
Mr. Clean: a Tool for Tracking and Comparing the
Lineage of Scientific Visualization Code

Giacomo Tartari∗, Lars Tiede∗, Einar Holsbø∗, Kenneth Knudsen∗, Inge Alexander Raknes‡

Bjørn Fjukstad∗, Nicolle Mode†, John Markus Bjørndalen∗, Eiliv Lund†, Lars Ailo Bongo∗§

∗Department of Computer Science, University of Tromsø, Norway
§Center for Bioinformatics, University of Tromsø, Norway

†Department of Community Medicine, University of Tromsø, Norway
‡Norstruct, Department of Chemistry, University of Tromsø, Norway

{giacomo.tartari, lars.tiede, kkn011, inge.a.raknes, nicolle.mode, eiliv.lund}@uit.no
{einar, bjorn, jmb, larsab}@cs.uit.no

Abstract—Visualization is a key step in scientific analysis and
understanding in many fields. Scientific studies often require
development of software that produces visualizations. However,
as a study proceeds, the software evolves, and both developers
and expert users have to periodically ascertain how code modi-
fications affect visualization output and hence the results of the
study. To our knowledge, no current visualization framework
enables tracking and comparison of the lineage of scientific
visualizations. We describe an approach for comparing and
maintaining the code for scientific analysis and modeling through
interactive comparison of visualization output. We have realized
this approach in a tool called Mr. Clean. This tool provides a
framework for combining different visualization tools, interaction
devices, and display middleware for visual comparisons on high-
resolution displays. Mr. Clean also provides user-configurable
interactions supported by many devices. We provide use cases
and a requirement analysis for our approach, and we describe the
design and implementation of Mr. Clean. Source code is available
at: https://github.com/UniversityofTromso/mrclean.

I. INTRODUCTION

Software for processing and managing large amounts of data
is vital to the advancement of knowledge in many scientific
disciplines. Such data-intensive science is often referred to
as the fourth paradigm of scientific research where theory,
experiment, and simulation are unified for data exploration
[1]. One of the most important tools for data exploration is
visualization [2], [3].

Scientific visualizations are often the end result of complex
statistical analysis. They are often problem-specific, and to
provide novel insights, it is often necessary to develop novel
analysis methods. Scientists face the challenges not only of
understanding and interpreting one visualization, but also of
comparing the visualization with other visualizations resulting
from alternative statistical methods or models. During the
development of new statistical models, code changes may
affect the model’s output. It is important to understand how a
given change in code relates to a change in output. Due to the
complexity of these models and their dependence on the input
data, such understanding is typically obtained by comparing
the visualizations produced by the different models.

No existing code revision tool enables model developers to
interactively compare the differences between visualizations
resulting from statistical and mathematical models. Instead
such comparison is typically done with ad hoc implementation
of multi-graph visualizations either in scripting languages such
as R, or by combining images in, e.g., PDF documents. This
severely limits research capabilities by forcing scientists to
perform boring, time-consuming manual studies to understand
how changes to code affect analysis results. An interactive
approach for tracking and comparing the lineage of scien-
tific visualizations will allow scientists to better evaluate,
understand, and improve the analytical performance of their
methods.

We propose an approach for maintaining and comparing
scientific data analysis and modeling code through interactive
comparison of the code’s visual outputs. We have implemented
our approach in a system called Mr. Clean, which we have
deployed for comparative analysis of genomics data cleaning
and image processing methods. In the next section we describe
two case studies that we use to provide a requirement analysis
for our approach. We then outline this approach, and the design
and implementation of the Mr. Clean system.

II. CASE STUDIES AND REQUIREMENTS ANALYSIS

We built Mr. Clean to solve problems we and our collabora-
tors met when developing genomics data cleaning and image
processing software. We present these two tasks as case studies
and use them to formulate requirements for an approach for
tracking and comparing the lineage of scientific visualization
code.

A. Microarray data cleaning

Our genomics collaborators have developed several data
cleaning methods for the Norwegian Women and Cancer
(NOWAC) postgenome biobank [4]. Data cleaning is an im-
portant first step in genomics data analysis that may severely
bias the statistical analysis at later stages. For microarray data
analysis, this includes selection of a normalization method and



methods for identification and removal of outliers. A human
expert uses these methods to identify and visualize outliers.
Oldham et al. [5] describe one such outlier removal process
in detail. The statistical methods are often implemented in a
framework for statistical computing such as R, which provides
a big ecosystem of packages for implementing different meth-
ods and parsers for genomics data.

The expert uses visualizations to determine which outliers
should be removed and which should be kept. An expert
typically wants to remove outliers resulting from instrumenta-
tion or experimental error and keep outliers resulting from
natural biological variation. The expert removes unwanted
outliers from the input data and repeats the process as many
times as necessary. Although we focus on microarray data,
the approach is similar to data cleaning for other data types
[6]. There is no one-size-fits-all data cleaning solution, so the
analyst must typically explore several statistical methods to
find the best approach for a particular dataset. Such a com-
parative approach is often a collaboration between developers,
statisticians, and domain experts.

B. KEGG pathway image processing

We developed a system, Amdex [7], that extracts metadata
such as reactions and entities from KEGG pathway images [8]
using computer vision algorithms from the OpenCV library
[9].

Computer vision problems are notoriously difficult to tackle.
Results can vary greatly when different algorithms are used
in different orders, but also due to the input images having
slightly different features. The common approach is to use an
iterative process to figure out which algorithms, parameters,
and order of algorithms to apply. To compare two approaches,
the developer typically inspects the resulting images. Although
we focus on pattern recognition on KEGG images, devel-
opment of computer vision software in other domains faces
similar challenges.

C. Requirements

Each of the above use cases produces many images. For
an expert to make meaningful comparisons, she must organize
and layout the images in a way that makes it easy to understand
the relationships between the images and their association
with the model code that produced them. The images can
be grouped and sorted based on their underlying approach,
dataset, iteration, or statistical method. By showing multiple
integrated images simultaneously, users can compare how
different data cleaning approaches perform. However, there
is no predefined hierarchy among the groups, so the user must
explore several groupings. For example grouping by method
and ordering by iteration, or grouping by iteration and ordering
by method. It may also be necessary to compare visualizations
produced by latter-stage analysis tools to truly understand the
effects of the data cleaning on the final analysis results.

Based on the case studies, we believe a tool for tracking
and comparing the lineage of scientific visualizations should
satisfy the following requirements:

1) User-defined visualization scripts. It is not realistic to
change the many different tools used to generate visual-
izations, nor to provide libraries for the many different
frameworks used to generate visualizations.

2) Interactive grouping. To compare the lineage of visu-
alizations, it is necessary to interactively group these
based on methods, iterations, versions, etc. It is difficult
to automatically create the best grouping and ordering
of the visualizations, so the tool should provide an
interactive user interface to change these.

3) Multiple visualizations. There are often a large number
of visualizations. Displaying multiple visualizations si-
multaneously may make the comparison easier.

4) Automated provenance management. The tool should
automate provenance management so that the user can
experiment with alternative methods and parameters, and
revert to the best methods and parameters.

5) Collaboration. The approaches are often compared in a
collaborative setting. The tools should enable multiple
people to view and interact with the visualizations.

III. MR. CLEAN

We have implemented the Mr. Clean tool to fulfill the above
requirements. Our approach is as follows:

1) Domain experts supply visualization scripts that produce
image files (requirement 1) to a directory tree managed
by Mr. Clean. The path in this tree is user-defined and
represents the metadata of the image files.

2) Mr. Clean records new images and changes to the scripts
to track the visualizations provenance (requirement 4).
We use a revision control system to manage data
provenance for both the modeling code and the output
visualizations.

3) Mr. Clean reads the visualization files to populate an
internal data structure with files and their corresponding
metadata. It uses this metadata to group and sort the im-
ages. The images are then displayed spatially organized
according to group and sort order. The user interacts with
the groups and sorted images to explore data by, e.g.,
regrouping the images or rearranging the spatial display
of the images (requirement 2). We use a flexible user
input event system that enables the use of the interaction
devices most suitable for a given display platform, and
the adaptation of these to application-specific interaction
patterns.

4) We use large high-resolution displays that show many
images simultaneously and enable collaborative image
comparisons (requirements 3 and 5). Mr. Clean is de-
ployed and in use on the Tromsø display wall [10].

A. Architecture

Mr. Clean is a component-based distributed system (Fig-
ure 1). The Core component is responsible for coordinating
the other components, and for providing these components
with communication interfaces. It holds the state of the whole
system, and it processes and propagates events received from



Core

Display

Gesture

Code
&

Images

Chronicle

FS events

JSONJSON

Version 
Control

File
System User

Gesture

File 
Operations

Storage

RDBMS,
VCS, …

JSON

Fig. 1. Mr. Clean architecture.

the other components. For example, it sends a newly-created
visualization (a visual) to the Display component, or it com-
municates a new arrangement of visuals to the Display in
response to a user gesture from a Gesture component.

The Chronicle component handles file system events caused
by file operations, such as the visualization script writing a
new image, or the user modifying the visualization script. The
Chronicle component uses an external process to keep track
of these changes. The current implementation uses git.

The Gesture component captures user gestures and trans-
lates them into Mr. Clean messages. Multiple gesture compo-
nents can be used simultaneously to provide interaction with
multiple devices. The Display component shows the visuals
provided by the Core component to the user on the available
display. It is possible to use display walls, which is Mr. Clean’s
preferred display method.

B. Visuals entities and relationships

The metadata associated with each visual is the path
from the base directory where Mr. Clean initializes the
git repository. Mr. Clean assumes a multi-level hierarchy
where each level is associated with a parameter changed
in the source code or input data (such as task, approach,
method, or iteration). The model developer provides a
configuration file that Mr. Clean parses to find names
for each level. For example, the configuration file may
contain the string task/approach/method/iteration/name.
Using this configuration file, the metadata for the
file genotype/transformation/filtering/3/scatterplot.png is:
task=genotype, approach=transformation, method=filtering,
iteration=3, name=scatterplot.png. This lack of a predefined
structure for a visual’s relationships gives Mr. Clean more

flexibility in grouping and sorting visuals.

C. Provenance management

Although experiment reproducibility is a cornerstone in
the scientific method, it is often difficult to reproduce data
analysis results. Automating data provenance is therefore a
recognized best practice [11]. Mr. Clean uses the git version
control system to maintain versioning information for both
the visualization code and the output images. When either the
code is changed or a new image is created, a new version
is committed to the git repository. The git logs provide the
necessary data to connect each image to a specific code
version, satisfying requirement 4. Mr. Clean takes no other
action on the user provided code to not disrupt any established
work-flows, satisfying requirement 1.

D. Display System

We use the Display Cloud system [12] to show images on a
large, high-resolution display wall. In a display cloud, clients
can freely compose their own views on a set of displays.
Such a view is called a cloud display. On a cloud display,
the client can place and move around visuals that can, for
example, be images or a desktop. The client communicates
with its cloud display through a combination of JSON RPC
and websockets. Display cloud clients include browser-based
end-user interfaces and programs such as Mr. Clean.

Mr. Clean composes a cloud display out of the displays of
a large, high-resolution display wall, satisfying requirement 3.

E. User Interaction

A core feature of Mr. Clean is its flexible interface for
different input systems. This interface accepts input events
and maps these to operations that manipulate the visuals’ data
structure and their layout on the display. We currently use the
gesture system described by [13], which we have extended to
support different devices.

Our current implementation allows the users to associate a
particular gesture with a sorting criterion for the visuals. The
sorting criterion is a user-defined list of parameters that must

A, α, 1 A, α, 2

A, γ, 1 A, γ, 2 B, β, 1

A, β, 1

Gesture

α, A, 1 α, A, 2

γ, A, 1 γ, A, 2

β, B, 1

β, A, 1

Fig. 2. Schematic example of Mr. Clean in action. The users can interactively
change the sorting criterion of the images, according to the metadata, to
better compare them. In this case the metadata for each image is: method
(latin capital letter), approach (greek letter), iteration (number). This example
shows a gesture changing the sorting order from method-approach-iteration
to approach-method-iteration and back.



match the directory structure from Section III-B. This allows
the users to cycle through different visual arrangements and
compare the different results of the scripts executions (Figure
2), satisfying requirement 2.

F. Informal Evaluation

We are currently evaluating Mr. Clean with our domain-
expert collaborators. In this paper we report our initial expe-
riences developing and using Mr. Clean.

We found it easy to modify the data cleaning scripts to
output files with the necessary metadata. The modifications
had the added benefit of better structuring the code, and
making it easier to keep track of code changes.

The high resolution and large size of the display wall
enables multiple users to compare images by walking along
the wall. In addition, the gesture interface allows the users to
interact with the images while standing in front of the display
wall without having to walk back to a workstation. We believe
that a more refined and intuitive gesture interface can improve
and possibly speed up the data cleaning process.

IV. RELATED WORK

Display walls are often used for scientific visualization [14].
Hibbs et. al. [15] demonstrate how integrated views enable
novel biological discoveries. WindowScape [16] is a window
manager that uses flexible implicit grouping of windows,
but it relies on mouse and keyboard for interaction. It is
common to use different interaction approaches depending on
the interaction space [14]. Mr. Clean is, to our knowledge,
the first display wall system that provides a specialized dis-
play and interaction approach for interacting with scientific
visualization code lineages.

Systems for lineage management of scientific code and
data include Galaxy [11], which is popular in Bioinformatics.
However, the data lineage is usually managed manually. DEVis
[17] is an example of a visualization tool that focuses on
the evolution of non-code artifacts in a software development
setting, namely technical documentation. VisTrails [18] is a
system for work-flow and data provenance management with
support for data exploration, visualization and simulations.

Recent advances in human–computer interfaces include per-
ceptual input systems [19], and ubiquitous gesture recogntion
systems [20].

V. CONCLUSION

Mr. Clean is a tool for maintaining and comparing scientific
data analysis and modeling code through interactive compar-
isons of their produced output.

Our approach allows users to understand how changes to
their scientific code affect analytical results. By automati-
cally organizing the visualization output of different versions,
datasets, iterations, and methods, the user can overcome the
limitations of ad hoc comparisons.

We believe that our approach is general enough to be
applicable to other fields of scientific visualization code than
only those of our two case studies. Understanding the effects
of output data from changes to scientific data analysis and
modeling code is vital for the development of robust analysis
and modeling software. Mr. Clean enables such understanding.

Although Mr. Clean is already useful we plan to improve
it. The first improvement planned is to provide a code diff
by selecting two or more images with a gesture. The diffs
provide the user information about the cause of the changes
in the images by looking at the changes in the visualization
code.

REFERENCES

[1] A. J. Hey, S. Tansley, K. M. Tolle, and others, The fourth paradigm:
data-intensive scientific discovery, 2009.

[2] Visit, “Visit.” [Online]. Available: https://wci.llnl.gov/codes/visit/
[3] ParaView, “ParaView.” [Online]. Available: http://www.paraview.org/
[4] V. Dumeaux, K. S. Olsen, G. Nuel, R. H. Paulssen, A.-L. Børresen-

Dale, and E. Lund, “Deciphering Normal Blood Gene Expression
Variation—The NOWAC Postgenome Study,” PLoS Genet, vol. 6, no. 3,
p. e1000873, Mar. 2010.

[5] M. C. Oldham, G. Konopka, K. Iwamoto, P. Langfelder, T. Kato,
S. Horvath, and D. H. Geschwind, “Functional organization of the
transcriptome in human brain,” Nat Neurosci, vol. 11, no. 11, pp. 1271–
1282, Nov. 2008.

[6] J. M. Hellerstein, “Supplment to: Quantitative data cleaning for large
databases,” United Nations Economic Commission for Europe, 2008.

[7] K. Knudsen, “Amdex: automated meta-data extraction from kegg path-
ways,” Bachelor Thesis, Dept. of Computer Science, University of
Tromsø, 2014.

[8] KEGG. [Online]. Available: http://www.kegg.jp/
[9] OpenCV, “OpenCV.” [Online]. Available: http://opencv.org/

[10] O. Anshus, D. Stødle, T. Hagen, B. Fjukstad, J. Bjørndalen, L. Bongo,
Y. Liu, and L. Tiede, “Nine years of the tromsø display wall,” in
Proceedings of Powerwall, SIGCHI Workshop., 2013.

[11] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences,” Genome Biology, vol. 11, no. 8,
p. R86, Aug. 2010.

[12] L. Tiede, J. M. Bjørndalen, and O. J. Anshus, “Cloud Displays for
Mobile Users in a Display Cloud,” in Proceedings of the 14th Workshop
on Mobile Computing Systems and Applications. New York, NY, USA:
ACM, 2013, p. 12:1–12:6.

[13] G. Tartari, D. Stødle, J. M. Bjørndalen, P. H. Ha, and O. J. Anshus,
“Global interaction space for user interaction with a room of comput-
ers,” in Human System Interaction (HSI), 2013 The 6th International
Conference on. IEEE, 2013, p. 84–89.

[14] J. Leigh, A. Johnson, L. Renambot, T. Peterka, B. Jeong, D. Sandin,
J. Talandis, R. Jagodic, S. Nam, H. Hur, and Y. Sun, “Scalable Res-
olution Display Walls,” Proceedings of the IEEE, vol. 101, no. 1, pp.
115–129, Jan. 2013.

[15] M. Hibbs, G. Wallace, M. Dunham, K. Li, and O. Troyanskaya,
“Viewing the Larger Context of Genomic Data through Horizontal
Integration,” in Information Visualization, Jul. 2007, pp. 326–334.

[16] C. Tashman and W. K. Edwards, “WindowScape: Lessons Learned from
a Task-centric Window Manager,” ACM Trans. Comput.-Hum. Interact.,
vol. 19, no. 1, p. 8:1–8:33, May 2012.

[17] J. Zhi and G. Ruhe, “DEVis: A tool for visualizing software document
evolution,” in Proceedings of VISSOFT, Sep. 2013, pp. 1–4.

[18] VisTrails. [Online]. Available: http://www.vistrails.org/
[19] K. Sabir, C. Stolte, B. Tabor, and S. O’Donoghue, “The Molecular

Control Toolkit: Controlling 3D molecular graphics via gesture and
voice,” in Proceedings of BioVis, Oct. 2013, pp. 49–56.

[20] B. Kellogg, V. Talla, and S. Gollakota, “Bringing gesture recognition to
all devices,” in Usenix NSDI, vol. 14, 2014.


