
Performance and Energy

Analysis of OpenMP Runtime

Systems with Dense Linear

Algebra Algorithms

Journal Title
XX(X):1–17
c�The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

João V. F. Lima
1
, Issam Raı̈s

2
, Laurent Lefèvre

2
, and Thierry Gautier

2

Abstract

In this paper, we analyse performance and energy consumption of five OpenMP runtime systems
over a NUMA platform. We also selected three CPU level optimizations, or techniques, to evaluate
their impact on the runtime systems: processors features Turbo Boost and C-States, and CPU DVFS
through Linux CPUFreq governors. We present an experimental study to characterize OpenMP
runtime systems on the three main kernels in dense linear algebra algorithms (Cholesky, LU and QR)
in terms of performance and energy consumption. Our experimental results suggest that OpenMP
runtime systems can be considered as a new energy leverage, and Turbo Boost, as well as C-
States, impacted significantly performance and energy. CPUFreq governors had more impact with
Turbo Boost disabled, since both optimizations reduced performance due to CPU thermal limits. A
LU factorization with concurrent write extension from libKOMP achieved up to 63% of performance
gain and 29% of energy decrease.

Keywords

OpenMP, task parallelism, linear-algebra algorithms, NUMA, energy efficiency

1. Introduction

Energy efficiency is one of the five major challenges that should be overcome in the path to exascale
computing (Bergman et al. 2008). Despite improvements in energy efficiency, the total energy consumed
by supercomputers is still increasing due to the even quicker increase in computational power. High
energy consumption is not only a problem of electricity costs, but it also impacts greenhouse emissions

1Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
2Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP, France

Corresponding author:

João V. F. Lima, Centro de Tecnologia, Prédio 07, Anexo B - Sala 374, Avenida Roraima 1000, Santa Maria, RS, Brazil.
Email: jvlima@inf.ufsm.br

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 Journal Title XX(X)

and dissipating the produced heat can be difficult. As the ability to track power consumption becomes
more commonplace, with some job schedulers supporting tracking energy use (Yang et al. 2013), soon
users of HPC systems may have to consider both how many CPU hours they need and how much energy.

Energy budget limitation imposes a high pressure to the HPC community making energy consideration
a prominent research field. Most of the gain will come from technology by providing more energy
efficient hardware, memory and interconnect. Nevertheless, recent processors integrate more and more
leverages to reduce energy consumption (e.g. classical DVFS, deep sleep states) and low level runtime
algorithms provide orthogonal leverages (e.g. dynamic concurrency throttling). However few of these
leverages are integrated and employed in today local level software stack such as middleware, operating
system or runtime library. Due to the complexity of this statement, we restricted our investigation to local
node energy consumption by HPC OpenMP applications.

OpenMP is an API standard to express parallel portable programs. Most of controls are implementation
defined and rely on the specific OpenMP programming environment used. The OpenMP standard does
not impose any constraint on implementations. Even if there are more precise specifications, e.g. mapping
of threads to cores, it is very tricky to precisely control performance or energy consumption using what
OpenMP specification proposes (Bari et al. 2016). Previous works have dealt with a specific OpenMP
runtime (Porterfield et al. 2013a; Nandamuri et al. 2014; Su et al. 2012; Marathe et al. 2015; Lively
et al. 2011; Li et al. 2010) that may be difficult to generalize to other OpenMP runtime systems without
strong development effort. To the knowledge of the authors, there is no related work comparing OpenMP
runtime systems in order to analyse performance and energy consumption.

In this paper, we analysed performance and energy consumption of five OpenMP runtime systems over
a NUMA system. We also selected three CPU level optimizations, or techniques, to evaluate their impact
on the runtime systems: processors features Turbo Boost and C-States, and CPU DVFS through Linux
CPUFreq governors. We restrict our experiments on three dense linear algebra algorithms: Cholesky, LU
and QR matrix factorizations. Source codes are based on KASTORS (Virouleau et al. 2014) benchmark
suite and the state of the art PLASMA library using its new OpenMP implementations (YarKhan et al.
2016) that rely on OpenMP tasks with data dependencies.

The paper is an extended version of the paper presented at the 8th Workshop on Applications for
Multi-core Architectures (WAMCA 2017). The contributions of this paper are:

• We present early experiments of performance and energy consumption over OpenMP runtime
systems;

• We report the impact of three CPU level optimizations in order to present the respective gains with
different combinations;

• We observed that a LU factorization with concurrent-write access mode achieved up to 63% in
performance gain and 29% in energy over original LU algorithm;

• In addition, our findings suggest that Turbo Boost and C-States had significant impact on
performance and energy. CPUFreq governors had more impact with Turbo Boost disabled since
Turbo Boost with the performance governor reduced performance due to CPU thermal limits.

The remainder of the paper is organized as follows. Section 2 presents the related work. Section 3
gives some details of the OpenMP task programming model and an overview about five runtime
implementations. Section 4 details the experimental hardware and methodology used. Our experimental

Prepared using sagej.cls

Lima et al. 3

results are presented in Section 5. Finally, Section 6 and Section 7, respectively, present the discussion
and conclude the paper.

2. Related work

Multiple techniques, or leverages, dealing with the energy-performance trade-off are exposed and used
in the literature. In (Benoit et al. 2017), authors demonstrate the challenge of using the shutdown
and wakeup leverages for large scale HPC infrastructure without altering the throughput of needed
computation. In (Ribic and Liu 2014), Dynamic Voltage and Frequency Scaling (DVFS) is used to lower
the speed of threads that are not in the critical path with a warranty on performance. In (Etinski et al.
2010), authors bind DVFS with EASY backfilling job scheduling to answer possible system load variation
in an energy-efficient way. Considering communications between node, the authors of (Rountree et al.
2009) reduce the frequency of tasks which would block for MPI communication. In (Laros et al. 2012)
the authors analyses the effects of both DVFS and network bandwidth scaling

Other works use the simplicity proposed by OpenMP to vary the number of threads, for energy
efficiency. Authors in (Curtis-Maury et al. 2006) and (Porterfield et al. 2013b) defend the Dynamic
Concurrency Throttling (DCT) and underline the fact that using OpenMP to control the number of threads
could be energy efficient, depending on the algorithm or the chosen hardware.

Previous works show that various energy behaviors of computing nodes are possible through various
leverages (DVFS, DCT, etc). But none of the previous work focus on OpenMP runtime systems as a
leverage. None of the previous work dealt with the energy-performance trade-off and thus underlined
possible variability concerning energy and performance for existing runtime systems. Thus, to the
knowledge of the authors, no related work were trying to compare several OpenMP runtime libraries
together for various representative workloads, as presented in our paper.

We use state of the art PLASMA library (YarKhan et al. 2016), on three main kernels in dense linear
algebra (Cholesky, LU and QR factorizations), that implements dependent tasks model. This model is
new and never addressed in related works. In (Porterfield et al. 2013a; Nandamuri et al. 2014) the authors
based their experiments using the BOTS (Duran et al. 2009) benchmarks that require only the independent
tasks.

3. OpenMP Task programming model and implementations

In 2013 the OpenMP Architecture Review Board introduced in the OpenMP revision 4.0 a new way of
expressing task parallelism using OpenMP, through the task dependencies. This section introduces the
task dependency programming model targeted by the selected benchmark suites. We also present how
the model is implemented in various runtime libraries.

3.1. Dependent task model
OpenMP dependent task model allows to define dependencies between tasks using declaration of accesses
to memory with in,out, or inout. Two tasks are independent (or concurrent) if and only if they do not
violated the data dependencies of a reference sequential execution order⇤.

⇤OpenMP does not allows variable renaming to suppress output and anti-dependencies.

Prepared using sagej.cls

4 Journal Title XX(X)

1 for (k=0; k<NB; k++) {

2 #pragma omp task untied shared(M) \

3 depend(inout: M[k*NB+k])

4 lu0(M[k*NB+k]);
5 for (j=k+1; j<NB; j++)

6 #pragma omp task untied shared(M) \

7 depend(in: M[k*NB+k]) depend(inout: M[k*NB+j])

8 fwd(M[k*NB+k], M[k*NB+j]);

9

10 for (i=k+1; i<NB; i++)

11 #pragma omp task untied shared(M)\
12 depend(in: M[k*NB+k]) depend(inout: M[i*NB+k])

13 bdiv(M[k*NB+k], M[i*NB+k]);

14

15 for (i=k+1; i<NB; i++)

16 for (j=k+1; j<NB; j++)

17 #pragma omp task untied shared(M)\
18 depend(in:M[i*NB+k], M[k*NB+j]) depend(inout:M

[i*NB+j])

19 bmod(M[i*NB+k],M[k*NB+j],M[i*NB+j]);
20 }

Figure 1. LU factorization with OpenMP dependent task.

Table 1. Characteristics of OpenMP runtime systems.

Name Dependencies Task Scheduling Remarks
libGOMP hash table centralized list task throttling
libOMP hash table work stealing bounded dequeue

OmpSs hash table socket-aware
work stealing

XKaapi hash table* non blocking
work stealing task affinity

libKOMP resizable
hash table

non blocking
work stealing

task affinity
concurrent write

Figure 1 illustrates a LU factorization based on PLASMA (YarKhan et al. 2016). The programmer
declares tasks and the accesses in,inout they made to a memory region (here only lvalue or memory
reference, i.e. pointer).

The OpenMP library computes tasks and dependencies at runtime, and schedules concurrent tasks
on the available processors. The strategy for task dependencies and task scheduling depends on the
runtime implementation. Nevertheless, their implementations impact the performance and the energy
consumption. Moreover, the absence of precise OpenMP specification about the task scheduling
algorithm is the key point to allow research to improve performance and energy efficiency with
implementation concerns.

3.2. Runtime system implementations
Table 1 summarizes the properties of five OpenMP runtime systems.

Prepared using sagej.cls

Lima et al. 5

libGOMP is the OpenMP runtime that comes with the GCC compiler. Dependencies between tasks are
computed through a hash table that map data (pointer) to the last task writing the data. Ready tasks are
pushed into several scheduling dequeues. The main dequeue stores all the tasks generated by the threads
of a parallel region. Tasks seem to be inserted after the position of their parent tasks in order to keep
an order close to the sequential execution order. Because threads share the main dequeue, serialization
of operations is guaranteed by a pthread mutex which is a bottleneck for scalability. To avoid overhead
in task creation, libGOMP implements a task throttling algorithm that serialize task creation when the
number of pending tasks is greater than a threshold proportional to the number of threads.

libOMP was initially the proprietary OpenMP runtime of Intel for its C, C++ and Fortran compilers.
Now it is also the target runtime for the LLVM/Clang compiler and sources are open to community.
libOMP manages dependencies in the same way that libGOMP by using a hash table. Memory allocation
during task creation relies on a fast thread memory allocator. libOMP task scheduling is based on Cilk
almost non blocking work stealing algorithm (Frigo et al. 1998), but dequeue operations are serialized
using locks. Nevertheless, it implies distributed deques management with high throughput of dequeue
operations. libOMP also implements a task throttling algorithm by using bounded size dequeue.

OmpSs (Bueno-Hedo et al. 2012) is a runtime system developed at the Barcelona Supercomputing
Center, compatible with the OpenMP specification. It has a specific compiler, called Mercurium, that
transforms OpenMP directives to calls to Nanos++ runtime entrypoints. As libGOMP and libOMP,
OmpSs computes task dependencies at task creation using hash map. In our experiments we select the
breadth-first scheduler. In our experiments we selected the Socket-aware scheduler (socket) which is a
work stealing based task scheduler with distributed deques implementations.

XKaapi (Gautier et al. 2013) is a task library for multi-CPU and multi-GPU architectures which
provides binary compatible library with libGOMP (Broquedis et al. 2012). Task scheduling is based
on the almost non blocking work stealing algorithm from Cilk (Frigo et al. 1998) with extension to
combine steal requests in order to reduce overhead in stealing (Tchiboukdjian et al. 2013). Moreover,
XKaapi computes dependencies on steal request, which is a perfect application of the work first principle
to report overhead in task creation to critical path. The XKaapi based OpenMP runtime also has support
to some OpenMP extensions such as task affinity (Virouleau et al. 2016) that allows to schedule tasks on
NUMA architecture, and to increase performance by reducing memory transfer and thus memory energy
consumption.

libKOMP (Gautier and Virouleau 2015) is a redesign of (Broquedis et al. 2012) on a top of the Intel
runtime libOMP. It includes following features coming mainly from XKaapi: the dequeue management
and work stealing with request combining; task affinity specific work stealing heuristic; a dynamically
resized hash map that avoid high conflicts when finding dependencies for large tasks’ graph; and tracing
tool based on the OpenMP OMPT API; and finally a task concurrent write extension with a Clang
modification † to provide the OpenMP directive clause. This latter extension allows better parallelism
and was used in one of our LU benchmark and it very closed of the task reduction feature currently under
discussion in the OpenMP architecture review board.

†http://gitlab.inria.fr/openmp/clang

Prepared using sagej.cls

6 Journal Title XX(X)

3.3. Discussion
In our study of the mentioned OpenMP runtime systems, none of them include energy leverage such as
thread throttling or DVFS. Nevertheless, their different task scheduling algorithms may impact energy
efficiency. The main dequeue accesses in libGOMP serialize threads using a POSIX mutex. On Linux the
mutex will block waiting threads after short period of active polling which ensure that few core cycles
will be waste in the synchronisation.

On the other hand, libOMP, XKaapi and libKOMP work stealing actively poll dequeues until the
program ends or a task is found. In order to reduce activity during polling, libOMP and libKOMP may
block threads after an unsuccessful search of work by 200ms (default value). Once work is found, all
threads are waked up.

4. Tools and Methods

This Section details the hardware configuration we experimented on and the OpenMP runtime systems we
compared. We also give hints about the methodology used to process the collected data using statistical
tools R.

4.1. Evaluation platform
Our experimental platform was a SGI UV2000 machine composed of eight NUMA nodes with one Intel
Xeon E5-4617 (Sandy Bridge) processor each (total 8 processors) and 6 cores per processor (48 cores
total) running at 2.9 GHz or 3.2GHz with Turbo Boost, and 512 GB of main memory. The processor has
Turbo Boost 2.0 technology, and six idle states of C-States available: POLL C1-SNB C1E-SNB C3-SNB
C6-SNB C7-SNB. The operating system was a Debian with Linux kernel 4.9.0-1 with two CPUFreq
governors available: powersave and performance. Both DVFS governors have frequency limits from 1.20
GHz to 3.40 GHz.

4.2. Software description
4.2.1. Benchmarks We used kernels from two benchmark suites: the KASTORS (Virouleau et al. 2014)
benchmark suite and an OpenMP-parallelized PLASMA version (YarKhan et al. 2016). Both benchmark
suites tackle the same computational problems but use different algorithms in some cases. KASTORS was
built from PLASMA 2.6.0 (released in dec. 2013) at a time when PLASMA parallelism was supported
by a specific task management library called QUARK.

We focused our study on three dense linear algebra kernels:

• A Cholesky factorization (dpotrf);
• A LU factorization (dgetrf);
• A QR factorization (dgeqrf).

Cholesky factorization algorithms in both the benchmark suites are the same. We compare OpenMP
based PLASMA version 82f89ee‡. All these linear algebra kernels we used rely on the BLAS routines,
we used the implementation of OpenBLAS version 0.2.19.

‡Mercurial hash from https://bitbucket.org/icl/plasma

Prepared using sagej.cls

Lima et al. 7

4.2.2. Runtime Systems We compared the following runtime systems during our experiments:

• LibGOMP – the OpenMP implementation from GNU that comes with GCC 6.3.0.
• LibOMP – a port of the Intel OpenMP open-source runtime to LLVM release 4.0.
• LibKOMP (Gautier and Virouleau 2015) – a research runtime system, based on the Intel OpenMP

runtime, developed at INRIA. It offers several non-standard extensions to OpenMP. We evaluate the
concurrent write (CW) feature in our experiments coupled with Cilk T.H.E work stealing protocol.
We make experiments with version 54f7a28§.

• XKaapi (Gautier et al. 2013) – research runtime system developed at INRIA. It has lightweight
task creation overhead, and it offers several non-standard extensions to OpenMP (Broquedis et al.
2012) We evaluate its version efa5fdf¶.

• OmpSs (Bueno-Hedo et al. 2012) - a runtime system developed at the Barcelona Supercomputing
Center. The reported results are based on the 17.12 versionk.

In all experiments, we set OMP_WAIT_POLICY environment variable to passive, which means that
threads should not consume CPU power while waiting. OmpSs has an equivalent option to Nano++
through --enabled-sleep. XKaapi runtime does not implement a waiting policy.

4.3. Energy measurement methodology
Since several metrics have to be considered depending on the objective, we consider performance
(GFlop/s) and energy consumption (energy-to-solution). GFlop/s is measured by the each benchmark
itself: it corresponds to the algorithmic count of the number of floating point operations over the elapsed
time, using fact that matrix-matrix product does not rely on a fast algorithm such as Strassen like
algorithm. Times are get using the Linux clock gettime function with CLOCK REALTIME clock.

We employed the Intel RAPL (Running Average Power Limit) feature as source of data acquisition for
energy measurement. It exposes the energy consumption of several components on the chip (such as the
processor package and the DRAM) through MSRs (Model Specific Registers). Due to access limitation
of MSRs on the tested system, we designed a small tool querying periodically the RAPL counters based
on LIKWID (Treibig et al. 2011): Energy consumption for the whole package (PWR_PKG_ENERGY), for
the cores (PWR_PP0_ENERGY), for the DRAM (PWR_DRAM_ENERGY), as well as the core temperature
(TEMP_CORE). The tool gets the counter values periodically and associate them with a timestamp.

4.4. Experimental methodology
All benchmarks are composed of two steps: the first allocates and initializes a matrix; the second
step is the computation. We report execution time only from the computation step. Each experiment
was repeated at least 30 times, each computation on a newly random matrix (as implemented by the
benchmark). In parallel of the computation, we monitored the system by collecting various energy
counters from RAPL.

§Git repository: https://gitlab.inria.fr/openmp/libkomp
¶Available at: http://kaapi.gforge.inria.fr
kAvailable at: https://pm.bsc.es

Prepared using sagej.cls

8 Journal Title XX(X)

We selected three CPU level optimizations (Orgerie et al. 2014) in order to evaluate their impact on
performance and energy over the runtime systems: processor features Turbo Boost and C-States (Rotem
et al. 2012), and CPU DVFS through Linux CPUFreq governors. Intel Turbo Boost is an overclocking
mechanism that allows to the processor to raise core frequencies as long as the thermal and power limits
are not exceeded. The C-States feature corresponds to CPU idle states. Deeper C-States offer more power
savings, but at the cost of longer latency to enter and exit the C-State. On Linux, CPUFreq allows the
control of P-States, which defines the frequencies at which a processor can operate, by governors that
choose a frequency for the processor to use. The available governors on our experimental platform were:
powersave that chooses the lowest frequency; and performance, which chooses the highest frequency.

For each computation we collected performance (GFlop/s) timestamped by the beginning and the end
of the computation. This two timestamps were used in data post-processing to compute energy consumed
by the computation between the two timestamps. Values were interpolated by linear function if missing
in the collected energy values sampled periodically. Post-processing employs R script to compute energy
per computation and to output basic statistic for each configuration. In our experimental results, energy
values were the mean computed among the at least 30 computations of each configuration.

5. Experimental results

The goal of our experiments is to evaluate performance and energy consumption of OpenMP runtime
systems and the impact of three CPU level optimizations. Our objectives are:

1. Evaluate the runtime impact on performance and energy, as well as the CPU level techniques
(Sec. 5.1);

2. Analyse the correlation coefficient of CPU optimizations over performance and energy (Sec. 5.2);
3. Assess the impact of runtime extensions on performance of LU (Sec. 5.3).

The presented runtime systems have been experimented on the two benchmark suites presented in
section 4.2.1. We build two configurations of libKOMP using two sets of options (Gautier and Virouleau
2015). On the following komp refers to libKOMP configured with T.H.E Cilk work stealing queue and
requests combining protocol; and komp+cw is the same configuration than libKOMP with addition to
support concurrent write extension used in the KASTORS LU code dgetrf (Virouleau et al. 2014).

5.1. Runtime impact
Figure 2 shows performance and energy results with a matrix size of 32768⇥ 32768 and over all
machine resources available. Each configuration color represents the combination of the three CPU level
optimizations Turbo Boost (on and off), CPUFreq governor (performance and powersave), and C-States
(all enabled and none). Table 2 summarises the best results over each metric collected, i.e. performance,
DRAM energy counter, PKG energy counter, and DRAM+PKG energy counters.

In all cases libkomp attained the best performance results, followed by: xkaapi and gcc for Cholesky;
xkaapi and likomp (without CW) for LU; plasma and xkaapi for QR. OmpSs had similar performance to
plasma on Cholesky, and performed worst than others on LU. Nonetheless, we were not able to evaluate
ompss with QR due to a runtime error. The performance gains of libkomp over GCC were 9.7% for
Cholesky, 63.8% for LU, and 9.4% for QR. In addition, the CPU level optimizations for these results

Prepared using sagej.cls

Lima et al. 9

Cholesky LU QR

gcc
komp

omp
plasma

xkaapi

ompss
gcc

komp
omp

plasma
xkaapi

komp+cw

ompss
gcc

komp
omp

plasma
xkaapi

0

100

200

300

400

0

100

200

300

400

0

200

400

600

Runtime

G
Fl

op
/s

Configuration off / all / performance
off / all / powersave

off / none / performance
off / none / powersave

on / all / performance
on / all / powersave

on / none / performance
on / none / powersave

Cholesky LU QR

gcc
komp

omp
plasma

xkaapi

ompss
gcc

komp
omp

plasma
xkaapi

komp+cw

ompss
gcc

komp
omp

plasma
xkaapi

0

30

60

90

0

50

100

0

5

10

15

20

Runtime

R
AP

L
PK

G
+D

R
AM

 (k
J)

Configuration off / all / performance
off / all / powersave

off / none / performance
off / none / powersave

on / all / performance
on / all / powersave

on / none / performance
on / none / powersave

Figure 2. Performance (top) and energy (bottom) results of Cholesky, LU and QR over the UV2000 machine.
The matrix size was 32768x32768 with 352x352 of block size. On energy the reported results are the sum of
RAPL counter PKG and DRAM.

were: Turbo Boost enabled; powersave governor; and all C-States disabled. Clearly, the concurrent-write
feature of LU contributed to the significant gain of libkomp.

In energy libkomp had better energy results with Cholesky and LU, while QR had lower energy
consumption with plasma implementation and GCC. The CPU level optimizations for these results were:
Turbo Boost disabled; performance governor; and all C-States enabled for Cholesky and QR, and all
disabled for LU.

The cost of energy efficient cases in performance was not significant on the three benchmarks.
Comparing the best cases of energy over the best cases in performance, Cholesky had a reduction of
5.12% in performance, while LU and QR had 1.76% and 9.31% reduction respectively. Although, energy
reduction was of 8.51%, 10.88% and 11.71% for Cholesky, LU, and QR respectively.

Regarding the CPU level techniques, it seems that Turbo Boost and C-States contributed to the
performance gains, and CPUFreq governors had more impact on energy than performance. It was
expected that the best performance cases had Turbo enabled and all C-States disabled; still, those cases
had powersave as CPU DVFS governor. Besides, energy efficient cases had in most cases Turbo disabled,
all C-States enabled, and performance as CPU frequency governor.

Prepared using sagej.cls

10 Journal Title XX(X)

Table 2. Overview of the best results. Higher is better for performance, and lower is better in energy.

Method Runtime Turbo
Boost C-States Governor GFlop/s RAPL

PKG
RAPL
DRAM

PERFORMANCE
Cholesky komp enabled none powersave 732.45 13.02 2.13
LU komp+cw enabled none powersave 383.40 42.83 7.98
QR komp enabled none powersave 433.77 83.36 15.31
RAPL PKG+DRAM
Cholesky komp disabled all performance 694.95 11.62 2.24
LU komp+cw disabled none performance 376.64 37.12 8.16
QR plasma disabled all performance 393.40 71.42 15.70
RAPL PKG
Cholesky komp disabled all performance 694.95 11.62 2.24
LU gcc disabled all powersave 225.41 36.60 12.53
QR plasma disabled all performance 393.40 71.42 15.70
RAPL DRAM
Cholesky xkaapi enabled none powersave 723.23 13.22 2.11
LU komp+cw enabled none powersave 383.40 42.83 7.98
QR plasma enabled none powersave 404.92 81.07 15.19

In order to investigate the performance gains of powersave governor, we analysed the core temperature
counter from RAPL over Cholesky with libkomp runtime as illustrated in Figure 3. We collected each
socket temperature through a series of Cholesky executions, including an interval between executions of
30 seconds, and computed the mean of all readings per socket. The performance governor had greater
temperature readings than powersave on all sockets using Turbo Boost, while both governors had similar
temperature readings without Turbo Boost. It seems that tunning all CPU level optimizations to target
performance reached the thermal limits of the processor sockets, and degraded performance.

5.2. Correlation analysis
We used the Person correlation coefficient to test the correlation between two variables X and Y in order
to identify the CPU level techniques and their relation with performance and energy. This coefficient has
values between �1 and +1 where +1 means a perfect positive linear correlation, 0 is no linear correlation,
and �1 a total negative linear correlation. In addition, we added a significance test of the correlation with
confidence interval of 95%.

Figure 4 shows a correlation graph for the best performance cases on the three benchmarks. We employ
the following numerical values for each CPU level optimization: Turbo Boost on (+1) and off (�1); C-
States all enabled (+1) and all disabled (�1); CPUFreq governor performance (+1) and powersave (�1).

It seems that Turbo Boost parameter had direct impact on performance and energy with an almost
perfect correlation on Cholesky and QR. An exception was LU with a lower correlation of 0.31 on
performance. In all cases, the negative correlation between Turbo Boost and RAPL DRAM means that it
reduced DRAM energy when enabled while increased PKG consumption.

Prepared using sagej.cls

Lima et al. 11

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●●●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●

●

●●●●●●●●

●●

●

●●●

●

●●

●

●●●●●●●●●●●●●

●

●

●●●

●●●●●●

●

●●●●●

●●●●

●●

●

●

●●●●●

●

●●●●●

●

●

●●

●

●●●●●●●

●●

●

●●●●●

●●●●

●

●●●

●

●●●

●

●

●●

●●●●●●●●

●

●●

●

●●●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●

●●●●

●

●

●

●●●●●●●●●●●●

●●

●●

●

●

●●●●

●●●●

●

●●

●

●

●●

●●●

●●

●

●

●●●

●●●●●●●●●●●●●● ●

●

●

●

●●

●

●

●●●

●

●●●●

●●●●

●●●●●●●

●

●

●●●●

●●

●

●

●●●●●●●●

●

●

●●

●●●

●●

●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●●●●●●

●●

●●

●●

●

●

●

●●●●●●●●●

●●●

●

●●

●●

●

●●

●

●●●

●●●

●

●

●●●

●

●

●

●●

●

●●

●●●●

●

●

●

●●●●●●●●●●●●●

●●

●●

●●●

●●

●

●

●

●

●●●●●●

●●●●

●●●●

●

●●●

●

●●●●

●

●●

●●●●●●

●

●

●●●

●

●●●

●●●●●●●●

●

●●

●

●●

●●●

●●●●●●●●●

●

●

●●

●

●

●●●

●●●●●

●

●●

●

●●

●●●

●●●

●

●

●●●●

●

●

●●

●●●

●

●

●●●●●●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●●●●

●

●●

●

●●●●

●

●●●●●●●●●●

●●

●

●●

●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●●

●●●●

●

●●

●

●●●●●●

●●●

●

●

●●●

●●●

●●●●●●●

●●

●●

●

●●

●●

●

●●

●●●●●●

●●

●●●●

●●●●●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●●

●●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●

●

●●●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●●●

●●

●

●

●

●●●●●●●●●

●

●●

●

●

●●

●●●

●●●●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●●●

●

●●●●

●●●●

●

●●●●

●●●

●

●

●●●

●●●

●

●●●●

●●●

●●●●

●●●●

●

●●●●●●●●●●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●

●

●●

●

●●●●

●

●●●●●

●●

●●●

●

●●●

●

●●

●●●●●

●●●●●●

●●●●●●●●●●

●

●●●●●●●

●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●●

●

●

●

●●

●●

●●

●●●●●●

●

●

●●●●●●●●

●

●●●●

●●

●●●●●

●

●●●●●●

●

●

●

●●●

●●●

●●

●

●●●●●●●

●

●●●●

●

●●●

●

●

●●●●●

●

●●●●●

●

●●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●●●●●●●●●

●

●

●

●

●●

●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●●●●

●●●●

●

●●

●

●●

●●

●●

●●

●

●

●

●●●●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●●●

●●●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●

●

●

●

●●

●●

●

●●

●

●●●●

●●

●●●

●

●●●●

●

●

●

●●●

●●

●

●

●

●●●

●

●●

●●●

●●●●●

●

●

●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●

●●

●●

●●●●●●●

●

●

●

●

●●

●●●

●●●

●●

●●

●●

●

●●

●

●

●●●●

●●●

●

●

●

●●

●●●●

●

●

●●

●

●

●●●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●

●●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●●●

●●●

●

●●●●●●●●●

●

●

●

●●

●

●

●

●●●

●

●●●●

●●

●

●●

●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●

●

●●●

●●

●

●●

●

●●●

●●

●●●

●

●

●

●●

●●●●●

●

●●

●

●

●●

●●●

●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●●●●

●●●●●●●●

●●

●●●

●

●

●●

●●

●●

●●●

●

●

●●

●

●

●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●●●●

●

●●●●●

●

●●

●●●●●●

●

●●●●

●

●●

●●

●

●

●

●

●●

●●●●●●●●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●●●●●●●

●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●●●

●●●●

●

●

●

●

●

●●

●●

●●

●●

●●●

●

●●

●●●

●

Turbo boost OFF Turbo boost ON

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40

50

60

70

80

Socket

Te
m

pe
ra

tu
re

 (C
)

Governor
performance
powersave

Figure 3. Processor temperature of each socket with Cholesky and likbomp runtime. We compared the
impact of CPUFreq governor and Turbo Boost. C-States were disabled.

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

GFlops

PKG

DRAM

Turbo

Governor

C−States

0.98

−0.99

0.99

−0.02

0

−0.98

0.99

0.02

−0.1

−0.98

0.05

0.11

0

0 0

(a) Cholesky with komp.

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

GFlops

PKG

DRAM

Turbo

Governor

C−States

−0.06

−0.98

0.31

−0.02

−0.28

−0.1

0.93

−0.01

0.08

−0.45

0.04

0.33

0

0 0

(b) LU with komp+cw.

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

GFlops

PKG

DRAM

Turbo

Governor

C−States

1

−0.99

1

0

0

−0.99

1

−0.01

−0.01

−0.99

−0.06

0.03

0

0 0

(c) QR with komp.

Figure 4. Correlation coefficients on the three benchmarks based on the best performance results. The ⇥
symbol mean that the significance level (or p-value) of the correlation is under 5%.

The correlation results also show that CPUFreq governors and C-States had no relation with
performance and energy. It appears that CPUFreq governor parameter was not relevant in our comparison
of performance and energy in Table 2. On the other hand, C-States had a correlation of 0.33 with RAPL
DRAM over LU, i.e. increasing DRAM energy consumption with all C-States enabled. It explains the
best energy case of LU with C-States disabled in Table 2.

5.3. Focus on LU factorization
Figure 5 shows performance results for LU factorization with different matrix sizes. We used as reference
the GCC runtime to compute the difference over the other three runtime systems, represented on the bar

Prepared using sagej.cls

12 Journal Title XX(X)

16
5.
1%

11
.7
%

7.
7%

71
.7
%

2.
3%

0.
0%

−3
3.
1%

11
3.
3%

14
.2
%

11
.7
%
58
.7
%

5.
3%

0.
0%

−3
9.
5%

63
.8
%

20
.3
%

15
.8
%

10
.4
%

8.
6%

0.
0%

−4
6.
2%

LU

8192 16384 32768

0

100

200

300

400

Matrix size

G
Fl

op
/s

Runtime
ompss
gcc
omp
plasma
komp
xkaapi
komp+cw

Figure 5. Performance (GFLop/s) results of LU. All percentages on top of bar plots are the difference of
current runtime over GCC libGOMP runtime.

plots by a percentage value. The LU algorithm with concurrent-write showed significant improvement
compared to other runtime systems (up to 165.1% over gcc), followed by PLASMA LU algorithm.

Thanks to the concurrent write, the LU algorithm with libkomp cw runtime had more parallelism than
other runtime systems due to the CW algorithm extension based on KASTORS (Virouleau et al. 2014).
Figure 6 illustrates a Gantt execution from the LU factorization using PLASMA, libkomp and libkomp
with CW.

On the LU factorization, even if CW generates more parallelism, the algorithm has poor efficiency and
threads are frequently idle. The Gantt diagram on all the 48 cores illustrates long periods of inactivity.
GCC is the only runtime where threads lock common dequeue to get task. Linux will put these lightweight
process idle. If we do not consider libkomp+cw’s algorithmic variant, then PLASMA algorithm with
GCC is the best runtime in terms of energy consumption for LU factorization. This is not true for runtime
systems based on task scheduling by work stealing such as libKOMP, libOMP or XKaapi which have
very active threads that consume energy.

6. Discussion

Majority of best configurations from Figure 2 were runtime systems using work stealing based
scheduling. On fine grain problems, libkomp and xkaapi were generally better. These results can be
explained by the smaller task creation overhead on xkaapi and libkomp than others.

The difference between libomp and libkomp is the new features we add into the original Intel libomp
runtime: the lightweight work stealing algorithm from Cilk and the request combining protocol from
xkaapi. These features not only impact performance but also the way tasks are scheduled: it suppresses
the bounded dequeue limitation that may degenerate task creation into task serialization. It means that at
runtime a thread may be forced to execute immediately tasks for which no or less affinity exist. Without
bounded size dequeue, a thread that completes a task will always activate one of the successors following
a data flow relationship producer-consumer, thus sharing a data resident into cache; or the thread becomes

Prepared using sagej.cls

Lima et al. 13

Figure 6. Gantt of LU algorithm from PLASMA (top), KASTORS and libKOMP (middle), and KASTORS with
libKOMP and concurrent write (bottom). The matrix size was 32768x32768 with 352x352 of block size.

idle and try to steal tasks. We will investigate by more finer experiments the exact impact of these
additions in libkomp.

On LU factorization where algorithmic variant libkomp+cw was the best, it was followed by xkaapi
and libkomp on performance. LU factorization is a relevant code with inactivity sections from the
dependencies imposed by the algorithm, mainly due to a search of pivot and swap of elements. This
optimized algorithm allowed to increase performance while energy is decreased due to libkomp+cw
runtime and concurrent write OpenMP extension (Virouleau et al. 2014). Nevertheless, the platform
characteristic, and especially its memory network, had also an impact on both performance and energy
consumption.

Without these algorithm variants, LU factorization code consumes less energy using GCC libGOMP
runtime. In GCC the synchronization between threads on the shared task dequeue resource wastes less
cycles. A work stealing based runtime may have interest to incorporate part of (Ribic and Liu 2014) in
which is used to lower the speed of threads that are not in the critical path with a warranty on performance.
One of the big challenges is the design of adaptive OpenMP runtime capable to saving energy on short
delays of inactivity.

Our findings on CPU level optimizations lead us to believe that the three CPU level optimizations
impacts performance and energy of OpenMP runtime systems. The two processors parameters,
Turbo Boost and C-States, had significant influence over experimental results. The former increased
performance significantly at energy cost, while the latter reduced energy at idle states. It was not clear the

Prepared using sagej.cls

14 Journal Title XX(X)

impact of C-States over work stealing based runtime systems since our correlation test (Fig. 4) showed
no relation between C-States and the experimental results. Nevertheless, we acknowledge that runtime
systems based on work stealing may take advantage of steal phases at the beginning and the end of the
computation to enter in idle state and reduce energy consumption (Tchiboukdjian et al. 2013).

CPUFreq governors had more impact at experimental cases with Turbo Boost disabled. Our
experimental results suggest that tunning all three CPU level optimizations to target performance, mostly
DVFS governor and Turbo Boost, degraded performance due to CPU thermal limitations. Still, the
powersave governor was able to sustain performance while consuming less energy. Other works show
experimental results on techniques using DVFS, as discussed in Section 2.

7. Conclusion

In this paper, experiments with five production based OpenMP runtime systems and three CPU level
optimizations (Turbo Boost, C-States, and Linux CPUFreq governors) on the three main kernel in dense
linear algebra were conducted on a NUMA platform. We showed that OpenMP runtime is a new leverage
for controlling energy, and Turbo Boost, as well as C-States, impacted significantly performance and
energy. Our experimental results suggest that small algorithmic and runtime improvements may allow
performance gains up to 63% and thus reducing the energy by 29%. Besides, work stealing based runtime
systems were more efficient in our experiments; although, it was not clear the impact of C-States in order
to reduce energy consumption at steal phases.

Future works include an extension of our experimental comparison over a wide range of architectures,
including Intel KNL many-core. In addition, we will evaluate the impact on performance and energy of
idle states at steal phases of work stealing scheduler.

Acknowledgements

This work is integrated and supported by the ELCI project, a French FSN (“Fond pour la Société Numérique”)
project that associates academic and industrial partners to design and provide a software environment for very high
performance computing.

References

Bari MAS, Chaimov N, Malik AM, Huck KA, Chapman B, Malony AD and Sarood O (2016) Arcs: Adaptive runtime
configuration selection for power-constrained openmp applications. In: 2016 IEEE International Conference on
Cluster Computing (CLUSTER). pp. 461–470. DOI:10.1109/CLUSTER.2016.39.

Benoit A, Lefevre L, Orgerie AC and Rais I (2017) Shutdown policies with power capping for large scale computing
systems. In: Europar 2017 : International European Conference on Parallel and Distributed Computing.
Santiago de Compostela, Spain. To appear.

Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau M, Franzon P, Harrod W, Hill K, Hiller J et al.
(2008) Exascale computing study: Technology challenges in achieving exascale systems. Defense Advanced
Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep 15.

Broquedis F, Gautier T and Danjean V (2012) Libkomp, an efficient openmp runtime system for both fork-join
and data flow paradigms. In: Proceedings of the 8th International Conference on OpenMP in a Heterogeneous
World, IWOMP’12. Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-642-30960-1, pp. 102–115.

Prepared using sagej.cls

Lima et al. 15

Bueno-Hedo J, Planas J, Duran A, Badia RM, Martorell X, Ayguadé E and Labarta J (2012) Productive Programming
of GPU Clusters with OmpSs. IEEE Computer Society. ISBN 978-1-4673-0975-2, pp. 557–568.

Curtis-Maury M, Dzierwa J, Antonopoulos CD and Nikolopoulos DS (2006) Online strategies for high-performance
power-aware thread execution on emerging multiprocessors. In: Proc. 20th IEEE International Parallel
Distributed Processing Symposium. DOI:10.1109/IPDPS.2006.1639598.

Duran A, Teruel X, Ferrer R, Martorell X and Ayguade E (2009) Barcelona openmp tasks suite: A set of benchmarks
targeting the exploitation of task parallelism in openmp. In: Proc. of the 2009 International Conference on
Parallel Processing, ICPP ’09. Washington, DC, USA: IEEE Computer Society. ISBN 978-0-7695-3802-0, pp.
124–131. DOI:10.1109/ICPP.2009.64.

Etinski M, Corbalan J, Labarta J and Valero M (2010) Utilization driven power-aware parallel job scheduling.
Computer Science-Research and Development 25(3-4): 207–216.

Frigo M, Leiserson CE and Randall KH (1998) The implementation of the cilk-5 multithreaded language. SIGPLAN
Not. 33(5): 212–223.

Gautier T, Lima JVF, Maillard N and Raffin B (2013) Xkaapi: A runtime system for data-flow task programming on
heterogeneous architectures. In: Proceedings of the 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, IPDPS ’13. Washington, DC, USA: IEEE Computer Society. ISBN 978-0-7695-4971-2,
pp. 1299–1308.

Gautier T and Virouleau P (2015) New libkomp library. http://gitlab.inria.fr/openmp/libkomp.
Laros JH III, Pedretti KT, Kelly SM, Shu W and Vaughan CT (2012) Energy based performance tuning for large

scale high performance computing systems. In: Proc. of the 2012 Symposium on High Performance Computing,
HPC ’12. San Diego, CA, USA: Society for Computer Simulation Int. ISBN 978-1-61839-788-1, pp. 6:1–6:10.

Li D, de Supinski BR, Schulz M, Cameron K and Nikolopoulos DS (2010) Hybrid mpi/openmp power-aware
computing. In: 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS). pp. 1–12.
DOI:10.1109/IPDPS.2010.5470463.

Lively C, Wu X, Taylor V, Moore S, Chang HC and Cameron K (2011) Energy and performance characteristics of
different parallel implementations of scientific applications on multicore systems. Int. J. High Perform. Comput.
Appl. 25(3): 342–350. DOI:10.1177/1094342011414749.

Marathe A, Bailey PE, Lowenthal DK, Rountree B, Schulz M and de Supinski BR (2015) High Performance
Computing: 30th International Conference, ISC High Performance 2015, Frankfurt, Germany, July 12-16,
2015, Proceedings, chapter A Run-Time System for Power-Constrained HPC Applications. Cham: Springer
International Publishing. ISBN 978-3-319-20119-1, pp. 394–408. DOI:10.1007/978-3-319-20119-1 28.

Nandamuri A, Malik AM, Qawasmeh A and Chapman BM (2014) Power and energy footprint of openmp
programs using openmp runtime api. In: Proceedings of the 2Nd International Workshop on Energy Efficient
Supercomputing, E2SC ’14. Piscataway, NJ, USA: IEEE Press. ISBN 978-1-4799-7036-0, pp. 79–88. DOI:
10.1109/E2SC.2014.11.

Orgerie AC, Assuncao MDd and Lefevre L (2014) A survey on techniques for improving the energy efficiency of
large-scale distributed systems. ACM Comput. Surv. 46(4): 47:1–47:31. DOI:10.1145/2532637.

Porterfield AK, Olivier SL, Bhalachandra S and Prins JF (2013a) Power measurement and concurrency throttling
for energy reduction in openmp programs. In: 2013 IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum. pp. 884–891. DOI:10.1109/IPDPSW.2013.15.

Porterfield AK, Olivier SL, Bhalachandra S and Prins JF (2013b) Power measurement and concurrency throttling for
energy reduction in openmp programs. In: Parallel and Distributed Processing Symposium Workshops & PhD

Prepared using sagej.cls

16 Journal Title XX(X)

Forum (IPDPSW), 2013 IEEE 27th International. IEEE, pp. 884–891.
Ribic H and Liu YD (2014) Energy-efficient work-stealing language runtimes. SIGARCH Comput. Archit. News

42(1): 513–528. DOI:10.1145/2654822.2541971.
Rotem E, Naveh A, Ananthakrishnan A, Weissmann E and Rajwan D (2012) Power-management architecture of the

intel microarchitecture code-named sandy bridge. IEEE Micro 32(2): 20–27. DOI:10.1109/MM.2012.12.
Rountree B, Lownenthal DK, de Supinski BR, Schulz M, Freeh VW and Bletsch T (2009) Adagio: Making

dvs practical for complex hpc applications. In: Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09. New York, NY, USA: ACM. ISBN 978-1-60558-498-0, pp. 460–469. DOI:
10.1145/1542275.1542340.

Su C, Li D, Nikolopoulos DS, Cameron KW, d Supinski BR and León EA (2012) Model-based, memory-centric
performance and power optimization on numa multiprocessors. In: 2012 IEEE International Symposium on
Workload Characterization (IISWC). pp. 164–173. DOI:10.1109/IISWC.2012.6402921.

Tchiboukdjian M, Gast N and Trystram D (2013) Decentralized list scheduling. Annals of Operations Research
207(1): 237–259.

Treibig J, Hager G and Wellein G (2011) LIKWID: lightweight performance tools. CoRR abs/1104.4874.
Virouleau P, Broquedis F, Gautier T and Rastello F (2016) Using data dependencies to improve task-based scheduling

strategies on numa architectures. In: Proceedings of the 22Nd International Conference on Euro-Par 2016:
Parallel Processing - Volume 9833. New York, NY, USA: Springer-Verlag New York, Inc. ISBN 978-3-319-
43658-6, pp. 531–544. DOI:10.1007/978-3-319-43659-3 39.

Virouleau P, Brunet P, Broquedis F, Furmento N, Thibault S, Aumage O and Gautier T (2014) Evaluation of
OpenMP Dependent Tasks with the KASTORS Benchmark Suite. In: 10th International Workshop on OpenMP,
IWOMP’14. Springer, pp. 16 – 29. DOI:10.1007/978-3-319-11454-5\ 2.

Yang X, Zhou Z, Wallace S, Lan Z, Tang W, Coghlan S and Papka ME (2013) Integrating dynamic pricing of
electricity into energy aware scheduling for hpc systems. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’13. New York, NY, USA: ACM. ISBN
978-1-4503-2378-9, pp. 60:1–60:11. DOI:10.1145/2503210.2503264.

YarKhan A, Kurzak J, Luszczek P and Dongarra J (2016) Porting the plasma numerical library to the openmp
standard. International Journal of Parallel Programming : 1–22DOI:10.1007/s10766-016-0441-6.

Author Biographies

João Vicente Ferreira Lima received a joint PhD degree in computer science by the Federal University of Rio Grande
do Sul (UFRGS), Brazil, and the MSTII Doctoral School at the Grenoble University, France. He received a BSc
degree in Computer Science in 2007 by the Federal University of Santa Maria (UFSM), Brazil, and a MSc degree in
Computer Science in 2009 by he Federal University of Rio Grande do Sul (UFRGS), Brazil. He is associate professor
at the Federal University of Santa Maria (UFSM), Brazil, since 2014. His research interests are high performance
computing, runtime systems for HPC, parallel programming for accelerators, and distributed computing.

Issam Raı̈s is a PhD student since 2015 at ENS Lyon, France. He received a MSc degree in Computer Science and a
BSc degree in Computer and Information Sciences at the University of Orleans, France. He works in the AVALON
team at the LIP laboratory advised by Laurent Lefèvre, Anne Benoit and Anne-Cécile Orgerie.

Thierry Gautier received the Dipl. Ing. MS and PhD in computer science at the INPG, in 1996. He is a full
time researcher at INRIA (the French National Institute for Computer Science and Control), with the AVALON

Prepared using sagej.cls

Lima et al. 17

project team of the LIP laboratory in Lyon, France, and has held a post-doctoral position at ETH Zürich (1997). Dr.
Gautier conducts research in high performance computing, runtime systems for HPC, parallel algorithms, parallel
programming, OpenMP, and multicore architectures.

Laurent Lefèvre obtained his PhD in Computer Science in January 1997 at LIP Laboratory (Laboratoire Informatique
du Parallelisme) in ENS-Lyon (Ecole Normale Superieure), France. From 1997 to 2001, he was Assistant Professor
in computer science in Lyon 1 University and a member of the RESAM Laboratory (High Performance Networks
and Multimedia Application Support Lab). Since 2001, he has been a Research Associate in computer science
at INRIA (the French Institute for Research in Computer Science and Control). He is a member of the INRIA
AVALON team (Algorithms and Software Architectures for Distributed and HPC systems) at the LIP laboratory
in Lyon, France. His research interests focus on green and energy efficient computing and networking. He has
organized several conferences in high-performance networking and computing and he is a member of several
program committees. He has co-authored more than 100 papers published in refereed journals and conference
proceedings. He participates in several national and European projects on energy efficiency. For more information,
see http://perso.ens-lyon.fr/laurent.lefevre/.

Prepared using sagej.cls

