Discover, model and combine energy leverages for large scale energy efficient infrastructures

Issam Raïs Laurent Lefèvre, Anne Benoit, Anne-Cécile Orgerie

Univ. Lyon, Inria, CNRS, ENS de Lyon, UCBL 1, LIP, France

September 28, 2018

Energy, a global concern

An energy driven world¹

- Computing facilities, big electrical consumers
- In 2017, 7% of global electricity demand
- 2% of global carbon emission

¹Gary Cook et al. "Clicking Clean: Who is winning the race to build a Green Internet?" In: *Greenpeace International, Amsterdam, The Netherlands* (2017).

Day to day scientific needs of ultra large scale computing

Tackling the unknown at all scales thanks to large scale computing

- Space: Square Kilometer Array (SKA) Project
- Brain: Human Brain Project (HBP)
- Particles: Large Hadron Collider (LHC)

The constant need for computing

- Create or gather huge amount of data
- Computation and data deluge

Large scale computing facilities

Answering computing demands implies high performance facilities

- > Datacenters: set of centralized computing and data facilities
- Supercomputers: very large, high performance architecture

Supercomputing: the next milestone

- ▶ Exascale: 10¹⁸ floating point operations per second
- Reached by a single running machine
- Defense Advanced Research Projects Agency (DARPA): maximum consumption between 20 to 30 MW

Large scale computing facilities: an eco-system of users

Energy efficiency: a problem with multiple definitions, for multiple users

User	Constraint	Scale	Figure
Facility provider	Power envelope	Complete facility	(1) and (4)
Electrical provider	Power capping	Complete or partial	(2)
Service	Energy budget	User	(5) to (6)
Administrator	Relaxed power capping	Complete or partial	(3)
Application user	Energy budget	User	(5) to (6)

6

OAK RIDGE's Summit supercomputer

Architecture

- ► Low power CPUs: 9216 IBM Power9
- Low power GPUs: 27648 Nvidia Volta V100
- ► Number of nodes: 4608
- ► Memory: 250 PB
- Connectivity: 100G Infiniband

Characteristics

- ▶ 1st in Top 500, 5th in Green 500
- 122 PFLOPS, 1/8 ExaFlop
- First "integer Exascale" machine
- \blacktriangleright USA, footprint of 13MW \rightarrow 13M\$ per year

(Floating point) Exascale is coming!

Potential architecture

- Heterogeneous computing nodes
- Hundreds of thousands of computing nodes
- Hundreds of cores per node
- Dedicated and efficient network

Greatest challenge: energy consumption

- Free cooling
- Low-power processors
- Reuse heat
- Use energy-aware middleware
- Implement algorithms differently

Energy techniques on large scale computing facilities, the literature

Mono technique studies²,³,⁴

- Lots of mono studies evaluation
- No standard definition of leverage

Multi technique studies

- ► Usually == 2
- No classification
- No automatic extraction of knowledge

²Sparsh Mittal. "A survey of techniques for improving energy efficiency in embedded computing systems". In: International Journal of Computer Aided Engineering and Technology (2014), 2.

³ Jie Han and Michael Orshansky. "Approximate computing: An emerging paradigm for energy-efficient design". In: *Test Symposium (ETS), 2013 18th IEEE European*. IEEE. 2013, pp. 1–6.

⁴Tapasya Patki et al. "Supercomputing Centers and Electricity Service Providers: A Geographically Distributed Perspective on Demand Management in Europe and the United States". In: *International Conference on High Performance Computing*. Springer. 2016, pp. 243–260.

Energy techniques on large scale computing facilities, the literature

Mono technique studies²,³,⁴

- Lots of mono studies evaluation
- No standard definition of leverage

Multi technique studies⁵,⁶

- Usually == 2
- No classification
- No automatic extraction of knowledge

⁵Aniruddha Marathe et al. "A run-time system for power-constrained HPC applications". In: International Conference on High Performance Computing. Springer. 2015.

⁶Ananta Tiwari et al. "Auto-tuning for Energy Usage in Scientific Applications". In: ed. by Michael Alexander et al. Springer, 2012.

Energy techniques on large scale computing facilities, the literature

Mono technique studies²,³,⁴

- Lots of mono studies evaluation
- No standard definition of leverage

Multi technique studies⁵,⁶

- ► Usually == 2
- No classification
- No automatic extraction of knowledge

- No generic solution
- No automated solution

Energy capabilities: families

Infrastructure level

- Energy harvester
- Cooling system

Middleware level

- Scheduler policies
- OpenMP and MPI configuration

Hardware level

- Sleep states and shutdown techniques
- Dynamic voltage and frequency scaling

Application level

- Vectorization
- Computation precision

Energy capabilities: families

Leverage, Energy and Power leverage

Leverage

We define a leverage L as a triplet (S, s_c, f)

- $S = \{s_1, s_2, ..., s_n\}$ is the set of possible states for L
- s_c is the current state of L, $s_c \in S$
- f is the function that permits the modification of s_c

Energy and power leverage

if and only if using it impacts directly or indirectly power or energy consumption of a machine or an IT facility

In this thesis: challenges and problems

Be energy efficient?

- Efficient at all levels: hard to implement
- Lot of expertise at various levels
- Using leverages \neq being energy efficient
- Need automated techniques

Tackled problems

- How to evaluate and model a single energy and power leverage?
- How to automatically discover and benchmark chosen leverages?
- How to combine and orchestrate leverages in order to be energy efficient?
- How to extract knowledge from the combination of available leverages?

Issam Raïs Discover, model and combine energy leverages for large scale energy efficient infrastructures 13

In this thesis: challenges and problems

Be energy efficient?

- Efficient at all levels: hard to implement
- Lot of expertise at various levels
- Using leverages \neq being energy efficient
- Need automated techniques

Tackled problems

- How to evaluate and model a single energy and power leverage?
- How to automatically discover and benchmark chosen leverages?
- How to combine and orchestrate leverages in order to be energy efficient?
- How to extract knowledge from the combination of available leverages?

Contributions

Chapters:

- A definition of a leverage, and a first classification of usually available leverages in a computing facility: Chapter 2
- ► A definition of a methodology to evaluate and model a leverage: Chapter 3
- Application of this methodology on a leverage from the literature: the shutdown leverage:

Chapter 4

- A solution to combine and use multiple leverages at the same time to answer chosen constraints while being energy efficient: Chapter 5
- Generic software framework formalizing the combination of leverages and extraction of knowledge from the table of leverages: Chapter 6

Outline

Discover and model a leverage: a methodology

Methodology applied to the shutdown leverage

Combine multiple energy and power leverages

Conclusion and perspectives

Outline

Discover and model a leverage: a methodology

Methodology applied to the shutdown leverage

Combine multiple energy and power leverages

Conclusion and perspectives

A methodology to study a leverage

A methodology to study a leverage

- A step by step methodology
- How it works and operates
- Estimate usage as an energy and power leverage

A methodology to study a leverage: Stage 1

Stage 1: How a leverage operates

- Understand how it works
- Detecting all states
- Detecting how to go from one state to the other
- Done through an exploration of the studied infrastructure

A methodology to study a leverage: Stage 2

Stage 2: The influence on a studied metric and monitoring

- Influence of operating on a given state
- Influence of changing the current state on a given metric
- Evaluates the real cost of states and transitions for the given metric in a given context

A methodology to study a leverage: Stage 3

Stage 3: Providing actors

- Actor: entity that makes a choice concerning s_c of leverage L
- Answers if a state is beneficial to the studied metric
- Answers if a state helps answer a constraint
- Takes into account transition and state costs

Actor usage

Actor aim

At given time T, an actor aims at

- Answering whether the leverage can switch state
- While respecting imposed constraints
- While improving studied metric

Actor scope

Could be used at different scale

- On one device
- On a sub-set of devices
- On all devices

The methodology, lessons learned

The methodology

- Understand and evaluate a leverage and its underlying costs
- Clear answer to changing the state of a leverage
- A "à la carte" usage of a leverage
- Applied to leverages in our publications (TEG, Shutdown, OpenMP, Version of code, MPI, Computation precision, Scheduling policies)

Outline

Discover and model a leverage: a methodology

Methodology applied to the shutdown leverage

Combine multiple energy and power leverages

Conclusion and perspectives

A methodology to study a leverage

The shutdown leverage

- One of the most promising leverage
- Non-proportional computing units
- Over provisioning of infrastructures
- Non negligible energy consumption when idle

Real experiments and calibrations

Grid'5000

- Large-scale and versatile testbed
- Experiment-driven research in all areas of computer science
- High heterogeneity in 9 different sites
- Fine grain trace (every Watt consumed every second)
- ▶ Three different nodes used: Taurus, Orion, Paravance (Rennes)

Real experiments and calibrations

Features	Orion	Taurus	Paravance
Server model	Dell PowerEdge R720	Dell PowerEdge R720	Dell PowerEdge R630
CPU model	Intel Xeon E5-2630	Intel Xeon E5-2630	Intel Xeon E5-2630v3
# of CPU	2	2	2
Cores per CPU	6	6	8
Memory (GB)	32	32	128
Storage (GB)	2 × 300 (HDD)	2 × 300 (HDD)	2 × 600 (HDD)
GPU	Nvidia Tesla M2075	-	-

Stage 1: How a leverage operates, the shutdown leverage

How the shutdown leverage operates: the states and transitions

- Available sleep states on a computing node
- Pass by the Idle state to go to a sleep state
- Every transition has a cost
- ▶ S5 or Off state

Stage 2: Influence on metrics, the shutdown leverage

How the shutdown leverage operates: the state and transition costs

- Energy: non negligible budget
- Time: delay caused by transitions
- Power: multiple picks and high disturbance

The monitoring of a leverage, the shutdown leverage

Parameters	Orion	Taurus	Paravance
E _{OffIdle} (J)	23 386	19 000	19893
$E_{IdleOff}$ (J)	775.79	616.08	1115
$T_{Offldle}$ (s)	150	150	167.5
$T_{IdleOff}$ (s)	6.1	6.1	13
P _{idle} (W)	135	95	150
P_{off} (W)	18.5	8.5	4.5

How the shutdown leverage operates: the state and transition costs

- Focus on the S5 (Off) state
- Monitoring of three different servers
- Low standard deviation (7% in worst case)

Stage 3: Providing actors, the shutdown leverage

Basic actors

Issam Raïs

Used by most papers in the literature

- No-OnOff: the nodes are never shut down
- LB-ZeroCost-OnOff: no cost to shut down or wake up nodes

Sequence-aware actors

Make sure that the transitions costs:

- SAT: Time constrained, fits in time
- SAE: Energy constrained, beneficial in energy

Power-capping-aware actors

Aims at maintaining an average power budget

- PC_Min: lower limit for power usage
- PC_Max: upper limit for power usage

Simulation setup

Simulation input

- Extracted traces (Jobs, energy consumption)
- Real calibration

Simulation hypothesis

- Homogeneous datacenter
- Node reservation

Extracted metrics

- ► On servers lifetime: Number of On/Off cycles per policy
- > On energy consumption: percentage of gained energy per actor

Simulation: LB-ZeroCost-OnOff, Seq-Aw-T and Seq-Aw-E actors

Actor	Energy (Giga J)	# cycles	% e.Saved		
Grid'5000 trace, 1 week					
No-OnOff	6.0	0	0.0		
LB-ZeroCost-OnOff	3.9	1794	34.52		
Seq-Aw-T	4.0	964	33.99		
Seq-Aw-E	4.0	844	34.00		

Issam Raïs

Discover, model and combine energy leverages for large scale energy efficient infrastructures 31

Simulation: Power-Cap actors

Actor	Energy (Giga J)	# cycles	% e.Saved
No-OnOff	6.0	0	0.0
Seq-Aw-T	4.0	964	33.99
Power-Cap 2000 min	4.4	855	27.65
Power-Cap 4000 min	4.5	761	24.49
Power-Cap 6000 min	5.0	617	16.82

Issam Raïs

Discover, model and combine energy leverages for large scale energy efficient infrastructures 32

The shutdown, lessons learned

Larger scale experiments

- Traces from E-Biothon supercomputer (1.5 years)
- Traces from Grid'5000 (6 years)
- Up to 43% of energy saved

Larger set of actors

- Electricity aware
- Cooling system aware
- Renewable energy aware
- Analysis of combination of actors

The methodology applied to the shutdown leverage

- Shutdown is an energy and power leverage
- Large possibility of usage, one simulated
- Proposed actors can help to be energy efficiency
- Generic actors that can be adapted to every device that can be shut down and waked up

Outline

Discover and model a leverage: a methodology

Methodology applied to the shutdown leverage

Combine multiple energy and power leverages

Conclusion and perspectives

Large variability:

- Lot of leverage families, lot of leverages per family
- Literature usually explores one leverage at a time
- Making it complicated to reach energy efficiency at large scale

A generic solution is needed!

Our proposition: the table of leverages

- A score table
- Various users
- Extraction of energy efficient hints

Large variability:

- Lot of leverage families, lot of leverages per family
- Literature usually explores one leverage at a time
- Making it complicated to reach energy efficiency at large scale

A generic solution is needed!

Our proposition: the table of leverages

- A score table
- Various users
- Extraction of energy efficient hints

Problems and contributions

Problems

- How to discover, benchmark and orchestrate leverages?
- How to combine and evaluate leverages?

Contributions

- Definition of the table of leverages
- Generic framework formalizing the combination of leverages
- Experimental method based on benchmarks and monitoring to build the table of leverages
- Tools to extract knowledge from the table

Formalism of the construction of table of leverages: 3 basic blocks

Metrics

- Focus of the user
- Multiple occurrences
- Example: energy and power related metric

Benchmarks

- Self-contained application or portion of code
- Representative of a real application
- Example: CPU intensive, gemm kernels

Leverages

- A description of the set of states
- An iterator to go from one state to the other
- Example: three leverages, different families

lssam Raïs

The architecture of the framework

Highly expandable

- Either benchmarks, metrics and leverages
- Interfaces act as contract

A user workflow of the framework: the construct() function

- Blue: user input
- Green: output of the framework
- Black: internal framework transitions
- (a) does not launch if an error is detected
- (b) checks the metrics validity

Illustration leverages: application and middleware level

Computation precision leverage

- Exploit various computation precision
- Denoted Prec., set of states is {int, float, double}
- > For each of these states, a compilation flag is modified

Vectorization leverage

- Exploit inter-core parallelism
- Denoted Vect., set of states is {none, SSE3, AVX2}
- For each of these states, a compilation flag is modified

Multi-thread leverage

- Used to exploit intra node parallelism (OpenMP)
- Denoted #Threads, the set of states is $\{1, \ldots, n\}$
- ▶ For each of these states, we modify a global variable

Leverage states		s	a) (rg)/att	louloc	Time
#Threads	Prec.	Vect.	avigvvatt	Joules	Time
1	int	none	1.05	65.09	61.89
1	int	SSE3	1.06	28.26	26.56
1	int	AVX2	1.06	29.32	27.67
1	float	none	1.05	72.97	69.67
1	float	SSE3	1.06	33.8	31.89
1	float	AVX2	1.05	36.8	34.89
1	double	none	1.06	81.59	76.89
1	double	SSE3	1.07	58.52	54.89
1	double	AVX2	1.06	57.72	54.22
32	int	none	1.43	13.48	9.44
32	int	SSE3	1.4	4.68	3.33
32	int	AVX2	1.0	1.0	1.0
32	float	none	1.45	7.4	5.11
32	float	SSE3	1.41	3.76	2.67
32	float	AVX2	1.56	3.11	2.0
32	double	none	1.53	8.34	5.44
32	double	SSE3	1.53	8.52	5.56
32	double	AVX2	1.54	7.0	4.56

Leverage states		S	a) (rg)/att	louloc	Time
#Threads	Prec.	Vect.	avigvvatt	Joules	Time
1	int	none	1.05	65.09	61.89
1	int	SSE3	1.06	28.26	26.56
1	int	AVX2	1.06	29.32	27.67
1	float	none	1.05	72.97	69.67
1	float	SSE3	1.06	33.8	31.89
1	float	AVX2	1.05	36.8	34.89
1	double	none	1.06	81.59	76.89
1	double	SSE3	1.07	58.52	54.89
1	double	AVX2	1.06	57.72	54.22
32	int	none	1.43	13.48	9.44
32	int	SSE3	1.4	4.68	3.33
32	int	AVX2	1.0	1.0	1.0
32	float	none	1.45	7.4	5.11
32	float	SSE3	1.41	3.76	2.67
32	float	AVX2	1.56	3.11	2.0
32	double	none	1.53	8.34	5.44
32	double	SSE3	1.53	8.52	5.56
32	double	AVX2	1.54	7.0	4.56

Leverage states		s	a) (rg) (/att	louloc	Time
#Threads	Prec.	Vect.	avigvall	Joules	Time
1	int	none	1.05	65.09	61.89
1	int	SSE3	1.06	28.26	26.56
1	int	AVX2	1.06	29.32	27.67
1	float	none	1.05	72.97	69.67
1	float	SSE3	1.06	33.8	31.89
1	float	AVX2	1.05	36.8	34.89
1	double	none	1.06	81.59	76.89
1	double	SSE3	1.07	58.52	54.89
1	double	AVX2	1.06	57.72	54.22
32	int	none	1.43	13.48	9.44
32	int	SSE3	1.4	4.68	3.33
32	int	AVX2	1.0	1.0	1.0
32	float	none	1.45	7.4	5.11
32	float	SSE3	1.41	3.76	2.67
32	float	AVX2	1.56	3.11	2.0
32	double	none	1.53	8.34	5.44
32	double	SSE3	1.53	8.52	5.56
32	double	AVX2	1.54	7.0	4.56

Leverage states		s	a) (rg)/att	louloc	Time
#Threads	Prec.	Vect.	avigvvatt	Joules	Time
1	int	none	1.05	65.09	61.89
1	int	SSE3	1.06	28.26	26.56
1	int	AVX2	1.06	29.32	27.67
1	float	none	1.05	72.97	69.67
1	float	SSE3	1.06	33.8	31.89
1	float	AVX2	1.05	36.8	34.89
1	double	none	1.06	81.59	76.89
1	double	SSE3	1.07	58.52	54.89
1	double	AVX2	1.06	57.72	54.22
32	int	none	1.43	13.48	9.44
32	int	SSE3	1.4	4.68	3.33
32	int	AVX2	1.0	1.0	1.0
32	float	none	1.45	7.4	5.11
32	float	SSE3	1.41	3.76	2.67
32	float	AVX2	1.56	3.11	2.0
32	double	none	1.53	8.34	5.44
32	double	SSE3	1.53	8.52	5.56
32	double	AVX2	1.54	7.0	4.56

The table of leverage, layer by layer: no vectorisation focus

Leve	loulos		
#Threads	#Threads Prec. Vect.		
1	int	none	65.09
1	float	none	72.97
1	double	none	81.59

- Joules metric
- None state for Vectorization
- ▶ 1 as state for #Threads leverage
- Score for the Precision leverage: int, float, double

The table of leverage, layer by layer: no vectorisation focus

Leve	loules		
#Threads Prec. Vect.			Joules
32	int	none	13.48
32	float	none	7.4
32	double	none	8.34

- Joules metric
- None state for Vectorization
- ▶ 32 as state for #Threads leverage
- Score for *Precision* states: float, double, int
- Noticeable change in the scoring!

Leverage states			loulos
#Threads Prec. Vect.			Joules
1	int	none	65.09
1	int	SSE3	28.26
1	int	AVX2	29.32

- Joules metric (again)
- int state for Precision
- 1 as state for #Threads leverage
- Score for vectorization leverage: SSE3, AVX2, none

Leverage states			loulos
#Threads	Prec.	Vect.	Joules
1	float	none	72.97
1	float	SSE3	33.8
1	float	AVX2	36.8

- Joules metric (again)
- float state for Precision
- ▶ 1 as state for #Threads leverage
- Same score for vectorization leverage: SSE3, AVX2, none

Leverage states			loulos
#Threads	Prec.	Vect.	Joules
1	double	none	81.59
1	double	SSE3	58.52
1	double	AVX2	57.72

Focus

- Joules metric (again)
- double state for Precision
- ▶ 1 as state for #Threads leverage
- Score for vectorization leverage: AVX2, SSE3, none
- Noticeable change in the scoring! (again)

Observations

- A lot of insights about energy and power leverages
- Still complicated to extract knowledge from it
- How to extract knowledge from it?

Leverage states			loulos
#Threads	Prec.	Vect.	Joules
1	double	none	81.59
1	double	SSE3	58.52
1	double	AVX2	57.72

Focus

- Joules metric (again)
- double state for Precision
- ▶ 1 as state for #Threads leverage
- Score for vectorization leverage: AVX2, SSE3, none
- Noticeable change in the scoring! (again)

Observations

- A lot of insights about energy and power leverages
- Still complicated to extract knowledge from it
- How to extract knowledge from it?

Exploiting the table of leverage

Question

When I fix a state, do I always improve a given metric?

Formalism

Consider state x_a of leverage χ . We want to check whether for all $i \in [0, \ldots, n_x] \setminus \{a\}$, for all $l, j \in [0, \ldots, n_y]$, and for all $m, k \in [0, \ldots, n_z]$, we have:

$$ToL_m(x_a, y_l, z_m) \leq ToL_m(x_i, y_j, z_k).$$

For the Joules metric:

- Only #Threads == 32 answers this predicate
- Thus, using this state will always be beneficial
- No specific results with other metrics

Exploiting the table of leverage

Question

If some states are fixed for a subset of leverages, is a given state for the remaining leverages the best choice to optimize a given metric?

Formalism

Consider that the state of leverages ψ, ω is fixed to y_b, z_c . We are asking whether state x_a of leverage χ is the best choice for metric ToL_m . Therefore, we need to check whether for all $i \in [0, \ldots, n_x] \setminus \{a\}$, we have:

$$ToL_m(x_a, y_b, z_c) \leq ToL_m(x_i, y_b, z_c),$$

For the fixed combination {32, SSE3}:

- > Joules or Time: the best state for the *Precision* leverage is *float*
- AvrgWatt: the best state for the Precision metric is int

Issam Raïs Discover, model and combine energy leverages for large scale energy efficient infrastructures 48

Large scale usage of Table of Leverages

Realistic set-up

- Modular constraints
- Production application (FullSWOF2D)
- Two infrastructures: Grid'5000 and Curie

Proposed actor

- Builds the table
- Chooses the state for all leverages
- Respect constraints, reduce consumed energy

- Three Leverages (#Processes, #Threads, CodeVersion)
- Proposition of a new leverage
- Evaluation of proposed leverage and actor

Large scale usage of Table of Leverages

Results

- Grid'5000 4 nodes, Curie 128 nodes
- Up to 39.81% of energy savings

Leverage combination: Conclusions

A framework:

- Implements the combination of leverages
- Ease the discovery and understanding of leverages
- Generic and highly expendable
- Ease the study and combination of leverages through the construction of the table of leverages
- Ease the hints extraction from the table of leverages
- 30k lines of Python code

Perspectives:

- Explore other phases
- Automatic re-usability validation exploration
- Include user acceptance

Outline

Discover and model a leverage: a methodology

Methodology applied to the shutdown leverage

Combine multiple energy and power leverages

Conclusion and perspectives

Contributions

- Definition of a leverage, an energy and power leverage
- > First classification of usually available leverages in a computing facility
- A methodology to evaluate and model a leverage
- Methodology applied on leverages from the literature
- A methodology to combine and use multiple leverages at the same time to answer chosen constraints
- GreenFactory: Generic software framework formalizing the combination of leverages and extraction of knowledge from the table of leverages

Perspectives

Short term

- Explore other leverages
- Reducing the search space for table
- Support sub-application leverages

Long term

- Categorize uncommon leverages
- Table of leverages for every phase
- Generic actors
- GreenFactory out of the computing facility (Fog, IoT)

Thank you

International Journals

- ▶ IJHPCA, João Vicente Ferreira Lima, Issam Raïs, Laurent Lefèvre, Thierry Gautier, 2018
- CCPE, Issam Raïs, Anne-Cécile Orgerie, Martin Quison and Laurent Lefèvre, 2018
- IJHPCA, Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, and Issam Rais, 2017

International Conferences

- ▶ ICA3PP, Issam Raïs, Laurent Lefevre, Anne-Cécile Orgerie, Anne Benoit, 2018
- HPCS, Issam Raïs, Mathilde Boutigny, Laurent Lefèvre, Anne-Cécile Orgerie, Anne Benoit, 2018
- CCGRID, Pierre-François Dutot, Yiannis Georgiou, David Glesser, Laurent Lefèvre, Millian Poquet, and Issam Rais, 2017
- Euro-Par, Anne Benoit, Laurent Lefèvre, Anne-Cècile Orgerie and Raïs, Issam, 2017
- ▶ ICA3PP, Issam Raïs, Anne-Cécile Orgerie, and Martin Quinson, 2016

International Workshops

- SBAC-PAD, João Lima, Issam Rais, Laurent Lefèvre, Thierry Gautier,2017
- > HPCS, Issam Rais, Laurent Lefèvre, Anne Benoit, and Anne-Cécile Orgerie 2016

References I

Issam Raïs

- Cook, Gary et al. "Clicking Clean: Who is winning the race to build a Green Internet?" In: Greenpeace International, Amsterdam, The Netherlands (2017).
- Han, Jie and Michael Orshansky. "Approximate computing: An emerging paradigm for energy-efficient design". In: Test Symposium (ETS), 2013 18th IEEE European. IEEE. 2013, pp. 1–6.
- Marathe, Aniruddha et al. "A run-time system for power-constrained HPC applications". In: International Conference on High Performance Computing. Springer. 2015.
- Mittal, Sparsh. "A survey of techniques for improving energy efficiency in embedded computing systems". In: *International Journal of Computer Aided Engineering and Technology* (2014).

 Patki, Tapasya et al. "Supercomputing Centers and Electricity Service Providers: A Geographically Distributed Perspective on Demand Management in Europe and the United States". In: International Conference on High Performance Computing. Springer. 2016, pp. 243–260.

Tiwari, Ananta et al. "Auto-tuning for Energy Usage in Scientific Applications". In: ed. by Michael Alexander et al. Springer, 2012.

56

Re-usability of studied metrics for one node

Figure: Nova-1, 30 runs of various stresses for Time (seconds) and Power (Watts)

Issam Raïs

Discover, model and combine energy leverages for large scale energy efficient infrastructures 57

Re-usability of studied metrics for multiple nodes

Hardware family	Joules (J)	AvrgWatt(W)	Time(t)	
	Av StD.	Av StD.	Av StD.	
CPU				
Taurus	6807.0 - 68.8	205.84 - 1.37	32.81 - 0.39	
Nova	4998.86 - 49.3	154.91 - 1.09	32.06 - 0.43	
HDD				
Taurus	5055.98 - 365.33	140.58 - 2.98	35.85 - 2.4	
Nova	9381.94 - 251.5	107.8 - 0.57	87.01 - 2.47	
10				
Taurus	3957.52 - 34.98	123.46 - 0.21	32.0 - 0.3	
Nova	4194.53 - 68.06	130.3 - 0.67	32.04 - 0.66	
RAM				
Taurus	5097.83 - 55.81	222.14 - 2.2	32.5 - 0.52	
Nova	7282.26 - 115.89	158.53 - 0.8	31.93 - 0.44	

The context

- Average and standard deviation
- ▶ 10 Taurus, 5 Nova nodes
- 10 runs