detector (SSD) model [12]. A previous contribution for the
DAO project [11] investigated multiple CNN models for
annotating images from the COAT bait-cameras and found
the SSD to be the best performing model (measured using
an evaluation metric for machine learning techniques named
mean Average Precision, mAP). It outputs, for every image,
a list of predictions with confidence scores. The confidence
score metric reflects the confidence of the CNN that a given
object in an image is an animal belonging to a certain species.

The implementation used in this paper uses the original
Caffe implementation [12] as a CNN back-end, with minor
changes to the Caffe Python interface for Python 3 compati-
bility. A pre-trained model using the ImageNet [13] dataset is
used. Then, the training uses a set of 7999 annotated images
from the COAT bait-cameras. An example of detection made
by the used CNN is given Figure 3a, where the CNN detects
a Red Fox with a confidence score of 99.99%.

B. Combining image dimension reduction and CNNs

Figure 3b depicts the system used for this paper. The main
actors are an ecologist as the end user, a CNN service and a
set of OUs. The OUs are located at several interesting sites
on the arctic tundra. The CNN receives images from the OUs
deployed on the arctic tundra, and computes confidence scores
with regards to which species class every found animal belongs
to. The confidence scores are used by ecologists for further
processing.

For this paper, we assume that the CNN application is
connected to the OUs in a star topology, thus being directly
accessible to all OUs.

The camera being part of the OU is pre-configured to take
images at a given resolution. Images are encoded as JPEGs,
stored in memory, and transmitted to the CNN. Transmission
is done over a back haul network like LTE or LTE Cat M1.
We assume that the CNN service is always available when an
OU transmits data to it.

For this paper, we ignore where the CNN service is located
along with where and when an OU should report images. We
focus on the energy consumption of various OU configurations
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Red Fox : 99.99 %

(a) CNN detection of a Red Fox behind the meat bait, with a confidence
score (cScore) of 99.99%
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(b) Overview of the system, direct interactions of OUs with the CNN
application

Fig. 3: CNN detection on a captured animal and overview of the system

when using the network at given bandwidths sending various
amount of data.

IV. EXPERIMENTAL SETUP

This section presents the metrics used to evaluate the CNN
confidence score with scaled down images. Then, metrics
needed to evaluate the OUs to CNN communication costs are
presented. Finally, a description of the simulator developed to
experiment with communication related energy consumption
is depicted along with simulated parameters and scenarios.

A. CNN and energy consumption metrics

For every full image (i) taken by the bait-cameras with-
out any transformations and its reduced dimensions version
(iReduced), a set of metrics are computed: sizeReduced,
∆cScore, #FP and #FN .
sizeReduced represents the factor of gain in terms of

storage space when reducing the dimensions of the images.

sizeReduced(i) =
Size(i)

Size(iReduced)
(1)

It is the ratio between the size in Bits of image i and the size
of the same image scaled down, iReduced.

For every image, the CNN returns a list of animal con-
fidence scores (cScore), in percentage, and coordinates rep-
resenting the position in the image where the CNN finds an
animal. ∆cScore is the loss in terms of cScore when the input
to the CNN is a reduced image instead of the corresponding
unmodified one.

∆cScore(i, j) = cScore(i, j)− cScore(iReduced, j) (2)

∆cScore is the difference of confidence scores between
prediction of animal j on full image i and reduced image
iReduced. A negative value for ∆cScore means that the
reduced image results in a higher confidence score than the
full image. For every set of images, an average sizeReduced
and ∆cScore along with their standard deviation are given.
#FP is the number of false positives, or the number

of animals detected in the reduced images that are not in
full ones. In other words, it corresponds to the number of
predictions that only exist on scaled down images.
#FN is the number of false negatives, or the number

of animals not detected in the reduced images that exist in
full images. In other words, it corresponds to the number of
predictions that exist on the full images but not on the scaled
down ones.

These two metrics reveal the impact of our proposed lever-
age on the relevance of animal predictions. #FP and #FN
are presented along with an average cScore and standard
deviation.
%eSaved is the percentage of energy saved by an OU

concerning communication phases, when sending reduced
images.

%eSaved = 100− energyCommReduced ∗ 100
energyCommFull

(3)

energyCommReduced and energyCommFull represent the
energy consumed during communication phases for sending
the same package of reduced and full images, respectively, to
the CNN service.
tSaved is the up-time saved by the OU when sending

reduced instead of full images.
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TABLE I: Summary of simulation parameters

Bandwidth Arctic tundra 0.1 to 10 Mbps
USA 16.31 Mbps

Data set size Bait-Camera 1.2 GByte
Stream 12.0 GByte

Power Consumption (Idle state)
Rb-pi 3.1W
Mic 0.7 W

tSaved =
energyCommFull − energyCommReduced

PIdle ∗ 3600
(4)

PIdle represents the measured power of a device while
being idle. tSaved is the difference in energy consumed to
send full vs. scaled down images expressed as time spent when
the OU consumes energy at idle state. It permits to represent
the impact of reducing the dimensions of the images on the
saved up-time for an OU. For clarity, it is expressed in hours
and minutes.

B. Energy and Communication Simulation

A simulator is implemented in order to evaluate the pro-
posed leverage in a wide variety of contexts. It explores vari-
ous parameters such as bandwidth and energy consumption of
nodes in a common deployment context and on the described
use case, section II. This section describes the simulator and
simulated infrastructure, parameters and images used.

As shown in [14], [15], the time (T ) to transfer data (S
Bits) on one network link having bandwidth (bw) and latency
as characteristics, can be computed as :

T = Latency +
S

bw
(5)

The simulator assumes that the network has a constant
energy consumption at both full and idle load [16], that the
latency is equal to zero and that there is no congestion nor
packet loss. For a device, the ideal is to send data and only
consume the same amount of energy as done at idle state
(which is, after shutdown state, the lowest reachable power
state). Thus, the energy consumed during communication
phases, energyComm, is simplified to the energy spent in
the idle state during T , the time necessary to transfer the data
at a given bandwidth, with no latency :

energyComm = T ∗ PIdle (6)

By ignoring the overhead of using communication capabili-
ties of devices and latency of the network, we estimate energy
savings conservatively. Like in [17], such hypothesis help sim-
ulate the best case scenarios concerning energy consumed by
devices and permits to have a lower bound for the percentage
of energy saved.

We only focus on the energy spent by the OUs (thus not the
back-end computers nor network facilities) as we are focused
on reducing the energy consumption of our CPS on the field.

The values for the simulation parameters are:

TABLE II: Simulation scenarios with corresponding band-
width, data set size and OU idle power consumption

Name Bandwidth Data size OU
AT ArcticTundra Bait-Camera Rb-pi
ATMic ArcticTundra Bait-Camera Mic
ATStream ArcticTundra Stream Rb-pi
ATStreamMic ArcticTundra Stream Mic
USA USA Bait-Camera Rb-pi
USAMic USA Bait-Camera Mic
USAStream USA Stream Rb-pi
USAStreamMic USA Stream Mic

1) Bandwidth: Three network scenarios for the CPS are
simulated: 16, 10 and 0.1 Mbps, corresponding to a typical
average bandwidth in the USA [18], good LTE and weak
LTE on the arctic tundra, respectively. Last measurements are
extracted from previous work from authors [8]. The last two
are most relevant for the DAO use case.

2) Data set size: represents the amount of data that is
transferred from an OU to the CNN application. Two cases
are covered. The first one assumes that every OU takes images
resulting in the same amount of data at every OU, 1.2 GByte,
representing 3768 images from a 2018 batch of bait-camera
images. Obviously, none of the images from the chosen set
are used in the training set of the CNN, containing images
up to year 2016. This set of images represents a deployment
of approximately a month. Thus, the second one assumes that
a single OU is transmitting 10 times more data, 12.0 GByte,
thus representing around a year of bait camera images.

To produce the scaled down images, we convert the full
images from the chosen 2018 bait-camera using the convert
tool (from the imagemagick suite) and its - scale parameter,
generating 205x154 to 1843x1382 images, corresponding to
10 to 90% of the full image dimensions, respectively. Because
we control the deployed sensors, we can configure the camera.
Therefore, to take picture at given dimensions, the overhead
of converting images doesn’t exist in our use case.

3) Idle Power consumption: The current generation of DAO
OUs use Raspberry Pi computers. Therefore, the average idle
power consumption of an OU is set to 3.1 W, corresponding
to a raspberry-pi along with sensors, at the idle state. A micro-
controller based OU is simulated, with a power of 0.7W [19].
A summary of the simulation parameters is given in Table I.

C. Simulation Scenarios

To generate scenarios, parameters described in the previous
section are combined. Such scenarios are representative of
various CPS deployments. A summary of the simulation
scenarios is given in Table II.

When AT , for Arctic Tundra, is part of the name, the
scenario describes what happens if the bait-camera is sending
files under an Arctic Tundra bandwidth, while USA scenarios
simulate a deployment under american mainland LTE cover-
age. When Stream, for stream processing, is part of the name,
the scenario describes the case where the data exchanged is
equal to 12GByte. Finally, when mic is part of the scenario
name, the chosen idle power for the OU corresponds to the
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micro-controller. When nothing is stated in the scenario name
for OU and data exchange, the default case implies Rb-pi and
Bait-camera, respectively.

For every data set sent, the simulator takes into account
the sizeReduced and the relative ∆cScore under one of
the previously listed scenarios to expose the possible trade-
off between energy benefits and the losses of the animal
classification made from images flowing from an OU being
part of a CPS to a CNN application.

V. EVALUATION: CNN

In this section, the impact of reducing the image dimensions
on the output of the CNN confidence score is described. Then,
the different scenarios previously described are evaluated.

For each scenario, we simulate the energy consumption of
the communication phases. 2048x1536 (100%) represents the
full images coming from bait cameras without any use of the
leverage. The others represent a down scaling of the image
done by re-configuring the camera accordingly.

A. The impact on the confidence score

This section analyses the impact on the confidence score of
reducing the dimensions of the images described in section II.

Table III presents the impact on the confidence score
through several metrics. The rows represents a chosen di-
mension for images and the corresponding result metrics. The
dimensions of the images goes from 205x154 to 1843x1382
pixels, thus respectively representing a scale down from 10%
to 90% of the full image dimensions, 2048x1536.

All confidence scores and Confidence scores > 90% rows
represent the metrics for all the predictions and for the
predictions having confidence scores over 90%, respectively.
The former aids in the overall understanding of the results. The
latter aids in understanding the behaviour when focusing on
only the highest confidence scores. When discussing with our
ecologists collaborators, confidence scores over 90% are the
predictions that matches a classification done by an expert of
the field. The column #Classifications represents the number of
classifications outputted by the CNN under the given context,
i.e. for a given scale and threshold of confidence score. It helps
in understanding the impact of the chosen scale on the number
of detected animals. The ∆cScore(StD) column represents the
average for the ∆cScore metric, and the sizeReduced(StD)
column represents the average of the sizeReduced metric.
#FP represents the number of false positives detected from
the scaled down images, and FP avrg(StD) represents the
average confidence score of the previously detected false
positives. #FN and FN avrg(StD) represent the number of
false negatives and average confidence scores of detected false
negatives, respectively. These metrics are previously described
in section IV. Standard deviation are following the given
averaged metrics, in parenthesis.

B. ”All confidence scores” analysis

To have a global view of the impact of such a leverage
on the output given by the CNN, we make the analysis of

chosen metrics on all outputted animal predictions, for all
image scales. For All confidence scores and for all scales, the
average difference between predictions, ∆cScore metric, is
very low. For instance, for the “10%” image scale, ∆cScore
has an average of −1.53 and a standard deviation of 21.75.
In other words, the average difference in confidence scores
when using full vs. scaled down images to only 10% of the
full image dimensions, is around −1.53 per cent but with a
standard deviation of 21.75.

Note that a negative average ∆cScore means that, in
average, the confidence scores are better than the full ones,
here by an average of 1.53 but with a standard deviation
of 21.75. These results show that for the smallest studied
input to the CNN, the “10%” images, most of the predictions
are deviated by, at worst, around 20% when compared to
confidence scores on full images.

For image scale between “20%” and “90%”, ∆cScore
has a near null average and low standard deviation between
−0.98(12.97) and −0.52(5.65), respectively. These results
show that for the other studied dimensions, from “20%” to
“90%”, most of the predictions are deviated by, at worst,
around 12% to 5% when compared to predictions using full
images, respectively.

We also observe that images reduced from “10%” to “90%”
of the originals makes the image size in Bits smaller by a factor
of 48.79 to 1.45, respectively. For images reduced to “20%”,
13174 out of 13853 classifications are false positives. For the
images reduced to 90%, 443 out of 1260 classifications are
false positives.

Thus, between 95.09% and 35.15% of the predictions from
scaled down images are false positives. But these predictions
have very low average confidence score and very low stan-
dard deviation, between 1.47(4.63) for 205x154 (10%) and
0.68(0.77) for “90%”, respectively. As ecologists are only
interested in very high confidence scores matching what a
human specialist can achieve, these false positives are not of
interest to the ecologists and will not be studied.

For image dimensions “10%” and “90%”, 684 and 111 out
of 912 are detected as false negatives. In other words, 75.0%
to 12% of classifications found on the “100%” images are
not found on “10%” and “90%”, respectively. Again, very
low average cScore are found, from 3.55(10.95) for “10%”
to 0.97(0.82) for “90%”.

C. ”Confidence scores > 90%” analysis

To focus on the impact reducing the image dimensions has
on the high confidence scores, we make the same analysis as
above but focus on confidence scores of animals above 90%.
The high confidence score classifications are those being of
interest to ecologists because they match the classifications
they can do manually, i.e matching the classification of an ex-
pert. Obviously, the number of classifications drops compared
to the All confidence scores. For all cases, between 94 and 99
classifications match.
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TABLE III: CNN confidence score differences, sizeReduced, false positives and false negatives

Dimensions (scale) #Classifications ∆cScore(StD) sizeReduced(StD) #FP FP avrg(StD) #FN FN avrg(StD)
All confidence scores

205x154 (10%) 2167 -1.53(21.75) 48.79(7.08) 1910 1.47(4.63) 684 3.55 (10.95)
410x307 (20%) 13853 -0.98(12.97) 19.15(2.67) 13174 0.78(0.92) 405 2.07 (3.99)
614x461 (30%) 8057 0.10 (8.75) 10.17(1.57) 7282 0.69(0.75) 298 1.44 (2.10)
819x614 (40%) 4055 -0.23(7.37) 6.28 (0.98) 3204 0.66(0.59) 211 1.45 (2.31)

1024x768 (50%) 1709 0.01 (5.70) 4.21 (0.67) 909 0.67(0.92) 182 1.07 (0.89)
1229x922 (60%) 1719 -0.21(6.37) 3.05 (0.41) 908 0.70(1.72) 183 1.24 (1.51)

1434x1075 (70%) 1778 -0.04(5.00) 2.29 (0.26) 958 0.60(0.23) 148 1.12 (1.16)
1638x1229 (80%) 1868 -0.12(4.66) 1.81 (0.18) 1013 0.62(0.50) 110 1.03 (0.86)
1843x1382 (90%) 1260 -0.52(5.65) 1.45 (0.12) 443 0.68(0.77) 111 0.97 (0.82)

2048x1536 (100%) 912 0.0 (0.0) 0.0 0 0 (0.0) 0 0 (0.0)
Confidence scores > 90%

205x154 (10%) 94 8.79(21.15) 46.89 (10.45) 1 93.82(0.0) 5 97.17(3.32)
410x307 (20%) 99 1.67(10.01) 18.55 (3.58) 0 0.0 (0.0) 0 0.0 (0.0)
614x461 (30%) 99 1.43 (8.03) 10.14 (1.72) 0 0.0 (0.0) 0 0.0 (0.0)
819x614 (40%) 99 0.83 (5.23) 6.42 (0.96) 0 0.0 (0.0) 0 0.0 (0.0)

1024x768 (50%) 99 0.52 (3.42) 4.42 (0.64) 0 0.0 (0.0) 0 0.0 (0.0)
1229x922 (60%) 99 0.41 (2.78) 3.19 (0.39) 0 0.0 (0.0) 0 0.0 (0.0)

1434x1075 (70%) 99 0.35 (2.53) 2.40 (0.25) 0 0 (0.0) 0 0 (0.0)
1638x1229 (80%) 99 0.18 (1.28) 1.89 (0.18) 0 0 (0.0) 0 0 (0.0)
1843x1382 (90%) 99 0.18 (1.31) 1.51 (0.12) 0 0 (0.0) 0 0 (0.0)

2048x1536 (100%) 99 0.0 (0.0) 0.0 0 0 (0.0) 0 0 (0.0)

∆cScore varies between 8.79(21.15) and 0.18(1.28). With
image scales over “40%”, the average and the standard
deviation also start to be very low, 0.83(5.23).

The average factor for the decrease in size is very close
to All confidence scores, with a highest sizeReduced of
46.89(10.45) to 1.51(0.12) for “10%” to “90%”, respectively.
In other words, scaled down images where the CNN gives a
confidence score over 90% are in average between 46.89 and
1.51 times smaller than full “100%” images, respectively.

For images scaled down to “10%”, 1 out of 94 is detected
as false positives. For images with scales above “20%”, all
with 99 predictions like for full “100%” images, there are
zero false positives. Thus, only one prediction is detected as
false positives for all studied image scales.

The CNN output false negatives only for the “10%” images,
at 5 false negatives. In other words, for predictions with
confidence score over 90% and only on “10%” scale images,
the CNN doesn’t detect 5.05% of the predictions seen on full
“100%” images. In summary, if looking only at the predictions
with high confidence scores, the number of false positives and
negatives for images above “10%” as scale is equal to zero.

VI. EVALUATION: UP-TIME AND ENERGY

This section focuses on the energy benefits coming from
reducing the image dimensions for communication periods
for the scenarios summed up in table II. The simulator uses
sizeReduced factors in the All confidence scores in table III.

Table IV presents results of the simulation of energy
consumption during communication phases for the scenarios
described in Table II. For every scenario, a set of results are
given: the energy consumption (in Joules (J)), the reduction
in transmission time tSaved (in hours) and the percentage
of energy saved %eSaved, achieved when reducing image
dimensions.

As the bandwidth is highly variable on the Arctic Tundra,
two extreme bandwidths reported in [8] are simulated under
”Arctic Tundra 0.1 Mbps Bandwidth” and ”Arctic Tundra 10.0
Mbps Bandwidth”. A bandwidth equivalent to the average
bandwidth seen in the USA is also simulate with ”USA, 16.31
Mbps as Bandwidth”, to include a typical available bandwidth.

A. Reduced Up-time
For the low bandwidth on the Arctic Tundra, 0.1 Mbps,

major up-time savings comes from transmitting reduced im-
ages. This is the case on both Raspberry Pi (AT ) and micro-
controller based OUs (ATMic), for both the Bait-Camera and
Stream sizes of exchanges. The reduced time to transmit are
from 26h07m to 8h17m and from 261h12m to 82h46m for the
Bait-Camera and the Stream scenarios, respectively.

Optimistically assuming a bandwidth of 10 Mbps on the
Arctic Tundra, the energy savings result in up-time savings
between 16m to 5m and between 2h37m and 50m, for the
Bait-Camera and the Stream scenarios, respectively.

If the OU is deployed in a region where the coverage permits
a bandwidth equal to 16.31Mbps, the up-time gains would be
between 10m and 3m and between 1h36m and 30m, for Bait-
Camera and Stream sizes of exchanges, respectively.

Thus, in every studied case, devices using the image scale
leverage see their transmission time reduced significantly,
obviously translating into energy savings.

B. Energy saved
As expected, for every scenario, choosing a smaller scale

of image consumes less energy to communicate than a bigger
one. For every chosen bandwidth and size of exchange, the
energy consumed (in Joules) during communication periods
are an order of magnitude higher when comparing Raspberry-
pi to micro controller based OUs. Also, the energy consumed
while having ”Stream” size of exchange is an order of mag-
nitude higher than ”Bait-Camera”.
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TABLE IV: Energy spent (Joules) and time saved (hours) for communication phases, one OU for all scenarios

Size : Bait-Camera (1.2 GByte) Size : Stream (12.0 GByte)
Arctic Tundra, 0.1 Mbps Bandwidth

Dimensions (scale) sizeReduced AT(J) ATMic(J) tSaved ATStream(J) ATStreamMic (J) tSaved % eSaved
205x154 (10%) 48.79 6099.61 1377.33 26h07m 60996.11 13773.31 261h12m 97.95
410x307 (20%) 19.15 15540.47 3509.14 25h16m 155404.70 35091.38 252h44m 94.78
614x461 (30%) 10.17 29262.54 6607.67 24h03m 292625.39 66076.70 240h27m 90.17
819x614 (40%) 6.28 47388.54 10700.64 22h25m 473885.35 107006.37 224h12m 84.08

1024x768 (50%) 4.21 70688.84 15962.00 20h19m 706888.36 159619.95 203h20m 76.25
1229x922 (60%) 3.05 97573.77 22032.79 17h55m 975737.70 220327.87 179h14m 67.21

1434x1075 (70%) 2.29 129956.33 29344.98 15h01m 1299563.32 293449.78 150h13m 56.33
1638x1229 (80%) 1.81 164419.89 37127.07 11h56m 1644198.90 371270.72 119h20m 44.75
1843x1382 (90%) 1.45 205241.38 46344.83 8h17m 2052413.79 463448.28 82h46m 31.03

2048x1536 (100%) 0.00 297600.00 67200.00 0h0m 2976000.00 672000.00 0h0m 0.0
Arctic tundra, 10 Mbps Bandwidth

Dimensions (scale) sizeReduced AT(J) ATMic(J) tSaved ATStream(J) ATStreamMic (J) tSaved % eSaved
205x154 (10%) 48.79 61.00 13.77 0h16m 609.96 137.73 2h37m 97.95
410x307 (20%) 19.15 155.40 35.09 0h15m 1554.05 350.91 2h32m 94.78
614x461 (30%) 10.17 292.63 66.08 0h14m 2926.25 660.77 2h24m 90.17
819x614 (40%) 6.28 473.89 107.01 0h13m 4738.85 1070.06 2h15m 84.08

1024x768 (50%) 4.21 706.89 159.62 0h12m 7068.88 1596.20 2h02m 76.25
1229x922 (60%) 3.05 975.74 220.33 0h11m 9757.38 2203.28 1h48m 67.21

1434x1075 (70%) 2.29 1299.56 293.45 0h9m 12995.63 2934.50 1h30m 56.33
1638x1229 (80%) 1.81 1644.20 371.27 0h7m 16441.99 3712.71 1h12m 44.75
1843x1382 (90%) 1.45 2052.41 463.45 0h5m 20524.14 4634.48 0h50m 31.03

2048x1536 (100%) 0.00 2976.00 672.0 0h0m 29760.00 6720.00 0h0m 0.0
USA, 16.31 Mbps Bandwidth

Dimensions (scale) sizeReduced USA(J) USAMic(J) tSaved USAStream(J) USAStreamMic(J) tSaved % eSaved
205x154 (10%) 48.79 37.40 8.44 0h10m 373.98 84.45 1h36m 97.95
410x307 (20%) 19.15 95.28 21.52 0h9m 952.82 215.15 1h33m 94.78
614x461 (30%) 10.17 179.41 40.51 0h9m 1794.15 405.13 1h28m 90.17
819x614 (40%) 6.28 290.55 65.61 0h8m 2905.49 656.08 1h22m 84.08

1024x768 (50%) 4.21 433.41 97.87 0h7m 4334.08 978.66 1h15m 76.25
1229x922 (60%) 3.05 598.25 135.09 0h7m 5982.45 1350.87 1h06m 67.21

1434x1075 (70%) 2.29 796.79 179.92 0h6m 7967.89 1799.20 0h55m 56.33
1638x1229 (80%) 1.81 1008.09 227.63 0h4m 10080.93 2276.34 0h44m 44.75
1843x1382 (90%) 1.45 1258.38 284.15 0h3m 12583.78 2841.50 0h30m 31.03

2048x1536 (100%) 0.00 1824.65 412.01 0h0m 18246.47 4120.17 0h0m 0.0

Using the image scale leverage results in significant energy
savings, %eSaved, for all scenarios between 97.95% and
31.03% for “10%” and “90%” image scales, respectively.
Thus, even with the largest applied image scale, we still
document energy savings. As noticed, %eSaved is the same
for all scenarios for a chosen percentage. We provide a proof
below that the percentage of energy saved depends only on
the sizeReduced factor.

Let energyCommReduced, for energy Communication Re-
duced, be the energy consumed for transmitting reduced data,
energyCommFull, for energy Communication Full, be the
energy needed to send full data over a given bandwidth bw,
Pidle be the idle power consumption of a given device, and
sizeO be the size of the full images.

Theorem 1. The percentage of energy saved, for the image
scale leverage, depends only on ”sizeReduced”.

Proof of Theorem 1.

%eSaved = 100− energyCommReduced ∗ 100
energyCommFull

= 100−
PIdle ∗

sizeO
sizeReduced

bw

PIdle ∗ sizeO
bw

∗ 100

= 100−
���PIdle ∗

sizeO
sizeReduced

bw

���PIdle ∗ sizeO
bw

∗ 100

= 100−
sizeO

sizeReduced

bw
∗ bw

sizeO
∗ 100

= 100−
sizeO

sizeReduced

��bw
∗ ��bw

sizeO
∗ 100

= 100− sizeO

sizeReduced
∗ 1

sizeO
∗ 100

= 100− ���sizeO

sizeReduced
∗ 1

���sizeO
∗ 100

= 100− 1

sizeReduced
∗ 100

As %eSaved depends only on sizeReduced, the need to
complicate the OUs design to apply this leverage is near null.
In fact, the percentage of energy saved does not depend on
PIdle, the consumption of the OU, nor bw, the bandwidth of
the network. In other words, the OUs can compute the poten-
tial energy saved to the full images by knowing the sizes in
Bits of both full and reduced image to compute sizeReduced.
Thus, no need for monitoring the energy consumed nor the
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bandwidth to know the %eSaved, complicating the OU and
potentially reducing its up-time.

Combining previous results (from the CNN losses and
energy saved for All confidence scores), the average difference
concerning confidence scores (∆cScore) range from −1.53
to 0.10 while the percentage of energy saved (% eSaved)
range from 97.95% to 31.03%. Thus, even when “90%” is
chosen as the image scale, significant energy saving are made,
here 31.03%, compared to sending full images. Importantly,
this comes with almost unchanged confidence scores as both
average and standard deviation of ∆cScore are low.

When looking at the Confidence scores > 90% and for the
same image scale, ∆cScore average and standard deviation
are equal to 0.18(1.31) with no false positives (#FP ) and no
false negatives(#FN ) detected. When “50%” is the chosen
image scale, the average and standard deviation of ∆cScore
are low and equal to 0.01(5.70) and 0.52(3.42), for both All
confidence scores and Confidence scores > 90% respectively.
No relevant false positives nor false negatives are detected and
the percentage of energy saved is equal to 76.25%, compared
to sending “100%” images.

These results are focused on only one OU, connected
directly with the CNN application at the back-end. With
every OU applying this leverage, the lifetime of the CPS will
be greatly extended. For the Arctic Tundra use-case, good
coverage is not expected, forcing most of the OUs to exchange
data in a peer-to-peer manner. Thus, the energy savings will
even be bigger when this leverage is applied.

In this section, we documented the losses concerning the
confidence score, false positive and negatives of the CNN
when using the proposed leverage. We underline the signif-
icant energy savings during communication periods on all the
scenarios and image scales, with bait-camera and stream data
sizes, at high and low bandwidth, and with OUs based on
Raspberry Pis and micro-controllers.

We underline a trade-off between the losses in the confi-
dence scores given by the CNN and the energy saved by the
deployed CPS. This trade-off could be used to involve the
end user, here the ecologist, in the choice of dimensions of
images. Ecologists, as end users, are the only one able to tell
the system how far the confidence scores can differ from the
“100%” confidence scores.

VII. RELATED WORK

Machine learning applications are nowadays widely used
to automate multiple tasks. Convolutional Neural Network
(CNN) is a paradigm used mainly for image classification.
Ecologists deploy multiple occurrence of wildlife cameras to
take images of wild animals in remote places, resulting in
millions of images to analyze, usually by hand. Thus, CNNs
are a good match for analysis of images from wildlife cameras.
For example, in [20] authors implement and evaluate a ResNet-
18 architecture based CNN for wildlife cameras. In [21],
authors also implement a CNN but reduce the training time and
better the accuracy by using transfer learning. Both previously

exposed article stress the reduction of time for the analysis task
for the ecologist end user.

The high computational complexity, and thus high need for
energy, for both the training and usage of these models is one
of the main drawback of algorithms composing this paradigm.
Recent literature propose to tackle this problem.

On the hardware side, versatile approaches can be found.
In [22] authors proposes a pipe-lined approach that uses
multiple FPGA for better performance and energy efficiency.
Authors also validate their proposed architecture by building
a prototype of six connected FPGA boards to demonstrate
the energy efficiency of the approach, compared to CPU and
GPU approaches. In [23], authors propose a system-on-chip
approach that answers the analytics of data near sensors.

There is also a wide variety of solutions on the software
side. In [24] authors propose a data-flow to reduce the data
movements and thus energy consumption of CNN application
on physical architectures. In [25], an energy-aware algorithm
that uses the energy consumed by a CNN to chose which layer
to prune in order to increase its energy efficiency is proposed.
To prune a layer, the algorithm removes the weights that have
the smallest joint impact on the output feature maps.

A set of papers proposes to use a CNN with a CPS.
In [26], authors combine a CPS, Big Data analytics and
optimization algorithms for energy efficient machining opti-
mization. For acoustic event detection in [27], reduction of
the energy consumption of analytics is done by implement-
ing a lightweight data footprint algorithm for both energy
efficiency and compatibility for low power architectures, like
edge devices. Finally, papers like [28] proposes to reduce
the energy consumption of devices by modeling their energy
consumption with learning approaches, answering parameters
like the voltage or frequency for a given workload.

The introduction of machine learning solutions to automate
analytics processes still has lots of open problems [29]. It
would be interesting to apply all previous solutions (or at least
compatible ones) to maximize energy efficiency as an end to
end problem, from the CNN training to the data coming back
from the CNN. But none of the previous solutions proposes
to reduce the energy consumed of a CPS on batteries with
modification of the output of sensors, without deteriorating
the confidence score and without modifying the CNN. In other
words and on top of our knowledge no trade-off between en-
ergy consumed by devices on the edge and a CNN confidence
score is proposed in the literature.

VIII. CONCLUSION

In a world where connected devices working from batteries
are flourishing everywhere around us, reducing the energy
consumed during communication periods is crucial. We pro-
pose an energy leverage to reduce the energy consumption of
communication periods of units sending images to a Convo-
lution Neural Network (CNN) application, while maintaining
close to equal confidence scores, especially for high confidence
value predictions. We apply this method on a real use case of
Observation Units (OUs) deployed on the arctic tundra, the
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Distributed Arctic Tundra (DAO) project, taking images of
wild animals passing by the device.

Evaluation highlights a wide variety of energy savings
thanks to scaling down the image dimensions, from 31 to
98 percent of energy saved during communication phases
when devices on the field send images to a centralized CNN
application. The worst case average difference concerning the
confidence scores of animals on a complete set of previously
collected images is a negligible 0.01.

The lifetime of the CPS deployed on the field is increased
thanks to trading off confidence scores for energy savings.
Depending on the realistically chosen bandwidth and measured
device characteristics, the time an observation unit must be
operating just to transmit the set of images is reduced by at
best 261 hours to at worst 3 minutes, underlining the fact
that all the studied scenarios, including bandwidth, idle power
consumption and size of exchange as parameters, could benefit
from using this energy leverage.

A short term future work is a full implementation of this
leverage on the DAO project to further involve the ecologists
in the end choice of the image scale, as a dynamic parameter
of the CPS. Future works also include exploration of other
approaches to implement lossy compression on images along
with data types like sensor logs, video, audio, generalizing the
approach to other types of data and other automated analysis
tools. Finally, we plan on implementing a lightweight edge
computing version of the classification tool.
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