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Abstract 

Latency and bandwidth requirements often dictate which platform an application must 
be run on to achieve acceptable performance. But often there is a cost or availability 
incentive for running an application on a platform with lower bandwidth or higher 
latency. This dissertation presents four approaches for reducing the network latency 
and bandwidth requirements of communication intensive parallel and distributed 
applications. 
Our first approach for reducing the network latency requirements of parallel 
applications is to improve collective communication performance. The latency of 
collective operations can be reduced by adapting these to the application and platform 
in use. Such adaptation requires performance analysis of message traces collected 
internally in the communication system. For large-scale clusters, large volumes of 
trace data must be collected, analyzed, and transferred over the network. We propose 
a framework for building scalable runtime monitors. Our results show that monitors 
for collective operation analysis can be run on large-scale Ethernet and WAN multi-
clusters without significantly perturbing the monitored application. The contributions 
are: 

• A monitoring framework. It supports the development of a vide variety of 
trace based monitors. 

• Approach for scalable message tracing with a very small memory footprint 
where message traces are processed at runtime by threads run on the cluster 
nodes. 

• Approach for exploiting underutilized compute and network resources to run a 
monitor on a cluster with very low perturbation of the monitored application. 

To further reduce the latency of collective operations used for global synchronization 
of parallel application threads on a WAN multi-cluster, we implemented new 
operations for evaluating global conditions. Measurements demonstrate that the 
operation has the same latency on a WAN multi-cluster as on a single cluster for most 
global condition evaluations. Our contribution is: 

• An allreduce operation that can complete for most cases without WAN 
communication, and that does not change the application result. 

Our third approach to reduce the network latency requirements of parallel applications 
is to overlap communication wait time with computation by overdecomposing a 
parallel application. The improvements and limitations of overdecomposition are 
documented by analyzing performance data collected for the NAS benchmarks run on 
a cluster composed of the first generation simultaneous multithreading (SMT) 
processors. The contributions are: 

• Method for performance analysis of overdecomposed applications. 

• Performance study of overdecomposed parallel applications run on processors 
supporting SMT. 
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Our approach for reducing the network bandwidth requirements of distributed 
applications is to divide the transferred data into segments and then eliminate 
redundant transfers of segments. Previous approaches do not work well for 
compressing multi-dimensional data, such as 2D pixels in remote data visualization 
and high-dimensional scientific datasets. In addition, large segments are required to 
achieve a high compression ratio. We propose a method to identify and eliminate 
redundant data transfers of complex data types over a network. The implemented 
prototype allows visualization of genomic data analysis applications interactively 
across WANs with relatively low available network bandwidths. Our contributions 
are: 

• A framework for global compression using two-level fingerprinting and 
application specific segmentation, where redundancy detection is separated 
from redundancy elimination such that the same compression engine can be 
used with different application specific segmentation methods. 

• Two-level fingerprinting protocol for efficiently encoding unique segments, 
such that smaller segments can be used to improve redundancy detection. 

• A novel 2-dimensional content-based segmentation approach for remote 
visualization data. 

• Design and implementation of a very large cache on disk for storing 
previously sent segments. 

• A network bandwidth optimized, platform-independent remote visualization 
system using two-level fingerprinting to reduce end-to-end latency of screen 
updates. 

These methods can be composed to improve the end-to-end communication 
performance for communication intensive parallel and distributed applications. 
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Chapter 1  

Introduction 

This chapter gives an overview of this dissertation. First, three important classes of 
parallel applications are described, and their communication performance 
requirements are defined. Then four approaches for utilizing available computation 
and storage resources to improve the end-to-end communication performance for 
these application classes are presented. The problems for each approach are defined, 
the methodology for solving the problems is presented, and contributions are stated. 
Finally, the organization of the rest of the dissertation is outlined. 

1.1 Latency and bandwidth requirements  
Distributed applications require communication over a network. For communication 
intensive applications the communication will be frequent and (or) involve large 
amounts of data. In these instances, the performance is limited either by the 
communication latency; the time to transfer an empty message, or the network 
bandwidth; the number of bytes that can be transferred in a given time. High latency 
or insufficient bandwidth may cause applications to fail to meet response time, 
quality, or resource utilization requirements. Some examples are given below. 

 
Figure 1: For the applications in the shaded area, resources must be carefully 
scheduled to meet the bandwidth requirements. This “window of scarcity” can 
be expanded by exploiting available computational and storage resources. The 
figure is based on figure 2 in [14]. 
During the last three decades network bandwidth has increased 1000x, and network 
latency has decreased 20x [164]. These improvements allow developing new 
applications that take advantage of the higher bandwidth and lower latency to provide 
new or improved services. However, these applications often operate in a “window of 
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scarcity” where network resources must be carefully managed to meet the 
applications requirements (Figure 1).  

Processor performance and disk capacity have also had similar improvements [164]. 
In addition, processors and disks can be added incrementally to distributed computing 
platforms, making it much easier to improve computation or storage capacities than it 
is to achieve similar improvements for communication throughput or latencies. 
Therefore, distributed computing platforms typically have compute and storage 
resources that may be exploited to expand the window of scarcity, and hence may 
allow running applications with higher network performance requirements than is 
provided by the platform. 

Below we describe three classes of communication intensive applications, and 
motivate why the network is the bottleneck for these applications. 

1.1.1 Communication intensive application domains 
First three application domains are described. Then the platforms these are typically 
run on are characterized. 

1.1.1.1 Parallel applications 
Parallel computing involves splitting time-consuming computations into tasks that are 
executed in less time simultaneously on multiple processors. Parallel computing has 
become an important tool in many scientific disciplines, and has transformed many 
disciplines [97]. The typical parallel application is a scientific simulation, such as 
fluid dynamics simulation or weather prediction. But parallel applications are also 
used in other domains, such as rendering of movie special effects.  
The parallelization process can be divided into three steps [66]. First, the computation 
is decomposed into tasks that are assigned to threads (or processes). The goals of this 
step are to expose parallelism, distribute the tasks to achieve a good workload balance 
among the threads, and to reduce communication volume. Second, a programming 
model and language are chosen, and used to orchestrate data accesses, 
communication, and synchronization among threads. Important performance goals are 
to reduce communication and synchronization costs as seen by processors, and to 
reduce serialization caused by access to shared resources. Third, threads are mapped 
to processors such that network locality can be exploited. 

However, parallelization does not improve the execution time of all applications for 
two reasons. First, not all parts of an application can be run in parallel, and hence the 
sequential parts will eventually limit the execution time reduction (Amdahl’s law 
[13]). Second, and usually more important, the communication and synchronization 
necessary to coordinate all processors introduces an overhead, which typically 
increases with the number of parallel application threads. 

The two most common parallel programming models are multi-threading and message 
passing. Multi-threading usually require fewer changes to a sequential application, but 
a shared address space platform must be used. These typically have only 2—16 
processors, and hence limit the scalability of the applications [74]. Therefore, many of 
the parallel applications written today employ message passing. For message passing 
the Message Passing Interface (MPI) [148, 149] has become the de facto standard. 
MPI libraries provide both point-to-point and collective communication operations 
(Table 1). The collective operations implement coordinated communication involving 
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multiple processors, and can be used to broadcast data, gather data, scatter data, 
synchronize processes and execute reduce operations on distributed data. 

Operation name Communication pattern Usage 

Barrier Many-to-many Synchronize processes 

Broadcast One-to-many Send data from one to many processes 

Gather Many-to-one One process receives data from many 
processes 

Scatter One-to-many Divide data from one process to many 
processes 

Reduce Many-to-one Addition, min, max, multiplication, or 
another operation on distributed data. 
A single process receives the result. 

Allreduce Many-to-many Reduce and then broadcast the result to 
all processes. Also synchronizes the 
processes. 

Table 1: Commonly used collective communication operations provided by the 
Message Passing Interface (MPI). 
Communication intensive parallel applications require low latency of communication 
operations (milliseconds to microseconds), and/or high network bandwidth (up to 
several gigabits per second). Failure to meet these requirements on a platform limits 
the number of processors that can be utilized efficiently, and hence the performance 
of the parallel application.  

1.1.1.2 Remote visualization 
Data analysis in scientific fields such as genomics is a collaborative process. Studies 
typically include multiple researches, often from different institutions, regions, and 
countries. Such collaboration requires interactive discussion of the data and its 
analysis, which is difficult to do without sharing visualizations. To make discussions 
truly effective, interactive exploration of the data should be provided in a seamless 
manner, independent of the choice of data analysis applications, platforms, and the 
users geographical location.  

Remote desktop systems, such as VNC [184] or Microsoft Remote Desktop [67], can 
be used for remote collaboration, by allowing several users to share the visualization 
on a single desktop. In addition, a remote desktop system can be used to interact with 
an application running on a different platform than on a users machine. 

Most recent desktop systems are thin-client systems, consisting of a server that runs 
the applications logic and stores most of the application state, and clients that only 
implement functionality to display received screen updates, and forward user input to 
the server. Screen updates and user input events are encoded using a remote display 
protocol. The protocol can either provide a rich set of high-level display commands 
(as in Microsoft Remote Desktop or the X window system [198]), or fewer low-level 
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commands (as in VNC, Sun Ray [200] or THINC [25]). For high-latency networks, 
low-level protocols have better performance [131], since they requires less 
synchronization. 
For interactive remote visualization the latency of screen updates should be less than 
150 milliseconds [204, 219]. The bandwidth requirements range from tens of 
megabytes up to hundreds of megabytes depending on the screen resolution and 
update frequency. Improvements in latency allows for smoother interaction, while 
increased bandwidth allows improving the quality of the visualization including a 
higher resolution. 

1.1.1.3 Data Intensive Science 
Current scientific instruments and simulations are creating peta-scale data volumes, 
and the amount of data produced is roughly doubled each year [94]. Examples include 
the Sloan Digital Sky Survey (SDSS) astronomical survey [201], the BaBar high 
energy physics experiment [21], the Entrez federated health sciences database [158], 
and the CERN Large Hadron Collider [56]. 

The amount of data stored, and the computation necessary for analyzing the data 
requires building a data storage and analysis infrastructure. The infrastructure may be 
used to access the data by thousands of scientists participating in the project working 
at hundreds of institutions. Building a distributed infrastructure has several 
advantages including no single point of failure, and load balancing of data, 
computation, and user support [57]. In addition the different parts of the infrastructure 
can be individually funded by the participating organizations.  

A main challenge for such a distributed infrastructure is providing the necessary 
network bandwidth between the compute and storage resources. The bandwidth 
requirements are large, gigabits or higher per second. Available network bandwidth 
limits the data sets that can be transferred over the network, and hence the type of 
analysis scientists can do on their local resources. 

1.1.2 Execution environments 
The bandwidth and latency requirements often dictate which platform an application 
must be run on to achieve acceptable performance. But often there is a cost or 
availability incentive for running an application on a platform with lower bandwidth, 
higher latency, or both.  
Parallel applications are run on a wide variety of platforms including: a single 
processor with multiple cores and multithreading support, Beowulf clusters were tens 
of commodity components computers are connected using Ethernet, large parallel 
systems with hundred thousands of processors connected using high performance 
interconnects, to a Grid that is a federation of Beowulf clusters connected using a 
wide area network (in this dissertation we refer to such systems as WAN multi-
clusters). The platforms mainly differ in the number of processors and the bandwidth 
and latency provided by the network interconnect (Table 2). 
Many organizations use a Beowulf platform since it provides the best price-
performance ratio. But, the relatively low bandwidth and high latency of the Ethernet 
network typically used in Beowulf clusters does not allow some parallel applications 
to be run efficiently. Recently, many organizations have connected their clusters to 
form a WAN multi-cluster in order to share their compute resources. The even higher 
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latency and lower bandwidth of WANs limits the usability of using such federation of 
Beowulf clusters. 

Platform Processors Network 
interconnect 

Network 
Bandwidth 

Network 
Latency 

Advantage 

A single 
commodity 
processor 
[89, 110, 
214] 

1 (1-4 
cores and 
1—16 
threads) 

None   Cost, ease of 
programming 

Beowulf 
cluster [92, 
185, 216] 

Tens Gigabit 
Ethernet [90] 

Tens of 
GB/s 

Micro-
seconds 

 

Performance/ 
cost 

WAN Multi-
cluster (Grid) 
[46, 84, 85] 

Hundreds Ethernet and 
WAN 

MB/s Milli-
seconds 

Cost 
(resources 
are shared) 

Large parallel 
system [11, 
95, 132] 

Hundred 
thousand 

Myrinet [40], 
Quadrics 
[165], 
InfiniBand 
[109], 
proprietary… 

GB/s Micro-
seconds 

Highest 
performance 

SETI@home 
[236] 

Millions WAN MB/s Days Cost (free 
resources) 

Table 2: Characteristics of parallel application platforms. 
 
Network Latency Total bandwidth TCP/IP throughput 
Fast Ethernet Microseconds 100 Mbit/sec 8 MByte/sec 
Gigabit Ethernet Microseconds 1000 Mbit/sec 80 MByte/sec 
Tromsø-Odense WAN 
[42] (shared) 

32 ms 155 Mbit/sec 0.32 MByte/sec 

Tromsø-Princeton WAN 
[49] (shared) 

120 ms 2500 Mbit/sec 0.2 MByte/sec 

LambdaGrid [116] 
(dedicated network) 

78 ms 10 Gbit/s 1.13 GByte/sec 

CERN LHC Tier-0 [57] 
(dedicated network) 

Microseconds  2x 10 000 
Mbit/sec 

1600 MByte/sec 
(our assumption) 

Table 3: Characteristics of networks used in this dissertation and in related 
work. 
Remote visualization may require specialized hardware and a dedicated network to 
access the raw data, and do the computation for the visualization [116]. But often the 
visualization must be sent over a shared wide area network to the user. Also, during 
the last decade more users have got access to specialized visualization platforms that 
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provide higher resolution than a typical desktop screen, such as display walls with 
very high resolution [135]. When such large displays are used, the bandwidth 
requirements become even higher. Current shared wide area networks do not provide 
the bandwidth and latency necessary for high-resolution interactive remote 
visualizations (Table 3).  
The compute and storage resources in a large data set infrastructure are often 
connected using dedicated high bandwidth networks [57]. But, it is usually not 
economically feasible to build a dedicated network to all users. Many users must 
therefore access the data using a public wide area network, where the available 
bandwidth is shred among the users. The resulting application level throughput may 
be as low as a megabyte per second, limiting the size of datasets that can be 
transferred in a reasonable amount of time ((Table 3). 

1.2 Reducing bandwidth and latency requirements 
The previous section explained how the network bottleneck limits the scalability of 
parallel applications run on Beowulf and WAN multi-clusters, the data set sizes that 
can be transferred over a WAN, and the quality of remote visualization over a WAN. 
Network performance can be improved by modifying the network hardware, the 
software communication layer, or the application. Purchasing and deploying new 
network hardware is costly, but will improve the performance of many 
communication intensive applications. Rewriting applications is often not a practical 
solution due to the large number of applications that must be rewritten by the 
application programmers. Therefore a solution is needed that is both cheap to deploy, 
and that does not require application code changes.  
Such a solution can be added to the software communication layer. Most distributed 
applications communicate using a well-defined protocol or by using operations 
specified by an interface. Usually the protocol or interface only specifies the 
semantics of the communication operations. Therefore, different implementations of 
the protocol or interface can use the available resources differently, and even add new 
functionality internally. Such solutions are described below. 

1.2.1 Tuning collective communication operations 
A collective operation spanning tree distributes the computation of the operation 
among the cluster hosts and specifies how the processors communicate and 
synchronize (Figure 2). The performance of the collective operations used by parallel 
applications depends on the spanning tree used, and the mapping of the spanning tree 
to the computation nodes and network topology [126, 205, 218, 229]. Adapting the 
algorithm for the resources in use [32, 80, 81] can therefore reduce collective 
operation latency. 
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Figure 2: Three approaches for orchestrating the communication and 
synchronization for a many-to-many collective operation. The configurations 
shown are a flat tree (left), a hierarchy aware spanning tree (middle), and a 
configuration where four spanning trees are connected by an all-to-all 
communication graph (right). 
The performance of a collective operation spanning tree depends on many factors 
including the cluster topology, cluster hosts, the load on hosts, the message size, and 
communication-computation overlap. It is therefore difficult to develop a 
mathematical model [12, 31, 65] or use simulation to find the best configuration [80, 
81, 229]. Furthermore, on shared platforms such as a compute Grid, the resources 
allocated to an application may change for each time the application is run. It is 
therefore necessary to monitor and analyze the performance of collective operation 
spanning trees used by the application running on the actual platform to find the best 
configuration [32, 80, 81, 126, 205, 218, 229, 242]. 

 
Figure 3: Timeline visualization from the Vampir tool [51, 162] (now Intel Trace 
Analyzer [111]) identifying the MPI_Allreduce as a bottleneck. There is one 
horizontal bar per thread that shows when the thread was computing (green) 
and communicating (red).  
Existing commercial [51, 107, 111] and research [55, 99, 115, 119, 144, 155, 178, 
194, 225, 241] monitoring and performance analysis tools for parallel applications 
have one or more of the following problems: 



Introduction 

 8 

• The performance analysis can identify a certain collective operation call as the 
bottleneck (as shown in Figure 3). However, the tools are not able to provide 
insight into why the operation has poor performance and how the problem can 
be avoided. 

• The monitor introduces overheads that can significantly perturb the monitored 
application such that a significant error is introduced to the results. The 
overheads are due to the monitor and monitored application sharing, and hence 
competing, for processor memory and network resources. 

• The monitor does not scale to large clusters with hundreds of computers. The 
monitors may require storing hundreds of megabytes of data per node, which 
must often be transferred to a single node for analysis. Also, processing the 
data can take tens of minutes, and thereby not allowing runtime analysis, or 
even post-mortem analysis, between two application runs. 

• The tools are difficult to use, since they may require application code 
modifications, recompiling or re-linking the application, or installing new 
software on the platform. Also, applications must usually be re-run in order to 
collect performance data. 

1.2.2 Collective operations for WAN multi-clusters 
Collective operations ease the programming of parallel applications. The small set of 
operations provided by for example MPI, can be used to implement most of the 
required collective communication for a parallel application. The semantics of these 
operations are chosen such that the result of an operation is predictable and 
repeatable. But, the latency of the operation is determined by the communication and 
synchronization necessary to satisfy the semantics requirements for the collective 
operation. For example if the hosts in Figure 2 are connected using WANs, the 
latency of using a flat spanning tree includes two WAN latencies (for the reduce and 
broadcast phase). To only include a single WAN latency, an all-to-all graph can be 
used for WAN communication [126]. But with this change the operation can no 
longer guarantee that the same results is always returned for operations on floating 
point numbers [126]. However, the latency of the collective operation may still be 
orders of magnitude larger than on a single cluster.  

In order to run a tightly synchronized parallel application on a WAN multi-cluster 
more radical changes to the collective operations are necessary to achieve the 
necessary orders of magnitude reduction in latency. For the users of parallel 
applications it is important that the changed collective operations does not change the 
results produced by the parallel program. Also, application programmers should not 
be required to make changes to the applications source code. 

1.2.3 Communication and computation overlap 
Parallel applications are usually decomposed and mapped such that there is one thread 
per processor, since this minimizes the communication and synchronization overhead, 
and reduces the number of cache conflict misses. However, a processor will mostly be 
idle when its thread is blocked on a communication operation. Parallel application 
performance can be improved if the processor is more efficiently used. One approach 
is to overlap the wait time with computation for another thread [29, 70, 134, 173, 
207]. In order to map multiple threads to each processor, the problem can be 
overdecomposed such that there are more tasks than processors (Figure 4). Such 
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overdecomposition requires no changes to application code, since most parallel 
applications are coded such that the number of threads can be specified at load time. 

 
Figure 4: A parallel application decomposed and mapped with one thread per 
processor decomposition (left), and overdecomposed such that multiple threads 
are run on the same processor (right). 

 
Figure 5: Communication-computation overlap can improve execution time even 
if some overhead is introduced. 
Computation-communication overlap reduces parallel application execution time 
when the amount of wait-time used for computation is larger than the introduced 
overheads (Figure 5). Another advantage of overdecomposition is that it may provide 
the thread level parallelism (TLP) necessary to utilize modern processors with 
simultaneous multi-threading (SMT) and chip multiprocessors (CMP).  

Overdecomposition is normally not used for parallel applications for two reasons. 
First, for most applications the number of communication events, synchronization 
events, and number of bytes communicated all increase [66]. Second, the computation 
in parallel applications is structured such that data accesses optimize processor cache 
usage [170]. Hence, each context switch may require reading a new working set into 
the caches. 

Motivated by the introduction of processor with CMP or SMT processors, the benefits 
and limitations of overdecomposing parallel applications should be re-evaluated. In 
particular, the degree of computation-communication overlap, cache miss increase, 
communication overhead, and synchronization overhead should be quantified when 
applying overdecomposition. To provide the results, performance metrics collected at 
multiple software and hardware layers must be combined. 

1.2.4 Compression for remote visualization data 
A remote visualization system for collaborative scientific research should satisfy three 
requirements.  First, the response time should be fast enough to allow collaborating 
parties to interact smoothly, even when using visualization-intensive software across a 
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relatively low-bandwidth wide area network (WAN). Second, collaborating parties 
should not be required to replicate data since datasets can be large, sensitive, 
proprietary, and potentially protected by privacy laws.  Third, the system should allow 
collaborators to use any visualization and data analysis software running on any 
platform. 
Adding remote collaboration capabilities to applications [63, 82, 150] may satisfy the 
first and the second requirements, but achieving universal adaptation is difficult due 
to then number of different applications in use. Web browser-based remote 
visualization software can satisfy the third requirement, but not the first two because 
usually these are single-user system and do not optimize the network bandwidth 
requirement. Most thin-client remote visualization systems, such as Sun Ray [200], 
THINC [25], Microsoft Remote Desktop [67] and Apple Remote Desktop [19] satisfy 
only the second requirement because they do not perform efficient data compression, 
and are platform-dependent.  

The platform independent thin-client VNC [184] system, satisfies the second and third 
requirement. VNC has one graphics primitive: “put rectangle of pixels at position (x, 
y)” [184]. This allows separating the processing of application display commands 
from the generation of display updates. The client can therefore be stateless and hence 
easy to implement, maintain and port. The disadvantage of the protocol is that 
bandwidth requirements are high. To reduce bandwidth the screen updates can be 
compressed before being transferred over the network. However, existing 
compression algorithms for two-dimensional pixel segments do not provide the 
compression ratio and low compression time necessary for smooth interaction. In the 
following section we propose a novel method to compress a long visualization 
session. 

1.2.5 Compression for large scale-scientific data sets 
Distributed platforms have available computational and storage resources that can be 
used to compress network data in order to reduce the bandwidth requirements of 
distributed applications. This allows reducing the transfer time for large scientific data 
sets, and improving the resolution, color depth, and frame rate of remote 
visualizations. 

Compression algorithms encode information using fewer bits than the original un-
encoded representation uses. The compression can be either lossy or lossless. Lossy 
compression is often used to encode image [235], audio [113] or video data [88] since 
it typically achieves a higher compression ratio, and the reduced quality is acceptable. 
But for scientific data sets lossless compression is typically required. Similarly, for 
scientific remote visualization any changes to the provided visualizations are 
undesirable.  
Network data is typically compressed using a local compression algorithm [9, 188, 
202] which decouples compression from decompression, such that no communication 
between the server and client is necessary when doing the compression and 
decompression. A popular local compression algorithm is DEFLATE [73], used in the 
zlib/gzip library[9]. DEFLATE combines the Lempel-Ziv (LZ77) duplicate string 
elimination algorithm [244], with Huffman encoding for bit reduction [103]. LZ77 
detects duplicate strings and replaces these with a back-reference to the previous 
location of the string. Huffman encoding replaces symbols with weighted symbols 
based on frequency of use. The problem with existing local compression algorithms, 
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is that the ratio achieved for scientific data is low, while compression time is to high 
for remote visualization. 

 
Figure 6: Global compression used to compress screen content. Previously sent 
pixel regions (segments) are stored in cooperating caches at the sender and 
receiver side. The data to be sent is segmented, and in place of replicated 
segments only the cache index is sent over the WAN. 
During the last few years global compression has been suggested to improve 
compression ratio and to reduce compression time [156, 171, 209]. The sender and 
receiver cooperate to maintain caches of previously sent data. Data is compressed by 
eliminating transfer of redundant bytes (Figure 6). First, a redundancy detection 
algorithm divides the data to be sent into segments. Then, redundancy elimination is 
implemented by sending a fingerprint instead of replicated segments. The fingerprint 
is usually a hash value of the segment, and is used to retrieve the data from a segment 
cache. Such algorithm can detect redundancy in the entire data sets, while redundancy 
detection in local compression algorithms is within a local scope. 

 
Figure 7: Content based 1-D anchoring. First hash values are calculated for fixed 
size substrings, including all overlaps. Anchorpoints are then selected based on 
the k least significant bits in the hash value. The anchorpoints divide the text into 
segments. Modifying the text does not change most anchor points, and hence 
most segments are identical. 
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The simplest redundancy detection approach is to anchor segments statically (such as 
an 8×8 pixel grid, used in the MPEG [88] compression algorithm). The problem with 
a static approach is that the anchoring is sensitive to data movements such as screen 
scrolls. To improve redundancy detection, a content-based technique introduced by 
Manber [145] is typically used to segment the data. His method applies a Rabin 
fingerprint filter [50, 175] over a byte data stream and identifies anchor points 
wherever the k least significant bits of the filter output are zeros. With a uniform 
distribution, an anchor point should be selected every 2k bytes. The anchor points can 
then be used to either divide the data into segments [156] or as starting points for 
growing redundant regions [209]. Since the anchor points are selected based on the 
data content, they move with the data such that data insertion or removal in a 
datastream does not influence anchorpoint selection  (Figure 7). Another advantage is 
that Rabin fingerprint calculation is very fast compared to the redundancy detection 
mechanisms typically used by local compression algorithms. 
The compression ratio of global compression depends on the amount of redundancy 
found in the data, and the fingerprint to segment size.  
Previously proposed segmentation approaches work well only with 1D data types, 
such as web content, documents, email and binaries, while many important 
applications use complex data types such as 2-D screen buffers for remote data 
visualization, and multidimensional scientific datasets. Therefore, using a redundancy 
detection algorithm that is aware of the data structure can improve the compression 
ratio. 
Previous global compression systems [100, 156, 172, 180, 220, 222] typically chose a 
secure hash, such as 160-bit SHA-1 [7], as a fingerprint so that the probability of a 
fingerprint collision can be lower than a hardware bit error rate. However, since the 
global compression ratio is limited by the ratio of the average pixel segment size to 
the fingerprint size, using a large fingerprint size will reduce the compression ratio.  

1.3 Approach and methodology 
The methodology used in this work is to first build a prototype for the approaches 
proposed in the previous section, and then use the prototype to document the benefits 
and limitations of each approach. 

1.3.1 Spanning tree monitoring 
We attempt to reduce collective operation latency by adapting the collective operation 
spanning tree to the cluster in use. First a trace based method for collective operation 
spanning tree performance analysis is developed. Second, a runtime monitor system is 
built, and demonstrated to provide the low perturbation and data processing capability 
necessary for real-time analysis of the traces. Third, the monitor system is used to 
measure how the latency of globally synchronizing collective communication can be 
reduced on the WAN multi-cluster. 

To get insight into where the bottlenecks of collective operation are and how these 
can be avoided, messages traces are collected internally in the communication system. 
These traces provide a detailed chronological view of the applications execution, and 
are used to calculate statistics and visualizations used to aid in adapting the spanning 
tree to the cluster resources in use. 
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To reduce monitor overhead and improve monitor scalability we use several novel 
techniques. Storing message traces in fixed size buffers, where old records are 
discarded when a buffer is full, reduces storage overhead. Coscheduling application 
and monitor threads to exploit underutilized compute and network resources reduces 
monitor computation and communication overhead, and distributes the analysis of 
message traces among the cluster nodes. Monitor scalability is further improved by 
using efficient collective operations for data gathering, and separating functional 
concerns of the monitor such that different parts can run at different speeds. 

The research platform consists of Beowulf clusters used independently, and connected 
together using a WAN. For these platforms software modifications can significantly 
improve collective operation performance. We focus on latency bound collective 
operations since these are most commonly used [231]. Also, latency bound operations 
are good benchmarks for a monitor, since they are easily perturbed [118, 166], and 
more trace data is produced since the operations can be frequently called. 

1.3.2 Exploiting application knowledge 

delta = computation(); 
global_delta = 
MPI_Allreduce(delta); 
if (global_delta > epsilon) 
  break; 

delta = computation(); 
global_delta = 
cond_allreduce(delta, 
  LARGER_THAN_EPSILON, epsilon); 
if (global_delta > epsilon)  
  break; 

MPI_Allreduce(v): 
  t = lan_allreduce(v); 
  r = wan_allreduce(t); 
  return r; 

cond_allreduce(v, type, epsilon): 
  if (type==LARGER_THAN_EPSILON) 
    t = lan_allreduce(v); 
    if (t > epsilon) 
      return t; 
    else 
      r = wan_allreduce(t); 
      return r; 

Figure 8: Standard allreduce (right) and conditional allreduce (left) as used by 
an application (top) and implemented in the communication system (bottom). 
To reduce the latency of synchronizing collective operations used on a WAN multi-
cluster, we implement a new operation that can be used for calculating a global value 
used to make global decisions. Such operations can be used for example to determine 
when a linear algebra computation has converged, and hence determine when all 
threads should move to the next stage in the applications algorithm. A call to this 
operation can return once the condition is determined to be true (Figure 8). This 
allows reducing the number of messages sent over a WAN, and hence the latency of 
the operation. The experiment methodology is similar as for spanning tree monitoring 
described above. 

1.3.3 Overdecomposition 
To evaluate the benefits of utilizing overdecomposition, the NAS parallel benchmark 
suite was used on a Beowulf cluster composed of computers with the first generation 
simultaneous multi-threaded processors (Intel Pentium 4). Also, we measured the 
benefits of using overdecomposition for WAN multi-clusters. To provide the data 
necessary for the performance analysis, we use our monitor tool developed for 
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collective operation analysis, hardware performance counters, operating system 
counters, and system level profilers.  

1.3.4 Content based compression 

 
Figure 9: Architecture of proposed compression approach, consisting of 
components for content-aware segmentation, redundant segment elimination 
with two-level fingerprinting, and a large segment cache. Applications can 
choose their appropiate content-based segmemtation method according to their 
data type. 
We propose a network data compression framework called Canidae that allows 
application users to build content-aware redundancy detection methods to improve the 
compression ratio (Figure 9). Our method is different from previous global 
compression approaches in four ways. First, data segmentation is separated from 
redundancy elimination such that specific content-based segmentation methods can be 
applied to complex data types. Second, we propose a 2-dimensional segmentation 
approach that works well with remote data visualization data transfers.  Third, we 
employ a two-level fingerprinting method to optimize the encoding of unique data 
segments. Forth, we use a very large cache for storing segments that allows detecting 
redundancy in a larger scope. 
Using the compression architecture described above, we built a remote visualization 
system called Varg that satisfies all three requirements defined in section 1.2.4. To 
satisfy the interactive performance requirement, the Varg system implements a novel 
method to compress redundant two-dimensional pixel segments over a long 
visualization session. To satisfy the no raw data sharing, and platform independence 
requirements, the Varg system is based on a platform-independent remote desktop 
system VNC, whose implementation allows remote visualization of multiple 
applications in a network environment. 
To demonstrate the applicability of the framework for remote visualization, we used 
the framework to compress data sent by VNC when using several visualization 
intensive genomic applications. 

1.4 Contributions 
To improve parallel application scalability on Beowulf clusters we improve collective 
operation performance. Our contributions are: 
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• A new performance analysis method to identify bottlenecks in spanning trees 
using message traces collected internally in the communication system. 
Existing parallel analysis tools has treated the communication system as a 
black box. 

• A monitoring framework that supports the development of tunable runtime 
monitors for parallel applications. Implementation of several monitors has lead 
to the discovery of: 

o New method to improve the scalability of message tracing. Trace 
records are stored in small buffers and processed at the same rate as 
they are produced by monitor threads distributed and run on the cluster 
computers. 

o Novel method for reducing the perturbation of a monitor by 
coscheduling monitor threads with parallel application threads, such 
that data can be analyzed when the processor is idle. 

The implemented monitors were run on Ethernet and WAN multi-clusters with almost 
no perturbation of the parallel application, and using only a few megabytes of 
memory for storing the traces. The results demonstrate that trace based analysis is, 
even when more data produced than for earlier approaches, practical on large scale 
clusters. Using the monitors we were able to reduce collective operation latency up to 
1.5.  

Our contribution to further reduce the latency of globally synchronizing collective 
operations on WAN multi-clusters is: 

• The novel conditional-allreduce operation used to implement global decisions. 
In most cases the condition used to make the decision can be evaluated 
without communication over WANs. Only minimal changes are required to 
application code, and the result produced by the application does not change. 

Conditional-allreduce reduced the latency of the allreduce operations by several 
orders of magnitude, such that the threads in a parallel application run on a WAN 
multi-cluster can be synchronized with the same overhead as on a single cluster. This 
may allow running other than embarrassingly parallel applications on a computational 
grid. 
To reduce parallel application execution time by improving the parallel efficiency on 
Beowulf clusters, we contribute with: 

• Method for identifying improved TLP and overdecomposition overheads 
using data from multiple software and hardware layers.  

• The first, to our knowledge, study of the utility of overdecomposed parallel 
applications run on Beowulf type clusters composed of hosts with SMT 
processors. 

We demonstrate how overdecomposing the NAS parallel benchmarks can reduce 
execution time. But it may also increase execution time due to TLP not improving, 
and overheads caused by an increase in context switches and cache misses.  
To reduce the network bandwidth requirements of distributed applications sending 
large scale scientific data sets and remote visualization data over a low-bandwidth 
WAN, we make the following contributions: 
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• A framework for global compression using two-level fingerprinting and 
application specific segmentation. Compared to previous systems 
segmentation is decoupled from redundancy detection such that the same 
compression engine can be used with different application specific 
segmentation methods. In addition: 
o A novel two-level fingerprinting protocol that improves redundancy 

detection by using smaller segments, while maintaining data consistency. 
Past work used large fingerprints, thus requiring large segments to 
maintain a high compression ratio. 

o Application specific segmentation method for multi-dimensional data that 
improves the redundancy detection for complex data types. Previous 
general- purpose 1-D segmentation algorithms do not take into account the 
structure and dimensionality of the data.  

o The design and implementation of a very large cache on disk for storing 
previously sent segments that improves compression ratio. Existing 
systems use much smaller segment caches.  

• A network bandwidth optimized, platform-independent remote visualization 
system using two-level fingerprinting protocol, and: 

o A novel segmentation algorithm for 2-D pixel data that detects pixel 
movement on a screen. Existing compression methods do not provide 
the compression ratio and time necessary for interactive remote 
visualization over networks with low bandwidth. 

o A novel use of two-level fingerprinting and eventual consistency to 
reduce the end-to-end latency of segment messages. 

Extending the VNC remote visualization system, we can support interactive 
visualization-intensive genomic applications in a remote environment by reducing 
bandwidth requirements from 30:1 to 289:1. 

1.5 Organization of dissertation 
This first chapter has presented the background for this dissertation, motivated the 
problems addressed, presented the methodology used to solve these, and summarized 
lessons learned solving these. The remaining parts are organized as follows. 
The second chapter is about collective operation performance analysis, and is based 
on three papers. In the first we develop and use a post-mortem method for 
performance analysis (this paper is in Section 7.1). The second paper (Section 7.2) 
presents the design of a monitor that allows the analysis to be done in real-time. The 
third paper  (Section 7.3) describes and evaluates conditional collective operations. 

The third chapter is based on a paper (in Section 7.4) that evaluates how 
overdecomposition improves parallel application performance on clusters.  

The fourth chapter is about global compression and consists of three papers. The first 
paper (Section 7.5) describes and evaluates an earlier implementation of the general-
purpose compression framework designed for remote visualization of genomic 
applications. The second paper (Section 8.4) describes and evaluates our general-
purpose two-level fingerprinting method. The third paper (Section 8.5) evaluates 
application specific segmentation methods for 2-D data.  
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The fifth chapter summarizes the dissertation and lists contributions, and the sixth 
chapter outlines future work. 

In addition published papers are in Appendix A, while Appendix B contains 
unpublished papers and experiment results. 
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Chapter 2  

Collective Operation Performance 

In the previous chapter we motivated the need for improved collective operation 
performance. In this chapter three papers for improving collective operation 
performance are presented and discussed. 

2.1 Introduction 
The goal of parallel programming is to improve application performance by utilizing 
many processors. Previous work has found that the number of processors that can 
efficiently be utilized is for many parallel applications limited by collective operation 
performance [174, 231]. Therefore, during the last years there have been many 
attempts to improve collective communication performance including [23, 26, 27, 32, 
80, 81, 105, 123, 126, 140, 143, 152, 163, 205, 213, 218, 229, 242]. Recent work has 
also compared the performance of different collective operation spanning tree 
configuration [80, 229]. However, a single best configuration has not been found. 
Instead, the spanning tree needs to be adapted to the application and the platform in 
use [32, 80, 81, 126, 163, 205, 218, 229]. 
 
if (msg_size > 100K) 
  t=get_flat_tree(); 
else 
  t=get_binary_tree(); 
 
use(t); 

if (tested_algorithms   
    == n_algorithms) 
  t = get_best_tree(); 
  use(t); 
else 
  t = get_next_tree(); 
  s = get_time(); 
  use(t); 
  e = get_time(); 
  update_perf_data( 
    t, e-s); 
  tested_algorithms++; 

if (first_time) 
  t = get_tree(); 
 
use(t); 
r = do_perf_analy(t); 
t = reconf_tree(t,r); 

Figure 10: Three approaches for selecting a collective operation spanning tree 
configuration: static rule (left), latency measurements of predefined algorithms 
(middle), reconfiguration based on performance analysis (right).  
There are at least three methods used to tune collective operation performance (Figure 
10). The most common is to implement a few algorithms that create spanning trees of 
different shape, such as a balanced binary tree. The algorithm to use for a given 
collective operation call is then selected at run-time based on a few parameters such 
as the message size (as done in MPICH [5] and LAM/MPI [3]). The selection policy 
is specified at design time, but an algorithm may adapt the spanning tree to the cluster 
topology [36, 126] if a topology specification is provided. Recent work has shown 
that performance can be improved by selecting the algorithm dynamically based on 
performance measurements of different algorithms run on the actual platform in use 
[81, 229]. We present a third method in the paper in section 7.1. Rather than selecting 
an algorithm that was specified at design time, we reconfigure different parts of a 
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spanning tree based on the results of a performance analysis. The spanning tree can 
therefore be intelligently adapted to any cluster configuration, and the resulting 
spanning tree may have a shape that is difficult to express algorithmically. For 
example, some branches may be binary trees while others are oct-trees.  

To detect bottlenecks in a spanning tree it is necessary to collect message traces 
internally in the communication system. Such traces provide a detailed chronological 
view of the applications execution, and can be used to calculate statistics and 
visualizations that provide insight to where time is spent during a collective operation 
call. The applicability of the method is demonstrated by adapting spanning trees to 
different Beowulf clusters and WAN multi-clusters based on the results. 

 
 

Figure 11: EventSpace architecture. A collective operation spanning tree is 
instrumented with multiple event collectors that store trace data in bounded 
buffers. Monitors read data from buffers using an event scope that also filters 
and reduces the data read. 
The performance analysis method presented in section 7.1 is based on post-mortem 
analysis of message traces. Message tracing is a popular performance analysis 
approach and is used by many tools [55, 99, 111, 115, 119, 144, 178, 194, 241].  But 
message tracing does not scale to large-scale clusters for two reasons. First, hundreds 
of megabytes of trace data are collected even on small clusters. Maintaining and 
storing such large data sets can significantly perturb the monitored application [61, 
160, 230]. Second, the data is typically processed sequentially, and the traces recorded 
on all cluster nodes must therefore be gathered to a single front-end computer for 
analysis. Transferring the data and running the analysis may take several minutes, and 
can only start after the application has exited.  
To avoid the overhead of existing message trace monitors [55, 99, 111, 115, 119, 144, 
178, 194, 241], alternative data reduction approaches have been used. These include: 
recording higher level data [15, 16, 91, 93, 112, 128, 230], recording data only on a 
few selected nodes in a cluster [181, 190], and only recording data for a small period 
of the applications execution time [151]. However, none of these approaches is able to 
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provide a complete chronological view of the applications execution, which may 
cause some performance problems not to be detected or understood [61]. 

 

 
Figure 12: Coscheduling implementation. Message tracing is integrated to the 
communication system. Monitor threads can be blocked when accessing a trace 
buffer. Blocked threads are unblocked either before or after an application 
thread calls a communication operation. Scheduling policies are implemented by 
specifying when to unblock monitor threads (for example: unblock all monitor 
threads when all application threads are blocked on a collective operation call). 
To solve the problem of high perturbation and storage requirements of existing trace 
based monitor systems, we developed the EventSpace system that is presented and 
evaluated in the paper in section 7.2. EventSpace is based on the following design 
ideas: 

• A flexible framework is provided that supports the implementation of many 
different runtime trace-based monitoring tools. 

• The functional concerns of the monitor are separated (Figure 11). Data 
collection is always enabled, but different analysis tools can use the data. 
These tools may produce temporarily results gathered and visualized by other 
tools. More importantly, the performance and perturbation concerns are also 
separated. This allows tuning each part separately to trade-off between 
introduced perturbation and data processing capability.  

• To reduce memory usage we exploit underutilized compute and network 
resources to analyze the trace records at the rate they are produced. Trace 
records can be stored temporarily in small fixed size bounded buffers, since 
the monitors have sufficient compute power to analyze all records before they 
are discarded. 

• The analysis of message traces is distributed among the cluster nodes. The 
combined compute power can be used to for compute intensive analysis of the 
recorded data before records are discarded (two examples of monitors 
implementing distributed analysis are shown in Figure 18 and Figure 19). 

• To reduce perturbation, the monitor threads are coscheduled, as shown in 
Figure 12, such that monitors can use the processor and network when these 
are not used by the application. 
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Figure 13: Conditional allreduce implementation for two clusters. First a local 
result is calculated on both clusters. If the condition is evaluated to be true, the 
local result is returned. Otherwise, the partial result received from the other 
cluster is read from the cache, combined with the local result, and returned. 
Although spanning tree reconfiguration can significantly improve collective operation 
performance, the best WAN multi-cluster configuration will still be limited by the 
WAN latency, and hence be orders of magnitude slower than on a single cluster [126]. 
Therefore, it is necessary to make changes to the collective operation to further 
improve performance.  
In the paper presented in section 7.3 we evaluate two novel changes to collective 
operations for further reducing the latency of globally synchronizing collective 
operations on a WAN multi-clusters: 

• Conditional collective operations that can be used to implement global 
decisions. These are typically used to synchronize parallel application threads. 
Conditional-allreduce can return once the condition is determined to be true 
(or false). Many conditions can be evaluated using only a subset of the 
contributed values. Therefore it is often not necessary to wait for values sent 
over WANs, and hence the latency of the operation is not limited by the WAN 
latency (Figure 13).  

• For large clusters, noise introduced by operating system activity and system 
daemons has been shown to contribute significantly to collective operation 
latency [118, 166, 226] (Figure 14). It may be possible to exploit the noise to 
overlap communication wait time with computation, and hence hide some of 
the WAN latency. 



2.2 Summary of papers 
 

 23 

 
Figure 14: Noise delaying one thread in a parallel application causes all other 
threads to wait at synchronization points thus increasing the latency of the 
synchronizing collective operation. 
The remaining sections in this chapter are as follows. Section 2.2 summarizes the 
results of the papers in sections 7.1, 7.2, and 7.3. The results are discussed in section 
2.3. Section 2.4 presents related work published after our papers, and section 2.5 
concludes.  

In addition, a technical report about the WAN emulator used in the papers is in 
section 8.1, and a summary of an unpublished paper about operating system 
interference on Ethernet clusters is section 8.2. 

2.2 Summary of papers 
This section summarizes the results of the three papers. 

2.2.1 Collective communication analysis 
The first paper (section 7.1) answered the following questions:  

• What type of statistics and visualization are useful to understand collective 
communication bottlenecks? 

• Which factors influence the spanning tree performance? 
• How should the spanning tree be reconfigured to avoid each type of 

bottleneck? 
• How much can performance improve by reconfiguring the spanning tree? 

2.2.1.1 Methodology 

 
Figure 15: The spanning tree from Figure 10 instrumented using the MPI 
profiling layer (middle) and our EventSpace tool (right). 
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Many parallel application monitoring tools record message trace using the MPI 
profiling layer [149]. However, the collected trace data is not sufficient to understand 
collective communication problems, since the communication system is treated as a 
black box. We instrumented the communication system to record message traces 
internally in the communication system (Figure 15). This provides information about 
the time spent on each node for the computation and synchronization in the spanning 
tree. Also, the traces can be used to calculate the communication latency for each 
message sent. The data collection can be done with very low overhead (less than 3%), 
but storing the traces requires hundreds of megabytes even for short runs on clusters 
with tens of processors. 

To answer the above questions, we used the collected message traces to analyze the 
performance of spanning trees on clusters with different number of cluster nodes, 
processors per node, network latency, and network bandwidth.  

2.2.1.2 Experiment results 

  

Figure 16: The pathmap visualization shows the computation time, wait time, and 
network latency for each thread (left). The measurement points are shown on the 
y-axis, while the time spent at each point is shown on the x-axis. The 
visualization can also be used to compare the performance of different spanning 
tree configurations (right). 
We use the pathmap visualization (Figure 16) to detect load balance problems, sort 
branches in the spanning tree into groups with similar performance, and to detect 
bottlenecks. The visualization is created by calculating statistics for the time spent for 
synchronization computation, and communication for each thread. 
The latency of the allreduce collective operations consists of three parts. First the 
arrival time is the time between the operation call of first and last thread. Second, the 
reduce latency is the time from the last thread called the operation until the result is at 
the root of the spanning tree. Third, the broadcast latency is the time from the root 
received the reduced value until the last thread received it. We found the performance 
to be mostly influenced by the arrival time, synchronization overheads during 
broadcast, and the network latency.  

Predicting how a reconfiguration of the spanning tree will change each factor is 
difficult, since the factors are not independent. For example, the communication 
latency depends on the load on the communicating nodes. Therefore, we found it 
necessary to compare the spanning trees by plotting these in a single pathmap (Figure 
16). 
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To configure a spanning tree, the depth and width of sub-trees are adjusted. If the 
bottleneck is due to the arrival time, either the application workload must be 
redistributed, or the spanning tree must be differently mapped to the cluster. If the 
bottleneck is due to the load on nodes, a deeper tree can be used such that multiple 
partial-reductions and broadcasts can be done in parallel. Similarly, if communication 
latencies contribute most, a broader tree can be used to reduce the number of network 
links. Our results show that performance could be improved up to 1.5 compared to 
collective communication configurations used by popular MPI implementations. 

2.2.2 Scalable low overhead monitoring 
In the second paper (section 7.2) the EventSpace monitor system is presented. The 
evaluation of the prototype answers the following questions: 

• How much is the monitored application perturbed when traces are stored in 
buffers shared by a single writer and multiple readers, and how much memory 
should be allocated for the buffers used to store the traces? 

• How should monitors be implemented and tuned to achieve the necessary 
performance to analyze the records in a buffer before they are discarded? 

• How can monitors be adapted to reduce application perturbation or to increase 
monitor performance? 

• Is perturbation reduced by coscheduling of monitor and application threads to 
utilize unused cluster resources? 

• Does collective operation monitoring scale to very large clusters and WAN 
multi-clusters? 

2.2.2.1 Methodology 
We experimented with two collective communication monitors that implement 
runtime analysis using the performance analysis method described above. The load 
balance monitor provides an overview of how much time each thread spends on 
collective operations. Many message tracing libraries collect similar amount of data. 
The synchronization point and network latency monitor calculates the statistics 
required to draw the pathmap visualization (described above). These collect and 
process more data than most existing trace based analysis tools. 
The load balance monitor analyses one message trace per thread, and provides results 
similar to other parallel application monitors (as discussed in section 1.2.1). The 
synchronization point and network latency monitor requires combining and analyzing 
more traces, and requires more computation.  

 
Figure 17: Load balance monitor with centralized trace analysis. 
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Figure 18: Load balance monitor with distributed trace analysis. 
To experiment with different approaches for implementing monitors, the load balance 
monitor was implemented using a centralized and distributed approach. The 
centralized approach gathers data to a front-end node for analysis (Figure 17). The 
event scope used to gather the data does some filtering and reduction of the traces on 
the cluster. These are executed close to the data source, and are used to reduce the 
data volume transferred to the front-end node. In the distributed approach, analysis 
threads are run on the cluster nodes. These read data from the message traces, 
calculates derived metrics, and writes these to bounded buffers used to store 
intermediate results (Figure 18). The intermediate results are then gathered to a single 
node for presentation. 

 
Figure 19: Synchronization point and network latency monitor. 
Coscheduling is evaluated using the synchronization point and network latency 
monitor (statsm shown in Figure 19). This monitor is implemented using distributed 
analysis, since the derived metrics require more computation, and in addition some 
metrics are calculated using trace data collected on two nodes. 

Experiment LAN overhead WAN overhead 
Data collection only None—1% None—1% 
Synchronization and latency analysis threads 5—9%  
…with co-scheduling 1%  
Centralized load balance monitor 0.4% 1% 
Distributed load balance monitor 1% 1--3% 
Synchronization and latency monitor 2% None 

Table 4: Application slowdown cause by different monitors. 
To measure monitor performance and perturbation benchmarks with frequent 
collective operation calls were monitored. Such communication intensive benchmarks 
represent applications for which collective operation performance improvements are 
most interesting. In addition, monitoring frequent calls will introduce more 
perturbation and require the highest performance from the monitor. The benchmarks 
were run and monitored on a Beowulf cluster and a WAN multi-cluster. 
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2.2.2.2 Experiment results 
The experiment results are summarized in Table 4. Data collection to bounded buffers 
does not significantly perturb the monitored application, since less than 1% execution 
time overhead is introduced to the monitored parallel application. Also, application 
execution time does not significantly increase when multiple monitors simultaneously 
read data from the buffer. The storage requirements are very low. Allocating about 10 
megabyte of memory is typically enough to ensure that all trace records are processed 
before being discarded. 
Both the centralized and distributed implementation of the load balance monitor is 
able to analyze over 99% of the data before trace-records were discarded (the buffer 
size can be increased to ensure that 100% of the data is analyzed before being 
discarded). The application execution time overhead introduced by the monitors 
ranged from 0—3%, with the centralized monitor having the largest overhead. With 
distributed analysis the functional concerns can be separated, such that all data is 
analyzed at the rate it is produced, but gathered to a node for presentation at a slower 
rate. Reducing the gather rate can also be used to reduce the perturbation of the 
monitor.  
Without coscheduling the synchronization point and network latency monitor 
introduced 9% overhead to the application. But coscheduling reduced the overhead to 
1%. 

The monitors scale with cluster size, since the analysis workload is divided among 
threads that monitoring a fixed size subtree. For a larger cluster, the number of 
analysis threads is simply increased. The data gathering to a front-end node for 
presentation also scales well, since the analysis threads can reduce the number of 
cluster nodes from which data is gathered. For all monitors the time required to 
analyze the collected performance data is smaller than the latency of the operation. 
Thus, the monitors can be used even for micro-benchmark consisting of only 
collective communication.  

Monitoring collective operations on WAN multi-cluster is simpler than on a single 
cluster of the same size, since the analysis computation time is the same but the 
collective operation latency is larger. Also, the performance for both the collective 
operation and monitor data gathering is limited by WAN latency. 

2.2.3 Conditional allreduce 
In the third paper (section 7.3) we experimented with two approaches for reducing 
allreduce execution time on WAN multi-clusters. The experiments answered the 
following questions: 

• Can collective operation latency be hidden in system noise cause by operating 
system interference for a multi-cluster with WAN links? 

• Does our conditional allreduce operation reduce allreduce latency compared to 
existing approaches? 
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2.2.3.1 Methodology 

 
Figure 20: WAN multi-cluster topology used to measure conditional collective 
operation performance improvements. 
For the evaluation four clusters with about hundred nodes in total were used. The 
clusters were located in Norway and Denmark, and the largest WAN latency was 
about 35 ms (the topology is shown in Figure 20). The SOR kernel was used for the 
evaluation, since it represents a typical usage of collective communication for 
synchronizing the threads in a parallel application. 
An allreduce operation implemented according to the MPI standard was, as expected, 
limited by the two-way latency of the slowest WAN. The wide area network aware 
collective operation used in [126], only improved the latency by 10%. But other 
WAN topologies show the expected 50% improvement. But, the latency is still 
limited by the highest one-way WAN latency in the topology. 

2.2.3.2 Experiment results 
For most conditional allreduce calls, the condition can be evaluated using values 
contributed by threads on a single cluster. Hence, most calls can return without 
waiting for messages sent over WANs, and the latency of the operation is similar to 
the single-cluster latency. For the remaining algorithm iterations, a message from 
another cluster is typically enough to evaluate the condition. For these, the latency is 
limited by the smallest WAN latency (Figure 21). Finally, for the remaining iterations 
the latency is similar to the WAN aware algorithms. 

We find that system noise does not significantly contribute to collective operation 
execution time for medium size Ethernet clusters (see section 8.2 for details). 
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Figure 21: Conditional-allreduce latency for each cluster (results for Dominic are 
not shown). For most iteration the latency is equal to the LAN latency. But when 
the algorithm is close to converge, data from other clusters are needed and the 
latency includes the one-way WAN latency to these clusters. 

2.3 Discussion 
This section provides a high level discussion of the results presented in the previous 
section. In addition, the choice of benchmarks used in the papers is motivated at the 
end of this section. 

2.3.1 Collective communication analysis 
In a dynamic environment such as many compute Grids, the resources allocated to an 
application rapidly changes. It is therefore necessary to rapidly reconfigure the 
collective operation in order to adapt to the changes. We believe the approach 
demonstrated in the paper in section 7.1 provides the necessary insight to rapidly find 
the best spanning tree configuration. Our results demonstrate that for some cluster 
topologies the best spanning tree has a non-uniform shape that is difficult to predict 
and create using an algorithm. However, we have not documented that using 
performance analysis to reconfigure a spanning tree can be faster than searching 
through a repository of algorithms (as is done in [81]). 

Collective operation performance analysis requires collecting data internally in the 
communication system. We used a research prototype communication system [32, 
233] where adding such instrumentation was easy. But, in order for the method to be 
widely adapted the many communication systems implementing the MPI standard 
must be instrumented. Such instrumentation is realistic for three reasons. First, the 
recorded information is portable and minimal (recorded are: operation type, message 
size, start time, and end time). Second, the necessary data can be provided by the new 
Peruse monitoring interface (discussed in section 2.4). Third, as demonstrated by the 
EventSpace monitoring system, such data collection has very low overhead. 
Another important requirement for the method to be applicable is that the 
communication system in use supports reconfigurable spanning trees. Recent MPI 
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implementations such as Open MPI [87] are module based, making it easy to add such 
functionality (as demonstrated in [35, 36, 117]). 

To our knowledge this is the first study that attempts to identify the bottlenecks in 
collective operations rather than just comparing the performance of several algorithms 
[80, 229]. Our evaluation also differs in that we attempt to improve a spanning tree by 
configuring different parts of the tree.  

In this work performance analysis was limited to the allreduce collective operation. 
Other operations that use similar spanning trees can also be analyzed using our 
method, as shown in section 7.3 were we extended the method to analyze all-to-all 
message exchange, and in Chapter 3 where we also monitor computation-
communication overlap. The method itself is independent of synchronization variable 
implementations, and communication system implementation, since it is based on 
visualizations and statistical analysis of synchronization point wait time, network wait 
time, synchronization call overhead, and the wait time before a calculated result is 
returned to all callers. But in practice a monitoring system as described in the 
following section is required. 

2.3.2 Scalable low overhead monitoring 
To tune collective operations we analyzed low-level message traces. Even on our 
medium size clusters, a large amount of trace data is produced. But in contrast to 
earlier assumptions [189] and results [61, 230] we have demonstrated that all data 
collected for collective operations can be analyzed without significantly perturbing 
the monitored application, and that the approach is scalable. The approach can also be 
used on WAN multi-clusters as demonstrated in the paper in section 7.3. 

The low perturbation and low storage requirements of our data collection approach 
suggest that it could be added to a parallel programming communication system and 
always be enabled. This would provide performance information about the 
communication system similar to the information provided by the performance 
counters on processors, the /proc filesystem in the Linux operating system, and the 
Ganglia [147] tool on clusters running the Rocks distribution [147]. Such an interface 
may increase the use of parallel application performance analysis tools, since it would 
no longer be necessary to re-compile or re-link the parallel application to enable data 
collection. Such an interface allows developing portable performance analysis tools. 
Using EventSpace, both simple monitors doing centralized message trace analysis, 
and more complex monitors doing distributed analysis can be built. Both require 
gathering data from multiple nodes to a single node for presentation. The data is 
gathered using collective communication spanning trees. The spanning trees can do 
data reduction, filtering, and other computations. The advantage of such spanning 
trees is improved performance, and the approach has been used by many other tools 
[24, 71, 78, 147, 167, 189, 208].  

Distributed analysis handles more data, scales better, and has lower perturbation than 
centralized monitoring. The reason for the improvements is that the threads are run 
closer to where the data is produced, and they introduce a level of separation between 
data collection and presentation. But the monitor is more complex to implement. The 
load balance monitor could be implemented using centralized analysis, and we believe 
other analysis tools that provide high-level performance information can be 
implemented using this simpler approach. 
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We did not find the monitors spanning tree shape to be important for monitor 
performance and perturbation (as speculated in [189]). The most efficient technique 
for reducing perturbation is to add a layer of separation, such that threads running on 
the compute nodes analyze data at the rate it is produced, but only intermediate results 
are gathered for presentation at a lower rate. To implement a level of separation, 
monitors must pull data. Pulling also makes scheduling of a multi part monitor 
threads easier, since each part can run at maximum speed, independent of the other 
parts. 

Communication intensive applications run on Ethernet clusters are not able to fully 
utilize the compute and network resources, since parallel application threads are often 
blocked waiting for data from other nodes, or for collective operations to complete. 
The idle resources can be utilized for running monitor threads. Allocating separate 
nodes for monitor tasks (as suggested in [189]), can increase perturbation since on 
platforms similar to ours, communication requires more processor and network 
resources than just locally analyzing the data. 
To utilize idle time it may be necessary to coschedule application and monitoring 
threads. The scheduler can be implemented by the communication system if both the 
monitor and application use it. Such an assumption is realistic since both must access 
the shared buffers used for storing the traces. The coscheduling results demonstrate 
that the unused processor resources can be exploited to run other tasks such as 
monitors, with perturbation similar to other (less powerful) data reduction approaches 
[230]. To our knowledge coscheduling has not been used for reducing monitor 
perturbation in previous work. In Chapter 3 we explore another approach for utilizing 
the idle time.  

A limitation of the evaluation is that the monitor approach was evaluated by 
monitoring collective communication. Point-to-point communication monitoring may 
have higher perturbation, and require even better monitor performance; especially if a 
derived metrics is calculated using trace data from both nodes. Also, using a cluster 
with a faster interconnect can increase the communication operation call frequency 
and therefore increase the amount of data produced, and hence increase the 
perturbation and performance requirements. However, even for such clusters there are 
idle compute resources that can be used by the monitor [129]. In addition the monitor 
will also benefit from the better communication performance. Finally, the monitored 
collective operations were not implemented by an MPI communication system. But 
previous work [35, 36, 117] has shown that the communication system used in the 
evaluation has collective operation performance which is similar to the popular 
LAM/MPI communication system [52]. 
EventSpace provides a library used by analysis tools to access, reduce, and combine 
data from message traces. The analysis tools themselves are programmed using a 
combination of C and Python, but the results are presented to the user using a GUI. 
This is the approach used by most performance tools today.  An alternative approach 
would be to provide a declarative language like SQL that could be used to access the 
trace data (as demonstrated by data stream management systems [22]).  

2.3.3 Conditional allreduce 
The latency of the conditional allreduce operation is orders of magnitude lower than 
ordinary allreduce. But only operations that return a single number, rather than an 
array, can be made conditional. Also, performance will probably only improve for 



Collective Operation Performance 

 32 

many-to-many or many-to-one communication, since the main advantage of 
conditional operations is that not all participating threads have to be synchronized. 
However, the remaining operations that either return an array, or have one-to-many 
communication, are typically used to distribute values used in the computation, and 
hence cannot be changed without affecting the result computed by the application (an 
exception is all-to-all where receivers can continue with its computation before the 
message transfer has completed [106].). Reduce operations are also the most 
commonly used collective operations [231]. 

Conditional operations require changes to collective operation semantics. In addition 
application code needs to be changed to specify an operation as conditional, and the 
condition to evaluate. We believe a pre-compiler could do this automatically. 
Previous work has identified noise caused by operating system interference as an 
important scalability limitation for application with globally synchronizing operations 
run on large clusters with high performance interconnects [118, 166, 226]. We did not 
find noise to have a significant effect on parallel application performance on Ethernet 
clusters and WAN multi-clusters. Thus, these platforms require different performance 
improvement approaches. It is therefore important that research is also done on these 
platforms and not only on clusters with high performance interconnects. Conditional 
allreduce is one such contribution. 
We have focused on WAN collective operation performance in this paper. In Chapter 
3, we investigate an approach for tolerating the WAN latency for point-to-point 
operations. Other approaches for running parallel applications on a WAN are 
described in [168]. 

2.3.4 Collective operation benchmarks 
In the tree papers presented in this chapter micro-benchmarks and benchmarks were 
experimented with. Unfortunately there does not exist a parallel benchmark suite 
targeted at collective operation performance. In this section we briefly examine the 
benchmarks used in related work [34-36, 80, 81, 123, 143, 163, 242]. 
The parallel programming community has a long tradition of using a small set of 
parallel benchmark suites such as Linpack [4], SPLASH-2 [240], NAS [157], the 
ASCI Purple benchmarks [133] , and the new HPCC benchmarks [1]. Of these, 
Linpack has been ported to many platforms, but it consists of only one kernel, while 
SPLASH-2 is oriented toward shared address space multiprocessors. The ASCI 
Purple benchmarks is a suite that can be used on large scale clusters [231, 232], but 
the benchmark are coded to use a combination of MPI and OpenMP. Unfortunately, 
there are few collective communication benchmarks that are widely in use (except the 
Pallas PMB micro-benchmarks [6]). In some of the recent papers on collective 
communication optimization [44, 105, 126, 143, 205, 213, 229] three papers [123, 
140, 218] use two kernels from NAS. Both use the same type of collective 
communication. The other papers either use only micro-benchmarks or their own 
applications. 

A collective communication benchmark should spend most of the execution time 
doing collective communication (Chen and Patterson use a similar argument for I/O 
benchmarks in [58]). The benchmark should also be realistic. Benchmark with 50% 
collective communication time relative to execution time, are realistic since it has 
been found that realistic parallel efficiency can be as low as 40% [129]. In [232] 
hundreds of processors are required before benchmark execution time was limited by 
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communication performance. But, many researchers do not have access to such large 
clusters. Instead the size of the problem computed by the benchmark can be reduced 
to increase the communication to computation ratio. A large enough reduction will 
make most benchmarks communication intensive. This does not only apply to our 
benchmarks, but also for the SPLASH-2 benchmarks [129]. We have verified that 
reducing the problem size does not change the communication behavior of the 
benchmarks used in our papers. 

2.4 Additional related work 
This section supplements the related work presented in the papers and in the 
discussion in section 2.3. 

2.4.1 Collective communication analysis 
Above we have presented many of the existing approaches for optimizing collective 
operation performance (the paper in section 7.1 provides additional details). Below 
we describe the new MPI Peruse interface, and relate our work to an approach 
published last year for tuning collective operation performance. 

Peruse was motivated by the need for detailed information about the communication 
system internal activities triggered by MPI calls. The interface has been implemented 
in Open MPI [124, 211] and PACX-MPI [125]. The Peruse standard exposes events 
including: start and end timestamp of data transfers, and timestamps for when a 
message is added or removed from a queue. In addition, a communication system can 
expose events not in the specification. Peruse can therefore provide the performance 
data necessary for collective operation performance analysis. Our work complements 
Peruse in that we demonstrate how to use the exposed data, and we provide a 
mechanism for efficient collection, analysis, and gathering of the exposed data. 
The importance of tuning collective communication operations to adapt to Ethernet 
clusters has been demonstrated in [80, 81]. In the first paper [80], the algorithms are 
statically tuned by using two techniques: topology aware spanning trees, and using 
linear search for empirically selecting a spanning tree algorithm from a repository. 
The second paper [81] reduces the overhead of finding the best algorithm, by reducing 
the number of collective operation calls necessary until the best algorithm is found in 
the repository. Our approach differs in that we attempt to select the next spanning tree 
configuration based on where the bottlenecks of the current spanning tree are. We 
have not measured which approach is able to find the best algorithm fastest. 

2.4.2 Scalable low overhead monitoring 
This section extends the Related Work section in the paper in section 7.2 that 
describes other scalable monitoring systems, data stream management systems, and 
other uses of coscheduling. 

MapReduce [71] is a programming model for processing very large amounts of data 
on large clusters. The application programmers specify a map function that filters out 
data by computing a set of intermediate key/value pairs, and a reduce function that 
merges all intermediate values with the same key. In addition the MapReduce library 
simplifies parallel programming by handling load distribution, fault-tolerance, and 
locality optimization. Overall the tasks performed by a MapReduce program are very 
similar to EventSpace monitors. Both read raw data from a set of buffers/files, filter 
out data, and aggregate the result. But most EventSpace monitors can eliminate the 
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mapping stage, since all records in a buffer are typically read, and can therefore be 
directly reduced. Hence, the model is more similar to data stream management 
systems (discussed in section 7.2).  
User defined reduction functions that produce derived metrics have also been used to 
reduce the data volume and control the overhead caused by writing trace data to files 
in the MPI tracing tool [61] developed for the Blue Gene / L system [11]. We have, in 
addition to providing a clearer separation of data reduction and data collection, 
demonstrated how to coschedule data reduction with parallel application threads. 

Another approach for improving the scalability of message tracing is to compress 
traces to reduce data volume. Near constant size representation in a scalable manner is 
possible if only the temporal-ordering for communication events is stored [160]. 
However, such compressed traces do not contain information about the latency of 
communication events, and hence may miss many performance problems. 
Many approaches have been suggested to utilize idle cluster resources. Cycle 
harvesters such as Condor [138] or the V System [215] or SETI@home [8, 236] use 
idle compute resources on remote computers for running jobs. These systems detect 
coarse-grained idle periods and then start the job as a low priority process. But, 
utilizing idle time on a cluster running a parallel application requires more fine-
grained control over resource usage. Therefore, virtual machines have been used for 
space sharing parallel application with interactive applications on a cluster [136]. A 
recent approach with similar goals as our coscheduling is the kernel level idletime 
scheduler [77] that attempts to run a background job when the resource is idle. Idle 
time scheduling reduces the perturbation of the foreground job by waiting a short 
period until starting the background job, thus allowing foreground jobs that arrive 
during the period to be serviced immediately. The EventSpace coscheduler is simpler 
than these general-purpose virtual machines and schedulers, since the parallel 
application and its monitors are closely tied together, and the idle times are caused by 
communication operations with predictable latency. 

2.4.3 Conditional allreduce 
The paper in section 7.3 presents approaches for tolerating the higher latency and 
lower bandwidth of WANs, other architecture specific collective operations, and other 
distributed systems for group communication over WANs. 

2.5 Conclusions 
This chapter presented a post-mortem method for collective operation analysis, a 
framework for implementing scalable runtime monitors for such analysis, and the 
conditional allreduce operation. 
Reconfiguring spanning trees based on performance analysis improved collective 
operation performance up to 1.5, without changing the application code or the 
communication system code. The method is based on analyzing message traces 
collected internally to the communication system, and can hence provide insight about 
why some collective operation is a bottleneck rather than just identifying it as a 
bottleneck. The novel pathmap visualizations can be used to group spanning tree 
paths with similar performance in order to reduce the number of paths to analyze, and 
to detect bottlenecks. 
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We have demonstrated that it is possible to combine message tracing with very low 
storage requirements, by storing traces only temporarily in small buffers in memory. 
The buffer content is analyzed by monitor threads distributed and run on the cluster 
nodes. The monitor can be used on very large scale cluster and Grids, since collective 
operation monitors scale better than the monitored collective operations. Monitoring 
activity can be coscheduled with application activity to utilize unused processor and 
network resources. Thus, the monitoring overhead is very low; only introducing 0—
3% execution time overhead, and hence not significantly perturbing the monitored 
application.  
When the result of a collective operation is used for testing a condition, many 
operations can complete without sending messages over a WAN. Thus the latency of 
the operation is reduced by orders of magnitudes and matches the latency of the 
operation on a single cluster. The changed collective operation will not introduce any 
changes to the result produced by the parallel application. 

The presented methods can be composed to improve collective operation performance 
on clusters and multi-clusters with high latency networks, thereby allowing more 
parallel applications to be run efficiently on these platforms. 
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Chapter 3  

Overdecomposition 

This chapter presents results from a paper and some additional experiments, about the 
benefits and limitation of utilizing overdecomposition for parallel applications run on 
Beowulf clusters and WAN multi-clusters. Overdecomposition is most useful for 
overlapping point-to-point communication wait time, and hence complements the 
approaches for improving collective communication performance presented in the 
previous chapter. 

3.1 Introduction 
Through the last decade computational scientists have been used to a 1.8 annual 
performance growth (based on the top500 list [223]). The growth has been due to 
improved single processor performance, and supercomputers being built with an 
increasing number of processors. But the growth is limited by the relatively smaller 
improvements in memory access latency and inter-node communication latency, both 
leading to under-utilization of processor resources (today a 70% processor utilization 
is considered very good [166]). 

One classic solution for hiding I/O or memory wait time is to overlap the wait time 
with computation for another task. Memory access latency can be overlapped with 
computation if a several threads can be executed in parallel on a processor. The 
technique is called thread level parallelism (TLP) and has since 2002 been supported 
by processors from Intel, Sun, IBM and others, either by simultaneous multi-
threading (SMT) or by chip multiprocessors (CMP). Similarly, network latency for 
inter-process communication can be overlapped with computation for another thread 
if parallel applications are overdecomposed (as discussed in section 1.3.2). 
Overlapping computation with communication can improve parallel application 
performance up to 2.0 [29, 70, 173, 207]. Overdecomposing the problem into more 
tasks than there are processors is an easy way to achieve overlap, but it is usually not 
used since it introduces overheads due to increased communication volume [66], 
cache pollution [170], and coarse-grained context switches. With processors 
supporting CMP and SMT, these assumptions may no longer hold. A re-evaluation of 
the benefits and limitation of overdecomposition is therefore needed. 
The paper in section 7.4 provides a performance analysis of overdecomposed NAS 
parallel benchmarks run on the first generation of SMT processors (Intel Pentium 4). 
The results provide insight into necessary system software changes to take advantage 
of the difference in context switch granularity, cache configuration and communication 
latencies for CMP with SMT nodes. In addition, section 8.3 provides additional 
WAN experiment results, and user-level scheduling to reduce the overheads. 
The rest of the chapter consists of a summary and discussion of the results in 
respectively section 3.2 and section 3.3. Additional related work is discussed in 
section 3.4, and section 3.5 concludes. 
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3.2 Summary of paper 
The paper in section 7.4 and the additional experiments in section 8.3 answers the 
following questions: 

• Does applying overdecomposition reduce the execution time of parallel 
applications run on Ethernet clusters and WAN multi-clusters? 

• What characterizes parallel applications for which overdecomposition improve 
performance? 

• Can overdecomposition be used to exploit the multi-threading support of SMT 
processors? 

• Which overheads significantly limit the performance of overdecomposed 
applications? 

• Does system software limit the performance of overdecomposed parallel 
applications?  

3.2.1 Methodology 
To answer the questions above, we measured the benefits of utilizing 
overdecomposition for the SOR benchmark and the NAS parallel benchmarks. The 
benchmarks were run on an Ethernet cluster comprised of computers with the first 
generation simultaneous multi-threaded processors (Intel Pentium 4). SOR was 
chosen since its communication behavior should be well suited for 
overdecomposition. The NAS benchmarks were chosen since they represent a wide 
variety of communication behavior (as described in [239]).  

The performance analysis is non-trivial since data collected from multiple software 
and hardware layers must be combined to provide a macro view of system behavior. 
TLP, communication wait time, and synchronization wait time are all calculated using 
message traces. Context switch and synchronization system call time are measured by 
the operating system, while hardware performance counters provide cache miss 
counts.  

Several simplifications of system behavior are made when quantifying TLP and the 
different overheads. The error can be estimated, and we found that the calculated 
values for the cache miss overhead and operating system time tend to be larger than 
the real values with a high degree of overdecomposition. The overheads calculated for 
a specific node vary between experiment runs, since communication wait times for a 
given node change between runs. But this variation can be avoided by calculating 
average overheads for the entire cluster. 

3.2.2 Experiment results 
Applying overdecomposition improves performance for SOR, and some of the NAS 
parallel benchmarks (Table 5). The execution time changes range from a slowdown of 
1.69, to a speedup of 1.8. In addition, we found that most of the NAS benchmarks 
have low parallel efficiency, even if they were written using non-blocking 
communication operations (the MPI standard does not require that the non-blocking 
operations must be overlapped with computation [237]). Hence, most have potential 
for computation-communication overlap. 
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Benchmark Number and 
size of 
messages 

Collective 
operations 

Asynchronous 
messages 

Best speedup 

SOR (LAN) Few large Yes No 1.4  
SOR (WAN) Few large Yes No 1.8 
BT Many small No Yes 0.98 
CG Many small, 

few large 
Manual Yes 0.59 

EP Few small Yes No 1.74 
FT Few large Yes No 1.11 
IS Few large Yes No 0.91 
LU Many small No No 1.07 
MG Many medium No Yes 0.70 
SP Many medium No Yes 0.64 

Table 5: Communication behavior, and the overdecomposition improvements for 
the SOR and NAS benchmarks. Small messages are less than 1 KB, large more 
than 1 MB. For benchmarks with collective operations and asynchronous 
messages these typically contribute most to the communication time. 
Improvement is relative to the one thread per processor composition. 
The benchmarks for which performance improved had a variety of communication 
behaviors. Best improvements were for benchmarks with few blocking operations, 
low cache miss penalty to execution time ratio, and low parallel efficiency. The 
improvements were better for the WAN multi-cluster. For all benchmarks a low 
degree of overdecomposition gave the best improvement, since increasing the number 
of threads may not significantly improve TLP, but increased cache miss and system 
call overheads.  
Overdecomposition can be used to exploit SMT processors, since the performance 
improvements were better when SMT was enabled. But the improvements were 
limited by the lack of TLP. The main advantage of SMT is that some of the system 
activity could be run in parallel with the computation.  

Benchmark SOR BT CG EP FT IS LU MS SP 
Processor saturated          
Lack of TLP          
Cache misses          
TLB misses          
System activity          
Global synchronization          

Table 6: Overdecomposition performance limitations for the SOR, and the NAS 
benchmarks. 
Table 6 summarizes the factors limiting performance improvement. The main 
limitations are:   

• Some benchmarks have a globally synchronizing collective operation between 
a communication intensive and computation intensive phase in the application, 
making it impossible to overlap these phases. 

• Overdecomposition does not always improve TLP. Often only a single thread 
is computing, while the others are blocked on communication operation. Thus, 



Overdecomposition 

 40 

the processor may not be fully utilized even with a high degree of 
overdecomposition. 

• The overheads due to cache misses and system calls can increase more the 
computation-communication overlap.  

• The largest increase in cache misses is for the L2 and L1-data caches, and is 
due to additional memory copies required for intra-node communication. The 
intra-node communication also causes additional context switches that 
increase the system time. 

System software does influence the performance improvements achieved when 
utilizing overdecomposition. Especially important is the behavior of the intra-node 
synchronization mechanisms. We compared two Pthread libraries and found that TLP 
improves if the synchronization variables are implemented such that a unlock call is 
likely to cause a context switch. But this also increases system time. Due to the low 
TLP, user-level scheduling or operating system scheduling does not significantly 
influence performance. Section 8.3.4 provides additional details. 

3.3 Discussion 
Overdecomposing the problem is probably the simplest technique for computation-
communication overlap for parallel applications, since it requires no changes to the 
application code or the communication system. Our results both confirm and 
contradict earlier results (and common knowledge) about the benefits of this 
technique. Overdecomposition increases cache misses [170], but not for all 
applications. Communication and synchronization overheads increase [66], but idle 
time can be exploited to tolerate the increase.  A surprising result was that increasing 
the number of threads does not always improve TLP. Overdecomposition may 
improve parallel application performance but should not be used indiscriminately 
since performance can be unchanged or even decrease. Therefore performance 
analysis as demonstrated in the paper is useful for identifying the bottlenecks of 
overdecomposed application and the system software. 

We found four main factors limiting overdecomposition improvements. Avoiding an 
increase in cache misses requires either rewriting the application or closing the 
memory gap on the processor. For the remaining three, changes to system software 
may reduce the problem:  

• To improve computation-communication overlap the conditional collective 
operations described in section 7.3 can be used to relax the synchronization of 
threads. 

• Intra-node communication and synchronization overhead can be reduced by 
using more efficient mechanisms as shown in [141, 177, 213, 218, 228].  

• TLP can be increased by ensuring that threads blocked on synchronization 
variables are started immediately (at the cost of work conservation).  

The performance improvements achieved for our parallel benchmarks run on medium 
size clusters are smaller than reported in earlier studies that used either a simulator 
[142, 206], or a single SMT processor [146, 227]. Running parallel applications on 
SMTs have two problems. First, the typical parallel application is memory intensive 
and uses floating point computations, which have been shown to perform worst on 
SMTs [108, 121]. Second, threads are often blocked on communication operations, 
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and thus there is not enough TLP to utilize the dual-threaded SMT processors on the 
cluster. 

SMT support on the processors can be disabled. Related work [191] has shown that 
web server performance can decrease when enabling SMT, due to more 
synchronization in the kernel. Enabling SMT did not decrease the performance of any 
of our benchmarks; hence we believe parallel applications should be run with SMT 
enabled, even when applications are not overdecomposed. 
Very few of the processors succeeding the Pentium 4 have supported SMT, and 
currently in the second quartile if 2007, none of the high-performance processors 
available from Intel and AMD have SMT support. However, almost all of the 
processors are CMP. The design of the CMP processors is still evolving, especially 
with regards to the cache hierarchy. Performance analysis as demonstrated in this 
work is therefore important to understand how parallel applications utilize the 
processors (and the cache hierarchy). 

3.4 Additional related work 
The Discussion and related work section in the paper in section 7.4 discusses other 
uses of overdecomposition, performance improvement results from other SMT 
studies, proposed system support for SMT, and alternatives to overdecomposition. 
This section summarizes additional related work for modeling communication-
computation overlap, using one-sided communication operations to achieve the 
overlap, and schedulers for parallel applications. 

3.4.1 Computation-communication overlap 
A model for identifying potential computation-communication overlap in a parallel 
applications is presented and used to achieve speedups ranging from 1.1—2.0 in 
[134]. The limitations of overlapping are demonstrated in [173], where it is found that 
the best possible speedup is 2.0, but much smaller in practice. A compiler 
transforming a parallel application to achieve computation-communication overlap on 
Ethernet clusters improved benchmark performance from 0—33% when run in 8 
processors [139]. Based on our experience, modeling the impact of 
overdecomposition is difficult due to the complex behavior of the cache hierarchy on 
SMT and CMP processors, and since many components in the underlying systems are 
black boxes with unknown system behavior. We complement the earlier models by 
presenting a method for performance analysis using data collected for real 
applications run on contemporary cluster hardware. 
A recent study of large-scale scientific applications found that there is a large 
potential for computation-communication overlap that allows hiding most of the 
communication latencies in clusters equipped with fast interconnects [195]. Also, 
overlapping is most useful for latency bound applications, and allows reducing the 
requirements for network latency (with a few microseconds). Our results differ in that 
the communication latency we attempt to overlap is orders of magnitude larger due to 
the network interconnects used, and hence different approaches for overlap may be 
required. 
The decomposition approach can have a large impact on cache utilization. A 
decomposition taking data dimensionality into account reduced the communication 
volume, but decreased application performance since data in non-continuous memory 
locations may be transferred [170]. Cache utilization can also be decreased when 
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applying overdecomposition. We find that overdecomposition increases cache misses 
for most benchmarks, but that for many the increase can be tolerated since it can be 
overlapped with communication wait time. 

3.4.2 One-sided communication operations 
MPI applications can be programmed for communication-computation overlap using 
the MPI immediate operations [148, 149]. But many MPI implementations does not 
support the required level of computation-communication overlap necessary to 
achieve the expected performance improvements [70, 237]. We experienced similar 
limitations for the NAS parallel benchmarks using the popular LAM/MPI 
implementation. 
To improve the level of computation-communication overlap the communication 
activity can be offloaded to a separate processor, typically located on the network 
interface card. In addition, one-sided communication operations, such as put and get 
in MPI [148, 149] can be used to decouple communication from synchronization. Due 
to semantic limitations of MPI operations [41], recent work has used primitives 
provided by parallel programming languages such as UPC [29, 70]. 
The one-sided communication operations can hide the software overhead of 
synchronizing the sender and receiver required when sending large messages using a 
rendezvous communication protocol. For example, a parallel application can be 
transformed to overlap many-to-many collective operation communication activity 
with computation [70]. First, the application code is modified such that computation 
occurs in blocks. Second, the synchronous collective operation is replaced with 
asynchronous point-to-point operations that are called at the end of each block.  

One-sided communication operations improved the performance of the NAS FT 
benchmark up to 1.9 [29]. The speedup we achieved with overdecomposition was 
smaller for this benchmark (1.1), but required no changes to application source code 
or system software. Overdecomposition can also be applied to any application, 
including applications with point-to-point communication, while the approach in [29] 
requires computation and communication to be structured as described above. Also, 
with overdecomposition there is no need for a separate processor for running 
communication activity, since communication wait time is overlapped, rather than the 
computation required for communication. 

3.4.3 Schedulers for parallel applications 
Often operating system schedulers are general purpose, and may not be optimized for 
parallel applications. For example the Linux 2.6.8 scheduler is optimized for fast 
responsive time at the cost of a larger operating system overhead [10]. Thus, a domain 
specific scheduler may be required. For parallel applications the scheduling can be:  

• Global: where all application processes and system daemons on a cluster are 
scheduled together to reduce synchronization wait time [118, 166]. A fast 
global synchronization operation is required, which is not available on 
interconnects such as Ethernet, or WANs. 

• Between communicating nodes: where communicating processes are 
scheduled to run simultaneously to improve latency by avoiding context 
switches [20, 59]. The protocol overhead of TCP/IP, typically used in Ethernet 
and WAN clusters, is too high for this type of coscheduling. 
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• On a single node: where the operating system scheduler is modified. For 
example the SMT aware SOS scheduler was able to improve NAS benchmark 
performance up to 17% compared to a non-SMT aware scheduler [206]. Also, 
such schedulers may provide performance isolation, such that several services 
can share the same server [130]. Performance isolation may also be provided 
by using virtual machines [136]. As demonstrated in this paper, performance 
isolation for parallel applications is more difficult since performance 
degradation due to cache pollution and increased latency of communications 
operations must also be taken into account. To our knowledge, these problems 
have not been addressed in related work on performance isolation. Another 
alternative is idle time scheduling [77] (also described in section 2.4.2) that 
runs low priority jobs when a resource is idle. 

• For all nodes on a cluster: Overdecomposition can also be used for load 
balancing in heterogeneous environments by adding more threads to faster 
processors [33, 83]. 

3.5 Conclusions 
We have measured how overdecomposing parallel applications into more threads than 
there are processors; can be used to overlap communication wait time with 
computation in order to reduce execution time. This was, to our knowledge, the first 
performance study of overdecomposition used on processors supporting simultaneous 
multi-threading (SMT). In addition, we describe three user-level scheduling 
approaches for overdecomposed parallel applications. 

We find processors in Beowulf clusters to be underutilized due to communication 
wait time, even when the parallel applications are programmed to use non-blocking 
communication operations. Initial results using the SOR kernel were promising; with 
execution time improvements up to 1.8. The best improvements were for the WAN 
multi-cluster. However, execution time decreased for only two NAS benchmarks, and 
decreased for three. Performance improvements are limited by lack of TLP, and 
overheads due to context switches and cache misses. TLP is limited by application 
communication structure, and synchronization variable implementation. User-level 
scheduling did give a small performance improvement, but the effect is often limited 
by the lack of TLP. 

Due to its simplicity overdecomposition can easily be applied for parallel applications 
with low parallel efficiency. But to understand the improvements and limitations for 
an application run on a given parallel platform, a performance analysis as used in this 
work is necessary. To fully utilize overdecomposition, we believe changes to 
underlying system are necessary to maintain a high degree of TLP and provide 
efficient intra-node communication and synchronization. 
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Chapter 4  

Content Based Compression 

In Chapter 1 the need for better compression methods for scientific and multi-
dimensional network data were motivated, and the background necessary to 
understand global compression algorithms was presented. This chapter presents three 
papers describing a framework built to provide such compression. 

4.1 Introduction 
The goal of compressing network data is to reduce transfer time. The compression 
system should therefore reduce the number of bytes to transfer in less time than would 
be required to transfer the bytes. The local compression algorithms typically used for 
network data [9, 188, 202] do not efficiently compress scientific data, while the 
compression time is too high for interactive remote visualization. Therefore, global 
compression has been suggested to improve compression ratio and to reduce 
compression time. 

Previous global compression methods [64, 72, 76, 153, 156, 171, 180, 196, 197, 209, 
221, 222],  are limited to deal with one-dimensional byte streams and have not 
addressed the issue of how to compress multi-dimensional data. In addition, these 
typically use large fingerprints to avoid data inconsistency caused by different 
segments having identical fingerprints. However, since the global compression ratio is 
limited by the ratio of the average pixel segment size to the fingerprint size, using 
large fingerprints reduces compression ratio. 
To address these problems, we first built a remote visualization system called Varg, 
for which we propose a 2-dimensional segmentation approach that works well with 
remote data visualization data transfers. Then we generalized the Varg approach into 
a network data compression framework called Canidae that allows application users 
to build content-aware redundancy detection methods to improve compression ratio 
(the architecture is shown Figure 9 in section 1.3.4). In Canidae, data segmentation is 
separated from redundancy elimination such that specific content-based segmentation 
methods can be applied to complex data types. To solve the problem of fingerprint 
size limiting compression ratio, we employ a two-level fingerprinting method to 
optimize the encoding of unique data segments. Finally, to improve redundancy 
detection we use a segment cache capable of storing hundreds of GB of segment data. 

The remaining of this section introduces the Varg system, application specific 
segmentation, two-level fingerprinting, and the segment cache. Then follows a 
summary of the papers, a discussion about the limitations and impact of this work, 
and description of related work. The final section concludes. 
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4.1.1 Varg remote visualization system 
Our initial work was motivated by the need for remote collaboration tools to assist 
interactive collaborative analysis of microarray data in biology and bioinformatics 
[53, 68, 102, 137, 161, 199, 210]. Such tools should: 

1. Provide fast response times for visualization-intensive genomics applications 
visualized over a low-bandwidth wide area network.  

2. Eliminate replication of large and often sensitive datasets.  

3. Work with any microarray analysis software. 
4. Be platform-independent.  

Most thin-client remote visualization systems [19, 25, 67, 200] satisfy the second and 
third requirements. In addition the open source VNC system also satisfies the last 
requirement, since implementations exists for most popular platforms. However, 
VNC does not provide interactive performance over a WAN. 

 
Figure 22: Compression system for remote visualization, consisting of a genomic 
application remotely visualized, the VNC remote desktop server, VNC client, 2-D 
bitmap aware redundancy detection, and 2-phase fingerprinting.  
The paper in section 7.5 describes the design and implementation of a remote 
visualization system called Varg that implements a novel method to compress 
redundant two-dimensional pixel segments over a long visualization session  (Figure 
22). The Varg system is based on VNC, whose implementation allows remote 
visualization of multiple applications in a network environment.  
The basic redundancy elimination algorithm is straightforward and its high-level idea 
is similar to previous studies on using fingerprints as identifiers to avoid transfer of 
redundant data segments (as described in Chapter 1).  

The algorithm for segmenting a 2-D array on the Varg server is:  
• Save a copy of the 2-D array. 

• Receive a set of updated regions of pixels from the VNC server and apply the 
updates to a local 2-D array. 

• Segment the 2-D array into 2-D pixel segments. 
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• Do region differencing by comparing the pixels in each region to the content 
in the saved 2-D array. 

• For each segment, compute its fingerprint and use the fingerprint as the 
segment’s identifier to lookup in the server cache. If the segment has not been 
sent to the Varg client previously, compress the segment with a local 
compression method and send the segment to the client.  Otherwise, send the 
fingerprint instead. 

The algorithm on the Varg client is: 

• If the received data is a 2-D pixel segment, decompress it with a 
corresponding algorithm, write the fingerprint and segment to the cache, and 
then pass the segment to the VNC client 

• If the received data is a fingerprint, retrieve the segment of the fingerprint 
from its cache and then pass the segment to the VNC client. 

In addition we optimize the basic algorithm to reduce the user perceived end-to-end 
latency, by using a two-phase fingerprinting algorithm. With the optimization the 
server may send two sets of updates, the first based on optimistic fingerprints that can 
have collisions, and the second set of updates consisting of corrections in case of short 
fingerprint collisions. End-to-end latency is reduced since updates are sent before the 
more computation intensive check for collision has completed. 
The redundancy detection method for anchoring 2-D pixel segments in the Varg 
system uses two important properties of genomic visualizations that create 
opportunities for content-based anchoring. First, microarray datasets tends to be very 
large. Second, due to the limitation of display scale and resolution, only a small part 
of the microarray can be viewed at a time, causing the frame to be frequently scrolled. 
Thus, the same set of pixels will be moved across the display multiple times. Our 
algorithm combines the statically divided screen approach used in MPEG [88], with 
Manber’s technique [145] of applying a Rabin fingerprint filter [50, 175] for content 
based anchoring (both anchoring approaches were described in section 1.2.5). First we 
determine whether most content was moved vertically or horizontally. For 
predominately vertical motion we statically divide the screen into m columns (m times 
screen height) and divide each column into regions by selecting anchoring rows. The 
columns are then divided into regions by selecting anchoring rows based on Rabin 
fingerprints. If we detect predominately horizontal motion instead, the screen is 
transposed before the segmentation algorithm is run. 

4.1.2 Canidae general purpose compression system 
The Varg system has four problems. First, the segments are large in order to achieve 
high total compression ratio (due to zlib compression requiring large regions). 
Second, the two-phase fingerprinting protocol sends an optimistic fingerprint 
followed by a conservative fingerprint for each segment thereby reducing per segment 
compression ratio. Third, the segment cache is in memory, and its size is therefore 
limited by the main memory size on the computer. Fourth, the sender keeps track of 
which segments have been sent to the receiver, such that recovering after a crash 
requires synchronizing the caches on both sides. 

The Canidae system, presented in the papers in sections 8.4 and 8.5, solves these 
problems. It consists of multiple segmentation components and a generic compression 
sub-system that handles the fingerprinting, transmission and caching of segments. To 
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solve the first and second problem, we employ a two-level fingerprinting method to 
optimize the encoding of small data segments. The third problem is solved by storing 
segments in a large cache on disk. The fourth problem is solved by making the sender 
stateless, and storing received segments and all other segment cache data structures on 
disk. 

4.1.2.1 Application specific multi-dimensional segmentation 
The Canidae architecture makes segmentation methods data specific. A segmentation 
component implementing a method can be configured to one or more ports of the 
system and to support a variable number of data streams of different data types. Each 
segmentation component is responsible for the segmentation of a specific class of 
data. The segmentation component implements the segmentation mechanisms for both 
send and receive data. For send data, the input data stream is divided into segments 
and passed to the segment compress component. For receive data, the segments are 
assembled into a data stream. In addition, the segment components must parse the 
application protocol to retrieve multi-dimensional data to be anchored.  

The main challenge when implementing a segmentation module is to employ a 
segmentation strategy that will give the greatest likelihood of uncovering, and hence 
eliminating, redundancies within the data. This will require significantly different 
segmentation techniques depending on if the data is a 1-D bytestream, 2-D visual 
display or 3-D scientific data. One example is the Varg 2-D content-based 
segmentation algorithm. The paper in section 8.5 describes several other 1-D and 2-D 
segmentation algorithms. 

4.1.2.2 Two-level fingerprinting 
The two-level fingerprinting protocol in Canidae provides a solution to the problem of 
compression ratio being limited by data redundancy found and the segment size to 
fingerprint size ratio. Using smaller segments typically improves the amount of 
redundancy detected [100], but requires using smaller fingerprints to maintain a high 
compression ratio. However, to ensure data consistency the fingerprint size must be 
large enough to uniquely identify a segment. Therefore previous global compression 
systems [39, 69, 72, 100, 153, 156, 171, 172, 222] typically use a 160-bit such as 
SHA-1 [7], or even longer secure hash, as a fingerprint so that the probability of a 
fingerprint collision is far lower than a hardware bit error rate.  But this also required 
using segments of several kilobytes in size. To allow smaller segments to be used in 
order to maximize the global compression ratio and maintain a low probability of 
fingerprint collision, we propose a two-level fingerprinting strategy. 
The two-level fingerprinting organizes segments into groups. For each group of 
segments, a 160 bit SHA-1 hash is computed as the conservative fingerprint of the 
whole group. For each segment in the group, we compute a 40-bit FNV hash [86] as 
the optimistic fingerprint. 
The two-level fingerprint algorithm is as follows: 

• For a group of segments received from the segmentation component the sender 
computes an optimistic fingerprint for each segment, and a conservative 
fingerprint covering all segments in the group. The optimistic fingerprints and the 
conservative fingerprint are then sent to the receiver. The sender also stores the 
segments in a buffer for sent segments. 
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• The receiver uses optimistic fingerprints as segment identifier to look in the 
segment cache to see if it has received these segments previously. If there is an 
entry in the segment cache for a given fingerprint, it retrieves the segment from 
the cache and adds the segment data into an assembly buffer. Otherwise, a 
segment request message is sent to the sender. 

• When the sender receives a segment request, it reads the segment from the sent 
segments buffer and sends the segment to the receiver.  

• The receiver inserts received segment data to the segment cache, and copies the 
segment data to the assembly buffer. 

• The receiver computes a conservative fingerprint for a group of segments when 
all has either been read from the cache, or received from the sender. This 
fingerprint is then compared to the received conservative fingerprint. If the 
conservative fingerprints do not match, all segments that were read from the 
cache are requested from the sender. If the conservative fingerprints are identical, 
or all requested segments have been received, an ACK message is sent to the 
sender, and all segments in the group are sent to the segmentation component to 
be assembled into the output data stream.  

• When the sender receives the conservative fingerprint ACK message, it deletes 
all segments in the group from the sent segments buffer. 

 
Figure 23: Factors influencing two-level fingerprinting compression ratio. 
The compression ratio of two-level fingerprinting is determined by the data 
redundancy found, the number of fingerprint bytes sent, and the segment data sent due 
to collisions (Figure 23). 

4.1.2.3 Segment cache 
The basic operation of the segment cache is to read and write segments based on their 
optimistic fingerprint. The two main design goals are to make it large enough to hold 
all previously sent segments in a session, and fast enough not to limit the throughput 
of the compression pipeline. For a hundred gigabyte dataset, the total size of cached 
segments exceeds main memory size, such that segments must be stored on disk. In 
addition, an index is required to map optimistic fingerprints to the segments location 
on disk (or in a memory cache). 
Our first approach to map optimistic fingerprints to segment data was to use a single 
large hash table with linear probing stored in memory, and all segments on disk. This 
naïve approach has two problems. First, the memory size limits the maximum number 
of segments that can be indexed by a single hash table resident in memory. Second, 
most segment accesses requires reading segments from disk since all available 
memory is used for the hash table. Therefore, the index should be split into multiple 
parts that can be stored in disk, and a large portion of the memory should be used to 
cache segments. 
We propose using multiple small hash tables; each indexed using the first l bits of the 
fingerprint. Hash table entries are 64 bits, and contains the remaining fingerprint bits, 
the memory or disk offset of the segment, and the size of the segment. The hash table, 
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and the segments indexed by it are stored in a container. Each container is stored in a 
separate file on disk, but can also be cached in memory. 

Segment accesses have no spatial locality with respect to fingerprint values, since the 
hashing function generates random fingerprints for segments. Segments can therefore 
not be efficiently cached if they are distributed to containers based on their fingerprint 
values. Instead we exploit the observation that segments written to the cache at the 
same time tend to be read together. Therefore, all new segments are written to the 
same container by inserting the fingerprint to the hash table and appending the 
segment to the end of the segment buffer. In case of a hash table collision the segment 
is written to the next container in memory. This clustering of segments allows read-
ahead of segments from disk. The disadvantage of this approach is that a linear search 
is required to find the container containing a specific segment. Therefore, we propose 
multiple optimizations to reduce the number of containers on disk that has to be 
checked. 

Segments accesses have temporal locality, so we cache recently accessed containers a 
in memory. When a container is accessed, the entire hash table is always read to 
memory, but the segment buffer is divided into several chunks, which are read on-
demand from disk (similar to demand paging [127]). Writes are buffered such that 
modified segment chunks are only written to disk when the memory is full. To evict 
segment chunks or containers, we use a least recently used algorithm. 

To further reduce disk accesses we use a Bloom filter [37]. A Bloom filter is a space 
efficient probabilistic data structure that we use to test whether an optimistic 
fingerprint is a member of the set of optimistic fingerprints stored in the segment 
cache. The test may return a false positive; hence an optimistic fingerprint in the 
Bloom filter may not be in the segment cache thus requiring all hash tables to be 
checked. But false positives are not possible. Therefore in case of a miss, it is not 
necessary to check the containers before requesting a segment from the sender, or 
writing a segment to the cache. In the Bloom filter can also be used to overlap 
network transmission time with disk read time. 

4.2 Summary of papers 
This section summarizes the paper in section 7.5, and the unpublished papers in 
sections 8.4 and 8.5. 

4.2.1 Remote visualization 
The paper in section 7.5 demonstrates that multi-dimensional content based anchoring 
can improve the performance of remote visualization. We have implemented and 
conducted an initial evaluation of the Varg prototype system. The goal of the 
evaluation was to answer the following questions: 

1. Are screen update region sizes, and hence the bandwidth requirements, larger 
for genomic applications than for the Office applications normally used in 
remote collaboration? 

2. What is the Varg compression ratio and time for network data sent for remote 
visualization of genomic applications? 

3. Is the reduction in communication time larger when using Varg than when 
using the local compression algorithms typically used by remote visualization 
systems? 
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4.2.1.1 Methodology 

 
Figure 24: Experimental testbed used to evaluate the compression ratio and 
compression time of the Varg system. 
In order to answer the above questions the Varg system was implemented and 
experimented with. A trace-driven approach was used (Figure 24). Traces were 
collected for different Office, and visualization intensive genomics applications (Java 
Treeview [193], TMeV [192], and GeneVaND [98]). The WAN latencies and 
bandwidths emulated during trace playback were based on measurements between 
nodes at different sites in USA and Norway (Table 7).  

Network Bandwidth 
(MB/sec) 

Latency (msec) 

Gigabit Ethernet 80.00 0.2 

100 Mbps Ethernet 8.00 0.2 

Princeton – Boston 2.13 11 
Princeton – San Diego 0.38 72 

Princeton (USA)– Tromsø (Norway) 0.20 120 

Table 7: TCP/IP throughput and round-trip latency for different networks 
measured using Iperf [2]. 

4.2.1.2 Experiment results 
The updated screen regions are larger for a genomic application than for two office 
applications (Figure 25). In addition, screen updates are more frequent. Combined 
these increase the bandwidth required.  
For the genomic applications, transfer time is larger than the latency for about 50% of 
the updates. These updates are larger than 80x80 pixels, which we found to be 
segment size for which transfer time is larger than latency for all of the WANs in 
Table 7. 
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Figure 25: The size of updated screen regions is much larger for the Java 
Treeview genomic application, than for Office applications.  

 Differencing 2D pixel 
segment 

compression 

zlib Total 
compression 

TreeView 1.89 5.74 19.98 216.76 
TreeView-Cube 2.87 4.05 24.88 289.19 

TMeV 1.52 2.46 7.90 29.54 
GeneVaND 3.15 2.72 10.85 92.96 

Table 8: Compression ratio for four genomic data analysis applications. 
The total compression ratios by our method are 217, 289, 30 and 93 for the four 
genomic application traces respectively (Table 8). These high compression ratios are 
due to the combination of the three compression methods used: segment differencing, 
2D pixel segment compression, and zlib local compression. Zlib contributes the most 
in all cases, but zlib alone is not enough to achieve high compression ratios. The 2D 
pixel segment compression using fingerprinting contributes fairly significantly to the 
compression ratio ranging from 2.5 to 5.7. Without the differencing phase the ratio 
would be higher, since the differencing phase has already removed a large amount of 
redundant segments. 

The total compression time ranges from 16 ms to 91 ms (Table 9). The most 
significant contributor is zlib, which consumes more than 10ms in all cases. But 2D 
pixel segment compression reduces the data volume to be compressed and hence the 
time spent in this stage. The second most significant contributor is anchoring, but it is 
below 8ms even for the display wall case. Although SHA-1 calculation contributes up 
to 8ms in the worst case, the 2-phase fingerprinting optimization allows computation 
to be overlapped with network communication. 
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 Differencing 2D pixel 
segment 

compression 

Zlib Diff. + 
Segment. 

+ zlib 

SHA-1 
 

TreeView 0.9 ms 3.8 ms 11.1 ms 15.8 ms 3.5 ms 
TreeView-

Cube 
2 ms 7.9 ms 30.2 ms 40.1 ms 7 ms 

TMeV 1.3 ms 6.6 ms 83.4 ms 91.3 ms 7.7 ms 

GeneVaND 1 ms 2.7 ms 10.1 ms 13.8 ms 1.5 ms 

Table 9: Average compression time per screen update. The total compression 
time depends on the application window size, and how well the differencing and 
2D pixel segment compression modules compress the data before zlib is run. 

 
Figure 26: Cumulative communication time distribution for Treeview screen 
updates sent over the Princeton-Boston WAN. 
The transmission time is significantly better for Varg than for the commonly used 
combination of region differencing and zlib (Figure 26). Without compression the 
communication overhead for the Princeton—Boston network is several seconds for 
the largest updates. With zlib the communication overhead is more than 300ms for 
about 50% of the messages. The communication overhead with Varg is less than 
100ms for over 90% of the messages. Even for the cross-Atlantic Princeton—Tromsø 
network 80% of the updates have a communication overhead less than 200ms, of 
which the latency contributes to 112 ms. The communication time with Varg is also 
low for the other traces except for TMeV, where 2-D pixel segmentation did not work 
well (due to the movement estimation parameters not being tuned properly). 

4.2.2 Two-level fingerprinting 
The main challenges in implementing the compression sub-system is choosing 
appropriate fingerprint sizes for the 2-level fingerprint algorithm, choosing the 
number of optimistic fingerprints covered by conservative fingerprints, and 
implementing an efficient caching mechanism. These challenges are addressed in the 
paper in section 8.4. The following questions are answered.  
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1. For which segment sizes is compression ratio limited by the fingerprint size? 
2. Where is the crossing point for when the number of bytes sent due to 

collisions is larger than the fingerprint bytes? 
3. How many segments per conservative fingerprint give the best compression 

ratio? 
4. How many additional bytes are necessary for encoding the two-level 

fingerprinting protocol messages? 
5. Does a multi gigabyte cache improve compression ratio? 

4.2.2.1 Methodology 
To find the best parameters for the two-level fingerprinting protocol giving the best 
compression ratio, we model the number of segment bytes sent, the number of 
fingerprint bytes sent, and the number of collision bytes sent, using the formula in 
Equation 1, and the default workload parameters in Table 10. We compare the 
achieved ratio to a fingerprinting protocol using 20 byte fingerprints. 
To evaluate the benefits of a large segment cache we use the traces collected for three 
genomic applications, as described in section 4.2.1.1. 
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Equation 1 models compression ratio achieved using two-level fingerprinting. S 
is the data set size, R is the redundancy found, k is the number of optimistic 
fingerprint bits, l is the number of conservative fingerprint bits, p is the number 
of segments per conservative fingerprints, and s is the segment size. S/s is used to 
estimate the number of segments in the data set. The sum estimates the 
probability of a segment inserted to the cache having the same optimistic 
fingerprint as an existing segment. We assume each collision causes the entire 
group of segments to be resent. 

Parameter Value Parameter explanation 

S 100GB Data set size 

R 75GB (75%) Data redundancy found 

K 40 bits Optimistic fingerprint size 
L 160 bits Conservative fingerprint size 

P 20 Segments per conservative fingerprint 
S 32 bytes Segment size 

Table 10: Default parameters used to model two-level fingerprint compression 
ratio. 
The server is implemented using a multi-threaded event based model. The protocol 
handling is divided into several stages. The stages are connected using queues, used to 
store segment objects to be processed by the next stage. In addition some stages either 
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read from, or write to a socket. To support multicast, some stages produce output 
destined to several stages.  

4.2.2.2 Experiment results 

Protocol parameters 
The fingerprint size significantly limits compression ratio for segments less than 1 
Kbytes when the redundancy detection in the data is 75% (Figure 27). With lower 
redundancy detection even smaller segments are limited by the fingerprint size. 

 
Figure 27: Compression ratio for different fingerprint and segment sizes. Data 
redundancy is 75% and collision bytes are ignored. 

 
Figure 28: Miss penalty bytes sent for different optimistic fingerprint sizes. (for 
all but the 4 byte fingerprints the miss penalty is insignificant). 
Choosing the conservative fingerprint size is relatively straightforward; it should be 
large enough to guarantee a collision rate smaller than the hardware error rate. Since 
2160 is considered sufficient for data sets up to an exabyte in size [172], we use 160 bit 
SHA-1 hash values as conservative fingerprints.  
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The optimistic-fingerprint size is more challenging to choose because it affects two 
competing trends. Reducing the optimistic-fingerprint size will increase the maximum 
achievable compression ratio, but simultaneously increase the number of cache 
collisions that require entire segments to be resent. So we want to choose an 
optimistic-fingerprint size that is near the inflection point of the competing trends and 
that works across the many data types being transmitted.  

If a 4 byte optimistic fingerprint size is chosen, then 50 GB of segment data will be 
sent due to collisions when transferring a 100 GB data set (Figure 28). Increasing the 
optimistic fingerprint size to 5 bytes, reduces the total number of bytes sent since the 
data sent due to collisions is reduced to 0.2 GB, while the increase in fingerprint bytes 
is only 6.1 GB. If the data set size is less than about 35 GB, does 4 byte fingerprints 
give the best compression ratio. 

 
Figure 29: Fingerprint and collisions bytes sent for different segments per 
conservative fingerprint ratios. 
The number of segments covered by a conservative fingerprints should be chosen 
such that the fingerprint bytes sent remains low, while keeping the bytes sent due to 
collisions low. With the default parameters in Table 10 the minimum number of bytes 
sent are for 22 segments per conservative fingerprint (Figure 29). Typically a ratio of 
20—25 gives a good compression ratio, even if the segment size, redundancy ratio, or 
data set size is changed.  
In conclusion, with 5 byte optimistic fingerprints and 20 segments per conservative 
fingerprint, the compression ratio is better than 4 byte and 20 byte fingerprints for 
most redundancy levels (Figure 30). Only when more than 95% redundancy is 
detected is the ratio better for 4 byte fingerprints.  
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Figure 30: Compression ratio for different redundancy levels when using 4 byte, 
5 byte, and 20 byte fingerprints. The 5 byte fingerprint compression ratios with 
and without collisions are almost identical. For 20 byte fingerprints these are 
identical since there are no collisions. 

Protocol messages 
The message headers used in the two-level fingerprinting protocol also limit 
compression ratio, and the messages have therefore been designed to use as few bytes 
as possible (Table 11). The first byte is used to identify the message type and to store 
the meta-data size in optimistic fingerprint messages.  

Message type Size 
(bytes) 

Comment 

Optimistic fingerprint 6 + M M is implicitly set by the message type 
Segment request 5 A 4 byte sequence number identifies the segment 
Segment 7 + S Includes the segments sequence number and size 

(2 bytes) 
Conservative 
fingerprint 

21  

Conservative 
fingerprint ACK 

1 No sequence number since the ACKs are sent in 
the same order as conservative fingerprints 

No-fingerprint segment 3 + S Includes the segment size (2 bytes) 
Multiplexing message 3 2 byte are used to identify the segmentation 

component that should receive the next batch of 
segments 

Table 11: Two-level fingerprint messages. M is meta data size, and S is segment 
data size. Optimistic and conservative fingerprint sizes are respectively 5 and 20 
bytes. 
The conservative fingerprint message is always sent immediately after the last 
optimistic fingerprint message in a group. It is therefore not necessary to add any 
information to the message about which segments are covered, and thus the message 
only contains the message type and conservative fingerprint. Conservative fingerprint 
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ACK messages are always sent in the same order as the conservative fingerprints were 
received, and therefore it is not necessary to add a sequence number. 

Advantages of a multi gigabyte segment cache 

 
Figure 31: Cache size increase for remote visualization of three genomic 
applications. 
The number of segments cached, and hence the size of the segment cache, depends on 
the redundancy detected. Redundancy detection stabilizes after a while, and can be up 
to 80%. But since the hit ratio never reaches 100% the cache size has a steady growth 
(Figure 31). Even for the short 10—15 minute traces the segment cache becomes too 
large to be stored in memory.  

 
Figure 32: Cache hit entry age. Most cache hits are for recently inserted 
segments, but when execution time increases the number of hits for older entries 
increase. Note that the bucket size is 6021 for Treeview and 2445 for the other 
two. 
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A larger cache improves redundancy detection, as shown in Figure 32 where the age 
of accessed cache segments is plotted. Age is defined as the number of segments 
added to the cache since the given segment was added. Most hits are for recently 
added segments, but as the visualization session proceeds more hits are for older 
segments. Therefore we believe compression ratio will improve with a large cache for 
longer traces. 

4.2.3 Multi-dimensional segmentation 
The paper in section 8.5 describes and evaluates different algorithms for content 
based segmentation of 2-D data sets. The following questions about advantages of 
multi-dimensional segmentation, and the tuning of 2-D content-based algorithms are 
answered: 

1. Does 2-D content-based segmentation improve the compression ratio 
compared to static 2-D segmentation? 

2. Does 2-D application specific segmentation improve the compression ratio 
and time compared to general purpose 2-D segmentation 

3. What region size should be used to get the best redundancy detection? 
4. Does 2-D segmentation scale with respect to data set size? 

4.2.3.1 Methodology 
To answer the above questions we have used the traces collected for the Varg system 
(these were described in 4.2.1). 
We have experimented with the following 2-D segmentation methods: 

• The static 2-D segmentation algorithm used by VNC Hextile [183], and 
MPEG [88]. 

• Static 2-D segmentation combined with the popular zlib [9] local compression 
algorithm. This combination is often used by remote desktop systems. 

• Our 2-D segmentation algorithm used in the Varg system (described above), 
which does static segmentation into columns and then content-based 
segmentation within columns. The algorithm has two optimizations for 
segmenting screenshot data: 

o The algorithm assumes that content movement is vertical. Redundancy 
detection can be improved if horizontal movement is also detected. To 
determine whether content has moved predominantly vertically or 
horizontally, we do movement estimation by comparing Rabin 
fingerprints for a subset of rows and columns on the screen, that are 
selected based on Manber’s method [145]. If movement is 
predominantly horizontal we transpose the 2-D array containing the 
pixel data before running the algorithm. 

o Some screen regions consists of identical pixels. The row fingerprints 
calculated for such regions are identical, and hence either all or none 
will be selected. To improve compression ratio we always create a 
single large segment since it can efficiently be compressed using a 
local compression method (such as zlib). 
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• A novel 2-D content-based segmentation algorithm, that is similar to the Varg 
algorithm but uses content-based segmentation in both dimensions. First the 2-
D array is statically divided into large m x m pixel tiles. Each tile is then 
divided into horizontal columns by selecting anchor-columns based on 
fingerprints calculated for each column. Finally, the horizontal strips are 
divided into regions by selecting anchor-rows based on fingerprints calculated 
for each row. 

• Segmentation based on probabilistic 2D- pattern matching as suggested by 
Karp and Rabin [122]. A short fingerprint is calculated for all m x m regions 
including all overlaps. Then regions are selected based on the fingerprint value 
using Manber’s method. The algorithm divides the 2-D data structure into 
fixed sized segments that can overlap. 

4.2.3.2 Experiment results 
Compression method GeneVaND TreeView TIGR MeV 
Hextile + Zlib 13.6 19.2 14.8 
Static segmentation 15.9 24.3 16.1 
Probabilistic 2-D segmentation 9.5   
Static + 2-D content based 18.3   
Varg (Static + 1-D content based) 24.0 90.9 29.7 
Varg without movement estimation 23.8 89.6 17.3 
Varg without similar region detection 22.9 82.9 17.1 

Table 12: Compression ratio relative to Hextile for different segmentation 
methods for 2-D screenshot data. 
The achieved compression ratios using the different methods are summarized in Table 
12. This section details the results. First, we compare the Varg compression method 
against other widely used methods, and then find the parameters giving the best 
compression. Finally, the scalability of the Varg method is demonstrated. 

Content-based 2-D segmentation 
Compared to static segmentation, content-based segmentation improves the 
compression ratio up to 3.0 (Table 12). The improvement is due to content-based 
segmentation achieving higher redundancy detection when using larger segment that 
compress better with local compression algorithms, hence improving the total 
compression ratio (as discussed in section 4.2.1). 
However, content-based segmentation in both dimensions does not improve 
redundancy detection compared to static segmentation. The problem is that if one of 
the pixels in an anchor-column changes, the fingerprint for the column also changes. 
The changed fingerprint may not be selected as an anchor-column. When the column 
boundaries change, all segment boundaries also change.  
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Figure 33: Probabilistic 2D pattern algorithm tuned to reduce the pixels in 
overlapping segments, or to reduce the number of pixels not covered by 
segments. Ideally both overlap and coverage should be 100%.  
Probabilistic 2-D segmentation also does not provide better compression ratio than 
static segmentation, since pixels are either not covered or are in overlapping regions. 
Tuning the algorithm parameters either reduces both coverage and overlap, or 
increases both coverage and overlap (Figure 33). In addition, calculating Rabin 
fingerprints for all 2-D regions is computationally costly since a sliding window 
Rabin implementation cannot be used. 

Segment size 
With static segmentation the best total compression ratio when segments are not 
compressed with zlib is for 4x4 pixel regions (48 bytes), and 32x32 pixels (3072 
bytes) if zlib is used (Figure 34). Similarly for Varg content-based segmentation, 
smaller segments improved redundancy detection, while larger segments improves 
zlib ratio and hence the total compression ratio.  
The small segment sizes giving the best fingerprint redundancy detection are about 
48—192 bytes. In the previous section we found that for such small segments 
compression ratio is limited by the fingerprint size, and that two-level fingerprinting 
will improve the compression ratio. 
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Figure 34: Compression ratio with fingerprinting and static segmentation. 
There are four parameters in the Varg 2-D segmentation method that can be changed 
to adjust the average region size. Our results for the genomic application traces shows 
that these should be set as follows to achieve the best compression ratio: 

• The static column width should be small. On our experiment platform 16 
pixels worked well since horizontal scrolling often moved content 16 pixels at 
a time. But a width of 4 pixels gives the best redundancy detection. Small 
static columns increase horizontal redundancy detection, since multiple pixels 
are typically scrolled at a time. In addition redundancy detection may 
decrease if a column is wide enough to include content both inside and 
outside a scroll-pane.  

• The number of bits used for fingerprint selection, depends on the 
visualization. For the Treeview and TMeV trace the best ratio is when every 
8th row is selected on the average. For GeneVaND selecting on the average 
every 32nd row gives the best ratio.  

• Minimum region height should be about 8-16 rows if zlib is used, and 4 pixels 
if not. A smaller minimum decreases the total compression ratio due to 
reduced zlib compression ratio. A larger minimum also decreases redundancy 
detection since a change to an anchor row may cause subsequent anchor rows 
not to be selected since they are within the minimum height. 

• Specifying a maximum region height does not improve compression ratio, but 
may be necessary due to the fingerprint protocol messages having restrictions 
on the number of bits that can be used to store the segment size.  

Application specific optimizations 
The two pixel data specific optimizations used in the Varg segmentation algorithm 
improves compression ratio. Similar detection of column rows with identical content, 
improves compression ratio by 1—8% since zlib compression ratio improves. 
Movement estimation improves the compression ratio for TMeV with 72%, since 
about 30% of the updates have predominantly horizontal movement. The compression 
ratio improvement is smaller for the other traces, since few screen updates had 
horizontal movement.  
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Scalability 
The Varg segmentation method scales with screen size. With a larger screen the same 
algorithm parameters give the best compression ratio, and the distribution of segment 
sizes do not change. However, the total compression ratio improves, due to improved 
fingerprinting and zlib compression ratio. It is therefore not necessary to tune the 
segmentation method for different screen sizes. 

4.3 Discussion 
In this section the results presented in the previous section are discussed. 

4.3.1 Remote visualization 
Our work was motivated by the need for interactive remote visualization tools to be 
used for collaborative analysis in bioinformatics and biology. Similar needs for 
collaborative visualization tools are required in other fields, such as meteorology, 
geosciences, and medicine. Provided that the interaction requires scrolling and 
zooming large 2-D visualizations, we believe using Varg will give similar 
improvements in compression ratio and time as for the genomics applications we have 
experimented with. 

The redundancy detection algorithm provides a high compression ratio for 2-D 
visualizations. But, some scientific analysis tools provide 3-D visualizations. We do 
not expect content-based compression to work as well for these, since the interaction 
often involve rotation and zooming of objects such that the same set of pixels are 
rarely displayed on the screen. 3-D visualizations are often programmed using 
libraries that bypass the framebuffer typically used by remote visualization systems to 
detect changes to the screen. To solve this problem the remote visualization server can 
intercept the library function calls and forward these to the client using a protocol 
such as Chromium [104]. The interception and the protocol implementation may 
provide an opportunity for applying compression. 

The 2-phase fingerprinting protocol uses eventual consistency to reduce user 
perceived end-to-end latency. VNC, and most other remote desktop systems, also uses 
eventual redundancy. But, the 2-phase fingerprinting protocol may cause the 
replicated screen content to become inconsistent. This can happen if an optimistic 
fingerprint collision is detected, and the segment with the corrected pixels is sent after 
another update for the same pixels. The Varg prototype is sequential; hence the 
problem is avoided since updates cannot be sent between the optimistic fingerprint 
and the segment data sent due to a collision. 
Even with the very best compression ratio, the end-to-end update latency will be 
limited by the network latency. For WANs the latency can be large, often tens of 
milliseconds, and hence be noticeable to users. The lower bound for the network 
latency is limited by the speed of light. But it is important not to add a high transfer 
time on top of an already large latency. In addition to network latency, we found 
remote visualization performance to be limited by the VNC server implementation. 
A remote visualization system could use a dedicated high bandwidth WAN. Also, we 
can expect WAN bandwidth to improve. Either way, we believe our compression 
method is still useful for two reasons. First, the requirements for the quality of 
visualization, and hence the network bandwidth requirements, will also increase. 
Second, with higher network bandwidth the compression time must be smaller in 
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order to reduce transfer time. Our 2-D pixel compression algorithm can provide the 
necessary compression ratio without the use of slow local compression algorithms. 

Varg used VNC, since it has open source implementations for Linux, Mac and 
Windows. But the 2-D pixel compression algorithm is independent of VNC. In order 
to use another remote visualization system, all that is required is to parse the screen 
update protocol in order to extract the updated region data. 

4.3.2 Two-level fingerprinting 
We found that the best optimistic fingerprint size for compressing a 100 GB data set 
is 5 bytes, due to a reduction in collision bytes compared to 4 byte fingerprints. For a 
smaller data set, compression ratio improves with smaller fingerprints. The optimistic 
fingerprint size could be dynamically set at server startup time. But it is not possible 
to increase the optimistic fingerprint size without flushing the segment cache, or re-
computing the optimistic fingerprint for all cached segments. Similarly, the size of the 
statically allocated Bloom filter and number of segments in the compression pipeline, 
could also be set at startup time based on the data set size. 

The compression component multiplex data received from several segmentation 
components. An alternative would be to run a Canidae fingerprint component instance 
for each application. This would require dynamic memory and storage resource 
management, which complicate the system, and probably neither improves 
compression ratio nor the throughput of the system. 
Most existing and new content based segmentation methods can be implemented to 
use the segment cache provided by Canidae. But, the Spring and Wetherall [209] 
method had to be modified since the redundancy detection requires a cache that stores 
the last N sent bytes. We believe segmentation methods for multi-dimensional data 
sets require a cache that stores a set of segments as in Canidae. The alternative is to 
use some multi-dimensional data structure to which data can be incrementally 
appended, and that efficiently allows comparison of stored data with a multi-
dimensional segment by growing the region in all dimensions. We are not aware of 
any such data structure. 

In order to simplify the implementation of the many segmentation components, the 
two-level fingerprint component provide in-order delivery of segments. For protocols 
supporting out-of-order message delivery, such as the VNC protocol compressed by 
Varg, the end-to-end latency can be reduced if the segmentation components on the 
receiver side can request messages to be delivered out-of-order before the 
conservative fingerprint is verified.  

The two-level fingerprint components can also be modified to reduce the latency of 
segments sent through it. Currently, three messages may be sent over the WAN for a 
segment (optimistic fingerprint, segment request, and the segment message). For 
many segments the latency of sending segments can be reduced to a single WAN 
latency, by maintaining a Bloom filter with previously sent optimistic fingerprints. 
The sender checks the Bloom filter after sending an optimistic fingerprint, and 
immediately sends the segment if the optimistic fingerprint is not in the cache. 
Canidae throughput may also be improved if the receiver can query multiple servers 
for segments not in its cache. This way, the segments may be received from a server 
to which the bandwidth is higher, or the latency is lower than to the sender.  



4.3 Discussion 
 

 65 

Canidae is designed to run on a dedicated machine such that it can utilize all memory 
and disk on that machine. The same approach is used by several commercial WAN 
accelerators [38, 62, 79, 120, 186]. We believe it is realistic to allocate one machine in 
an organization for this purpose. The segmentation components can also be run on 
dedicated machines, or they can be integrated with the application if the 
communication latency, computational, or memory overhead of maintaining a 
separate multi-dimensional data structure is too large. The compression pipeline is 
implemented using multi-threading in order to utilize the many cores we expect future 
processors to have. But, currently the implementation only scales to 2 CPUs, due to 
cost of synchronizing the different parts in the compression pipeline. 

We have not addressed security. If the application encrypts data to be sent through 
Canidae we should not to be able to find much redundancy. The problem is further 
complicated since applications are likely to use a wide variety of security (and 
privacy) mechanisms and policies. Related work [220, 221] has proposed to use 
convergent encryption [75] such that the fingerprints of segments are used to 
compress the data.  

Several important questions remain unanswered. The advantage of two-level 
fingerprinting should be validated, by answering the following questions: 

1. Does two-level fingerprinting improve the compression ratio achieved when 
using previous 1-D content-based segmentation methods? 

2. Does redundancy detection improve with smaller segments? 
The benefit of a hundred GB cache needs to be validated using a larger data set than 
the genomic visualization data sets. 
In addition the system should be properly evaluated by measuring: 

3. The throughput Canidae can support, and which cache parameters gives the 
best performance? 

4. The scalability of the compression pipeline and segmentation methods on 
CMP and SMT systems? 

To answer the first two questions the compression ratio of the implemented 1-D 
segmentation algorithms should be measured when using different segment sizes, 
with one level fingerprinting, and with two-level fingerprinting. A data set consisting 
of uncompressed flat files can be used for the experiments. The last two questions can 
be answered by measuring the throughput of the system on machines with processors 
supporting CMT and SMT.  

4.3.3 Multi-dimensional segmentation 
Implementing a general-purpose 1-D segmentation component is relatively 
straightforward. But, redundancy detection usually works better when protocol 
headers or file meta data is removed from the data to be segmented [145, 209]. This 
requires parsing the application messages. Typically only a few message types are 
used to send the data that need to be compressed, and the remaining message types 
can simply be forwarded uncompressed and unparsed. Implementing such limited 
parsing for a protocol is easy if an open source implementation of a server and client 
exists.  

We have applied our segmentation on 2-D arrays of pixels. Data movement in such 
data sets is predictable, and neighboring elements tend to have similar values. For 
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other 2-D data sets, data movement may not be so easy to predict, and neighboring 
elements may be different. Compression may not work as well for these data sets. 
But, additional experiments are required to investigate these limitations. 
Application specific optimizations improved the compression ratio for screenshot 
data. The need for such optimization can easily be detected by analyzing the segments 
produced by an algorithm. For the screenshot data we found it useful to play back the 
visualization with the segment boundaries shown. 
In our experience, achieving high compression ratio, while keeping the computation 
cost low, is more difficult for 2-D segmentation methods than for the 1-D methods. 
Our best method for 2-D segmentation combined movement estimation, static 
segmentation, and content-based segmentation. Developing a similar algorithm for 3-
D datasets, would require movement estimation in 3-D and keeping two of the three 
dimensions static. We do not expect such a method to achieve high redundancy 
detection, and alternative approaches are probably required. 

To improve redundancy detection for 2-D data, a segment size could be selected at 
run-time based on the data type. But we are not aware of any methods that can be 
used to predict the segment size to use. In contrast to the optimistic fingerprint size, 
the segment size can be changed without flushing the segment cache. 

Additional experiments are required to answer the following questions: 
1. Does 2-D based segmentation methods improve the compression ratio and 

time compared to 1-D segmentation methods for 2-D data? 
2. What is the redundancy detection of the 2-D based segmentation when used on 

scientific 2-D data? 
To answer these question it is necessary to experiment with existing 1-D segmentation 
methods [156, 209], and the 2-D segmentation methods described above. The data 
sets could be from different scientific domains, such as geometric data, scientific 
simulation output, and satellite images. 

4.4 Related work 
The Related Work in the paper in section 7.5 discusses compression algorithms used 
in thin-client systems, MPEG compression and the Access Grid. This section 
describes related work in redundancy detection, two-level fingerprinting, disk cache 
design, commercial systems, remote visualization, and local compression. 

4.4.1 Redundancy detection 
Redundancy detection methods can be divided into four classes: duplicate detection, 
static segmentation, content-based segmentation, and delta encoding. Each class is 
described below.  Examples of systems implementing the different methods are 
shown in Table 13.  
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Approach Application 
domain/ data 
transferred 

Redundancy 
detection 

Median 
segment 
size 

Fingerprint 
size 

Mogul et. al. [153] Web cache Duplicate 
elimination 

3 KB 128 bit 

Santos and Wetherall 
[196] 

TCP packet data Duplicate 
elimination 

536 bytes 128 bit 

CAS (Tolia et al. [221]) Distributed file 
system 

Static 4 KB 160 bits 

Sapuntzakis et al. [197] Virtual machine 
state 

Static 4 KB 160 bits 

CFS (Dabek et al. [69]) Peer-to-peer 
content distribution 

Static 8 KB 160 bits 

Hong et al. [100] SAN file system Static 4 KB 160 bits 
Venti (Quinlan and 
Dorward [172]) 

Backup system Static 8 KB 160 bits 

rsync (Tridgell [224]) File synchronizer Static + 
Overlapping 
static 

300 bytes 32+128+ 
128 bit (2-
level) 

Tolia and 
Satyanarayanan  [222] 

Database content Static (row 
boundaries) 

 160 bits 

Spring and Wetherall 
[209] 

Network data Spring and 
Wetherall 

128 bytes 64 bits 

LBFS (Muthitacharoen 
et.al [156]) 

Distributed file 
system 

LBFS 4KB 160 bits 

Rhea et al. [180] Web objects LBFS 2 KB 128 bit 
Pastiche (Cox et al. 
[64]) 

Peer-to-peer 
backup system 

LBFS 16 KB 160 bits 

Shark (Annapureddy et 
al. [17]) 

Peer-to-peer 
content distribution 

LBFS 16 KB 160 bits 

Pucha et al. [171] Multimedia files LBFS 16 KB 160 bits 
Tolia et al. [220] Storage system for 

reference data 
LBFS 4 KB and 

128 byte 
160 bits 

Imrak and Suel [114] Network data LBFS (multi-
resolution) 

256 byte – 
2 KB 

64 bit + 128 
bit (2-level) 

Denehy and Hsu [72] Storage system Static, 
overlapping, 
LBFS 

4 KB 160 bits 

Bobbarjung et al. [39]  Storage system LBFS + 
differencing 

4 KB + 
128-256 
byte 

160 bits + 
160 bits 

Housel and Lindquist 
[101] 

Web cache Delta 
encoding 

no 
segments 

1 

Douglis and Iyengar 
[76] 

HTML and web 
objects 

Manber + 
delta 
encoding 

No 
segments 

1,2 

Table 13: Overview of global compression systems. 

                                                
1 Delta encoding size depends on the difference between the compared files. 
2 The Manber feature set has a constant size that is independent of file size. 
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4.4.1.1 Duplicate elimination 
Duplicate suppression identifies and eliminates transfers of exact duplicates. Mogul 
[153] use it at the document level for web data, such that the cache is indexed using a 
fingerprint of the document content instead of an URL. Santos and Wetherall [196] 
use it at the packet level. The disadvantage of duplicate elimination is that redundancy 
detection is typically low [169]. 

4.4.1.2 Static segmentation 
A static segmentation algorithm divides a dataset into fixed size, non-overlapping, 
contiguous segments. 

rsync (Tridgell [224]) is a Unix tool for copying a file directory over the network into 
an existing directory tree with similar files. Similarity between files is used to reduce 
bandwidth usage. The redundancy detection algorithm compares the content of files 
with identical filename in the two directory trees. First the receiver segments its 
version of the file using static segmentation, computes fingerprints, and sends these to 
the sender. The sender computes fingerprints for all overlapping fixed size segments 
in its file. If the fingerprint for a segment matches one of the received fingerprints, a 
description of the segments location is sent instead of the segment data. 

Static segmentation can also be used to segment structured data. Tolia and 
Satyanarayanan [222] segment database content by exploiting row boundaries of  
relational database results. Their results shows that redundancy detection improved 
compared to content-based segmentation using the LBFS approach (described below). 
The improvement is due to the large content-based segments crossing row boundaries. 
Using the much smaller segments provided by Canidae may avoid this problem.  

Static segmentation of large files has been used by peer-to-peer content distribution 
system, such as CFS [69], to improve data transfer speed and efficiency by supporting 
simultaneous download of segments from multiple sources. Sapuntzakis et al. [197] 
use static segmentation to reduce the bandwidth usage when sending memory content 
over a network. 
Static segmentation algorithms, that for example take data structure into account, can 
be implemented as Canidae segmentation modules. These can take advantage of the 
two-level fingerprinting protocol and hence use smaller segments than has been used 
by existing systems. 

4.4.1.3 Content-based segmentation 
Content-based segmentation methods divide data to be transferred (or stored) into 
variable sized segments. First fingerprints (hash values) are computed for fixed size 
substrings in a 1-D bytestream, including overlaps. Then a deterministic random 
sample of these fingerprints is selected. The selected fingerprints are then either used 
as starting points for finding redundant segments in the data, or as anchorpoints for 
dividing the data into segments. 

Many methods use Rabin fingerprints [175], since these can be efficiently computed 
using a sliding window implementation. A Rabin fingerprint is the polynomial 
representation of some data modulo an irreproducible polynomial. Broder [50] 
described how Rabin fingerprints can be computed 32 bits at a time using 
precomputed tables for the irreproducible polynomial. The sliding window 
implementation allows computing the fingerprint for the window content in terms of 
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the previous fingerprint. First the oldest byte in a window is subtracted using 
precomputed tables, then the window is advanced with 1 byte, and finally the 
fingerprint is updated by adding the terms of the new byte. 
To select a random sample of Rabin fingerprints most segmentation methods use 
Manber’s [145] approach. To find similar files, Manber selected fingerprints where 
the least k significant bits are zero, and then compared these. Since the fingerprints are 
selected based on their content rather than location, the same set of fingerprints will 
be selected even if the content has moved. With a uniform distribution one of every 2k 
fingerprints will be selected.  
Spring and Wetherall [209] adapted Manber’s approach to select fingerprints to be 
used as starting points for finding redundant segments in a 1-D bytestream. Both the 
sender and receiver store previously sent data in a cache (the cache is a large buffer 
where data is appended). To segment a 1-D packet to be transferred, Rabin 
fingerprints are calculated, selected, and checked against fingerprints calculated for 
the data stored in the cache. For each match, the bytes covered by the fingerprint 
window have the same content in the cache and in the packet to be sent. The segment 
can then be expanded, to cover the bytes before and after the fingerprint bytes, by 
matching bytes in the packet and in the cache. Finally, the fingerprint and a 
description of the covered region are sent to the receiver. 
In the Low Bandwidth File System (LBFS) [156] Manber’s approach is also used to 
select a fraction of Rabin fingerprints. But instead of using the selected fingerprints as 
a starting point for growing a segment, these are used as anchorpoints in a 1-D 
bytestream. The anchorpoints divide the bytestream into segments, such that segment 
consists of all bytes in the Rabin fingerprint window, and all following bytes until the 
beginning of the next anchorpoint. 
Many other fingerprint based systems have either used the Spring and Wetherall or 
the LBFS approach for segmenting 1-D data (some examples are give in Table 13). 
But these work well only with 1D data types, such as web content, documents, email 
and binaries. Our redundancy detection method is aware of the data structure, and 
works well with 2-D screen buffers. In addition the two-level fingerprinting protocol 
allows using smaller segments than are typically used by previous systems. 

4.4.1.4 Delta encoding 
Document updates often only make small modifications. These changes can be 
encoded using delta encoding (as done by the Unix diff utility). Delta encoding has 
been used for web data compression [101, 154], by only sending the difference 
between two version of a cached document. Similarly the CVS version management 
software [30] saves bandwidth by only sending patches describing required changes 
in order to update a set of files. However, these approaches are only able to detect 
differences at a single document level. 
To apply delta encoding to a large set of files Douglis and Iyengar [76] first chose a 
representative base set of files by using Manber’s technique for detecting similar files 
[145], and then send delta encoded differences between the files to send and the base 
files. 
Delta encoding works well when the data is structured into files and the receiver 
already has a previous version of the data to be transferred. However, choosing a 
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representative base is more difficult for multi-dimensional data sets, especially if the 
data is streamed. 

4.4.1.5 Evaluations 
Policroniades and Pratt [169] measured the amount of redundancy detected when 
using whole-file duplicate elimination, static segmentation, and LBFS content-based 
segmentation on 1-D file sets. The data set sizes ranged from a few gigabytes to 100 
GB. Overall, content-based segmentation detected most redundancy. But static 
segmentation also provided usable levels of redundancy; for some data sets content-
based segmentation was only slightly better. Both were significantly better than 
whole-file duplicate elimination. Combining content-based segmentation with zlib 
compression of the segments can improve compression ratio. Content-based 
redundancy detection was best for code files (45—99%), but worse for more diverse 
files (20—25%). The index used to store fingerprint to segment location mapping was 
identified as a significant limitation to the achieved compression size.  
You and Karamanolis [100] compared the compression ratio achieved using LBFS 
content-based segmentation versus Douglis and Iyengar’s delta encoding. The data set 
experimented with consisted mostly of uncompressed 1-D files, but there were also 
some 2-D images in the TIFF format. Compression ratios ranged from none (content 
based on TIFF images) to 100x (Unix log data). For content-based segmentation with 
128-bit fingerprints, the best redundancy detection was when using 128-256 byte 
segments. Content-based segmentation was best for large volumes of similar data. 
Delta encoding is more computation intensive, but better for less similar data due to 
the lower storage overhead of the meta-data (the feature set used to find similar files 
has a constant size, while the number of fingerprints depend on segment and file size). 
Both outperform gzip, especially when zlib is used to compress segments.  
Pucha et al. [171] use the LBFS approach for content-based compression of 
compressed multimedia files in order to improve multi-source download performance 
for cases where the receiver is not able to utilize all its available network bandwidth. 
About 99% redundancy was detected for MP3 files, and about 15% for movies. These 
files contained identical content but differed in for example header data for MP3 files 
or the subtitle language for movies. 
These previous evaluations have four limitations. First, only the LBFS approach was 
used for content-based segmentation. Second, large fingerprints were used to encode 
segments. Third, the average segment size was large. Content-based compression 
using Canidae can use smaller segments, and apply multi-dimensional segmentation 
methods. A new evaluation is therefore needed for multi-dimensional data. 

4.4.2 Two-level fingerprinting 
Most fingerprint based network data and storage systems use a single fingerprint to 
encode a segment. But some previous work has proposed using multiple levels of 
fingerprints as described below. 
Rsync [224] uses three sets of fingerprints. However, in contrast to our two-level 
fingerprinting protocol the goal is not to efficiently encode small segments, but to 
reduce compression time. The three sets of fingerprints are used as follows. First, for 
each static segment, the receiver computes a sliding window Adler 32 bit fingerprint 
that is fast to compute, and a 128 bit MD4 hash [187] that has low probability of 
collision. These are then sent to the sender. The sender uses the sliding window 
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fingerprints when searching for a redundant segment, and only computes the low-
collision probability fingerprint when the fast fingerprints match. The third set of 
fingerprints consists of MD4 hashes computed for each file, and are used to verify 
that the file assembled by the receiver is identical to the sender’s file. In [224] 
Tridgell observed that since the per file MD4 hash ensures data consistency, the per 
segment MD4 hashes could be replaced with a smaller fingerprint. The resulting 
protocol would be similar to our two-level fingerprinting protocol. However, the 
improvements to compression ratio and transfer time were not evaluated. 

Imrak and Suel [114] propose a hierarchical segmentation method, where the LBFS 
method is run over the same data multiple times with different expected segment 
sizes. The segments from the various levels are cached together in a multi-resolution 
cache in memory, where recently sent data is indexed using a fine granularity, and 
older data is indexed using a coarser granularity. To send a packet of data, the sender 
uses the cache to find the coarsest segments covering the packet data, by comparing 
fingerprints for the cached segments with the fingerprints calculated for the data to be 
sent (using multiple expected segment sizes).  When a match has been detected an 8-
byte fingerprint is sent, and then for all data in an object a 16-byte fingerprint is sent 
to ensure consistency. Our two-level fingerprinting protocol differs in three ways. 
First, our goal is not to improve compression ratio by detecting larger segments, but 
more efficiently encoding small segments. Second, segmentation is not integrated 
with the cache. Third, we use a much larger segment cache, and do not rely on 
information about which segments has previously been sent. 

Bobbarjung, Jagannathan and Dubnicki [39] propose fingerdiff that combines 
fingerprinting and differencing to improve duplicate elimination in storage systems. 
First the LBFS content-based segmentation is used to divide the data into large 
chunks. If the chunk is updated, then the large chunk is divided into smaller segments, 
such that only the small chunks must be written to the storage. Fingerdiff allows using 
small 128-256 byte segments for changed regions, without significantly increasing the 
storage required for the fingerprint-to-segment index. The compression ratio 
improved with 13-40% compared to the best content-based approach. Canidae differs 
from storage systems in that segments are never updated, and will therefore not 
benefit from fingerdiff. 

Tolia et al. [221] propose the fuzzy blocking approach for sending files over a 
network. It is an extension suggested to their content addressable storage (CAS), 
where the sender sends a set of fingerprints for statically segmented files, and the 
receiver requests segments not in its segment cache. With fuzzy blocking error 
correction codes are used to detect changes to 128 byte blocks within a 4 KB segment. 
The approach has not, to our knowledge, been implemented nor evaluated. 

4.4.3 Segment cache 
Few global compression systems have addressed the problem of implementing an 
index for mapping fingerprints to segments that that is stored on disk, since for most 
system the number of segments is small enough for the index to fit memory.  
In the Venti system [172], the index is divided into fixed size buckets and stored in a 
separate pointer block on disk. A hash function maps fingerprints to index buckets, 
and then binary search is used to find the fingerprint. To optimize index lookups three 
optimizations are done. First pointer blocks and data blocks are cached in memory. 
Second, the index is stripped across multiple files. Third, writes are buffered. The 
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containers used by Canidae are also cached, and allows to buffer writes. In addition 
three additional optimizations are used. First, a Bloom filter is used to further reduce 
the number of times the disk must be accessed. Second, writes do not check the index, 
since we can tolerate duplicates causing inconsistencies in fingerprint to data 
mapping. Third, related segments are written to the same blocks allowing for read-
ahead of segments. 

The SAN file system of Hong et al. [100] avoids the fingerprint-to-block index 
overhead of Venti, since data is accessed by blocks (redundancy detection is done 
after writing the data). But a multi-level index of fingerprint to segment locations is 
maintained to improve the performance of fingerprint searches. The first level is 64 
MB in size, and contains pointers to second level buckets indexed using the first 24 
bits of the SHA-1 fingerprint. Each second level bucket contains a 32 bit segment 
location and the next 32 bits of the SHA-1 fingerprint. Since the maximum number of 
segments stored for an object is 232, each bucket index is on the average 256 blocks.  

Lookup management in fingerdiff [39] is implemented using a variant of a binary 
search tree. Such a tree avoids the time and space overheads of hash tables, caused by 
the random distribution of fingerprint values leading to similar segments having 
completely different hash-key values, and non-similar segments having common 
SHA-1 hash substrings. The binary search tree reduces memory usage, since it avoids 
storing repeated SHA-1 substrings, and can be dynamically adjusted depending on the 
SHA-1 hash values in use, without increasing search time. For 20-byte SHA-1 
fingerprints the tree has 20 levels. At the ith level, the ith byte in the SHA-1 fingerprint 
is used to decide which of the 256 possible children to check in the i+1th level. To 
further reduce storage different data structures are used for tree nodes depending on 
the number of children, and linear paths are only stored at the root. However, the 
design assumes that the entire tree fits in memory. 

Denehy and Hsu [72] implemented a reliable storage system for reference data that 
stores multiple copies of redundant data segments. The primary data structure for 
accessing segments is a table containing the segment locations for each object. But 
there is also a secondary data structure used to maintain reference count and location 
of replicated segments. This data structure is indexed using fingerprints calculated for 
each segment. The fingerprints are clustered based on when the segment was created 
or updated. This allows read-ahead of fingerprint values by exploiting the observation 
that similar objects only differ in a few segments, such that for these sequences of 
similar fingerprints tend to be read. In addition, the temporal locality of data usage is 
exploited, such that entries are only kept for a short period of time in memory and 
then archived. Archived entries are only read from the archive when recovering from 
a read error.  

The problem of using a two-level data structure where the second level “tables” are 
located using the fingerprint values is that these will be accessed uniformly, and hence 
cannot efficiently be cached in memory (assuming that fingerprints have the desired 
property of no locality). Canidae attempts to exploit fingerprint access locality with 
respect to segment creation time by storing segments created at the same time in the 
same container. This allows containers to be cached in memory, but requires linearly 
searching the containers to find a fingerprint. In addition the optimizations described 
above reduce the number of disks accesses.  
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4.4.4 Commercial WAN accelerators 
Several commercial WAN accelerators have recently been introduced including 
Riverbed RiOS [186], Cisco WAAS [62], Juniper Networks WAN accelerator [120], 
F5 Networks BIG-IP [79], Blue Coat’s MACH5 [38]. These are proxy systems, 
typically combining fingerprint based caching, local compression, protocol 
optimization, and TCP optimization. 
The cache in RiOS and WAAS probably consist of fingerprinted content-based 
segments (in RiOS a 16 byte fingerprint is sent for segments that are on the 
average100 bytes in size, and cached on disk [186]). Juniper combines a custom 
compression method with fingerprinting, while MACH5 combines duplicate 
elimination with fingerprinting. All systems combine fingerprinting with Lempel-Ziv 
compression of non-redundant data. 
In addition to compression, these systems apply WAN specific optimizations to 
application protocols such as the Common Internet File System (CIFS), HTTP, 
Microsoft Exchange, and the Message Application Programming Interface (MAPI). 
RiOS, WAAS, and Juniper also optimize TCP by using larger windows to allow more 
data in flight and repacking of data. 

The BIG-IP WAN accelerator [79] runs a local compression engine on a proxy 
machine and dynamically tunes the compression ratio and compression time to 
achieve the best reduction in transfer time. 
Canidae has the same architecture as these commercial systems, and use many of the 
same techniques, but it is designed to work well with multi-dimensional data sets. 

4.4.5 Remote visualization 
Varg was based on the VNC [184] thin client remote visualization system. Other thin 
client remote visualization systems include Microsoft Remote Desktop [67], Sun Ray 
[200] and THINC [25]. In such systems all graphical processing is at the server. The 
clients only forward mouse and keyboard events to the server and apply updates 
received from the server to a local framebuffer, and are therefore easy to implement, 
maintain, and port.  

The display updates sent in VNC consist of raw pixels read from the server’s 
framebuffer. Since, processing of application display commands is decoupled from 
the generation of display updates, the clients are stateless and hence very portable. In 
addition it is easy to send the updates through a compression engine such as Canidae. 
Other systems, such as Microsoft Remote Desktop, have a rich set of low-level 
commands for encoding the updates sent over the network. But, these commands do 
not compress well leading to decreased WAN performance [131]. Sun Ray achieves 
better WAN performance since a few low-level operations are used [131]. THINC 
provides an efficient mechanism, in the form of a device drive, to translate application 
display commands into a command set similar to that being used in Sun Ray. The 
disadvantage of THINC is that the device driver needs to be ported to different 
platform. In addition, our experience with deploying the Varg system is that users are 
often reluctant to install new software on their machines. Hence, we believe the VNC 
approach has advantages in that both the server and client can be implemented in 
Java, and therefore started by a single mouse click in a web browser. Interesting 
future work would be to use Varg redundancy detection on screenshots to detect the 
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same operations on pixels that THINC detects (for example a move of a region 
pixels). 

Early remote visualization systems such as Unix X [198] have thick-clients doing all 
display processing, and high level graphics primitives for sending display updates. 
This approach has several disadvantages. First, the client is more complex and 
therefore harder to implement, maintain and port. Second, the high-level operations 
are not bandwidth efficient. [131, 200] Third, the client and server need rapid 
synchronization that decreases performance for high latency wide area networks  
[131, 200]. The cost of synchronization also decreases performance of replicated 
application-sharing systems [28]. 

Remote visualization systems for Grids are often application specific, and often the 
purpose is to provide access to powerful 3D graphics rendering machines such as in 
the SGI OpenGL Vizserver system [203] or the cluster based Chromium system 
[104]. The disadvantage of this approach is that it requires writing applications using 
specific graphics primitives. 
The Scalable Adaptive Graphics Environment (SAGE) [116, 179] is a middleware 
system for streaming high-resolution graphics over local area-, and wide area 
networks. SAGE differs from Varg in that it is designed to utilize high bandwidth 
networks, and hence does not require the compression ratio necessary for shared 
WANs. 

Thin-client systems have previously been benchmarked using video playback [159] 
and Web browsing [60, 159]. For both the user interaction rate will be very low, and 
hence the benchmark results will not be realistic for the type of interaction required by 
Genomics analysis tools. 

4.4.6 Local compression 
Local compression libraries such as zlib [9], bzip2 [202] and rar [188] combine 
several compression methods. This section describes the most commonly used. 

The Lempel-Ziv (LZ77) [244] algorithm detects duplicate strings in a sliding window 
and replaces these with a back-reference to the previous location of the string. In zlib 
the default sliding window size is typically 32 KB, and the strings lengths are 3—258 
bytes. Hence, redundancy detection is within a local scope. The search for strings is 
computationally expensive, but to reduce compression time the number of string 
lengths to check can be reduced. The algorithm complements global compression 
algorithms since it can be used to detect redundancy within a small segment. 
Huffman [103] entropy encoding replaces symbols with weighted symbols based on 
frequency of use. The resulting Huffman tree provides prefix-free codes that express 
the most common symbols using fewer bits than less commonly used symbols. In 
zlib, Huffman encoding is run after the Lempel-Ziv algorithm, creating a tree with 
space for 288 symbols. Huffman encoding can also be applied to segment data, and it 
can significantly compress segments with few symbols such as pixel values. 
Run-length encoding (RLE) replaces long runs of symbols with a single <data value, 
count> encoding. A variant of RLE is used by remote visualization systems (e.g. in 
the VNC Hextile [183] and RRE encodings [183]), to split a region into smaller 
regions that can be represented using a single <pixel value, region position, region 
size>. RLE is fast to compute and can therefore be applied to segments if the 
overhead of Lempel-Ziv and/or Huffman is too large. 
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Value-prediction can be used for lossless compression of floating point data [176]. 
This algorithm predicts the next value, XOR encodes the difference between the 
predicted value and the actual value, and then encodes the resulting value with a 
leading zero count and the remaining bits. The assumption is that the sign, exponent, 
and top mantissa bits, stored in the most significant bits, are easy to predict and hence 
will be zero after the XOR. This compression may work well with segments produced 
for a scientific dataset. 

4.5 Conclusions 
This chapter has presented the design, implementation, and initial evaluation of the 
Canidae and Varg systems that reduce the bandwidth requirements of distributed 
applications. 

Canidae is a network data compression framework that allows multiple, data-specific 
segmentation methods to share a segment compression engine. A two-level 
fingerprinting protocol has been proposed to improve redundancy elimination by 
allowing using smaller segments than previous global compression systems. Also 
proposed is a novel method to compress 2-D pixel segments by using fingerprinting. 
In addition we propose a segment cache on disk used to store a hundred GB dataset, 
and optimized to reduce disk accesses by using a Bloom filter. 

The requirements for a 100 GB data set were modeled. Our results shows that two-
level fingerprinting is most useful for segment sizes ranging from 16 to 256 bytes. In 
order to get the best trade-off between fingerprint bytes, and collision bytes the 
optimistic fingerprint size should be 40 bits, and a conservative fingerprint should 
cover about 20—25 segments. In addition, we demonstrated the need for a large 
segment cache, and the benefits of such a cache. 

Varg allows users to interactively visualize multiple remote genomic applications 
across a WAN. We found that genomic applications have much higher network 
bandwidth requirements than office applications, and hence require substantial 
compression of network data to achieve interactive remote data visualization on some 
WANs.  
An initial evaluation of the Varg system shows that the proposed 2-D pixel segment 
compression method works well and imposes only modest overheads.  By combining 
with zlib and differencing compression methods, the prototype system achieved 
compression ratios ranging from 30:1 to 289:1 for three genomic visualization 
applications that we have experimented with.  Such compression ratios allow the Varg 
system to run remote visualization of genomic data analysis applications interactively 
across WANs with relatively low available network bandwidths. 

The Canidae system provides a framework that can be used to implement application 
specific compression methods for large-scale data storage infrastructures, or between 
other sites where collaborative work requires sending large amounts of complex data, 
such as in remote visualization. The compression method complements the methods 
for reducing the latency requirements of parallel applications. Combined these allows 
to efficiently transfer a large dataset to a remote cluster, run a parallel application 
analyzing the data on a federation of clusters, and remotely visualize the results. 
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Chapter 5  

Conclusions 

This dissertation has presented and evaluated how end-to-end performance of 
distributed and parallel applications can be improved by better CPU utilization, 
reducing latency of communication primitives, overlapping computation-
communication, and lowering bandwidth requirements. 
Chapter 2 presented two approaches for improving parallel application scalability by 
reducing the latency of collective communication. First, performance monitoring and 
analysis was used to adapt collective communication to the application and platform 
in use. Collective communication performance analysis required message traces 
collected internally in the communication system. We proposed monitoring methods 
to reduce the high storage requirements of such data collection, and to satisfy the 
computation requirements of the data processing. Second, a commonly used collective 
operation was extended with knowledge about how the result was used in order to 
reduce the number of messages sent over WANs. The improvements due to the 
performance analysis, the performance and perturbation of the implemented monitors, 
and the improvements due the changed collective operation, were documented with 
benchmarks run on Ethernet and WAN multi-clusters. The following contributions 
were made:  

1. A monitoring framework that supports the development of runtime monitors 
for parallel applications. Monitors can be tuned to trade-off between 
performance and perturbation. In particular: 
• Message traces are stored in small buffers and processed at the rate data is 

produced by monitor threads run on the cluster nodes to reduce the 
memory footprint. 

• Monitor and application threads are coscheduled to reduce monitor 
perturbation. 

• Documentation that data for collective communication performance 
analysis can be processed with insignificant perturbation. 

2. A performance analysis method to identify bottlenecks due to network latency, 
synchronization overhead, and computation overhead, and:  
• Demonstration that such a method can be used to reduce collective 

operation latency. 
3. We described how the allreduce operation can be modified to reduce the 

number of messages sent over high latency networks, without changing the 
application results, and: 

• Demonstrated that the conditional-allreduce operation has similar latency 
on a WAN multi-cluster as on an Ethernet cluster. 
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In Chapter 3 parallel applications were overdecomposed to introduce thread level 
parallelism in order to reduce execution time by overlapping communication wait 
time with computation, and by utilizing SMT processors. The improvements and 
limitations of overdecomposition were documented by collecting data during the 
execution of benchmarks run on a cluster composed of the first generation SMT 
processors. The contributions are: 

4. Method for identifying TLP improvements and overdecomposition overheads 
using data from multiple software and hardware layers.  

5. Demonstration that overdecomposition can reduce the execution time of 
parallel applications, and identification of significant performance limitations. 

Chapter 4 presented an approach for reducing the network bandwidth requirements of 
remote visualization, and for applications transferring large scientific data sets. We 
proposed a lossless global compression system for multi-dimensional network data. 
Performance improvements of data transfer are validated with experiments. The 
contributions are: 

6. A framework for global compression using two-level fingerprinting and 
application specific segmentation, and: 
• Redundancy detection is separated from redundancy elimination, such that 

application specific segmentation algorithms can be implemented to 
improve redundancy detection. 

• Two-level fingerprinting protocol that improves redundancy detection by 
using smaller segments, while maintaining data consistency. 

• The design and implementation of a very large cache on disk for storing 
previously sent segments to improve compression ratio. 

7. A network bandwidth optimized, platform-independent remote visualization 
system. In particular: 

• Two-phase fingerprinting protocol for reducing compression time. 
• Redundancy detection algorithm for 2-D pixel data that exploit data 

movement on screens to improve compression ratio.  
• Demonstration that the system allows visualization of genomic data 

analysis applications interactively across WANs with relatively low 
available network bandwidth. 
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Chapter 6  

Future Work 

The work in this dissertation has explored four approaches for reducing the bandwidth 
and latency requirements of distributed and parallel applications. Even for these there are 
unexplored paths, and room for improvement; some of which are described in this 
section. 

6.1 Collective performance analysis and monitoring 
Spanning tree reconfiguration for improving collective operation performance could be 
validated by additional experiments using benchmarks and applications with different 
communication structures. 

To validate that spanning tree adaptation based on performance analysis is better than 
testing many different algorithms for creating spanning trees [80, 81, 229], measurements 
should be made to compare the performance of the tuned collective operations, and the 
time required to find the best configuration. 

Better visualizations for presenting the performance results are needed to aid users. 
Developing scalable visualizations is regarded as an important research problem for 
performance analysis of applications run on large scale clusters [151, 178, 217, 238, 243]. 
High resolution displays may be of use to visualize such data as demonstrated in [96]. For 
non-expert users it may be necessary to automate the analysis and tuning of collective 
communication. Using our monitoring approach, automatic performance tuning tools 
[151, 182] could be implemented to use underutilized cluster resources. 
Some parallel applications are implemented by decomposing an unstructured graph to 
threads, and using asynchronous point-to-point communication operations for exchanging 
data. For one such application [54], we were not able to understand a communication 
performance problem using traces collected using the MPI profiling layer. The necessary 
insight to understand the problem could be provided by using message traces collected 
internally in the communication system to create visualization that show which threads 
wait, and have waited, for which other threads during the execution. 

6.2 Collective operations for WANs 
Tools analyzing a parallel applications source code could be used to automatically detect 
which collective operations can be made conditional.  
To validate the applicability of WAN multi-clusters for real parallel applications, 
experiments should be conducted to compare the performance of applications run on a 
single cluster, versus an application run on a multi-cluster that is optimized with all the 
methods presented in this dissertation. 
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6.3 Overdecomposition 
The improvements and limitations of overdecomposition should be validated on CMP 
processors. 

Multiprogramming can be used to also overlap collective communication wait time. The 
coscheduling method we developed for the EventSpace monitor system could be used to 
allow two parallel applications to share a cluster without performance degradation of the 
primary application. We believe this functionality can be implemented in the 
communication system. Such scheduling also needs to take into account cache pollution, 
and provide predictable and low latency communication operations.  

System software could be changed to avoid the overdecomposition limitations identified 
for the NAS benchmarks. Especially, the following changes should be investigated; each 
motivated by the limitations for a benchmark: 

• In BT and SP each thread communicates with multiple neighbors, and 
computation-communication overlap is implemented using the immediate 
functions provided by MPI. A better mapping of threads to processors may reduce 
the inter-node communication overhead. 

• Applying overdecomposition for CG and MG decreases performance due to 
increased cache misses and operating system activity. Therefore, intra-node 
communication should use asynchronous communication operation that provides 
low memory-bandwidth user-level non-blocking synchronization. 

• System software should be changed such that a high degree of TLP is maintained, 
even at the cost of work conservation. 

6.4 Remote visualization 
Performance comparison of remote visualization using Varg and other thin-client systems 
should be conducted by using the systems over real WANs. 

A longer trace should be used to evaluate the compression ratio and time achieved using 
Varg. 

The scalability of theVarg system should be demonstrated by compressing the data for 
cross Atlantic collaboration using display walls. 

6.5 Two-level fingerprinting 
Improvements to Canidae throughput, and the end-to-end latency of individual segment 
transfers, should be evaluated using a sender cache. This cache could be implemented 
either using a hash table or a Bloom filter. 

The latency of segments sent through Canidae should be measured by compressing data 
by a Varg type remote visualization. 

The effect on compression ratio and compression time of using bi-directional 
communication should be measured. 

The benefit of a hundred GB cache should be validated using a larger data set than the 
genomic visualization data sets used in the initial evaluation. 
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A full evaluation of the advantage of two-level fingerprinting is needed to answer the 
following questions: 

• Does two-level fingerprinting improve the compression ratio of previous 1-D 
content-based segmentation algorithms? 

• Does redundancy detection improve with smaller segments? 
The segment cache should be evaluated by answering the following: 

• Are the assumptions that segment accesses have temporal and spatial locality 
true? 

• How should the parameters be set to achieve the best performance, in particular: 
the number of hash table entries, segment buffer chunk size, and the memory 
allocated for hash tables versus segment chunks? 

• Does the choice of container replacement algorithm significantly improve cache 
hit ratio? 

In addition the system should be properly evaluated by measuring: 
• The throughput of Canidae compression. 

• The scalability of the Canidae compression pipeline on current CMP and SMT 
processors. 

To answer the first two questions the compression ratio of the implemented 1-D 
segmentation algorithms with different segment sizes should be measured when using 
one level fingerprinting, and when using two-level fingerprinting. A data set consisting of 
flat uncompressed files could be used for the experiments. The last two questions can be 
answered by measuring the throughput of the system on machines with processors 
supporting CMT and SMT.  

6.6 Segmenting multi-dimensional datasets 
Segmentation algorithms for scientific 2-D data or 3-D data should be developed, and 
used to demonstrate network transfer time improvements when used to detect redundancy 
in multi-dimensional scientific datasets. 

Methods could be developed for predicting the segmentation method and segment size to 
use for a given dataset.  

Additional experiments are required to answer the following questions: 
• Does 2-D based segmentation methods improve the compression ratio and time 

compared to 1-D segmentation methods? 
• Does the 2-D based segmentation methods also work well with scientific 2-D 

data? 
To answer these question it is necessary to experiment with existing 1-D segmentation 
methods [156, 209], and the 2-D segmentation methods we have developed. The data sets 
to use in the evaluation should be from different scientific domains, such as geometric 
data, scientific simulation output, and satellite images. 
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Chapter 7  

Appendix A - Published papers 

7.1 Collective Communication Performance Analysis Within the 
Communication System 

 
This paper was published in the Proceedings of Euro-Par 2004 [43].  
An earlier version of the paper was published as a technical report [44]. 
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The first paper about the EventSpace system was published in the Proceedings of Euro-
Par 2003 [45]. How to use EventSpace to analyze the performance of parallel 
applications was demonstrated in [18]. 
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Abstract

Scalability of parallel applications run on clusters and
multi-clusters is often limited by communication perfor-
mance. Message tracing can provide data for under-
standing bottlenecks, and for performance tuning. How-
ever, it requires collecting, storing, analyzing, and trans-
ferring potentially gigabytes of data. We have designed
the EventSpace system for low overhead and high per-
formance runtime collective communication trace analy-
sis. EventSpace separates the perturbation and perfor-
mance requirements of data collection, analysis, gathering
and visualization. Data collection overhead is low since
the minimum amount of data is recorded and stored tem-
porarily in main memory. The recorded data is either dis-
carded or analyzed on demand using available cluster re-
sources. Analysis is distributed for high performance, and
coscheduled with the computation and communication sys-
tem threads for low perturbation. Gathering of analyzed
data is done using extensible collective communication op-
erations, which can be tuned to trade off between perfor-
mance and monitoring overhead. EventSpace was used to
do run-time monitoring and analysis of collective commu-
nication micro-benchmarks run on clusters, multi-clusters,
and multi-clusters with emulated WAN links. Performance
data was collected, analyzed and gathered with 0–3% mon-
itoring overhead.

1 Introduction

In Grids rapid changes will be the norm. Hence, it is nec-
essary for applications and the underlying systems to adapt,
at run-time, to changes in the availability and performance
of resources. An important part of the adaptation will be
to reconfigure the point-to-point and collective communi-
cation structures used by parallel applications.

On large clusters, a much less dynamic environment
than a Grid, communication system performance is impor-
tant. Of eight scalable scientific application studied in [30],

most would benefit from improvements to collective opera-
tions, and four would benefit from improvements in point-
to-point communication performance. Improved communi-
cation performance is essential if Grids are to be used as a
high performance computing platform.

Collective operation performance has been shown to im-
prove by using better mappings of computation and data
to the clusters in use [16, 24, 26, 27]. In earlier work, we
have shown how to tune the mapping based on a perfor-
mance analysis within the communication system [9]. We
found that a global view of the system was needed to de-
tect hotspots and simplify the hotspot analysis. Also, traces
of all messages sent in a collective operation spanning tree
were needed to understand some performance problems (as
the problems described in [21]). Thus, we need to collect,
store, analyze, gather, and visualize a large amount of per-
formance data.

Monitoring tools need to collect data with minimal per-
turbation of the monitored application. For runtime analysis
the performance data must be analyzed and often gathered
to a single front-end host for use before the data becomes
irrelevant. We have built the EventSpace system [8] for low
overhead and high performance runtime collective commu-
nication trace analysis.

EventSpace is evaluated on clusters, multi-clusters, and
multi-cluster with emulated WAN links. We demonstrate
how data gathering performance can be tuned to either pro-
vide high performance or low perturbation. Our results
show that performance data can be collected with less than
1% overhead. The data can be analyzed and gathered with
0–3% overhead, since collective communication intensive
applications have low CPU utilization, and since analysis
threads can be coscheduled with application and communi-
cation system threads.

2 Related Work

Generally performance monitoring tools for MPI pro-
grams [19] treats the communication system as a black box
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and collect data at a layer between the application and the
communication system (the MPI profiling layer). To un-
derstand why a specific collective operation spanning tree
and mapping have better performance than others it is nec-
essary to collect data for analysis inside the communication
system, as EventSpace does.

MRNet [23] is the system most similar to EventSpace.
Both use collective operations spanning trees to build scal-
able multi-cast/reduction overlay networks used by perfor-
mance monitoring tools. MRNet shares the flexible orga-
nization and extensibility of EventSpace. In MRNet, com-
munication is only between compute hosts and the front-
end host, while EventSpace allows arbitrary communication
structures resulting in more flexible and efficient analysis.
EventSpace is also more tightly integrated with the under-
lying communication system, allowing the monitor activity
to be coscheduled with the application. Our evaluation dif-
fers in that we use EventSpace for a different problem do-
main than used in [23], and we examine the performance of
more complex spanning tree topologies than the balanced
trees used in [23]. Another data aggregation tool for Grids
is Yggdrasil [4].

PHOTON [28] allows monitoring point-to-point oper-
ations used by MPI applications run on large clusters.
EventSpace is designed for collective operations, but share
the same goals as PHOTON in reducing the monitoring
overhead, perturbation and storage requirements of post-
mortem trace analysis tools. PHOTON appends informa-
tion to messages, which requires modifications to the MPI
runtime system. This information is sampled and statistics
are computed at runtime. Our experience in collective oper-
ation analysis [9] is that statistical profiling does not provide
the necessary level of detail to understand all performance
problems. Hence message tracing is necessary.

NetLogger [25] provides end-to-end application and
system level monitoring of high performance distributed
systems. It can provide similar performance data as
EventSpace does. However, our focus is on how to aggre-
gate and analyze the communication performance of collec-
tive operations. This requires monitoring more hosts than
the single path usually monitored by NetLogger.

Data stream management systems (for an overview of
DSMSs see [3]) have been used to implement network mon-
itors [12]. DSMSs provide a relational/ query interface for
the performance analyst. Such an interface could be useful
for specifying EventSpace scopes as SQL queries. How-
ever, to achieve the desired performance and perturbation,
it is still necessary to map, configure and tune the query plan
to the clusters in use; as shown in this paper.

Astrolabe [22] is a system for collecting, aggregating and
updating large scale system state. Astrolabe is targeted for
widely distributed applications and the primary design goal
was scalability. EventSpace uses some of the Astrolabe

techniques for improving scalability such as hierarchies and
aggregation. Other aggregation and filtering systems for In-
ternet are publish-subscribe systems [10], and Grid moni-
toring and discovery services such as Remos [13]. The fil-
tering and aggregation functions in EventSpace are more
specialized towards performance analysis. Also, since As-
trolabe and publish-subscribe systems are targeted at widely
distributed applications run on the Internet, low latency ag-
gregation is not important.

Cluster monitoring tools such as Ganglia [18], and Grid
monitoring tools such as the Network Weather Service [32],
does not support the high sample rate necessary for collec-
tive operation analysis.

To reduce monitoring overhead, EventSpace coschedule
execution of monitoring threads with application and com-
munication system threads. Coscheduling has traditionally
been used to schedule communicating processes [1]. Our
design is similar to [11], where coscheduling is used to
boost the priority of communication threads doing collec-
tive communication to improve application performance.
However, we do not modify kernel code since coschedul-
ing can be added to the communication system.

Many research projects have optimized MPI collective
operations. Some of the approaches used are: (i) using
knowledge about the topology hierarchy, going from multi-
cluster [16] to individual clusters of SMPs [24, 17] and uni-
processors. (ii) taking advantage of architecture specific op-
timizations [24, 26], (iii) using a lower-level network pro-
tocol [14, 26], and (iv) automatically trying different algo-
rithms and buffer sizes [27].

3 Performance Analysis and Optimization

Applications monitored by EventSpace use the PATHS
communication system [5], which is an extension to the
PastSet structured shared memory system [31]. Threads
communicate by reading and writing tuples to shared mem-
ory buffers.

The purpose of the analysis is to detect performance
problems in a spanning tree and understand how the tree
can be reconfigured to improve performance. We briefly
describe the metrics computed for the allreduce operation.
Other synchronizing collective operations will have similar
metrics. For a more detailed description see [9].

Central to the analysis are communication paths through
the communication system starting from a thread and end-
ing in a PastSet buffer. Each path consists of several wrap-
pers; each wrapper has code that is run before and after call-
ing the next wrapper in the path. Wrappers are used to im-
plement communication between hosts and for instrumen-
tation. Also, some wrappers join paths used to implement
collective operation spanning trees, and handle the neces-
sary synchronizations. The spanning tree is configured by
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Figure 1. PATHS allreduce spanning tree.

specifying properties of the wrappers and the mapping of
wrappers to cluster hosts [5, 9].

In summary, we do for the performance analysis the fol-
lowing steps: (i) detect load balance problems, (ii) find
paths with similar behavior, (iii) select representative paths
for further analysis, (iv) find hotspots by breaking down the
cost of a path into several stages, (v) reconfigure the path,
and (vi) compare the performance of the new and old con-
figuration.

Figure 1 shows an allreduce spanning tree used by
threads T1–T8 instrumented with event collectors (EC1–
EC14). These collect entry and exit timestamps for each
wrapper. The reduced value is stored is a PastSet buffer. CT
is a communication thread serving one TCP/IP connection.

For inter-host communication we calculate the two-way
TCP/IP latency by (t4 − t1) − (t3 − t2), where t1 and t4
are collected by the event collector before the stub in a path
(EC12), and t2 and t3 are collected by the first event collec-
tor called by the communication thread (EC13).

Allreduce wrappers are called by multiple threads each
contributing with a value to be reduced. There is one event
collector after the allreduce wrapper, that collects times-
tamps t2 and t3, while the paths from each contributor i

have an event collector collecting timestamps t1,i and t4,i.
For each contributor three latencies are calculated: down
latency t2 − t1,i, up latency t4,i − t3, and total latency
(t4,i − t1,i) − (t3 − t2).

Also calculated for each contributor are the arrival order
distribution and the departure order distribution; the num-
ber of times the contributor arrived, and departed, at the
allreduce wrapper as the first, second, and so on. In addi-
tion we calculate: arrival wait time t1,l − t1,i; how long
contributor i had to wait for the last contributor l to arrive,
and departure wait time t4,i − t4,f ; elapsed time since the
first contributor f departed from the allreduce wrapper, un-
til contributor i departed.

4 EventSpace

The architecture of the EventSpace system is given in
figure 2. An application is instrumented by inserting event
collectors into its communication paths. Each event collec-
tor record data about communication operations into a trace
tuple and stores it in an event space consisting of PastSet
bounded buffers. Different views of the communication be-
havior can be provided by extracting and combining trace
tuples provided by different event collectors. Consumers
use an event scope, an aggregation/gather network, to do
this.

4.1 Design

Runtime monitoring tools need to provide the data nec-
essary for analysis at high performance and without per-
turbing the monitored application. We describe the design
choices made in EventSpace to achieve these goals.

Configurability and extensibility. Being a research
tool, EventSpace is designed to be extensible and flexible
in order to experiment with different approaches for tuning
the trade-off between monitoring performance and pertur-
bation. It is also possible to extend EventSpace by adding
other event collectors, and event scopes.

Separation of functional concerns. The tasks of col-
lecting, storing, analyzing, gathering and presenting data
are clearly separated in order to allow each part to be im-
plemented and tuned separately. Data is collected by com-
munication system wrappers, and stored using the PastSet
structured shared memory system. EventSpace provides
mechanisms for distributed analysis and fast collective op-
erations for gathering data from compute hosts to a front-
end host, which is responsible for presentation or further
analysis of the data.

Low overhead data collection. We expect the num-
ber of trace tuple writes to be much larger than the number
of reads; hence an event collector only record the minimal
information for each communication operation and stores
it in binary format in memory using native byte ordering.
For heterogeneous environments, the tuple content can be
parsed to a common format when it is read. Due to separa-
tion of concerns all communication paths are instrumented,
and data is recorded for each operation, since event collec-
tors do not know what data monitors need and when they
need it.

Temporal trace storage. The challenge for large scale
message tracing is the amount of data produced [28].
EventSpace provides temporal storage requiring only a few
megabytes of memory (each trace tuple is 28 bytes allow-
ing about 37 450 tuples to be stored in one megabyte of
memory). The event scopes used by monitors need to have
sufficient performance to read the trace tuples before they
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Figure 2. EventSpace architecture.

are discarded. Presently, the amount of tracing can not be
dynamically be adjusted as in other monitoring systems (for
example NetLogger [25]).

Distributed data analysis. Monitors use event scopes
to analyze and gather data from compute hosts. The perfor-
mance and perturbation of an event scope can be tuned by
configuring the collective communication structures used
by the event scope, and the mapping of these to the clus-
ters. Data can be reduced or filtered close to the source, to
avoid sending all data over a shared resource such as Ether-
net, or a slow Internet link. Also some data preprocessing
can be done on the compute clusters, thereby reducing the
load on the front-end host.

Monitors using distributed analysis can be implemented
either as a process on a front-end using an event scope or as
a distributed application with several analysis threads. Each
analysis thread can read and analyze trace tuples, and stores
the result in a PastSet buffer. The results can then be gath-
ered to a front-end for presentation.

Coscheduling. During a synchronizing collective opera-
tion all threads on a host must wait for data from other hosts.
During the wait-time it is possible to run analysis threads if
they are coscheduled with computation, and PATHS/PastSet
communication threads. Coscheduling is possible since
computation threads are blocked inside the communication
system during collective operations and analysis threads
also use the communication system for reading trace tuples.
Hence, the release order of the different threads can be con-
trolled by releasing all communication threads before com-
putation threads, and finally any blocked analysis threads.
No changes to the operating system scheduler are required.

On demand data gathering. Analyzing and gathering
performance data comes at a cost. Computation is needed
for the analysis, communication for moving data between
hosts, and storage for intermediate results. Often these ac-
tivities use the same resources as the monitored application.
Pulling is used by monitors such that shared resources are
not used until the data is needed.

Separation of performance concerns. Different parts
of the monitoring system have different performance re-
quirements. Event collectors run at the rate the application
uses a collective operation. Some analysis threads must also

run at this rate, but some lag is allowed due to the trace
buffers. With distributed analysis, it is not necessary to
gather all intermediate results; hence the gather rate can be
lower than the event collecting rate. Further performance
relaxation is allowed for presentation to users. The separa-
tion of performance concerns also makes it easier to trade-
off between monitoring performance and perturbation.

4.2 Implementation

Event Space. An event space is implemented using Past-
Set buffers. Each trace buffer can have a different size and
lifetime. The oldest tuple is automatically discarded when
the number of tuples is above a specified threshold.

Event Collectors. An event collector writes a trace tu-
ple to a trace buffer using the blocking PastSet write opera-
tion. During the write, the traced communication operation
is blocked. As a result it is important to keep the intro-
duced overhead low. The write consist of a mutex lock, a
memory copy of 28 bytes, and a mutex unblock (a read is
similar). The recorded information is: event collector iden-
tifier, PastSet operation type, tuple sequence number, return
value, and the start and completion timestamps.

Event scopes. An event scope for a specific monitor is
implemented as a spanning tree with PATHS wrappers for:
(i) storage, (ii) data manipulation including aggregation, fil-
tering and conversion, (iii) data gathering and scattering,
and (iv) inter-host communication. Storage wrappers pro-
vide access to PastSet buffers, while inter-host communi-
cation wrappers allow setting properties of TCP/IP connec-
tions such as socket buffer size. Only the data manipulation
wrappers are aware of tuple format and content.

Gather wrappers read tuples from several PastSet
buffers, concatenate these and returns one large tuple. Scat-
ter divides and writes a tuple into several PastSet buffers.
The gathering and scattering is done in the context of the
calling thread. It is also possible to specify that a given
number of helper threads should be started for the wrapper.
The helper threads allow parallel reads and writes on remote
PastSet buffers.
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Figure 3. Load-balance monitor with a single event scope (top), and with distributed analysis (bottom).

4.3 Monitors

Load balance monitor. The load balance monitor is
used to find load balance problems, which can be caused
by workload imbalance, differences in point-to-point com-
munication latency, or the mapping of a spanning tree to
clusters. Two implementations are used. The first has a sin-
gle event scope (figure 3). A gather thread uses the event
scope to pull trace tuples produced by the event collectors
on each compute host. A reduce wrapper is used to find the
tuple with the largest down timestamp. All reduced tuples
are then gathered to the front-end where they are scattered
to PastSet buffers (one per allreduce wrapper). The tuples
contain the number of last arrivals for each participant, and
are read by a thread which applies updates to a weighted
tree with the number of last arrivals for each participant.
This tree is used to generate visualizations.

Distributed analysis reduces communication cost by in-
creasing computation cost, but also complicates the monitor
(figure 3). Each host has one analysis thread that counts the
last arrivals for each participant by reading and reducing
trace tuples as described above. After each read an interme-
diate result tuple is written to a PastSet buffer, containing
the number of last arrivals for each participant. The gather
thread gathers all intermediate result tuples from the com-
pute hosts and scatters these to the local PastSet buffers. In
the visualization we are only interested in the newest state
of the system. Hence, not all intermediate result tuples need
to be gathered since the arrival order state is maintained by
the analysis threads.

Statistics monitor. The statistics monitor (statsm) is
used to find paths with similar behavior and to detect
hotspots. Computation is offloaded from the front-end by
having on each compute host one or more analysis threads
computing all statistics for the spanning tree wrappers on

the host (figure 4). Our analysis assumes that all trace tu-
ples are read before being discarded.

For each PATHS wrapper, statsm computes mean, mini-
mum, maximum, standard deviation and median (using the
sliding window median implementations from NWS [32]
with window size set to 100) for the up, down and total la-
tencies. For each wrapper, the results are stored in three 24
byte result tuples and written to three PastSet buffers. In
addition, for allreduce wrappers similar results tuples are
written for each arrival and departure order wait time. Also,
for allreduce wrappers per thread arrival and departure wait
time means are computed and stored in a PastSet buffer.

Two gather threads are used. The first gathers all up and
down latencies in addition to the arrival and departure wait
times. The second gathers per thread statistics (these are
not always needed). Results are stored in two buffers at the
front-end. These are used by an updater thread that main-
tains an analysis tree structure with statistics for each wrap-
per. The analysis tree is used by visualization threads.

5 Methodology

Two micro-benchmarks are monitored. In Gsum threads
alternate between using two identical allreduce trees to
compute a global sum. Gsum is run for 20 000 itera-
tions using 8 byte messages (most scientific applications
use small messages in allreduce [29]). Compute-gsum al-
ternates between computing (integer sort) and calling allre-
duce. The benchmark can easily be perturbed since delay-
ing one thread causes all others to wait for it [21]. Compute-
gsum is run for either 10 000 or 20 000 iterations, and is
tuned to spend 50% of its execution time computing and
50% in allreduce. Both have one computation thread per
CPU. Each experiment is repeated at least three times and
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Figure 4. Statistics monitor threads and gather tree.

execution time averages are used to compute monitor over-
head. Standard deviation is low (less than 1% of mean).
To ensure fairness and experiment repeatability, all event
scopes were set up and analysis threads were started before
the monitored application.

Four clusters are used: Copper 18 dual-CPU Pentium
II 300 MHz, 256 MB RAM, Lead 10 single-CPU Mobile
Pentium III 900 MHz, 1024 MB RAM, Tin 51 single-CPU
Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM, Iron 39
singe-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM
with EM64T extension.

Copper and Lead share a two-way Pentium II 300 MHz
with 256 MB RAM which is used as a gateway and which
all communication to/from the cluster goes through. For Tin
and Iron one host similar to the compute-hosts is used as
gateway. A host outside the clusters, a Pentium 4 1.8 GHz
with 2 GB RAM, is used as monitor front-end.

The Tin and Iron clusters have Gigabit Ethernet, while
Copper, Lead, and all inter-cluster communication use
100 Mbit Ethernet. The operating system on all clusters is
Linux, with the LinuxThreads Pthread library. Iron runs 32-
bit code. Hyper-threading was enabled for Tin and Iron. On
all TCP/IP connections the Nagle algorithm was disabled
and default socket sizes were used.

We emulate WAN links between our clusters using the
Longcut WAN emulator [7]. The design of Longcut is sim-
ilar to the Panda WAN emulator [15]. Tin and Iron are each
split into three sub-clusters. For each sub-cluster we se-
lect one host to act as a gateway. All communication to the
sub-cluster is routed through its gateway, which adds de-
lays to the routed messages to simulate the higher latency
and lower bandwidth of a WAN TCP/IP connection. The
emulator is implemented using PATHS wrappers.

To calculate the delay added to a message of a given
size, we use a latency and bandwidth trace collected by run-
ning an instrumented communication intensive application
on hosts in Tromsø, Trondheim, Odense and Aalborg. The
largest latency is between Tromsø and Aalborg, and is about
36 milliseconds ([7] has additional details about the topol-
ogy). The sub-clusters are assigned to these sites with two
sub-clusters in Tromsø and Odense.

For each cluster we choose an allreduce spanning tree
with, to our knowledge, the best performance. For Tin, Iron
and Copper this is a hierarchy aware (as in [24, 17]), 8-way
spanning tree, while for Lead it is a flat tree. For the LAN
multi-clusters the cluster spanning trees are connected by
adding an inter-cluster allreduce. For WAN multi-clusters
the inter-cluster allreduce is replaced by an all-to-all for im-
proved performance (as in MagPIe [16]). The average time
per allreduce for the different topologies is about 0.5 ms for
Tin with 32 hosts, 0.6 ms for Tin with 49 hosts, 1 ms for
a LAN multi-clusters and 65 ms for a WAN multi-cluster
(both multi-clusters with 43 Tin hosts and 39 Iron hosts).

6 Experiments

6.1 Data Collection

The overhead added to a PastSet operation by a single
event collector is low (1.1 µs on a 3.2 GHz Pentium 4), com-
pared to the hundreds of microseconds per collective op-
eration. Thus, for the gsum and gsum-noise experiments
presented below, the overhead due to event collectors range
from 0–2%.

The storage requirement for temporal traces is small. For
our 8-way allreduce, the hosts with most event collectors
(9) stores 252 bytes per call. We use one megabyte memory
for trace tuples and one megabyte for intermediate results.
Thus, trace buffer size is set to 3750 tuples, and the inter-
mediate result buffers have size set to 5000 tuples.

6.2 Event Scope

To experiment with the performance, perturbation and
tuning of an event scope, we instrumented both allreduce
trees used by gsum with event collectors, but only mon-
itored one. The allreduce tree for 49 Tin hosts has 241
event collectors, but only data from 57 are needed to com-
pute the arrival order at each allreduce wrapper. These are
on 8 hosts, and due to the reduce wrapper only 28 bytes
need to be gathered from each host. For a single cluster,
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Event Scope Overhead
Event collectors none–1%
32 Tins, sequential tuples discarded
32 Tins, parallel 0.4%
LAN multi-cluster, seq. tuples discarded
LAN multi-cluster, par. none
WAN multi-cluster, seq. 1%

Table 1. Load balance monitor with single
event scope.

the event scope has only one gather wrapper which is run
on the cluster gateway. For multi-clusters the event scopes
have a gather wrapper on each cluster gateway and a gather
wrapper on the monitor front-end gathering from these.

Gsum. Adding event collectors to a 49 Tin spanning tree
does not introduce a measurable overhead (monitored mean
is within one standard deviation of un-monitored mean).
Neither does the load balance monitor. To ensure that all
trace tuples are read before being discarded, helper threads
must be added to the gather wrappers such that data is gath-
ered in parallel. LAN and WAN multi-clusters have similar
results.

Compute-gsum. The largest monitoring overhead was
for a multi-cluster with emulated WAN links with 49 Tin,
18 Copper and 10 Lead hosts (table 1). However, the over-
head is caused by the WAN emulator becoming inaccurate
when there are many emulated connections. As for gsum,
sequential gathering has often not sufficient performance.

Scalability. For the event scope achieving sufficient per-
formance is harder than keeping the overhead low. The
event scope need to be hierarchy aware and do all intra-host
reduces before inter-host gathers, and intra-cluster gathers
before inter-cluster gathers. Further reconfiguration by for
example moving gather wrappers to unused cluster hosts
does not improve performance. Also, for the cluster sizes
we had available a flat gather tree had sufficient perfor-
mance. For larger clusters additional levels may be nec-
essary.

Increasing the number of hosts by connecting clusters
with LANs or WANs often lowers the performance require-
ments for the monitor, since the performance of the moni-
tored operation decreases. Also, the event scopes used by
monitors such as load balance scale better than allreduce
trees, since data is not needed from all hosts.

The higher WAN latency is usually tolerated since the
monitored operation is latency bound, and the messages
sent by the event scope are small (a few hundred bytes)
making them also latency bound. We believe most WAN
links have enough bandwidth for concurrent transfers of ap-
plication and monitor data.

The monitoring scales well with number of monitored

Event Scope Overhead Gather rate
49 Tins, sequential (gsum) 2% 51%
49 Tins, parallel (gsum) 2% 99%
49 Tins, sequential 1% 65%
49 Tins, parallel 1% 99%
LAN multi-cluster, seq. none 45%
LAN multi-cluster, par. 3% 100%
WAN multi-cluster, seq. 1% 94%
WAN multi-cluster, par. 3% 100%

Table 2. Load balance monitor with dis-
tributed analysis.

spanning trees. Monitoring both spanning trees in gsum and
gsum-compute does not increase monitoring overhead or re-
duce monitoring performance. Similarly modifying gsum
to use four spanning trees and monitoring all trees did not
increase overhead or reduce performance.

6.3 Distributed Analysis

Load balance monitor. Distributed analysis uses more
resources than the single event scope. For each host with
allreduce wrappers, 352 bytes are gathered (compared to
224). Also, there is additional computation cost for run-
ning the analysis threads, and storage must be allocated for
intermediate results. Using distributed analysis increases
monitoring overhead from none to about 2% for gsum on a
single cluster (table 2). For compute-gsum the monitoring
overhead has not changed.

Monitoring cost can be reduced since it is not necessary
to gather all intermediate results to the front-end. Hence,
the overhead on a LAN multi-cluster can be reduced from
3% to none, by removing the helper threads in all gather
wrappers (parallel vs. sequential in table 2). The perfor-
mance difference between sequential and parallel gather is
smallest for the WAN multi-cluster, and largest for the LAN
multi-cluster.

6.3.1 Statistics monitor

Gsum. The statistics monitor is a computation and commu-
nication intensive monitor; the analysis threads read data
from all trace buffers on the host. Some are also read twice;
when computing statistics for the wrapper before and after
the associated event collector. Also, to compute TCP/IP la-
tencies a trace tuple must be read from another host.

Initially we have one analysis thread per host. Running
distributed analysis on a 32 Tin host spanning tree, has 9%
monitoring overhead. We tried different approaches for re-
ducing the overhead. Removing all statistics computation
(but still reading trace tuples) did not reduce the overhead,
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Event Scope Overhead Wrapper Thread
Event collectors none–1% - -
Analysis threads 5–9% - -
with coscheduling 1 3% - -
with coscheduling 2 1% - -
32 Tins, sequential 2% 50% 69%
32 Tins, parallel 2% 77% 99%
LAN multi, seq. see text 43% 68%
LAN multi, par. +1% 100% 100%
WAN multi, seq. none 100% 100%

Table 3. Statsm overhead and gather rates.

showing that the slowdown is not caused by computation.
Similarly, removing the read and computation of statistics
for allreduce wrappers did not reduce the overhead. Thus
the problem was not caused by synchronization in the many
buffer reads. Removing statistics computation for TCP/IP
connections reduced the overhead to 4%, showing that the
slowdown was caused by reads on trace buffers on other
hosts.

For TCP/IP connections we can choose whether statis-
tics should be computed at the source or destination (the
direction of a path is from the thread to a PastSet buffer).
Moving the computation from the source to destination host
reduced the overhead to 5%. However, the analysis thread
was not able to read all trace tuples before they were dis-
carded (since it reads from 8 hosts sequentially). Running
two analysis threads on each host allowed reading all tuples,
but increased the overhead to 6%.

Finally, we used two coscheduling strategies: (i) analysis
threads are blocked until all participating threads have con-
tributed and a message is sent to the next-level host, and (ii)
analysis threads are blocked until all participating threads
are unblocked. The first strategy tries to do the analysis
while the host is idle waiting for the broadcasted reduced
value. The second makes sure the broadcast is done before
unblocking analysis threads. The first strategy reduced the
overhead to 3%, while the second reduced it to 1%. For the
remaining experiments the second coscheduling strategy is
used.

Adding gathering increased the overhead to 2%. There
was no difference in overhead when gather wrappers had
helper threads, but with the latter more intermediate results
could be gathered (table 3).

The allreduce spanning trees for a LAN multi-cluster
with 43 Tin hosts and 39 Iron hosts had about 20% slower
inter-cluster communication than expected. We were not
able to reconfigure or remap the spanning tree to remove the
problem. However, when data is gathered from the cluster,
allreduce operation time decreases with up to 18%. Thus
we cannot measure the gather overhead for the multi-cluster
topology. But we can compare the performance of a gather

tree with sequential and parallel gathering. The latter im-
proved wrapper-, and per thread statistics gather rate, but
increased monitoring overhead with 1% (table 3).

The larger latency of emulated WAN links hides the per-
formance problem described above. With WAN links, anal-
ysis threads introduce a 1% overhead, but data gathering
can be done without helper threads, without increasing the
overhead, and with sufficient performance to gather all in-
termediate results.

Compute-gsum. For compute-gsum the execution time
variation is larger than for gsum (about 2% of mean), hence
we could not see any monitoring overhead. Also, the gather
rate is better. Both are probably due to less communication,
since compute-gsum has one less allreduce per iteration.

Scalability. Analysis thread performance is independent
of cluster size, since each only monitors a subtree. How-
ever, the subtree is dependent on the spanning tree shape.

Gather scalability depends on how analysis threads are
mapped to the cluster. For example in our initial configura-
tion all hosts had analysis threads which produced interme-
diate results that had to be gathered, while the final configu-
ration only had analysis threads on the hosts with allreduce
wrappers.

Data gathering for multi-cluster with WAN links has bet-
ter performance, relative to allreduce performance, than for
a single-cluster. This could be due to the small cluster sizes
used. The largest cluster had only 12 hosts, requiring only
4400 bytes to be sent over a WAN link. For larger clusters
the message size would increase, probably decreasing the
gather rate.

Monitoring both 32 Tin host allreduce spanning trees in
gsum, increased the analysis thread overhead to 5%. We
were not able to reconfigure the event scope or cosched-
ule the monitoring to reduce it. The overhead is caused by
increased communication activity in the monitor. Adding
data gathering does not increase the overhead. Neither does
increasing the number of allreduce trees to four, since the
communication frequency does not increase neither for the
benchmark nor the analysis threads. We have similar results
for LAN multi-clusters. However, with emulated WAN
links monitoring both allreduce trees does not increase the
overhead, since the time between each allreduce operation
call is larger (due to WAN latency), hence monitoring activ-
ity can be scheduled to run during the WAN communication
part of the allreduce operation.

We also modified compute-gsum to alternate between
using two and four different spanning trees. Monitoring
overhead did not increase, since the number of compu-
tations, number of allreduce calls, and allreduce call fre-
quency did not change (we reduced the size of all trace and
intermediate PastSet buffers to reflect the fewer allreduce
calls per spanning tree).
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7 Discussion

The low monitoring overhead and high performance of
EventSpace suggest that runtime analysis can be incorpo-
rated into a communication system for automatically tuning
collective operation performance. In earlier work we have
shown how our performance analysis approach can be used
to improve allreduce performance up to 49% [9].

It is probably easier to reduce monitoring overhead and
improve monitoring performance for real applications than
the micro-benchmarks we used, which were designed to
stress the monitoring system. We believe the benchmarks
are representative for the type of applications interesting to
monitor with EventSpace, but real applications will have a
more complex interaction between computation, communi-
cation and I/O providing further challenges for the analysis
and tuning of collective operations.

For the load balance monitor we achieved the same per-
formance and scalability when using an aggregation net-
work than with distributed analysis. Due to the increased
complexity of distributed analysis aggregation networks
should be used. However, for monitors such as the statis-
tics monitor aggregation networks do not have the neces-
sary performance. Event scope performance was tuned by
allocating more resources to the collective operations used
to implement them. Changing the spanning tree shape or
mapping to clusters did not improve performance.

All our clusters use Ethernet for communication. Faster
interconnects, such as Myrinet [6], will improve the per-
formance of collective operations. Thus, application with
high enough communication ratio to be interesting to moni-
tor with EventSpace will have a higher communication fre-
quency. This requires the analysis computation to be done
in a shorter time, but the event scopes will benefit from the
improved communication performance.

Even when using Ethernet, communication latency can
be improved by using a lower level protocol than TCP. But,
we believe it is easier to add distributed analysis than to
implement an event scope with a non-reliable lower level
protocol.

We have not measured, or focused, on the time to setup
and initialize the event scopes (as in [23, 4]). Currently it
can take seconds due to the implementation using Python
and XML-RPC. A significant performance improvement is
possible by using a more efficient implementation.

Coscheduling the computation threads, communication
system threads and the analysis threads did reduce pertur-
bation for one benchmark. We believe further reduction
could be achieved by priority scheduling all inter-host com-
munication such that the applications messages always had
higher priority than EventSpace messages. This would re-
quire a reimplementation of the PATHS/PastSet communi-
cation system.

8 Conclusions

We have described the EventSpace system for runtime
performance monitoring of collective operations within
the communication system. EventSpace allows high-
performance message tracing without a large perturbation
of the monitored application. By combining distributed
analysis with fast collective operations to gather and an-
alyze performance data, temporal storage for only a few
megabytes of data is required. Separation of performance
concerns allows us to tune the different parts of the sys-
tem to achieve the required monitoring overhead and perfor-
mance. Close integration with the communication system
allows to coschedule analysis activity with the computation
and communication of the monitored application.

We evaluated different monitors for collective operation
performance analysis. Our findings were as follows: (i)
monitor overhead was low, from none to maximum 3%, (ii)
for many monitors it is harder to get sufficient performance
than low perturbation, (iii) coscheduling allowed to reduce
monitoring overhead from 9% to 1% for one benchmark,
(iii) the monitoring has good scalability both with regards to
the number of cluster hosts, number of clusters, and number
of monitored spanning trees, (iv) high performance moni-
toring of a WAN multi-cluster is often easier than a single
cluster, and (v) performance tuning should be done by allo-
cating more threads to a monitor rather than reconfiguring
its communication structure.

9 Future Work

Our long term goal is to build automatically reconfig-
urable collective operations. We will build and evaluate
such a system based on the data provided by the monitoring
tools in this paper.

Presently we are porting the NAS parallel bench-
marks [20] to PATHS/PastSet to be able to use our tools.
EventSpace may also be used to monitor other type of com-
munication systems, for example to optimize global work
scheduling in distributed work queues [2]. For data Grid
applications large data sets are accessed. For such appli-
cations communication performance is important, making
them interesting to monitor with EventSpace.

Also, important for the usability of EventSpace are
graphical tools to simplify the building and tuning of event
scopes.
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Abstract— We identify two ways of increasing the performance
of allreduce-style of collective operations in a multi-cluster with
large WAN latencies: (i) hiding latency in system noise, and (ii)
conditional-allreduce where knowledge about the application is
used to reduce the number of WAN messages. In our multi-
cluster, system noise was not large enough to hide the WAN
latency. But, the latency could be hidden using conditional-
allreduce, since on many iterations only cluster-local values were
needed, and many of the values needed from other clusters were
prefetched. A speedup of 2.4 was achieved for a microbenchmark.
Prefetching introduced a small overhead in the cluster with the
slowest hosts.

I. INTRODUCTION

Computational Grids is an emerging platform for computa-
tional science [1]. In a grid, multiple computers and clusters
are connected using wide-area networks (WAN). Ideally, ap-
plications developed for more tightly connected platforms (e.g.
SMPs, clusters) should run effectively without modifications
on grids. However, for many applications, modifications are
required to tolerate the higher latencies and lower bandwidths
of WAN links [2].

Many applications are written using a communication li-
brary, such as MPI [3], which provides operations for point-
to-point and collective communication. Examples of collective
operations are broadcast, reduce, and allreduce. In allreduce,
the reduced value is broadcasted to all threads that contributed
with a value.

For clusters, the performance of collective operations is
an important factor in determining application performance
[4]. For grids, we expect collective operation performance to
be even more critical. Sensitivity to WAN latency has been
shown to be the primary cause for poor collective operation
performance on grids [5].

If the provided operations can be made to tolerate WAN
latencies and bandwidths, many applications can run on Grids
with only minor modifications. In this paper we evaluate two
approaches for improving the performance of the allreduce
collective operation on Grids: (i) latency hiding, and (ii)
extending collective operations with application semantics.

We propose a novel algorithm, conditional-allreduce, where
we apply application knowledge to reduce the number of WAN
messages exchanged. Many algorithms, such as converging
iterative algorithms for linear algebra, use the reduced value
only to test whether a particular condition is true. In many
cases where multiple clusters communicate over a WAN link,
each of the clusters may have enough information locally

to determine that the condition is true. In these cases, time-
consuming WAN communication can be avoided by returning
the result of the cluster-local operation.

Another performance problem is caused by system activities
causing ’noise’ that takes resources (e.g. CPU) from individual
threads and, by implication, delays both the thread itself
as well as all other threads participating in a synchronous
operation [6], [7]. We evaluate whether some of the WAN
latencies can be hidden in the noise.

We describe a micro-benchmark for analyzing noise on
clusters, as well as systems for configuring and monitoring
the performance of different allreduce algorithms. The per-
formance analysis is based on traces from actual runs on an
available multi-cluster.

Our results show that the system noise in our multi-
cluster is too low to allow us to hide the WAN latency.
Using conditional-allreduce, the WAN latency was avoided
for most operations, since these only required values from
one cluster. For the remaining operations the required values
were often already prefetched. Conditional-allreduce only in-
troduced overhead on the cluster with the slowest hosts. Thus
applications using conditional-allreduce can be run on a grid
with good performance.

The rest of this paper proceeds as follows. Related work
is discussed in section II. Our parallel programming and
monitoring systems are described in section III. The design
and implementation of conditional-allreduce is described in
section IV. Section V describes the clusters and benchmarks
used in section VI to compare the performance of conditional-
allreduce with other algorithms. Section VII concludes and
outlines future work.

II. RELATED WORK

Improving the performance of collective operations is the
focus of this paper. However, three additional techniques were
applied in [2] to enable applications to tolerate the high
latency and low bandwidth associated with WANs. These
techniques were (i) distributed work queue implementation,
(ii) message combination, and (iii) exploiting asynchronicity
in applications.

Typically, collective operations are implemented using a
spanning tree. [5] identifies two requirements for collective
operations to be wide area optimal: (1) ‘every sender-receiver
path used by an algorithm contains at most one wide area
link’, and (2) ‘no data item travel multiple times to the same
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cluster’. Our work is complementary in that we evaluate how
we can avoid sending messages over a WAN, or hide the WAN
latency.

For clusters, many implementations apply SMP aware
spanning trees [8]–[11]. Many implementations also use fast
interconnects [12] or applies special features of the selected
interconnect, such as native broadcast in Ethernet [13] or
fast remote memory operations [14]. Our implementation is
SMP-aware but uses TCP/IP for intra-cluster communication.
With faster local interconnects; WAN latencies become even
more important. Also, the overhead introduced by the different
WAN algorithms measured by us are valid even with faster
interconnects.

In [15] it was shown that for barrier operations on an SMP,
most of the time was spent waiting for the last thread to arrive.
Even for highly balanced applications, noise caused by e.g.
system daemons may cause random processes to be delayed
[6], [7]. Noise can be reduced by leaving one processor on
each SMP idle, by eliminating unnecessary system daemons
[7], or by modifying the scheduler to implement co-scheduling
[6]. In a Grid, many clusters have either single or dual CPU
hosts, and eliminating daemons and modifying the scheduler
may be difficult due to administrative issues. Hence, we be-
lieve the noise cannot be avoided, and algorithms and systems
should be designed to take the noise into account. Conditional-
allreduce does so, as fewer threads need to be synchronized,
thereby reducing the impact of a delayed thread.

Relaxing the restrictions on a collective operation, as in
conditional-allreduce and MagPIe [5], can be regarded as
the same approach as using a weaker consistency models to
improve the scalability of distributed shared memory systems
[16]. Weaker consistency models generally introduce a more
complex programming model. However, we believe the relax-
ation is necessary to get efficient collective communication
performance in Grids.

Astrolabe [17] is a recent system for collective (or group)
communication in WANs. The primary design goal in Astro-
labe was scalability. For collective communication in scientific
computing applications, the focus is often on the latencies of
operations.

III. SYSTEMS

A. PATHS

Usually, MPI implementations only allow the communica-
tion structure to be implicitly changed either by using the MPI
topology mechanism or by setting attributes of communicators.
The PATHS system [18] allows inspecting, configuring and
mapping the collective communication structure to the re-
sources in use. PATHS is an extension to the PastSet structured
shared memory system [19], where threads communicate by
reading and writing tuples to named elements.

Using PATHS, we create a sequential spanning tree with
all threads participating in the allreduce as leafs (figure 1).
For each thread we specify a path through the communication
system to the root of the tree (the same path is used for reduce
and broadcast). On each path, several wrappers can be added.

process A

CT1 CT2

Host A

process B

CT3 CT4

Host B

process C

ST1 ST2

Host C

CT5 CT6

TCP/IP

function
call

tuple
server

Fig. 1. An application with six computational threads (CT) and two TCP/IP
service threads (ST) using a collective operation tree implemented using
allreduce wrappers (small ovals). Results are stored in a PastSet element.

Each wrapper has code that is applied as data is moved down
the path (reduce) and up the path (broadcast). Wrappers are
used to store data in PastSet and to implement communication
between cluster hosts. Also, some wrappers, such as allreduce
wrappers, join paths and handle the necessary synchronization.

Figure 1 shows the PATHS/PastSet runtime system. It is
implemented as a library that is linked with the application.
The application is usually multi-threaded. The PATHS server
consists of several threads that service remote clients. The
service threads are run in the context of the application. Also,
PastSet elements are hosted by the PATHS server. Each path
has its own TCP/IP connection (thus there are several TCP/IP
connections between PATHS servers). Wrappers are run in the
context of the calling threads, until a wrapper on another host
is called. These wrappers are run in the context of the threads
serving the connection.

The allreduce wrappers block all but the latest arriving
thread, which is the only thread continuing down the path.
The final reduced tuple is stored in the PastSet element before
it is broadcasted by awakening blocked threads that return with
a copy of the tuple.

B. EventSpace

To collect performance data we use the EventSpace system
[20]. The paths in a spanning tree are instrumented by inserting
event collectors, implemented as PATHS wrappers, before and
after each wrapper. For each allreduce operation, each event
collector records a timestamp when moving down and up the
path. The timestamps are stored in memory and written to
trace files when the paths are released. In this paper, analysis
is done post-mortem.

Depending on the number of threads and the shape of the
tree, there can be many event collectors. For example, for a
30 host, dual CPU cluster, a tree has 148 event collectors
collecting 5328 bytes of data for each call (36 bytes per event
collector). The overhead of each event collector is low (0.5µs

on a 1.4 GHz Pentium 4) compared to the hundreds of mi-
croseconds per collective operation. Most event collectors are
not on the slowest path, thus most data collecting is done
outside the critical path. Hence, even for the noise-allreduce
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Fig. 2. Conditional-allreduce implementation for two clusters.

microbenchmark the overhead due to data collection is less
than 1%.

IV. CONDITIONAL-ALLREDUCE

Many parallel applications, such as iterative algorithms, use
the result of an allreduce operation to check for convergence
(one such application is described in section V-A). Hence, the
result value is only needed in the last iteration of the algorithm.
For all others it is only necessary to reduce enough values until
it can be determined whether the convergence condition is true
or not. To determine if the condition is true, only values from
a subset of the threads may be required. If these threads are
on the same cluster, no WAN communication is necessary.

There are some limitations to how the allreduce can be
used: (a) the value should only be used for the convergence
test and perhaps debugging, (b) the allreduce should not be
used as a barrier, and (c) only positive (or only negative)
values should be contributed. We believe many applications
meet these requirements.

The implementation of conditional-allreduce is based on a
wide-area optimal algorithm used in MagPIe [5], but with
some differences. As shown in figure 2, we have a sequential
allreduce tree on each cluster (as described in section III-A).
Between the clusters an all-to-all is implemented using a fully
connected graph. An allreduce is done on each cluster and the
result is stored in a PastSet element. On each root node there
are prefetch threads that pull1 tuples from the result elements
on other clusters, and store these tuples in caches implemented
using PastSet elements. The pulled tuples and the local result
are reduced, and broadcasted to all threads on the cluster.

To use conditional-allreduce, the application programmer
specifies that an allreduce should be conditional, the type of
evaluation to use (greater than, less than or equal), and the
constant to evaluate against. The operation type (sum, max
or min) is already specified for the allreduce. As the PATHS

1We can easily implement pushing also (as in MagPIe).

system allows us to set properties of individual nodes in the
allreduce tree at initialization time, we have set the condition
and constant as properties of the allreduce tree nodes.

The condition check is done after storing the result for the
cluster in the local PastSet element. After that, a new check is
made every time a tuple is read from a cache. If the condition
is found to be true, a broadcast is initiated for the local cluster,
and no more caches are accessed.

Since the allreduce operation no longer synchronizes all
participants, some clusters (or allreduce trees) may get ahead
of others. To reduce the amount of buffering needed for the
result values, a sequence number is stored with the result. If
allreduce tree A pulls a tuple from allreduce tree B, and the
tuple has a larger sequence number than A’s result tuple, then
B must have found the condition to be true for the iteration A
is at (otherwise B would have needed A’s result tuple). Hence,
the condition must also be true for A. The sequence number
allows the memory for the caches on a host to be limited to
only one tuple for each remote cluster.

As described in section III-A, there are multiple threads that
are synchronized by the allreduce root wrapper. To reduce the
introduced overhead, and simplify the implementation, only
the thread arriving latest reads tuples from the caches. The
read operation is non-blocking, since a tuple from any of the
remote clusters can be enough to make the condition true, and
we do not know which tuple will arrive first. Between each
pull there is a yield call to allow other threads to run.

On each root host there is one prefetch thread per remote
cluster. Each thread only fetches the newest tuple from the
remote cluster. Hence some tuples are not fetched if the
difference between the WAN latency and the time per local
allreduce on the remote cluster is large. The read operation
blocks on the remote cluster if there are no new result tuples.

V. METHDOLOGY

A. Noise-allreduce Microbenchmark

To measure the performance of the different allreduce
algorithms, and the system noise in our clusters, we use
a benchmark that imitates the behavior of medium grained
parallel applications (which are realistic to run on a Grid [2]).
Each thread independently sorts a list of integers, a task that
is automatically tuned to take 30ms (about the same as the
largest WAN latency). The benchmark is run for about 15.000
iterations. It has been shown that system noise resonating
with the computation granularity of a synchronous application
will cause a substantial performance loss [7]. Thus, for our
benchmark the worst kind of noise delays the computation for
about 30 ms [7].

We only use 8 byte messages. Most scientific applications
have message sizes of less than 256 bytes for most collective
operations [21]. Also, we are mostly interested in avoiding the
WAN latency.

B. Input Data

The performance of conditional-allreduce depends on the
values used in the operation, which depend on the input data.
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Each noise-allreduce thread reads the values it contributes
with from a file. We use five sets of input files. Two sets
are the unrealistic best-case and worst-case allreduce values
for conditional-allreduce. The three others are traces of actual
values used in Successive Over-Relaxation (SOR), when using
different data sets. The data sets have different convergence
rates.

SOR is a well known iterative converging linear algebra
algorithm that approximates each element in a matrix to
its neighbors until the sum of all changes in an iteration
converges below a given value. We have traced a Red-Black
implementation of SOR. Each worker-process updates all its
red points and then exchanges red border point values with its
neighbors using point-to-point communication. Then the black
points are updated and exchanged. Each process calculates a
delta, by summing, for all its matrix elements, the absolute
value of the new value subtracted from the old value. At the
end of each iteration there is a check for convergence. First,
the sum of all deltas is calculated using MPI Allreduce. Then
the resulting global delta is compared to a constant epsilon.
The algorithm terminates if the global delta is smaller than
epsilon.

A 1380×1380 matrix was divided among 138 processes.
Epsilon is 0.01904. The first data set, frosty, is from a heat dis-
tribution simulation where the top row is set to 27760 degrees
Celsius2, while the remaining elements are set to −273.15
degrees Celsius3. SOR converges after 5403 iterations.

The second data set, tridiagonal, uses a tridiagonal matrix
where all dialog elements, and all elements on the three
sub-diagonals and super-diagonals are set to a random value
between 0 and 10000. The remaining values are zero. Conver-
gence is after 1737 iterations.

For the third data set, random, the matrix elements are
initialized with random values between zero and 10.000. The
computation converges after 273 iterations.

C. Clusters

The hardware platform comprises six clusters:

RoadRunner: 48 single-CPU Celeron 1700 MHz, 256 MB
RAM. Odense, Denmark.

Dominic: 7 dual-CPU Pentium III 733 MHz, 2 GB RAM.
Aalborg, Denmark.

Blade 10 single-CPU Mobile Pentium III 900 MHz,
1024 MB RAM. Tromsø, Norway.

2W 18 dual-CPU Pentium II 300 MHz, 256 MB RAM.
Tromsø, Norway.

4W Eight four-CPU Pentium Pro 166 MHz, 128 MB
RAM. Tromsø, Norway.

8W Four eight-CPU Pentium Pro 200 MHz, 2 GB RAM.
Tromsø, Norway.

The clusters are not directly accessible from the Internet.
Communication through and from the Tromsø clusters goes
through a two-way Pentium II 300 MHz with 256 MB RAM.

2The surface temperature of a blue star.
3Zero Kelvin, or absolute zero.

Fig. 3. Clusters, gateway hosts and WAN link emulator hosts of the multi-
cluster used in the experiments. For each WAN link the average and standard
deviation of the two-way TCP/IP latency is given.

For Roadrunner, a Pentium III 1400 MHz with 1 GB RAM
is used as a gateway host. The gateway host for Dominic is
a dual-CPU Pentium III 733 MHz with 640 MB RAM. The
clusters use TCP/IP over a 100 Mbps Ethernet for intra-cluster
communication. Inter-cluster communication uses the Nordic
interconnection of national research networks (NORDUnet).

There was no background workload on the cluster hosts.
However, there was other traffic on the department networks,
and on the Internet. On all TCP/IP connections the Nagel
algorithm is disabled to ensure that even small data packets
are sent immediately. The operating system on all clusters is
Linux.

D. Wide-area Network Emulator

To increase the number of WAN links we emulate WAN
links between the Tromsø clusters. The emulator is inspired
by the Panda WAN emulator [22]. We use two of the 8W hosts
as gateways for Blade and 2W. Thus, a message from a 2W
host to a Blade host is first sent to the 2W’s gateway, which
forwards it to Blade’s gateway, which finally forwards it to the
Blade host. Figure 3 shows the topology of the multi-cluster.

The emulator is implemented using PATHS wrappers that
emulate a WAN link. These wrappers are run on the gateway
hosts. For all messages a delay time is calculated by using
the latency and bandwidth of the emulated WAN link, and the
message length. The latency and bandwidth are read from a
file. For each WAN connection we have one trace file for each
direction consisting of latency and bandwidth traces.

We have collected the WAN traces using the Unix ping
tool. The ping latency is similar to the TCP latency due to the
small message size used in the experiments (8 bytes). Also,
bandwidth is not measured; instead the maximum bandwidth
of the link is used. Bandwidth is not important for the small
messages used.

The measured WAN connections were between the Uni-
versity of Tromsø and: (i) Norwegian University of Science
and Technology in Trondheim, Norway, and (ii) Finnmark
University College in Alta, Norway. The average two-way
latencies are given in figure 3.
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VI. EXPERIMENTS

In this section we analyze the performance of different
allreduce implementations using the benchmark and clusters
described in section V. Also, for each allreduce implementa-
tion we measure the noise in the system.

A. Sequential Allreduce

To identify a baseline, we analyze the performance of a se-
quential multi-cluster allreduce tree implemented as described
in section III-A. The algorithm is similar to the algorithms
used in LAM-MPI [11] and MPICH [23]. However, our
spanning tree is SMP and WAN aware. The noise-allreduce
benchmark was run on the five clusters described in section
V-C, with the root of the spanning tree on a 4W host. Two of
the WAN links were emulated, as described in section V-D.
For each sender-receiver path there is one WAN link, but two
messages are sent over the link (one for reduce, and one for
broadcast). For 15.000 iterations the execution time was 1412
seconds.

As the sequential spanning three synchronizes all threads,
one slow cluster may delay all others. By analyzing the
message arrival order at the spanning tree root, we find that the
two slowest clusters are 2W and Dominic, arriving last 69%
and 23% of the times respectively. The many last arrivals for
Dominic were expected since the WAN link between Dominic
and 4W has the highest latency.

The 2W cluster has a performance problem caused by
the interaction between the allreduce spanning tree and the
workload. As described in section III-A, the broadcast of a
reduced value is implemented by unblocking a set of server
threads that return the value to their clients. The broadcast
may unblock a worker thread that uses the CPU, causing
server threads to wait. Hence, the last message may be sent
up to 30 ms later than the first. The spanning tree on the
other cluster with 2-way SMPs (Dominic) has a similar, but
smaller, problem. For the 2W send-receive paths, 58% of the
time spent in an allreduce was as a result of the WAN link,
compared to 87–89% for the paths on the other clusters (expect
for 4W where the paths do not have a WAN link). This shows
that the spanning tree on a cluster may have a significant
effect of the multi-cluster allreduce performance. Possibly, a
re-mapping or re-implementation may improve the spanning
tree performance.

For some RoadRunner hosts we had unexpected perfor-
mance irregularities, increasing the computation time from
30 ms to 36 ms for most iterations. A similar increase in
computation time was observed on other RoadRunner hosts
in other experiments. We do not believe the problem is
caused by other background workload, nor the spanning tree
implementation. Also, the disturbances occur too frequently
to be caused by system daemons. However, the increase is
overlapped by the larger WAN latencies and the performance
problems on 2W, demonstrating that the sequential spanning
tree tolerates noisy hosts as long as the noise doesn’t occur in
a cluster with the largest WAN latency to the root.

For the 15.000 iterations, only in 41 iterations at least one
of the threads was delayed for more than 30 ms compared to
the average computation time4. In 223 iterations at least one
thread was more than 10 ms delayed, in 359 iterations some
thread was more than 5 ms delayed, and in all iterations at
least one thread was 1 ms delayed. Thus the potential benefit
of hiding the WAN latency in the system noise is limited.

Earlier we have documented that there are large variations
in execution time per allreduce, and where within the commu-
nication system time is spent [24]. The multi-cluster spanning
tree exhibits even larger variations. However, the standard
deviation for the WAN links is low (figure 3). Thus, for our
system, variations in the communication systems have larger
impacts than variations in computation time.

To conclude, for a sequential spanning tree the WAN latency
is the primary cause of poor performance. However, the
implementation of the spanning tree on a cluster may also
cause performance problems. The potential for latency hiding
is small.

B. MagPIe Allreduce

When using the worst-case data set for conditional-
allreduce, the condition is never true and hence every iteration
requires an all-to-all exchange. This behavior is similar to the
MagPIe allreduce algorithm [5]. However, due to differences
in the underlying systems, the implementation differs5. The
MagPIe algorithm should improve performance as each allre-
duce operation introduces just a single one-way latency. As
we do not have global clock synchronization, we assume the
one-way latency to be half of the measured two-way latency.

For 15 000 iterations, the execution time was 1474 seconds,
which is slower than for the sequential configuration. The
potential speedup of MagPIe is dependent on the multi-cluster
topology, in particular the difference between the largest two-
way and one-way WAN latency. For our case, the expected
speedup was 1.16. However, when running the benchmark on a
multi-cluster with an emulated topology where the largest two-
way latency was twice the largest one-way latency and there
was 50% communication, we achieved speedups of around
2.0.

In our implementation a potential bottleneck are the pre-
fetch threads, as we assume the time to send the read request is
overlapped with computation. The performance data confirms
this assumption as the largest two-way WAN latency is around
60 ms indicating that the send request latency (30 ms) is
overlapped with computation.

To analyze the performance of conditional allreduce, we
compare for each cluster-root host, the order, and wait time
until tuples where read from the pre-fetch thread caches.
Wait times longer than the one-way latency indicate that the

4By comparing with the average value, we can ignore the performance
faults on RoadRunner.

5MagPIe is implemented on top of MPICH.
6The largest one-way WAN latency is in the all-to-all graph is 30 ms, and

the largest two-way latency for the sequential tree is 36 ms giving a speedup
of 1.2. However, only 63% is spent communicating reducing the potential
speedup to 1.1.
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cluster must wait for another cluster to complete its sequential
allreduce. Smaller wait times indicate that tuples where either
in the cache or already sent (but not yet arrived).

For all cluster-roots, most last arrivals are either from
RoadRunner or from 2W, indicating that these are the slowest
clusters. Also, the wait times on 4W, Blade and Dominic are
larger than the one-way latency for these two clusters. On 2W
and RoadRunner all wait times are smaller than the one-way
latency, except for 2W waiting for Roadrunner and vice versa.
Hence no single cluster is especially slow.

As for the sequential experiment, the 2W cluster has perfor-
mance problems caused by the spanning tree. The difference
between the first and last send in broadcast is larger, probably
due to the increased load due to the pre-fetch threads on the
root host. On RoadRunner, some hosts still compute for 36 ms
in most iterations.

The MagPIe algorithm allows some of the WAN latency
to be hidden in the noise since the allreduce time for the
slowest cluster may not include WAN latencies as messages
can be exchanged while waiting for the slowest thread. If
the probability of two cluster being slowest are equal, the
clusters will alternate being slowest. However, due to the
performance problems on 2W and RoadRunner, these were
slowest for most iterations. Due to the large variations within
the communication system, it is difficult to determine whether
these actually allowed some of the WAN latency to be hidden.

In conclusion: The potential for speedup was limited due to
the multi-cluster topology used, and we were unable to demon-
strate significant speedups due to problems with the workload-
balancing on RoadRunner and the sequential spanning tree
implementation on the 2W cluster.

C. Conditional-allreduce

1) Best-case: For the best-case data set, inter-cluster com-
munication is only necessary in the last of the 15 000 itera-
tions. Compared to the sequential spanning tree, the speedup
is 2.4. Average time per iteration is 38.6 ms, which is close to
the computation time for the slowest thread. The performance
improvement is due to all but the latest iterations not needing
any results from the other clusters.

There is no problem with the broadcast on the 2W cluster,
but some RoadRunner threads still have a computation time
of 36 ms for most iterations. Also, the computation time for
the 4W root host threads has increased to 34 ms. The other
cluster roots are unaffected (these hosts are much faster than
the 4W hosts). Due to the performance problems on 4W and
RoadRunner, the three other clusters wait 53 and 102 seconds
for results from these clusters in the last iteration.

The amount of computation noise is about the same as for
the worst-case data set. But the variation of the measured
performance within the communication system is lower, since
fewer threads are synchronized on each iteration, and there is
no broadcast problem on 2W.

To conclude, the best-case data set for conditional-allreduce
allows the WAN latency to be completely hidden. Also, the

overhead introduced by the prefetch threads is low on fast
hosts.

2) Frosty: The frosty heat distribution was simulated three
times; hence all threads had to contribute in at least 3 of the
16210 allreduce operations. The average time per operation
is comparable to best-case (39.6 ms) even if the data set has
more operations requiring results from other clusters. As for
the best-case experiment, some RoadRunner threads compute
for 36 ms, while the 4W root host threads compute for 34 ms.

For 4W and Dominic, only four operations required values
from other clusters (the spikes at each 5403rd iteration in
figure 4). Both clusters waited longest for the results from
RoadRunner due to the difference in the computation time
between RoadRunner and the other clusters (13 and 26 seconds
respectively). For the other clusters, 4W waited between 1 ms
(for Dominic) and 21 ms (for 2W), and Dominic waited
between 99 ms (for Blade) and 14 seconds (for 4W).

RoadRunner has more threads than 4W, which provides it
with more local results to check the condition for. However,
14 operations need remote results due to the input data
dependency7. For nine of these operations, only one remote
result was required to determine the condition to be true. All
required values were prefetched, so the wait time was only a
few microseconds (figure 4).

2W required values from other clusters for 165 operations.
For 161 of these, only prefetched values from Blade were
needed, thus the wait time for these operations were only a
few microseconds.

On Blade there were 5291 operations that required values
from other clusters, due to the cluster having only 10 threads.
The number of operations requiring remote cluster values
increase as the computation is close to convergence (figure
4). The average wait time ranges from 2.5 ms (for Dominic)
to 133 ms (for 4W). However, the median wait times were only
a few µs indicating that for most iterations prefetched values
could be used.

The results show that, even if there are more operations
that require values from other clusters, performance is not
degraded compared to the best-case experiment as most values
are prefetched, resulting in a median wait time of a few
microseconds. Furthermore, only values from one or a few
clusters are required for most operations that require values
from remote clusters.

3) Tridiagonal: Using the tridiagonal data set, the average
time for the 15635 iterations was 38.6 ms. For 4W and
Dominic, only the 9 convergence iterations required values
from other clusters. For the other clusters, more remote values
where required: 55 for RoadRunner, 254 for 2W, and 6013 for
Blade. The wait times are as in the frosty data set.

4) Random: For the random data set, the average time per
iteration was 38.3 ms. The computation converges after 273 it-
erations and is repeated 55 times. As for the other conditional-
allreduce experiments, some threads on RoadRunner compute
for 36 ms, and the 4W root threads compute for 34 ms. Figure

74W has the top row that initially has different values than the other rows.
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Fig. 5. For each cluster root, the time to determine whether the condition is true using the random data set. For clarity the graph for Dominic is not shown.

5 shows the time to determine if the condition is true for all
clusters.

Dominic and 4W has fewest (55) operations that require
values from other clusters. The average wait times ranged
from 0.5 ms (4W from Blade) to 1.8 seconds (Dominic from
RoadRunner).

On RoadRunner, 235 operations required remote cluster
results. The wait time was low with most operations waiting
only a few microseconds. For the 759 cache reads on 4W,
the medians were 4–64 µs. But the means were larger for
RoadRunner (64 ms) and 2W (21 ms).

2W has 3267 operations that require results from other
clusters, of which 112 required values from 4W. The mean
wait time for values from 4W was 411 ms (median 205 ms).

The median values for the other clusters were lower since
prefetched values could be used for most operations.

As for the other data-sets, Blade has many operations
requiring results from other clusters (4388). However, for most
operations prefetched values could be used.

To conclude, even with a data set that converges after 273
iterations we get similar performance results as for a data
set with converge after 5403 iterations. Hence, we believe
conditional-allreduce allows the WAN latency to be hidden
for many converging iterative algorithms.

VII. CONCLUSION AND FUTURE WORK

Collective operations for Grids containing multiple clusters
should be designed to tolerate the high latency and low
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bandwidth of WANs. We have evaluated two approaches
for improving the performance of the allreduce collective
operation on Grids of this kind: (i) latency hiding, and (ii)
extending collective operations with application semantics.

We have described conditional-allreduce, a novel allreduce
algorithm that applies application knowledge to reduce the
number of WAN messages exchanged. The performance of
conditional-allreduce was compared to other allreduce algo-
rithms by running a benchmark on a real multi-cluster.

We proposed hiding some of the WAN latency in system
noise, which delays the arrival of threads at synchronizing
collective operations. However, our results demonstrate that
the system noise in our multi-cluster is too low to allow a
significant part of the WAN latency to be hidden.

For our setup, a wide area optimal allreduce algorithm did
not perform significantly better than a sequential allreduce
spanning tree. This is due to the multi-cluster topology,
workload tuning problems on one cluster, and competition
for resources between the communication system and the
workload on another cluster.

Using conditional-allreduce, WAN latency was avoided for
most operations since these require values from only one
cluster. For the remaining operations, only values from a
few clusters were needed, and these where often pre-fetched.
There was no difference in performance when using a data
set from an iterative converging algorithm that converged
after 5403 iterations, or a data set from another algorithm
which converges after 273 iterations. Conditional-allreduce
only introduced overhead on the cluster with the slowest hosts.

Applications using conditional-allreduce can be run on
a grid without performance degradation, provided that the
point-to-point and other collective operations can tolerate the
WAN latency and bandwidth problems. For many applications
asynchronous point-to-point communication can be used [2].
We will as future work evaluate algorithms and communication
systems for Grids using other types of collective operations
with larger messages, such as all-to-all. We believe pre-
fetching and replication may improve the performance of
these operations. An open question is whether and how the
semantics of these operations can be relaxed, or if other
programming models may be required for applications using
these operations.
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Abstract

Parallel programs running on clusters are typically de-
composed and mapped to run with one thread per processor
each working on its disjoint subset of the data. We evalu-
ate performance improvements and limitations for a micro-
benchmark and the NAS benchmarks, by using overdecom-
position to map multiple threads to each processor to over-
lap computation with communication. The experiment plat-
form is a cluster with Pentium 4 symmetric multithread-
ing (SMT) processor nodes interconnected through Gigabit
Ethernet. Micro-benchmark results demonstrate execution
time improvements up to 1.8. However, for the NAS bench-
marks overdecomposition and SMT provides only slight
performance gains, and sometimes significant performance
loss. We evaluated improvement and limitation sensitivity
to problem size, communication structure and whether SMT
is enabled or not. We found that performance improve-
ments are limited by: applications having communication
dependencies that limit thread-level parallelism, increase
in cache misses, or increased systems activity. Our study
contributes a better understanding of these limitations.

1 Introduction

In this paper we investigate when and how overdecompo-
sition may be applied to improve performance without any
changes to source-code for MPI-based [17] parallel scien-
tific applications running on clusters of simultaneous multi-
threading (SMT) enabled single-processor Pentium 4 nodes
interconnected through low-cost Gigabit Ethernet.

As shown in figure 1, scientific parallel applications are
typically decomposed such that one processor in the cluster
runs one thread for a disjoint subset of the data.

Increasing the decomposition of the data will increase

the number of threads and may allow for overlapping com-
putation with communication to improve single-application
performance. However, increasing the decomposition will
typically also increase the number of messages exchanged
and the latencies and other costs associated with those mes-
sage transfers. Our goal is to identify when and how we
may increase the decomposition to achieve the performance
benefits of overlapping computation and communication
while not incurring communication costs that alleviate the
increased performance.

The paper makes three contributions:

• We provide an experimental evaluation of the perfor-
mance benefits of overdecomposition for parallel ap-
plication with a wide range of communication charac-
teristics.

• We also provide an experimental evaluation of the ben-
efit of SMT for parallel applications implemented us-
ing MPI.

• We provide insight into system software issues that
effect overdecomposition improvements by describing
and using an analysis methodology that combines mes-
sage traces, operating system counters and hardware
performance counters.

2 Experiment setup

2.1 Hardware platform

All experiments were run on a cluster of 44 nodes in-
terconnected over Gigabit Ethernet. Each node is a single
processor system with 2 GB RAM and local disk. The pro-
cessor used is a 90 nm 3.2 GHz version of the Intel Pentium
4. This is an SMT processor applying the second iteration
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Figure 1. A parallel application without (left), and with overdecomposition (right).

of Intel’s Hyperthreading (HT) Technology [1] which of-
fers several improvements over previous implementations
in terms of increased or enhanced resources and more dy-
namic resource allocation.

Each processor has a 12 KB L1 execution trace cache for
microoperations, 16 KB 8-way L1 data cache, and a 1 MB
8-way unified L2 cache. Memory access latencies measured
using Cachebench [13] are: L1 data: 1.25 ns, L2 unified:
8.78 ns, and main memory: 36.6 ns.

2.2 Software platforms

The cluster nodes run the Linux 2.4.18 uni-processor
kernel for the experiments where SMT is disabled, and
Linux 2.4.18smp or 2.6.9smp for the SMT experiments.
The 2.4 kernel was the first Linux kernel with explicit sup-
port for Intel HT Technology. The 2.6 kernel further im-
prove the handling of HT.

The Native POSIX Thread Library (NPTL) [5] was used.
NPTL synchronization variables are implemented using the
fast user-space locking system call (futex) which handles
any non-contended case without requiring a system call.

The communication runtime system used was LAM/MPI
version 7.1.1 [11]. LAM/MPI supports hierarchy aware col-
lective operation and shared memory intra-node commu-
nication. But when applying overdecomposition multiple
processes must be used. For the SOR experiments PastSet
[25] was used instead of LAM/MPI. PastSet differs from
LAM/MPI in that it supports multi-threading, buffers are
explicitly allocated, the communication system has helper
threads, and the same protocol is used for all message sizes.

2.3 Benchmarks

The successive over-relaxation (SOR) kernel was cho-
sen under the assumption that the latency of its block-
ing point-to-point communication operations can easily be
overlapped with computation. The benchmark is run for
three problem sizes: large, medium and small. For these
communication operations contribute to respectively 25%,

Benchmark Messages Coll. Asynch.
BT Many small No Yes
CG Many small, Manual Yes

few large
EP Few small Yes No
FT Few large Yes No
IS Few large Yes No
LU Many small No No
MG Many medium No Yes
SP Many medium No Yes

Table 1. NAS benchmark communication be-
havior. Small message is less than 1 KB,
large more than 1 MB. Yes for collectives if
execution time is dominated by them. Yes for
asynchronous if asynchronous operations
are used.

50% and 75% of the execution time, when run on 32 nodes
with SMT disabled. SOR is compiled with gcc 3.2.3.

The NAS benchmarks [18] are widely used to evaluate
different aspects of parallel architectures. They represent
a variety of communication behaviors as shown in table 1.
We use the NAS 2.4 MPI implementation with the class B
and C problem sizes. The benchmarks were compiled using
the Intel Fortran 8.1, and Intel C++ 8.1 compilers.

2.4 Data collection

PAPI [4] is used to access the Intel Pentium performance
counters. The Linux kernel is patched with perfctr 2.6.9 to
provide virtual performance counters. These are per-thread
counters that increase only when the thread runs user level
code. Since this release of perfctr lacks SMT support, we
have no hardware counter data for the SMT experiments.

Linux maintains process statistics including user level
time and system level time per thread, and idle and inter-
rupt handling time per processor context.

For runtime monitoring we use runtime statistical pro-
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filing (as described in the next section). For the SOR ex-
periments we use EventSpace [2] to collect message traces
for post-mortem analysis. EventSpace allows us to record
timestamps inside the communication system, such as be-
fore and after writing a message to a buffer.

2.4.1 Overhead

For SOR, the overhead for reading the OS resource counters
was less than the variation in execution time.

Message tracing overhead depends on the communica-
tion characteristics of the application. For our experiments,
the overhead is typically in the 0–4% range. The PAPI over-
head due to the in-kernel collection of data is in the 0–2%
range. The perturbation introduced by the data collection
may influence which mappings shows best performance, fa-
voring mappings with fewer threads per processor. Simi-
larly, execution time improvements due to overdecomposi-
tion may also be negatively affected. Still, we believe the
data collected demonstrates important trends such as reduc-
tion in idle time and increased overhead.

3 Analysis methodology

We characterize each benchmark by: (i) thread-level par-
allelism (TLP): number of threads ready to run (or running)
application computation code, (ii) memory-wait: time the
processor is stalled due to cache misses, (iii) system over-
head: number of cycles used for running operating sys-
tem code, (iv) communication overhead: number of cycles
for communication activity, (v) network-wait: time waiting
due to network latency, and (vi) synchronization-wait: time
waiting for data arrival or thread synchronization.

TLP is estimated from the thread count by subtracting the
number threads blocked on communication, assuming the
remaining threads are compute ready. To characterize the
distribution of TLP over a benchmark run we define TLPN

as the ratio of execution time where TLP is larger than or
equal to N. Thus, TLP1 is the percentage of execution time
when at least one thread was, our could have been, comput-
ing. Without operating system instrumentation we cannot
distinguish between these two states.

Memory wait is calculated based on the recorded num-
ber of cache misses and the miss penalties determined pre-
viously using Cachebench.

System overhead includes operating system activity for
inter-node communication, synchronization overhead, con-
text switches, and TLB misses. System time statistics are
maintained by Linux.

Communication overhead was typically either to small
to be significant, or accounted for elsewhere. The main
sources are thread synchronization and memory copying.

Threads:processor 2:1 4:1 8:1 16:1 32:1
Idle 1435 1565 1417 1644 976
System activity 70 130 250 500 1040
Memory wait 226 603 1492 3147 6576
TLB wait 10 20 41 81 165
Unknown 97 163 483 958 1991
in % of exec 1.0% 2.0% 5.7% 10.3% 18.9%

Table 2. Breakdown of SOR overhead in-
creases relative to the one thread per pro-
cessor mapping. The measurements are for
the medium problem size run on 32 nodes
with SMT disabled. Unknown is the differ-
ence between estimated and measured exe-
cution time reduction. All times are in ms.

Both are already accounted for respectively as system over-
head and memory wait.

Network wait, the time between sending a request and
receiving a response, excluding request processing time on
the other node, and synchronization wait, the time between
a receive operation blocked until a send is initiated, are de-
termined from message traces. Wait time at synchronization
points is calculated as described in [3].

3.1 TLP and overhead variation

During our analysis we assume that the metrics are sim-
ilar on all nodes if the benchmark is load balanced. Using
the SOR benchmark we measured the variation for the cal-
culated metrics for SOR run on 32 nodes with the medium
problem size. The benchmark was run five times.

TLP and data cache miss averages are similar for all
nodes for all runs, with standard deviations less than 5%
of mean. L1-instruction cache misses and system time have
more variation (standard deviation is about 10% of mean).

SOR has non-deterministic waiting pattern where most
nodes waits for other nodes, due to a small load imbalance
in the communication workload since two of the nodes only
have one neighbor. Therefore the variation is large for net-
work wait and synchronization wait (and hence idle time).
Which nodes have large synchronization wait change when
rerunning an experiment, while network wait is similar for
all runs. We believe we still can use the average synchro-
nization wait time for all cluster nodes in the analysis, since
the average has less variation.

3.2 Overhead accuracy

The overhead metrics combine data from several sources
and abstraction levels. Also, we make several simplifica-
tions for system behavior. Here, we evaluate the accuracy
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of the estimated overheads. In addition we have verified that
TLP results correspond with idle ratio statistics collected by
the operating system.

Subtracting all overheads from the reduction in idle time
should give the reduction in execution time. The sum of
overheads is usually overestimated (table 2). There are two
sources of error. First the memory miss penalty is too large.
Probably since overlapped cache misses are not taken into
account. For SOR increasing the number of threads in-
creases the number of cache misses and hence the miss
penalty overestimation. If we assume computation time
does not increase, then we can find the overestimation by
comparing the sum of memory wait and user level time. The
second source of error is system time which is too high for
frequently communicating benchmarks.

3.3 Runtime monitor implementation

Our MPI runtime monitor intercepts all communication
operations. Statistics about operation times and TLP are up-
dated for each operation. In addition OS statistics and PAPI
counters are read at selected collective operations (usually
when calling MPI Init and MPI Finalize).

Since we do not have any tracing inside the communi-
cation system we cannot distinguish between network wait
and synchronization wait. TLP counters are in a shared
memory map, and these are updated before and after calling
a blocking communication operation.

Usually metrics results are presented as statistics over
of all nodes over all iterations. But for applications with
load balance problems per node statistics are useful. Simi-
larly for applications with several phases, per phase statis-
tics should be used.

4 Performance improvement

Results from running the benchmarks with one thread (or
process) per processor with SMT disabled provides insight
into which benchmarks have communication wait that can
be overlapped with computation. We do similar experiment
with SMT enabled, to verify that SMT does not slow down
the benchmarks.

We measure overdecomposition execution time improve-
ments with SMT disabled to get insight into the degree of
overlapping, and overhead increase we can achieve when
threads are not run in parallel on a processor. Then we en-
able SMT to measure how TLP and the overheads increase
when threads can run and compete for resources in parallel.

For all experiments we first analyze the simpler SOR
benchmark, before analyzing how the different communica-
tion behavior of the NAS benchmarks influence the results.
All experiments are repeated ten times and the mean is re-
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Figure 2. SOR execution time improvements
relative to sequential code.

ported. The standard deviation for the execution times was
low if not otherwise noticed, usually less than 2% of mean.

4.1 Baseline

For problem constrained scaling with SMT disabled, ex-
ecution time is reduced for SOR for all three problem sizes
when increasing the number of nodes from 1 to 44. Sim-
ilarly, execution time is reduced for all NAS benchmarks
with both problem sizes when increasing the number of
nodes from 1 to 32 or 36 (BT and SP can only be run with
a square number of processes). For the remaining experi-
ments we use either 32, 36, or 44 nodes.

The SOR problem sizes were chosen such that 25%, 50%
and 75% of the execution time is spent blocked in commu-
nication operations. For these respectively 20%, 40% and
55% is due to network latency, the remaining is for synchro-
nization wait.

For most NAS benchmarks wait operations, collective
operations or blocking receiving operations contribute sig-
nificantly to the execution time (table 3).

In conclusion, all benchmarks scale to the cluster size
used, and most have operations that can partially or totally
be overlapped with computation by using overdecomposi-
tion.

4.2 Overdecomposition

SOR was run with 2, 4, 8, 16 and 32 threads per pro-
cessor (below we use 2:1 when referring to a mapping with
two threads per processor core). Execution time improves
compared to the one thread per processor mapping for all
problem sizes (figure 2). The large problem size has best
parallel efficiency, but the relative reduction in execution
time is largest for the small problem size (1.5). The best
mappings have few threads; 2:1 with SMT disabled. The
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Figure 3. NAS benchmark execution time improvements relative to one thread per processor map-
ping. Experiments were run on 32 or 36 (BT and SP) nodes.
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Benchmark class B class C
BT wait (54%), waitall (10%) wait (32%), waitall (8%)
CG wait (53%), send (24%) send (40%), wait (32%)
EP none none
FT alltoall (62%) alltoall (53%)
IS alltoallv (54%), allreduce (29%) alltoallv (47%), allreduce (20%)
LU recv (12%), send (10%), wait (7%) recv (9%), send (8%), wait (4%)
MG wait (24%), send (16%) send (18%), wait (8%)
SP waitall (80%) waitall (60%)

Table 3. MPI operations contributing to more than 4% of the execution time.

results shows that overdecomposition can improve applica-
tion performance even on uni-processors.

Figure 3 shows that with SMT disabled overdecompo-
sition improves performance significantly only for FT for
both class B and class C. However, performance decreased
for for CG, IS and MG.

4.3 Overdecomposition with SMT

Enabling SMT does not change 1:1 mapping execution
time, but the improvements with overdecomposition are
better. For SOR the best improvement is 1.81 compared
to the 1:1 mapping. For the large problem size the parallel
efficiency is improved from 30 to 40 (figure 2). The best
performance is for mappings with more threads than pro-
cessor contexts (four threads per 2-way SMT core).

Figure 3 shows that for the NAS benchmarks, enabling
SMT gives performance improvement for EP, FT, LU and
SP (only for class B). For BT and LU performance was un-
changed, while CG and IS got a significant slowdown. For
most experiments overdecomposition had best performance
with two processes per processor.

The benchmarks for which performance improves have:
(i) few and small messages, (ii) few large collective opera-
tion messages, and (iii) many small blocking point-to-point
messages.

Performance is either not changed or decreased for
benchmarks with many asynchronous point-to-point opera-
tions with medium or small sized messages. The IS bench-
mark has two execution phases with almost all communi-
cation taking place in the second phase, as well as a global
synchronize operation between the phases preventing any
overlap.

In conclusion, applying overdecomposition demon-
strates a potential performance gain for some application
characteristics, but should not be applied indiscriminately
as it may result in unchanged or reduced performance for
other applications. The mappings with best performance
have few threads per processor, but some have multiple
threads per processor context. Also, the best performance

improvements are for problem sizes where more than 50%
of the 1:1 execution time is due to communication.

5 Performance limitations

In this section we analyze how many threads are run-
ning at the same time, and which overheads increase most
for the different benchmarks. Finally, we measure the ef-
fect of synchronization variable implementations, user-level
schedulers and operating system kernels.

5.1 Thread level parallelism

When run with SMT disabled, SOR does not have
enough TLP1 to fully utilize the single processor context
even with 32 threads per processor. The TLP limitation is
not due to system code using the processor, since with more
than four threads the idle ratio increases. Rather the lim-
itation is due to data dependencies in the application and
scheduling policies in the system software.

Enabling SMT improves TLP1 for SOR, but still TLP1

decrease when there are too many threads per processor.
Also, when the problem size gets smaller the ratio of execu-
tion time where at least two threads are runnable decreases.
Often it can be as low as 5%, even for configurations with
32 threads.

With SMT disabled, increasing the number of processes
per processor does not always increase TLP1 for the NAS
benchmarks. For EP and MG the processor is saturated,
but for the other benchmarks processor utilization is usually
less than 76% (table 4).

Enabling SMT may increase TLP1 with a few percent-
ages. Also, as shown in table 5 TLP2 is low for BT, CG,
LU and SP.

5.2 Overhead increases

For SOR, all overheads increase. The increase in data
cache misses is most significant for the medium problem
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Benchmark B C
BT 44–76% 70–67%
CG 21–7% 27–9%
EP 100-99% 100-99%
FT 32–64% 33–75%
IS 19–32% 31–42%
LU 67–38% 77–56%
MG 20–53% 68–41%
SP 23–35% 47–48%

Table 4. TLP1 increase when the number of
processes per processor is increased from 1
to 8 or 16 (BT and SP). SMT is disabled.

Benchmark B, 2 C, 2 B, 4 C, 4
BT 12% 15% 9% 6%
CG 8% 3% 8% 3%
EP 99% 99% 97% 99%
FT 35% 64% 20% 39%
LU 5% 7% 4% 2%
MG 40% 39% 39% 37%
SP 8% 21% 6% 16%

Table 5. Maximum TPL2 and TLP4 for the
class B and class C problem sizes (minimum
is always zero). SMT is enabled (for some
benchmark these numbers are higher when
SMT is disabled).

size, but with the small problem size system activity be-
comes the most significant overhead. Also, network wait
which is the overhead we are trying to overlap, increase
when the processor load increase with more threads.

Enabling SMT does not increase per thread user level
time or system level time for SOR. Thus, we can assume
that cache miss penalties and system activity increase are
similar. However, the reduction in idle time is larger, giving
a larger reduction in execution time.

Table 6 shows that for most NAS benchmarks either
memory wait or system activity dominate the increase in
overheads. Usually, the dominating overhead does not de-
pend on problem size, but on the process to processor ra-
tio. With four or less processes per processor, cache miss
penalty increase most. But with more processes, system ac-
tivity increase more. Also, cache misses may not always
increase with more processes, but system activity always
increases.

Of the cache misses the largest penalty is due to L1-D
or L2 caches misses. However, with class B; L1-I and TLB
miss penalty may be significant.

For most benchmarks the increase in user and system

Benchmark Class B Class C
BT Memory, system System, memory
CG Memory, system Memory, system
EP None None
FT (System) (System)
IS None None
LU Memory, system Memory, system
MG System System
SP Memory, system Memory, system

Table 6. Significant overheads.

time is similar with and without SMT. But for CG and SP
both are lower, and for MG system time increase is lower.

Table 7 summarizes which parts of the platform limits
overdecomposition performance for the NAS benchmarks.

5.3 System software

Using oprofile [19] we find that most kernel samples for
SOR with 1:1 mapping are for the Ethernet driver, while
for 32:1 most are for synchronization and context switches.
Since synchronization may cause a context switch, we can-
not differentiate between these.

We evaluated system software effect on TLP and the sys-
tem activity overhead using two synchronization variable
implementations, two user-level schedulers, and two oper-
ating system kernels. The results are for SOR run with the
medium problem size.

We replaced NPTL [5] with LinuxThreads [12], and as
expected system overhead increased, due to more system
calls for synchronization. However, for small messages
sizes TLP improved. LinuxThreads improved TLP2 two
threads were runnable from 2% to 34%. The reduction
is caused by difference in scheduling policy. With Linux-
Threads, synchronization variable calls are likely to cause a
context switch.

We implemented two user level schedulers in the PastSet
communication system. The first attempts to reduce cache
misses by only allowing one or two threads to run compu-
tation code at the same time. The second attempts to better
overlap inter-node communication by reordering the com-
putation order of the threads in one node. However, due to
TLP limitations most of the time there is only one runnable
thread, and hence user-level scheduling will not work.

Replacing the 2.4 SMP Linux kernel with the SMT op-
timized 2.6 kernel does not significantly improve TLP for
SOR. Also, system overhead does not significantly change.

6 Discussion and related work

Overlapping I/O wait time with computation to achieve
higher CPU utilization is a well known and widely used
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Benchmark BT CG EP FT IS LU MG SP
Processor idle Yes Yes Yes
Processor saturated Yes Yes
Lack of TLP Yes Yes Yes Yes Yes
Cache misses Yes Yes Yes Yes
TLB misses
System activity Yes Yes Yes Yes Yes
Comm. phases Yes

Table 7. Overdecomposition performance limitations for the NAS benchmarks.

technique. For parallel applications overdecomposition has
been described in text books [7], and has been for load bal-
ancing by running more threads on underutilized processors
[7, 6], and to mask communication latency in a Grid envi-
ronment [10]. To our knowledge this is the first study on
overdecomposition performance improvements on Ethernet
clusters with SMT processors. In [10] experiments were
conducted to measure application slowdown when the WAN
latency between clusters was increased. Our experiments
differ in that we attempt to improve the performance of an
applications run on a network with a fixed LAN latency. We
have unpublished results showing that overdecomposition
improvement becomes better for SOR in a WAN environ-
ment.

Early simulator results have shown that SMTs [15] can
improve parallel application performance [15, 22]. How-
ever, recent studies show that SMT has best performance on
the POWER5 [9] when cache performance is at its worst,
and SMT is not well suited for floating-point workloads
and memory bandwidth bound applications [8]; all typical
characteristics of parallel scientific applications. Our results
show that only four of the NAS benchmarks had significant
increase in memory wait time.

A thorough study of SMT on the HT Technology en-
abled Pentium 4 processors used in our cluster is [23]. The
average multithreaded speedup recorded is 1.20 for multi-
threaded workloads and 1.24 for parallel workloads running
on a single node. The applications that were worst affected
by running with SMT enabled were those that had the low-
est instructions per cycle ratio. Another study [16] on Intel
Xeon, shows speedups ranging from 1.05 to 1.28 for data-
parallel numerically intensive benchmarks. Intel Xeon per-
formance improvements for web servers were found to de-
pend on the server design and implementation, and could
get worse when enabling SMT due to more synchronization
in the operating system kernel [21]. Our results for SMT
improvement shows smaller improvements for our message
passing parallel applications run on a cluster, than the sin-
gle node shared memory applications in [23, 16]. We do not
experience slowdown when using a SMP kernel rather than
an uni-processor kernel.

Proposed system support for SMT includes: (i) new

synchronization mechanism that permits cheaper synchro-
nization [24], (ii) compiler optimizations including new
approaches for inter-thread data-sharing, application of
latency-hiding, and loop distribution [14] (iii) kernel mode
behavior [20], and (iv) operating system schedulers [22] at-
tempting to benefit from possible constructive inter-thread
behavior.

Our results shows that synchronization contributes sig-
nificantly to system overhead, which is the overhead that
increase mostly when the number of threads increase. In
addition to using more efficient hardware mechanisms, syn-
chronization variable improvements should also attempt to
improve TLP by minimizing the time between unblocking
and running a thread. Due to the TLP limitations kernel
mode behavior and operating system schedulers are less im-
portant, since there usually are few runnable threads. Sim-
ilarly compiler optimizations and schedulers designed for
minimizing competition for processor resources will prob-
ably not improve performance since our benchmarks have
low TLP, in addition to being memory intensive and hence
have low instructions per cycle.

Alternatives to overdecomposition are to rewrite the ap-
plication to either use both message passing and shared
memory, or to use asynchronous communication opera-
tions. Both increase the complexity of the parallel pro-
gram.

7 Conclusion and future work

We evaluated if parallel application performance can be
improved by overdecomposition the data into more pieces
than there are processors in order to overlap communication
operation latencies with computation and taking advantage
of SMT processors.

Microbenchmark results are promising with execution
time improvements up to 1.8. However, performance im-
proved for only two NAS benchmark, and decreased for
three, showing that improvements are sensitive to appli-
cations communication structure, cache miss behavior, the
problem size used, and also of the underlying system com-
ponents. The best results were for applications with few
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blocking communication operations, and low cache miss
penalty to execution time ratio.

Performance improvements are better when SMT is en-
abled, and never significantly worse. Hence for Pentium 4
based cluster SMT can be enabled as default. But changes
to system software are necessary for fully utilizing SMT
enabled processors. Especially intra-node communication
must be designed to reduce system calls and cache misses,
and synchronization primitives must strive to keep the num-
ber of runnable processors high.

As future work, we will investigate if the techniques de-
scribed in this paper can be used with multiprogramming
to overlap globally synchronizing operations with compu-
tation, without decreasing single application performance.
Also, we intend to investigate system changes tailored for
the NAS benchmarks for which performance did not im-
prove.

The monitoring tool used for measuring TLP and over-
head increase is available at:

http://www.cs.uit.no/l̃arsab/minim/
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Abstract. Microarray experiments can provide molecular-level insight into a 
variety of biological processes, from yeast cell cycle to tumorogenesis. 
However, analysis of both genomic and protein microarray data requires 
interactive collaborative investigation by biology and bioinformatics 
researchers. To assist collaborative analysis, remote collaboration tools for 
integrative analysis and visualization of microarray data are necessary. Such 
tools should: (i) provide fast response times when used with visualization-
intensive genomics applications over a low-bandwidth wide area network, (ii) 
eliminate transfer of large and often sensitive datasets, (iii) work with any 
analysis software, and (iv) be platform-independent. Existing visualization 
systems do not satisfy all requirements. We have developed a remote 
visualization system called Varg that extends the platform-independent remote 
desktop system VNC with a novel global compression method. Our evaluations 
show that the Varg system can support interactive visualization-intensive 
genomic applications in a remote environment by reducing bandwidth 
requirements from 30:1 to 289:1. 

Keywords: Remote visualization, genomics collaboration, Rabin fingerprints, 
compression. 

1. Introduction 

Interactive analysis by biology and bio1informatics researchers is critical in extracting 
biological information from both genomic [1], [2] and proteomic [3], [4], [5], [6], [7]  
microarrays.  Many supervised and unsupervised microarray analysis techniques have 

                                                             
1 To be published in Springer-Verlag LNBI 4360. 
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been developed [8], [9], [10], [11], and the majority of these techniques share a 
common need for visual, interactive evaluation of results to examine important 
patterns, explore interesting genes, or consider key predictions and their biological 
context. 

Such data analysis in genomics is a collaborative process.  Most genomics studies 
include multiple researchers, often from different institutions, regions, and countries.  
Of the 20 most relevant papers returned by BioMed Central with the query 
“microarray,” 14 had authors located at more than one institution, and 7 had authors 
located on either different continents or cross continents. Such collaboration requires 
interactive discussion of the data and its analysis, which is difficult to do without 
sharing a visualization of the results. To make such discussions truly effective, one in 
fact needs not just static images of expression patterns, but an opportunity to explore 
the data interactively with collaborators in a seamless manner, independent of the 
choice of data analysis software, platforms, and of researchers’ geographical 
locations.   

We believe that an ideal collaborative, remote visualization system for genomic 
research should satisfy three requirements.  First, synchronized remote visualization 
should have a fast response time to allow collaborating parties to interact smoothly, 
even when using visualization-intensive software across a relatively low-bandwidth 
wide area network (WAN).  Second, collaborating parties should not be required to 
replicate data since microarray datasets can be large, sensitive, proprietary, and 
potentially protected by patient privacy laws.  Third, the system should allow 
collaborators to use any visualization and data analysis software running on any 
platform.   

Existing visualization systems do not satisfy all three requirements above.  
Applications with remote visualization capabilities may satisfy the first and the 
second requirements, but typically not the third as require universal adoption among 
participating collaborators.  Thin-client remote visualization systems, such as VNC 
[12], Sun Ray [13], THINC [14], Microsoft Remote Desktop [15] and Apple Remote 
Desktop [16] satisfy only the second requirement because they do not perform 
intelligent data compression and all except VNC are platform-dependent.  Web 
browser-based remote visualization software can satisfy the third requirement, but not 
the first two because these systems are not interactive and do not optimize the 
network bandwidth requirement. 

This paper describes the design and implementation of a remote visualization 
system called Varg that satisfies all three requirements proposed above.  To satisfy 
the first requirement, the Varg system implements a novel method to compress 
redundant two-dimensional pixel segments over a long visualization session. To 
satisfy the second and the third requirements, the Varg system is based on a platform-
independent remote desktop system VNC, whose implementation allows remote 
visualization of multiple applications in a network environment.   

The main contribution of the Varg system is the novel method for compressing 2-D 
pixel segments for remote genomic data visualization.  Genomic data visualization 
has two important properties that create opportunities for compression.  The first is 
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that datasets tends to be very large.  A microarray dataset typically consists of a 
matrix of expression values for thousands or tens of thousands of genes (rows).  The 
second is that due to the limitation of display scale and resolution, researchers 
typically view only tens of genes at a time by frequently scrolling visualization frames 
up and down.  As a result, the same set of pixels will be moved across the display 
screen many times during a data analysis and visualization session.  We propose a 
novel method to identify, compress and cache 2-D pixels segments.  Not sending 
redundant segments across the WAN greatly improves the effective compression ratio 
reducing network bandwidth requirements for remote visualization. 

Our initial evaluation shows that the prototype Varg system can compress display 
information of multiple genomic visualization applications effectively, typically 
reducing the network bandwidth requirement by two orders of magnitude.  We also 
demonstrate that this novel method is highly efficient and introduces a minimal 
overhead to the networking protocol; and that the Varg system can indeed support 
multiple visualization-intensive genomic applications in a remote environment 
interactively with minimal network bandwidth requirement. 

2. System Overview 

 

Figure 1: Remote visualization overview. The VNC server sends screen updates to the 
VNC client. The Varg system caches updates and provides compression by replacing updates 
already in the client cache with the cache index. 

Varg is a network bandwidth optimized, platform-independent system that allows 
users to interactively visualize multiple remote genomic applications across a WAN.  
The architecture of Varg is based on a client-server model as shown in Figure 1.  Varg 
leverages the basic VNC protocol (called RFB) to implement platform-independent 
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remote visualization and extends it with a high-speed 2-D pixel segment compression 
module with a cache in the server and a decompression module with a cache in the 
client.  The Varg server runs multiple visualization applications, compresses their 
two-dimensional pixel segments, and communicates with the remote Varg client. The 
client decompresses the data utilizing a large cache and performs remote 
visualization.   

The caches of the Varg server and client cooperate to minimize the required 
network bandwidth by avoiding redundant data transfers over the network.   Unlike 
other global compression methods for byte data streams [17, 18], Varg is designed to 
optimize network bandwidth for remote data transfers of 2-D pixels segments 
generated by genomic visualization applications on the VNC server. 

Since Varg is built on the VNC protocol, it allows multiple users to conveniently 
visualize and control a number of applications in a desktop across a network.  When 
an owner of some sensitive or very large data set wants to collaborate with a remote 
collaborator, she can run one or more analysis programs that access her sensitive data 
on her Varg server, which connects with a Varg client on her collaborator’s site.  The 
researchers can then use these programs in a synchronized fashion across the network.  
Although the collaborator can visualize and control the application programs in the 
same way as the owner, the Varg client receives only visualization pixels from the 
Varg server; no sensitive data is ever transferred across the network.  We expect that 
this feature may be especially useful to researchers working with clinical data due to 
privacy and confidentiality concerns. 

3. Compressing 2-D Pixel Segments  

The main idea in the Varg system is to compress visualization pixel data at a fine-
grained 2-D pixel segment level.  The system compresses 2-D pixel segments by 
using a global compression algorithm to avoid sending previously transferred 
segments and by applying a slow, but efficient, local compression [19] on the unique 
segments.  This section describes Varg’s basic compression algorithm, explains our 
novel content-based anchoring algorithm for 2-D pixel segments, and outlines an 
optimization of the compression algorithm using a two-level fingerprinting scheme 
that we developed. 

3.1. Basic Compression Algorithm 

The basic compression algorithm uses fingerprints together with cooperative caches 
on the Varg server and client to identify previously transferred pixel segments, as 
shown in Figure 2. 
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Figure 2: Compression scheme. The screen is divided into regions which are cached at both 
ends of the low-bandwidth network. Fingerprints are sent in place of previously sent regions. 

 

The algorithm on the Varg server is:  

• Process an updated region of pixels from the VNC server 

• Segment the region into 2-D pixel segments 

• For each segment, compute its fingerprint and use the fingerprint as the 
segment’s identifier to lookup in the server cache.  If the segment has not been 
sent to the Varg client previously, compress the segment with a local 
compression method and send the segment to the client.  Otherwise, send the 
fingerprint instead. 

The algorithm on the Varg client is: 

• If the received data is a 2-D pixel segment, decompress it with a 
corresponding algorithm, write the fingerprint and segment to the cache, and 
then pass the segment to the VNC client 

• If the received data is a fingerprint, retrieve the segment of the fingerprint 
from its cache and then pass the segment to the VNC client. 

The basic algorithm is straightforward and its high-level idea is similar to previous 
studies on using fingerprints (or secure hashes) as identifiers to avoid transfer of 
redundant data segments [20, 21], [22], [17], [18].  The key difference is that previous 
studies are limited to deal with one-dimensional byte streams and have not addressed 
the issue of how to anchor 2-D pixel segments.  In a later section, we will also present 
an algorithm to use short fingerprints to compress repeated 2-D pixel segments.   

3.2. Content-Based Anchoring of 2-D Pixel Segments 

One basis of our approach is content-based anchoring where the 2-D region of 
display-pixels is divided into segments based on segment content.  A simpler 
approach would be to anchor segments statically (such as an 8×8 pixel grid, used in 
MPEG compression algorithms). The problem with a static approach is that the 
anchoring is sensitive to screen scrolls.  When a user scrolls her visualization by one 
pixel, the segmentation of 2-D pixels will be shifted by one pixel relative to the 
displayed image. Even if the entire scrolled screen has been transferred previously, 
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the content of segments will typically have changed, giving a new fingerprint and 
requiring a new transfer across the WAN.  

Our approach is to perform content-based anchoring instead of static anchoring. 
The anchoring algorithm takes its input from the frame-buffer, and returns a set of 
rectangular segments which subdivide the screen.  The goal of the algorithm is to 
consistently anchor the same groups of pixels no matter where they are located on the 
screen.  The main difficulty in designing a content-based anchoring algorithm for a 
screen of pixels is that the data is two dimensional. 

Manber introduced a content-based technique to anchor one-dimensional data 
segments for finding similar files [22]. His method applies a Rabin fingerprint filter 
[23] over a byte data stream and identifies anchor points wherever the k least 
significant bits of the filter output are zeros. With a uniform distribution, an anchor 
point should be selected every 2k bytes. 

Our algorithm combines the statically divided screen approach with Manber’s 
technique. The algorithm is based on the observation that content motion in 
microarray analysis is often due to vertical or horizontal scrolling. However, it is not 
practical to do redundancy detection both horizontally and vertically due to the 
computational cost and reduced compression ratio caused by overlapping regions. 
Therefore, we estimate whether the screen has moved mostly horizontally or mostly 
vertically using Manber’s technique. We generate representative fingerprints for 
every 32nd row, and every 32nd column for the screenshot, and compare how many 
fingerprints are similar to the row and column fingerprints of the previous screenshot. 
Assuming that horizontal scrolling or moving will change most row fingerprints, but 
only a few column fingerprints, we can compare the percentage of similar row and 
column fingerprints to estimate which movement is dominant. 

 

Figure 3: A portion of the screen that is divided into segments that move with the content. 

For predominately vertical motion we statically divide the screen into m columns 
(m times screen height) and divide each column into regions by selecting anchoring 
rows. The anchoring rows are selected based on their fingerprint calculated using a 
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four byte at a time Rabin fingerprint implementation. The column segmentation is 
ideal for scrolling because the regions move vertically with the content. If we detect 
predominately horizontal motion instead, we run the same algorithm but divide the 
screen into rows first and then divide each row into regions by selecting anchoring 
columns. 

Screen data can include pathological cases when large regions of the screen have 
the same color. For such regions, the fingerprints will be identical.  Thus, either all or 
no fingerprints will be selected. To avoid such cases, our algorithm does fingerprint 
selection in three steps. First all fingerprints are calculated. Second, we scan the 
fingerprints and mark fingerprints as similar if at least s subsequent fingerprints are 
identical. Third, we select fingerprints using the k most significant bits, while 
imposing a minimum distance m between selected fingerprints. Also, the first and last 
rows are always selected.  

Empirically we have found that the best results are achieved for s = 8, m = 16 or 
32, and k such that each 64th row on the average is selected. Also, such similar 
regions compress well using a local compression algorithm such as zlib [24] due to 
their repeated content. We have found empirically that imposing a maximum distance 
does not improve the compression ratio or compression time.  

3.3. An Optimization with Two-Level Fingerprinting 

An important design issue in using fingerprints as identifiers to detect previously 
transferred data segments is the size of a fingerprint. Previous systems typically chose 
a secure hash, such as 160-bit SHA-1 [25], as a fingerprint so that the probability of a 
fingerprint collision can be lower than a hardware bit error rate. However, since the 
global compression ratio is limited to the ratio of the average pixel segment size to the 
fingerprint size, increasing the fingerprint size reduces this limit on the compression 
ratio. 

To maximize the global compression ratio and maintain a low probability of 
fingerprint collision, we use a two-level fingerprinting strategy.  The low-level 
fingerprinting uses 32-bit Rabin fingerprint of fingerprints, one for each 2-D pixel 
segments. Although using such short fingerprints will have a higher probability of a 
fingerprint collision, they can be computed quickly using the fingerprints already 
computed for the anchoring, thereby maintaining a high global compression ratio.   

The high-level fingerprinting uses SHA-1 hashes as fingerprints.  It computes a 
160-bit fingerprint for each of the transferred pixel segments.  The server computes 
such a long fingerprint as a strong checksum to detect low-level fingerprint collisions.  
When a low-level fingerprint collision is detected, the server resends the pixel 
segment covered by the long fingerprint.   

Another way to look at this method is that the server may send two sets of updates, 
the first based on short fingerprints that can have collisions, and the second set of 
updates consisting of corrections in case of short fingerprint collisions.  This method 
reduces the user perceived end-to-end latency.  
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4. Implementation 

We have implemented a prototype system (called Varg) consisting of a sequential 
server and a client, as described in Section 2.  The Varg server implements the 2-D 
pixel segment compression algorithm and Varg client implements the corresponding 
decompression algorithm described in the previous section. 

The integration of Varg compression, decompression, and cache modules with the 
VNC client and server are simple.  VNC has only one graphics primitive: “Put 
rectangle of pixels at position (x, y)” [12]. This allows separating the processing of 
the application display commands from the generation of display updates to be sent to 
the client. Consequently the server only needs to detect updates in the frame-buffer, 
and can keep the client completely stateless.     

Varg employs a synchronized client and server cache architecture that implements 
an eventual consistency model using the two-level fingerprinting mechanism.  The 
client and server caches are initialized at Varg system start time.  The client cache is 
then synchronized by the updates sent from the server.  The compression algorithm 
requires the client cache to maintain the invariant that whenever the client receives a 
fingerprint, its cache must have the fingerprint’s segment.  Since short fingerprints 
may have collisions, our prototype allows the client cache to contain any segment of 
the same short fingerprint at a given time.   The long fingerprint will eventually 
trigger an update to replace it with a recently visualized segment. 

5. Evaluation 

We have conducted an initial evaluation of the Varg prototype system.  The goal of 
the evaluation is to answer the following two questions: 

• What are the network communication requirements for remote visualization 
of genomic applications? 

• How much compression of network communication data can the Varg 
prototype system achieve for remote visualization of genomic applications? 

To answer the first question, we have measured the difference between available 
bandwidth on current WANs and the required bandwidth for remote visualization of 
Genomic applications.  To answer the second question, we used a trace-driven VNC 
emulator to find how much the Varg system can reduce the communication time for 
three genomic applications.  In the rest of this section, we will present our 
experimental testbed and then our evaluation results to answer each question. 
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5.1. Experimental Testbed 

 

Figure 4: Experimental testbed for the bandwidth requirements and compression ratio 
evaluation. 

In order to compare compression ratios of various compression algorithms, our 
experimental testbed (Figure 4) employs two identical Dell Dimension 9150, each 
with one dual-core 2.8 GHz Pentium D processor and 2 GB of main memory. Both 
computers run Fedora Core 4, with Linux kernel 2.6.17SMP.   

The server runs with a screen resolution of 1280x1024 pixels and with a color 
depth of 32 bits per pixel. We also run an experiment on a display wall with a 
resolution of 3328x1536 pixels. 

To compare different systems, an important requirement is to drive each system 
with the same remote visualization workloads.  To accomplish this goal, we have used 
a trace-driven approach.  To collect realistic traces, we used the Java 
AWTEventListener interface to instrument three genomic microarray analysis 
applications. We used these to record a 10-minute trace containing all user input 
events for each case. Later the traces were used to create a set of screenshots, each 
taken after playing back a recorded mouse or keyboard event that changes the screen 
content. The screenshots are used by a VNC simulator that copies a screenshot to a 
shadow framebuffer, and invokes the Varg server, which does change detection and 
compression before sending the updates to the client. 

5.2. Network Communication Requirements 

In order to answer the question about the network communication requirements for 
remote visualization of genomic applications, we need to answer several related 
questions including the composition of communication overhead, the characteristics 
of available networks, the behavior of remote visualization of genomic applications, 
and the required compression ratio to meet certain interactive requirements. Our 
finding is that genomic applications require high compression ratio to compress the 
pixel data to use existing WAN connections. 

The network communication overhead can be expressed with a simple formula: 
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where L is the network latency, S is the data to be transferred, B is the 
network bandwidth, R is compression ratio, and C is compression time.  The formula 
considers compression a part of the network communication mechanism, thus the 
total communication overhead includes the round-trip network latency plus the time 
to compress and transfer the data. This formula ignores the overheads of several 
software components such as the VNC client and server. Also, we usually ignore 
decompression time since it is low compared to the compression time (less than 
1msec). 

Based on this formula, it is easy to see that different network environments have 
different implications for remote visualization.  Conventional wisdom assumes that 
WANs have low bandwidth. To validate this assumption we used Iperf [26] to 
measure the TCP/IP throughput between a server and a client connected using various 
local and wide area networks. The following table shows that the WAN throughput 
ranges from 0.2 to 2.13 Mbytes/sec (Table 1). This is up to 400 times lower than for 
Gigabit Ethernet. Also, the two-way latency is high, ranging from 11—120 ms. 

Table 1: TCP/IP bandwidth and latency for client-server applications run on local area and 
wide area networks. 

Network Bandwidth (Mbytes/sec) Latency (msec) 

Gigabit Ethernet 80.00 0.2 

100 Mbps Ethernet 8.00 0.2 

Princeton – Boston 2.13 11 

Princeton – San Diego 0.38 72 

Princeton (USA(– Tromsø (Norway) 0.20 120 
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Figure 5: For regions larger than 80×80 pixels, the transmission time dominates the total 
communication overhead. 

Based on the characteristics of the available networks, an interesting question is 
what size of network transfers contribute significantly to the total communication 
overhead. Figure 5 shows how much transmission contributes to the communication 
time depending on the amount of pixel data sent over the network connection. For all 
WAN networks, the ratio of transmission time to communication time is more than 
50% for regions more than about 80×80 pixels or 25 Kbytes.    

Two natural questions are, how frequent are screen updates larger than 80×80 
pixels for genomics applications, and are the update sizes different compared to 
Office applications usually used in remote collaboration. To answer these questions, 
we measured the average VNC update size for three sessions using three applications 
on Windows XP: 

1. Writing this paper in Microsoft Word. 

2. Preparing the figures for this paper in Microsoft PowerPoint. 

3. Microarray analysis using the popular Java Treeview software [27]. 

For each application, we recorded a session lasting about 10 minutes. We 
instrumented the VNC client to record the time and size of all screen updates 
received. We correlated these to when the update requests were sent, to get an 
estimate for the size of each screen update.  
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Figure 6: The screen regions update sizes for the Java Treeview application are much larger 
than for the Office applications. About 50% of the messages are more than 80x80 pixels. 

 

Figure 7: Compression ratio required to keep transmission overhead below a given 
threshold for the Princeton-San Diego network connection. The x-axis shows the percentiles for 
the Treeview message sizes in Figure 6. Compression time is not taken into account. 

The results show that updated regions are much larger for the genomic application 
than for the two office applications (Figure 6). About 50% of the messages are larger 
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than 80×80 pixels, and hence for these the transmission time will be longer than the 
network latency for the WANs.  Another observation is that the genomic application 
has a higher update frequency than office applications. Combined these increase the 
required bandwidth. 

To see the impact of compressing pixel data for remote visualization, we have 
calculated the compression ratio necessary to maintain the transmission time below a 
given threshold for a cross-continent WAN (Figure 7).  We have several observations 
from the results.  First, it requires a compression ratio of about 25:1 to keep the 
transmission time below 10 msec for most of the network traffic.  Second, the 
compression ratio required to maintain the same transmission time increases rapidly 
for the top two percentiles. Third, as the message size increases, the compression ratio 
required for the different transmission times increases.  

The following section examines which compression ratio and compression time gives 
the best transmission time. 

5.3. Compression results 

To answer the question about what compression ratios the Varg system can achieve 
for remote visualization of genomic applications, we have measured compression 
ratios, compression cost and the reduction of transmission time.  

Table 2: Compression ratio for four genomic data analysis applications.  

  

Differencing 

2D pixel 
segment 

compression 

Ziv-Lempel 
(zlib) 

Total 
compression 

TreeView 1.89 5.74 19.98 216.76 

TreeView-Cube 2.87 4.05 24.88 289.19 

TMeV 1.52 2.46 7.90 29.54 

GeneVaND 3.15 2.72 10.85 92.96 

To measure the compression ratios the Varg system can achieve, we have used four 
15-minute traces recorded using: Java Treeview [27], Java Treeview on the display 
wall [28], TMeV [29], and GeneVaND [30].  For Treeview, the visualizations mostly 
are scrolling and selecting regions from a single bitmap.  GeneVaND has relatively 
small visualization windows and the trace includes 3D visualizations as well as some 
2D visualizations.  TMeV trace includes different short visualizations. 

The total compression ratios by our method are 217, 289, 30 and 93 for the four 
traces respectively (Table 2).  These high compression ratios are due to a combination 
of three compression methods: Region differencing, 2D pixel segment compression, 
and zlib local compression.  We have several observations based on these data.  First, 
the combined compression results are excellent.  Second, zlib contributes the most in 
all cases, but zlib alone is not enough to achieve high compression ratios.  Third, the 
2D pixel segment compression using fingerprinting contributes fairly significantly to 
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the compression ratio ranging from 2.5 to 5.7.  This is due to the fact that the 
differencing phase has already removed a large amount of redundant segments.   

Table 3: Average compression time per screen update. The total compression time depends 
on the application window size, and how well the differencing and 2D pixel segment 
compression modules compress the data before zlib is run. 

 Differencing 2D pixel 
segment 

compression 

Ziv-Lempel 
(zlib) 

SHA-1 

 

TreeView 0.9 ms 3.8 ms 11.1 ms 3.5 ms 

TreeView-Cube 2 ms 7.9 ms 30.2 ms 7 ms 

TMeV 1.3 ms 6.6 ms 83.4 ms 7.7 ms 

GeneVaND 1 ms 2.7 ms 10.1 ms 1.5 ms 

To understand the contribution of different compression phases to the compression 
time, we measured the time spent in each module (Table 2).  The most significant 
contributor is zlib, which consumes more than 10 ms in all cases. In TMeV it 
consumes more than 83ms, since more data is sent through this module due to the low 
compression ratios for the differencing and 2D pixel segment compression modules. 
The second most significant contributor is anchoring, but it is below 8 ms even for the 
display wall case. Although SHA-1 calculation contributes up to 8ms in the worst 
case, its computation overlaps with network communication. 

 

Figure 8: Communication time distribution for update messages over the Princeton—
Boston network. For Treeview and GeneVaND more than 90% of the communication 
overheads are less than 100ms. The update size distribution differs from Figure 5, since a more 
accurate tracing tool was used to capture the trace. 
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Figure 9: Communication time distribution for the Princeton—Tromsø network. For 
Treeview and GeneVaND more than 80% of the communication overheads are less than 
200ms.  

 

Figure 10: Communication time distribution with VNC compression for the Princeton—
Boston network. Compared to Varg the communication time shown in Figure 9 significantly 
increases for large messages.  
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To understand the reduction in communication time, we recorded for each update 
the number of compressed bytes returned by each module, and the compression time 
for each module. This allows us to use Formula 1 to estimate the communication time 
for each of the WANs in Table 1. The cumulative distribution of communication times 
for the highest and lowest bandwidth networks are shown in Figure 8 and Figure 9. 
Without compression the communication overhead for the largest updates is several 
seconds. For the Princeton—Boston network the communication overhead with Varg 
is less than 100ms for over 90% of the messages (except for TMeV). On the 
Princeton—Tromsø network, for 80% of the update operations the communication 
overhead is less than 200ms, of which the latency contributes to 112 ms. 

To compare our compression against the zlib compression used in many VNC 
implementations for low-bandwidth networks, we disabled the 2D pixel segment 
compression module in Varg, and did a similar calculation as above (Figure 10). The 
results show a significant increase in communication time, especially for Treeview 
where the communication overhead is more than 300ms for about 50% of the 
messages. 

6. Related Work 

Compression algorithms used by VNC [12] implementations either take advantage 
of neighboring region color similarities, use general purpose image compression [31] 
such as JPEG [32], or general purpose compression such as zlib [19]. Neighboring 
region redundancy compression is fast but has low compression ratio. Therefore zlib 
is usually used for WANs. Our results show that the compression time for zlib is high. 
JPEG is lossy, and is not suited for Microarray analysis, since it may introduce visual 
artifacts that may influence the biologist’s interpretation of the data. 

Remote visualization systems that use high level graphics primitives for 
communication, such as Microsoft Remote Desktop [15], are able to cache bitmaps 
used for buttons and other GUI components. However, the high-level graphics 
primitives do not compress well leading to performance problems in WANs [13, 33]. 

Encoders used for streaming video, such as MPEG [34], compress data by 
combining redundancy detection and JPEG type compression. Usually a static pixel 
grid is used, which we have shown gives worse performance than our approach. In 
addition the MPEG compression is lossy and there are no real time encoders 
available. TCC-M [35] is a block movement algorithm designed for thin-client 
visualization that use unique pixels in an image (feature sets) to detect 2D region 
movement. However, redundancy is only detected between the two latest screen 
updates thus reducing the compression ratio. 

Earlier one-dimensional fingerprinting approaches [17, 18] require the two-
dimensional screen to be converted to some one-dimensional representation. This will 
split up two-dimensional regions on the screen causing the size of the redundant 
regions to decrease, hence reducing the compression ratio. 
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Access Grid [36] provides multiple collaborators with multimedia services by 
multicasting audio, video and remote desktop displays such as VNC. However, 
Access Grid does not provide compression to reduce the network bandwidth 
requirement for specific data visualization such as genomic data exploration.  Since 
Varg extends the VNC protocols to compress 2D segments for genomic data 
visualization, it can effectively work together with Access Grid systems to support 
multi-party collaborations. 

7. Conclusion 

This paper presents the design and implementation of the Varg system: a network 
bandwidth optimized, platform-independent system that allows users to interactively 
visualize multiple remote genomic applications across a WAN.  The paper has 
proposed a novel method to compress 2-D pixel segments by using fingerprinting and 
proposed a two-level fingerprinting method to improve global compression, and to 
reduce compression time. 

We also found that genomic applications have much higher network bandwidth 
requirements than office applications. They require substantial compression of 
network data to achieve interactive remote data visualization on some examples of 
existing WAN.  

An initial evaluation of our prototype system shows that the proposed 2-D pixel 
segment compression method works well and imposes only modest overheads.  By 
combining with zlib and differencing compression methods, the prototype system 
achieved compression ratios ranging from 30:1 to 289:1 for four genomic 
visualization applications that we have experimented with.  Such compression ratios 
allow the Varg system to run remote visualization of genomic data analysis 
applications interactively across WANs with relatively low available network 
bandwidths. 
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Abstract— Experiments run on a Grid, consisting of clusters
administered by multiple organizations connected by shared wide
area networks (WANs), may not be reproducible. First, traffic
on the WAN cannot be controlled. Second, allocating the same
resources for subsequent experiments can be difficult. Longcut
solves both problems by splitting a single cluster into several
parts, and for each part having one node emulating a WAN link
by delaying messages sent through it. The delay is calculated
using latency and bandwidth measurements collected using the
Network Weather Service and a parallel application monitor. We
evaluate the precision, usability for WAN collective operation
research, and scalability of Longcut.

I. INTRODUCTION

A Grid consists of clusters administered by multiple organi-
zations connected by shared wide area networks. Two factors
make system research difficult in such an environment. First,
experiments may not be reproducible since the traffic on shared
WANs cannot be controlled [8]. Second, allocating exclusive
access, at the same time, to several clusters is usually not
supported by Grid middleware. To avoid these problems a large
cluster (or several small cluster) at a single site can be used
with emulated WAN links.

As input to the emulator we use latency and bandwidth
traces of real WAN links collected using the Network Weather
Service (NWS) [16] and the EventSpace parallel application
monitor [2].

The reaming of this paper proceeds as follows. Section II
describes related work. Section III describes the design and
implementation of the Longcut WAN emulator. The trace col-
lection tools are described, and the collected traces evaluated,
in section IV. Longcut is evaluated in section V, by doing
experiments measuring the precision, scalability, and usability
for WAN collective operation research of the collected traces.
Finally section VI concludes.

II. RELATED WORK

The design of Longcut is inspired by the Panda WAN
emulator [8]. Both use sub-cluster gateway nodes to run
WAN emulation code. Also, both are closely integrated with
the communication system. Our experiments differ from the
distributed work queue experiments in [8], in that we use
applications with higher communication frequency.

Other emulators are Netbed [15]. Dummynet [13], nse [7],
Trace Modulation [10] and ModelNet [14]. Most use low-level

rerouting which requires adding a module to the operating
system. Longcut runs unmodified applications on unmodified
operating systems.

Alternatives to emulation are simulation [5], [17] and live-
network experimentation. Simulation provides a controlled,
easy to change, and repeatable environment. However, higher
level abstraction must be used due to the scale of the system;
thus accuracy is lost. Live-network experimentation using
environments such as PlanetLab [11] is most realistic, but
often these are not designed for performance experiments. For
example PlanetLab uses virtualization to share resources and
protect services from each other, which makes it difficult to
control the load on resources.

There are several network monitoring tools [6], [9], [16] that
can be used to collect the traces used by Longcut. However,
most of the existing traces do not have the high sample rate
required for our experiments.

III. DESIGN AND IMPLEMENTATION

In many clusters a gateway node provides the single entry
point to the compute nodes, to the benefit of cluster users and
administrators.

The design of Longcut is similar to the Panda WAN
emulator [8]. A cluster is split into several sub-clusters. For
each sub-cluster we select one node to act as a gateway.
All communication to the sub-cluster is routed through its
gateway, which delays messages to emulate the higher latency
of WAN connections.

To implement Longcut, we need to change the communica-
tion paths used by applications, such that messages are routed
through the gateway where the emulation code is run. Being a
research tool, Longcut should be extensible such that users can
add their own emulation code, and configurable such that the
emulated topology can be easily changed. Our communication
system, PATHS [1], supports all this.

PATHS provide configurable paths though the communi-
cation system. A path consists of several wrappers that can
run arbitrary code. Figure 1 shows how we reconfigure a path
between two nodes to include a gateway node which runs the
emulation code in form of a wrapper. Extending Longcut with
other emulation approaches requires writing a new wrapper
(consisting of 3 functions).

Appendix B - Unpublished papers Technical report 2005-53

153



Fig. 1. Communication path with WAN emulation wrapper.

All communication paths used by an application are spec-
ified in a pathmap [2], which is created using three data
structures: cluster topology, application communication infor-
mation, and a mapping of application threads and communi-
cation buffers to the clusters. To re-route messages the cluster
topology is changed. To add emulation wrappers, scripts are
run that reconfigure the pathmap.

We have implemented two types of WAN emulation where
the delay is calculated using: (i) constant WAN latency-, and
bandwidth, and (ii) latency and bandwidth time series read
from trace files. The first type is useful for simple experiments
where different topologies are evaluated. The tools used to
collect the traces are described in the following section.

On the gateway there is one thread per TCP/IP connection.
In our initial implementation the threads waited either by
blocking (by calling usleep) or spinning. Spinning had to be
used since it was not possible to sleep for less than 30 ms.
This approach does not scale well, since gateways emulating
many WAN links can have many threads spinning at the same
time causing loss of accuracy (as reported in [4]).

To make sure only one thread spins at a time, we reimple-
mented the delay code as shown in figure 2. Threads block if
there is already one thread spinning. Threads are unblocked
when the currently spinning thread exists, or when they are
done waiting. The scalability of Longcut is evaluated in section
V.

IV. TRACE COLLECTION

Five cluster gateways were monitored:

vvgw.cs.uit.no : Pentium 4 3.2 GHz in Tromsø,
Norway.

psgw.cs.uit.no : dual Pentium II 300 MHz in
Tromsø, Norway.

clustis.idi.ntnu.no : dual Athlon MP 1.6 GHz in
Trondheim, Norway.

roadrunner.imada.sdu.dk : Pentium III 1.4 GHz in Odense,
Denmark.

benedict.aau.dk : dual-CPU Pentium III 733 MHz
in Aalborg, Denmark.

The topology, ping latency and link bandwidth of the WANs
between the monitored nodes are shown in figure 3.

A. Monitoring Tools

1) Network Weather Service: A widely used network mon-
itoring tools is the Network Weather Service (NWS) [16].

done_time = current_time() + wait_time;

if (somebody spinning)
// signaled by spinning thread
condition_wait();

while (1) {
current_time = timestamp();
if (current_time() > done_time) {

if (thread blocked)
// unblocked thread will do the
// spinning
condition_signal();

break;
}

for (each blocked thread)
if (current_time() > thread done_time)

// unblocked thread will exit
condition_signal();

// allow others to run
yield();

}

Fig. 2. Pseudo code for the delay function.

Fig. 3. The monitored topology (all intermediate routers are not shown).
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TABLE I

NWS TWO-WAY LATENCY IN MILLISECONDS.

benedict clustis psgw roadrunner vvgw
benedict 22.43 36.70 7.11 36.52
clustis 22.14 17.88 18.81 14.88
psgw 36.71 15.03 34.84 0.31
roadrunner 7.03 18.83 34.00 32.95
vvgw 36.29 14.52 0.54 32.82

TABLE II

NWS MEAN BANDWIDTH IN MBITS/SEC.

benedict clustis psgw roadrunner vvgw
benedict 3.15 2.58 8.60 2.32
clustis 3.50 5.57 3.96 5.63
psgw 2.28 4.85 2.58 81.73
roadrunner 6.27 2.70 1.67 1.87
vvgw 2.28 4.78 79.64 2.56

NWS has low monitoring overhead, and has been shows
to provide measurements accurate enough to predict future
TCP/IP latencies and bandwidth [16]. It is easy to install and
use, but three ports need to be opened on firewalls.

Latency is measured by sending a four byte message.
Bandwidth is measured by sending four 16 Kbytes messages
using a socket buffer size of 32 Kbytes each 60th second. We
tried using a shorter sample period (1 second), but the rate
was too high for the monitored WAN connections.

2) EventSpace: Using the EventSpace monitoring tool [2]
we can trace the latencies of TCP/IP connections as used
by a communication system for WANs. EventSpace allows
low-overhead monitoring of the actual communication rate
of the applications we are interested in. However, installing
EventSpace can be difficult due to a large number of libraries
used (e.g. Python). Also, firewalls need to be opened for the
PATHS server ports.

We collected traces for two benchmarks. The first was
collected for a collective operation micro-benchmark run on
a multi-cluster (the experiment is described in [3]). As only
small message were used, we do not report bandwidth results.
In the second experiment, we used a benchmark designed
for latency and bandwidth measurements. For each iteration
it sends an eight byte message, followed by two 32 Kbytes
messages. Sends were blocking, hence one must complete
before a new one can be initiated.

We did one experiment were the Nagle algorithm was
disabled on all TCP/IP connections, to ensure that even small
messages are sent immediately, but it did not significantly
reduce the latency.

B. Collected Traces

Tables I, III and IV shows the mean two-way TCP/IP latency
measured for the different links (in both directions). The NWS
trace has smaller mean latencies for small latency links than
the EventSpace traces. Tables II and V shows the TCP/IP
throughput. The EventSpace trace has higher bandwidth than
the NWS trace.

TABLE III

EVENTSPACE COLLECTIVE OPERATION TRACE TWO-WAY LATENCY

(MILLISECONDS).

benedict psgw roadrunner
benedict 35.76 9.16
psgw 32.49
roadrunner 32.35

Increasing the sample rate lowers the observed variation
both in bandwidth and latency. Also, the bandwidth differs in
two directions, while the latency usually does not. Conclusions
should not be drawn from the above results since we have only
collected one trace for each link.

V. EXPERIMENTS

For the experiments we use a cluster with 44 nodes, each
with a single-CPU Pentium 4 3.2 GHz with Hyper-threading
(2-way SMT) enabled. The nodes are connected using Gigabit
Ethernet, and all run Linux with kernel version 2.4.21. We use
NPTL threads for the experiments. On all TCP/IP connections
the Nagle algorithm was disabled and default socket sizes
were used. The delay is implemented with the single-thread-
spinning approach described above.

A. Precision

To investigate the precision of Longcut, we measured ap-
plication level ping-pong latency and bandwidth between a
cluster in Tromsø and Trondheim using PingPong from the
Pallas Microbenchmark suite (PMB) [12] (ported to PATHS).
We also traced the link by using EventSpace to monitor the
latency-bandwidth micro-benchmark, and used the captured
trace to emulate the link on our cluster. Each experiment was
repeated twice. For most message sizes the real and emulated
links have similar latency and bandwidth (figure 4).

We also measured how different traces influence the la-
tency and bandwidth of PingPong. Two traces were used;
the NWS and EventSpace latency-bandwidth microbenchmark
traces presented in section IV. Also we did one experiment
with constant latency and bandwidth values (means from the
EventSpace trace).

Figure 5 shows the difference in latency and bandwidth for
the WAN link between Odense and Aalborg. The PingPong
results differ for the NWS and EventSpace traces since the
NWS trace has lower latency and lower latency than the
EventSpace trace. However, using constant values does not
differ significantly from using the EventSpace trace, even if it
has smaller variation. We have similar results for other links.

We also measured how the different traces influence the
performance of collective communication using Allreduce
from PMB. The cluster was split into four parts with 10 nodes
in each part in addition to the node selected as gateway. The
four clusters were emulated to be in Tromsø (behind vvgw),
Trondheim, Odense and Aalborg. The difference between the
constant value trace and the EventSpace trace is smaller than
for PingPong (figure 6). However, the difference in NWS
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TABLE IV

EVENTSPACE LATENCY-BANDWIDTH MICROBENCHMARK TRACE LATENCY (MILLISECONDS). STANDARD DEVIATION IN PARENTHESIS.

benedict clustis psgw roadrunner vvgw
benedict 23.18 (3.31) 37.19 (1.66) 12.70 (27.03) 36.98 (1.48)
clustis 22.82 (3.41) 14.80 (2.47) 23.87 (30.67) 14.91 (3.84)
psgw 37.13 (1.57) 15.00 (1.17) 36.90 (28.51) 1.81 (1.52)
roadrunner 9.85 (4.02) 20.43 (3.12) 33.93 (3.75) 34.02 (4.38)
vvgw 36.95 (1.46) 15.00 (1.19) 1.84 (1.34) 36.49 (26.84)

TABLE V

EVENTSPACE LATENCY-BANDWIDTH MICROBENCHMARK TRACE BANDWIDTH (MBITS/SEC). STANDARD DEVIATION IN PARENTHESIS.

benedict clustis psgw roadrunner vvgw
benedict 8.80 (0.45) 5.75 (0.66) 10.60 (3.22) 3.19 (0.08)
clustis 4.97 (0.50) 9.74 (3.01) 6.76 (2.35) 7.78 (0.69)
psgw 3.18 (0.10) 12.73 (0.75) 4.86 (1.64) 44.49 (10.99)
roadrunner 10.08 (1.28) 8.18 (2.30) 5.49 (1.48) 3.46 (0.26)
vvgw 3.19 (0.09) 12.79 (0.76) 51.50 (9.68) 4.75 (1.63)
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Fig. 4. Measured and emulated PingPong latency and bandwidth between nodes in Tromsø and Trondheim.
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Fig. 5. Emulated PingPong latency and performance using different traces for Odense and Aalborg link.
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Fig. 7. Longcut scalability measured using PingPong with increasing number
of emulated connections per gateway.

and EventSpace latency and bandwidth do influence Allreduce
performance.

B. Scalability

To evaluate the scalability of Longcut, we measured the
number of TCP/IP connections each gateway can emulate
without loss in precision. The cluster was divided into two
parts with 20 nodes in each part, and we run several instances
of PingPong, all communicating over emulated WAN links
(Aalborg–Odense). For each instance of PingPong each gate-
way handles two TCP/IP connections. Figure 7 shows the
maximum latency observed for each experiment. PingPong
latency does not differ when emulating 2 and 40 connections.

C. Usability

In our final experiment, we measure the execution time of an
application kernel. The kernel is Successive Over-Relaxation
(SOR). We use a Red-Black checker pointing version of SOR,
with a matrix size of 48000× 48000. The cluster was divided
into four parts as described above. Each worker-process is
assigned 1200 rows, and each updates all its red points and

TABLE VI

SOR PERFORMANCE WITH DIFFERENT TRACES.

Trace Exec. time Slowdown
Constant 383.8 sec.
EventSpace 390.3 sec. 2%
NWS 461.9 sec. 17%

then exchanges red border point values by sending a 19800
bytes message to each neighbor. Then black points are updated
and the communication is repeated. At the end of each iteration
the global change in the system is calculated using allreduce
(with and 8 byte message). For the problem size chosen about
70% of the execution time is spent communicating when using
the NWS trace. Table VI shows the execution time, and the
slowdown compared to the constant value trace.

VI. CONCLUSION

We have described the design and implementation of the
Longcut WAN emulator, shown the emulation precision using
traces collected by different tools, and evaluated the scalability
of Longcut.

We learned the following lessons:

• For most traces, bandwidth differs in two directions,
while latency does not.

• Traces with finer granularity have higher latency.
• The difference for point-to-point communication perfor-

mance does not significantly differ when using constant
and traced latency and bandwidth values.

• For synchronizing collective communication, such as
allreduce, there are small differences between using
latency-bandwidth traces and constant values.

The collected traces are available at
http://www.cs.uit.no/∼larsab/longcut/.
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8.2 Impact of Operating System Interference on Ethernet 
Clusters 

This section summarizes the results of an unpublished paper. 
The work was done primarily in collaboration with Otto J. Anshus. 

Abstract. Operating system interference has been identified as an important reason for 
parallel application scalability problems on large-scale clusters with fast interconnects. In 
this paper we measure and characterize operating system interference in an Ethernet 
cluster. Our results shows that operating system interference is not a significant factor for 
Ethernet clusters. 

8.2.1 Introduction 
Operating system interference has been identified as an important reason scalability 
problems for applications with globally synchronizing operations on large clusters with 
fast interconnects [118, 166, 226]. The problem was caused by lack of coordination 
between the operating systems on the different nodes. Thus, when one operating system 
scheduler decides to run daemon code instead of application code, all other nodes must 
wait at the globally synchronizing operation for data from this node. When the number of 
nodes increases the probability for one node running daemon code between 
synchronization points increases. A solution to this problem is removing unnecessary 
daemons and modifying the operating system scheduler such that scheduling is globally 
controlled. 

Previous work [118, 166, 226] has mostly been done on clusters with SMPs and high 
speed interconnect such as QsNet [165]. Our environment differs in that we have:  

1. Nodes with only one CPU 
2. Nodes with simultaneous multi-threading (SMT) 

3. GigaBit Ethernet 
4. Fewer nodes 

We believe many clusters have similar characteristics. We are interested in answering the 
question:  will operating system interference increase the execution time of parallel 
applications run on medium size Ethernet clusters? 

8.2.2 Methodology 
Two clusters are used: 

• Tin: 51 single-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM 
• Iron: 39 single-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM with 

EM64T extension. 
The processors in the Tin and Iron clusters support SMT, which was enabled during the 
experiments. The interconnect on both clusters is Gigabit Ethernet, while inter-cluster 
communication uses the departments 100 Mbps Ethernet. The parallel communication 
system used is LAM/MPI [3, 52]. 
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We assume the combined size of the Tin and Iron clusters is above the critical mass for 
when noise becomes a problem. For example, in [166] the difference before and after 
removing noise for 128 CPUs is about 50%. 
To measure the noise introduced by system activities we use a similar micro-benchmarks 
as in [166], but with a different configuration in order to adapt to the higher network 
latency in our cluster. The benchmark consists of a matrix multiplication that can be 
tuned to take n milliseconds. The computation is repeated m times such that the 
computation takes 1000 seconds. To also measure the communication system noise we 
add an allreduce call after the computation. 
We use three different computation times per iteration: (a) 1 ms (used in [166]), (b) 10 
ms which is the classical operating system time slice length [212, 226], and (c) the 
latency of the allreduce operation on the cluster. 

8.2.3 Results 
Experiment Mean Stdev +1.35ms +2ms +5ms +10ms 
Computation 1.08 ms 0.01 ms 14 0 0 0 
Communication 1.37 ms 0.27 ms 1196 812 322 0 
Iteration 2.46 ms 0.27 ms 1198 813 322 0 

Table 14: Number of iterations where at least one of 50 threads is delayed for 1.35 
ms, 2 ms or 5 ms. 
In the first experiment we run the benchmark on 50 Tin hosts for 450.000 iterations. The 
time per computation has a very low variation, but the variation for allreduce latency is 
larger.  

To estimate the delay caused by system interference, we calculated for each thread the 
median time per computation, allreduce and per iteration. Then for each thread we 
counted the number of iterations where the thread was delayed for more than x ms, where 
x was the mean time per allreduce operation (1.35 ms), 2 ms, 5 ms and 10 ms. The results 
are shown in Table 14.  
For only 0.3% of all iterations was at least one thread more than 1.35 ms delayed. The 
delay is usually caused by variation in the time per allreduce operation. The time per 
computation is only delayed with more than 1.35 ms in 14 iterations. Together these 
delay the benchmark with about 7.4 seconds, which is insignificant compared to an 
execution time of 1106 seconds. With a larger computation time the impact of noise was 
even smaller. Running the benchmarks on both clusters gives similar results. 
Per thread delay counts shows an even distribution of iterations with delay, hence there 
are no particular nodes causing the nodes. Which is not surprising since the nodes are 
homogenous both in hardware and software. Also, the workload is evenly distributed 
with the exception of the allreduce mapping to the cluster. The allreduce introduces some 
work to some nodes, but it is not shown in the delay distribution. 

8.2.4 Conclusion 
Operating system interference does not have significant effect on parallel application 
performance on Ethernet clusters with about 100 nodes. These results suggest that 
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Ethernet clusters have different performance issues than the high performance 
interconnect clusters used in previous work. 
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8.3 Additional overdecomposition experiments 
This section summarizes unpublished experiment results. 
The work was done in collaboration with Brian Vinter, Otto J. Anshus, and John Markus 
Bjørndalen. 

8.3.1 Introduction 
This section presents additional experiment results for overdecomposing parallel 
applications run on a WAN multi-cluster. Also three user-level schedulers are evaluated. 

The paper in section 7.4 evaluated how overdecomposition can improve single parallel 
application performance on Ethernet clusters. The network latency we attempt to overlap 
with computation is larger on a WAN multi-cluster than on an Ethernet cluster. Larger 
overheads are easier to overlap for two reasons. First, a larger overhead increase is 
tolerated. Second, the time spent computing has increased relatively to the system call 
and context switch overheads.  

User-level scheduling can easily be added to the communication system, since we are 
scheduling the threads (or the processes) of a single application. In the paper in section 
7.4 we found that user-level schedulers could not significantly improve benchmark 
performance due to TLP limitations. But we also found that using a different 
synchronization variable implementation improved TLP. The improved TLP allows 
measuring performance improvements due to three-user level scheduling approaches 
designed for overdecomposed parallel applications. 
The remaining of this section proceeds as follows. The experiment setup is presented in 
section 8.3.2. WAN results are presented in section 8.3.3. The design, implementation, 
and performance measurements of three user-level schedulers are presented in section 
8.3.4. Section 8.3.5 concludes. 

8.3.2 Methodology 
For the experiments we used a cluster with 3.2 GHz Hyper-threaded Pentium 4 nodes, 
connected using Gigabit Ethernet. The Linux kernel version used was 2.4.26SMP with 
LinuxThreads. Version 3.3.3 of the gcc compiler was used. Hyper-threading (SMT) was 
enabled for all experiments. Additional details are provided in section 7.4. 
To experiment with different WAN latencies and bandwidths we emulate WAN links 
between our clusters using the Longcut WAN emulator [42] (or section 8.1). The cluster 
is split into three sub-clusters. For each sub-cluster we select one host to act as a gateway. 
All communication to the sub-cluster is routed through its gateway, which adds delays to 
the routed messages to simulate the higher latency and lower bandwidth of a WAN 
TCP/IP connection. The delay for a given message size is calculated based on a latency 
and bandwidth trace collected by running an instrumented communication intensive 
application on hosts in Tromsø, Odense and Aalborg [42]. Table 15 and Table 16 show 
respectively the average latency and bandwidth between the nodes. For the experiments 
we emulated a topology with 14 nodes in Odense, 13 in Aalborg, and 17 in Tromsø. 

The SOR kernel is used in the experiments. The problem size is scaled such that 50% of 
the execution time is spent communicating. The improvements reported in this section 
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are calculated using the mean execution time of ten experiments. The largest standard 
deviation was 6.1% of mean. However, for most experiments the standard deviation was 
less than 2% of mean.  
 

 Aalborg Odense Tromsø 
Aalborg  12.70 ms 36.98 ms 
Odense 9.85 ms  34.02 ms 
Tromsø 36.95 ms 26.49 ms  

Table 15: Average round trip latency in milliseconds between cluster sites in the 
emulated WAN multi-cluster topology.  

 Aalborg Odense Tromsø 
Aalborg  10.60 Mbit/s 3.19 Mbit/s 
Odense 10.08 Mbit/s  3.46 Mbit/s 
Tromsø 3.19 Mbit/s 4.75 Mbit/s  

Table 16: Average bandwidth between cluster sites in the emulated WAN multi-
cluster topology. 

8.3.3 WAN multi-cluster experiments and discussion 
The execution time improvements are about 45% better on the WAN multi-cluster than 
on a single cluster, due to better computation-communication overlap.  

The overheads are larger for the WAN experiment than for the LAN experiment, since 
the problem size increased to maintain a 50% communication-execution time ratio. But 
the overhead increase is smaller relative to the one thread per processor mapping (Figure 
35). 
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a. LAN experiments 

 
b. WAN experiments 

Figure 35: SOR execution time and estimated overheads for the Ethernet and WAN 
multi-cluster experiments.  

8.3.4 User-level scheduler design and evaluation 
User-level scheduling for overdecomposition can be implemented in a layer that 
intercepts communication operations calls using a similar approach as parallel application 
profiling layers (Figure 36). The interception can block a thread, or implement different 
scheduling decisions by controlling the release order of blocked threads. Compared to 
general-purpose schedulers, the implemented schedulers can take advantage of 
application knowledge, and ignore fairness since high priority threads will eventually 
block waiting for data from lower priority threads. Below we describe the design and 
implementation of three schedulers. 
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Figure 36: A user-level scheduler layer is added above the communication system 
layers and the operating system scheduler. Application threads and helper threads 
in the communication system can be blocked and unblocked at this layer.  

8.3.4.1 Serialization 
Cache pollution and the number of context switches may be reduced if threads are not 
interrupted during computation. The scheduling layer can serialize threads by only 
releasing one thread at a time. The simplest implementation for a multi-threaded 
application is to have a global user-level lock that must be acquired when returning from 
a communication operation call. 

8.3.4.2 Priority Scheduling 
The communication structure of some parallel applications may have dependencies 
dictating which messages must be received before a thread can proceed with its 
computation. For some benchmarks computation-communication overlap may improve if 
the threads sending messages over a high latency connection are scheduled to arrive first 
at the communication operations. This information can be used to set the priority of 
threads, and hence specify the computation order. 

Threads are assigned a fixed priority at load time based on the applications 
communication pattern, and the mapping of threads to processors. Threads doing inter-
node communication have the highest priority, while threads only doing intra-node 
communication have the lowest priority. A more advanced implementation could assign 
priorities based on measurements of communication time for all threads (using 
techniques described in Chapter 2). For each priority class the scheduling layer has a 
condition variable. Similarly to the serialization approach, the scheduling layer blocks 
threads upon return from communication operation calls, but the highest priority thread is 
released first to user-level. 

8.3.4.3 Computation and communication coscheduling 
Parallel application performance can be improved by coscheduling application threads 
and communication activity threads [59]. For example, if the operating system scheduler 
chooses to do computation before communication the latency of the communication 
operation may increase with tens of milliseconds. 
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Our coscheduling is similar to hybrid coscheduling [59], where the priority of 
communication threads is boosted when doing collective communication. However, our 
implementation is simpler since we use a communication system (PastSet [233]) with 
separate threads for collective communication activity. The scheduling layer prioritizes 
these by ensuring that application threads cannot return to user-level if there are 
collective operation threads to be unblocked.  

Point-to-point communication activity is served immediately, since it is run in the context 
of an application thread. These are only blocked after returning from a communication 
operation call. 

8.3.4.4 Experiment results and discussion 

 
Figure 37: User-level scheduling performance improvements for SOR with 
allreduce run on an Ethernet cluster. All numbers are relative to the one thread per 
processor mapping. 
Overdecomposition improves SOR performance up to 1.25 without user-level scheduling 
(Figure 37). Coscheduling computation and communication threads reduces 
communication wait time and improves TLP, resulting in a 6% speedup improvement. 
Serialization and priority scheduling of application threads does not significantly 
influence performance. 
TLP is higher on the WAN multi-cluster, with at least two runnable threads in 42% of the 
execution time. Thus the priority scheduler can change the computation order, such that 
threads sending messages to other nodes arrive mostly first to communication operations. 
Performance improves with 6%. Further performance improvements were limited by the 
inability to overlap the allreduce operation with computation. Hence, coscheduling 
communication and computation threads does not improve performance. Using the 
conditional allreduce operation described in section 7.3, may improve the overlap.  
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Figure 38: User-level scheduling performance improvement for SOR without 
allreduce run on an Ethernet cluster. The improvement is relative to the one thread 
per processor mapping. 
The globally synchronizing allreduce operation used in SOR limits the potential for 
communication-computation overlap (as described in section 7.4). Removing the 
allreduce operation increases improvements due to overdecomposition up to 1.55, 
without user-level scheduling. Serializing computation did not improve performance. But 
priority scheduling application threads improved performance when more than eight 
threads were mapped to a processor. With fewer threads the scheduler was not able to 
change thread execution order, since most of the time few threads were runnable.  

8.3.5 Conclusions 
The achieved performance improvements on the WAN multi-cluster demonstrate that 
overdecomposition can be a useful technique for tolerating the high network latency of 
the WANs.  
Three user-level schedulers were described, and performance measurements were done 
on an Ethernet cluster and a WAN multi-cluster. The impact on parallel application 
execution time is often limited by the lack of TLP, but a small improvement was 
achieved. Hence, we believe such scheduling is of limited use unless other changes are 
able to improve TLP. 
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8.4 Compression of Network Data Using 2-level Fingerprinting 
This section presents an extended abstract that has not been submitted for publication. 
The work was done in collaboration with Kai Li and Olga Troyanskaya. 

Abstract. Previously proposed techniques for eliminating redundant network traffic are 
based on integrated anchoring and analysis of fine-grained one-dimensional data 
segments in data streams.  The main limitation of such methods is that they require large 
segments in order to provide high compression ratio, and they do not work well with 
transferring multi-dimensional data such as 2D pixels in remote data visualization. This 
paper presents a method to identify and eliminate redundant data transfers of complex 
data types over a network.  Our method is different from the previous approaches in four 
ways.  First, the method separates data segmentation from redundancy elimination such 
that specific content-based segmentation methods can apply to complex data types. 
Second, we propose a 2-dimensional segmentation approach that works well with remote 
data visualization data transfers.  Third, we employ a two-level fingerprinting method to 
optimize the encoding of unique data segments.  Fourth, we propose a large segment 
cache on disk that improves redundancy detection by examining a larger scope. 

8.4.1 Introduction 
Current scientific instruments and simulations are creating peta-scale data volumes, and 
the amount of data produced is roughly doubled each year [94]. Examples include the 
Sloan Digital Sky Survey (SDSS) astronomical survey [201], the BaBar high energy 
physics experiment [21], the Entrez federated health sciences database [158], and the 
CERN Large Hadron Collider [56]. 
The amount of data stored, and the computation necessary for analyzing the data requires 
building a data storage and analysis infrastructure. The infrastructure may be used to 
access the data by thousands of scientists participating in a project working at hundreds 
of institutions. A distributed infrastructure has several advantages including no single 
point of failure, and load balancing of data, computation, and user support [57]. In 
addition the different parts of the infrastructure can be individually funded by the 
participating organizations.  

A main challenge for such a distributed infrastructure is providing the necessary 
bandwidth between the resources. In particular gigabytes of scientific data must be 
reliably moved over wide area networks, and scientist must remotely interact with 
applications used to analyze the data at a remote site. Compressing the network data can 
reduce the bandwidth requirements for such data movement and remote visualization. 
Network data is typically compressed using a local compression algorithm [9, 188, 202] 
which decouples compression from decompression.. A popular local compression 
algorithm is DEFLATE [73], used in the zlib/gzip library[9]. DEFLATE combines the 
Lempel-Ziv (LZ77) duplicate string elimination algorithm [244], with Huffman encoding 
for bit reduction [103]. LZ77 detects duplicate strings and replaces these with a back-
reference to the previous location of the string. Huffman encoding replaces symbols with 
weighted symbols based on frequency of use. The problem with existing local 
compression algorithms is that they only detect redundancy within a local scope, such 
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that the ratio achieved for scientific data is low, while compression time is to high for 
remote visualization. 

 
Figure 39: Global compression used to compress screen content. Previously sent 
segments are stored in cooperating caches at the sender and receiver side. The data 
to be sent is segmented, and in place of replicated segments only the cache index is 
sent over the WAN. 
During the past few years, global compression has been proposed to eliminate redundant 
network traffic data [156, 209]. The sender and receiver cooperate to maintain a shared 
cache of previously sent data. To eliminate transfer of redundant bytes, the sender divides 
the data to be sent into segments, and sends fingerprints instead of replicated segments 
over the network. The receiver uses the fingerprints to retrieve the data from its cache 
(Figure 39). 

Global compression ratio is limited by data redundancy and the segment size to 
fingerprint size ratio. Using smaller segments improves the redundancy found, but 
requires using smaller fingerprints to maintain a high compression ratio. However, to 
ensure data consistency the fingerprint size must be large enough to uniquely identify a 
segment. Previous global compression systems [39, 69, 72, 100, 153, 156, 171, 172, 222] 
typically chose a secure hash, such as 160-bit SHA-1 [7], as a fingerprint so that the 
probability of a fingerprint collision can be lower than a hardware bit error rate. But this 
also required using segments of several kilobytes in size. 

Our approach to this problem is to propose a new framework that allows application users 
to build content-aware anchoring mechanisms to significantly improve the network data 
compression.  We propose a two-level fingerprinting method to further improve encoding 
for fine-grained data segments, and a prototype system to show the proposed methods are 
effective. 
This paper makes three contributions: 

• A novel two-level fingerprinting protocol that improves redundancy detection by 
using smaller segments, while maintaining data consistency. Past work used large 
fingerprints, and hence required large segments to maintain a good compression 
ratio. 

• The design and implementation of a very large cache on disk for storing 
previously sent segments that improves compression ratio. Most previous systems 
stored segments in memory only. 

The requirements for a 100 GB data set were modeled. Our results shows that two-level 
fingerprinting is most useful for segment sizes ranging from 16 to 256 bytes. In order to 
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get the best trade-off between fingerprint bytes, and collision bytes the optimistic 
fingerprint size should be 40 bits, and a conservative fingerprint should cover about 20—
25 segments. In addition we demonstrate the need for a large segment cache. 

8.4.2 Proposed approach 
We propose a network data compression framework that solves the problem of 
compression ratio being limited by having to use a long fingerprint to represent a data 
segment in the compression protocol. This section first describes the architecture of the 
proposed approach and then a two-level fingerprinting method to compress fine-grained 
data segments. 

 
Figure 40: Architecture of proposed compression approach, consisting of 
components for context-aware segmentations, redundant segment elimination with 
two-level fingerprinting, and segment directory cache. Applications can choose their 
appropriate content-based segmentation method according to their data type. 

8.4.2.1 Architecture 
The architecture of the proposed framework for network data compression engine, as 
shown in Figure 40, includes multiple, data-specific segmentation methods and a shared 
segment compression engine. 

The key idea of the architecture is to make segmentation methods data specific. The 
segmentation methods can be configured to one or more ports of the system and to 
support a variable number of data streams of different data types.  Each content-based 
segmentation component is responsible for the segmentation of a specific class of data.  
For example, text documents, emails, binary executables, and other one-dimensional data 
can use a content-based segmentation component using the Manber/ LBFS segmentation 
method [145, 156], whereas a remote terminal application or a remote collaborative data 
visualization application can use a specific content-based segmentation component that 
can anchor 2D segments based on screen pixel contents [49].  
The content-based segmentation component implements the segmentation mechanisms 
for both send and receive data. For send data, it anchors its input data stream into 
segments and passes them to the segment compress component. For receive data, it 
assembles segments into a data stream. 
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The segment compression engine is responsible for fingerprinting and caching data 
segments from the segmentation modules. It maintains a segment directory cache to 
eliminate redundant segments. The basic algorithm is: 

• The sender computes a fingerprint for each incoming data segment, and sends the 
fingerprint to the receiver. 

• The receiver uses the fingerprint as the segment’s identifier to look in the segment 
cache to see if it has received this segment previously.  

• If there is an entry in the segment cache for the given fingerprint, it retrieves the 
segment of the fingerprint from the cache and passes it to the segmentation 
component to assemble into a data stream. 

• If the fingerprint is not in the cache a segment request is sent to the sender. 
• When the sender receives a segment request, it compresses the segment with a 

local compression method, and sends the segment to the receiver.  
• The receiver decompress the segment with a corresponding local decompression 

algorithm, inserts the data segment to the segment cache, and pass the segment to 
the segmentation component to assemble into a data stream.  

This basic algorithm is straightforward and its high-level idea is similar to previous 
studies on using fingerprints (or secure hashes) as identifiers to avoid transfer of 
redundant data segments.  The key difference is that in the previous studies detected 
redundancy is limited by the large fingerprints necessary to uniquely represent data 
segments, which require large segments to achieve a good compression ratio. We address 
the issue of how to represent fine-grained data segments.  Below, we present a 2-level 
fingerprinting method to compress fine-grained segments to optimize the basic algorithm. 

8.4.2.2 Application specific segmentation 
The segmentation modules main goal is to divide the application data into segment that 
are likely to be repeated throughout the data. Since such the segmentation methods are 
very data and application specific, we have separated the segmentation module from the 
Canidae subsystem to allow applications to use their own specialized segmentation 
algorithms. A segmentation module implements three tasks: segmentation, reassembly, 
and protocol handling. How these tasks are implemented depends on the data type and 
which segmentation algorithm is used, but in general the following is done: 

• The input data stream is copied to a local buffer. This may include parsing the 
input data stream to extract the application data from the meta-data such as 
protocol headers.  

• A segmentation algorithm is run when the buffer is full or the application protocol 
requires data to be sent. This algorithm divides the data into segments. The 
segmentation can either be static or based on the buffer content.  

• The segments and the meta-data necessary to reassemble the segments is sent to 
the compression engine. 
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• On the receiver side, the segments are received from the compression engine, and 
the meta-data is used to reassemble the segments. The segment data is then copied 
to the output stream. 

For multi-dimensional data the buffer is a multi-dimensional data structure, and the 
resulting segments may be multi-dimensional. Not all messages types have to be parsed, 
since the data is typically sent using a few message types. The remaining non-data 
carrying messages can be forwarded unparsed. 

8.4.2.3 Two-level fingerprinting 
An important design issue in using fingerprints as identifiers to detect previously 
transferred data segments is the size of a fingerprint. Therefore previous global 
compression systems typically use a 160-bit such as SHA-1 [7], or even longer secure 
hash, as a fingerprint so that the probability of a fingerprint collision is far lower than a 
hardware bit error rate. But, since the global compression ratio is limited to the ratio of 
the average pixel segment size to the fingerprint size, the larger the fingerprint size, the 
smaller the compression ratio. 
To maximize the global compression ratio and maintain a low probability of fingerprint 
collision, we propose a two-level fingerprinting strategy.  The two-level fingerprinting 
views data as groups of segments. For each group of segments, a 160 bit SHA-1 hash is 
computed as the conservative fingerprint of the whole group. For each segment in the 
group, we compute a 40-bit FNV hash [86] as the optimistic fingerprint. 

The two-level fingerprinting protocol extends the basic protocol described above. To 
send a group of data segments, the sender sends short optimistic fingerprints for all data 
segments, and the conservative fingerprint for the group. The segments are also added to 
the senders segment cache. Upon arrival, the receiver buffers the whole group of 
segments, re-computes a conservative fingerprint using the same hash function as the 
sender, and compares it with the received conservative fingerprint. If the two 
conservative fingerprints are identical, the receiver sends an ACK message back to the 
sender.  If they are different, it requests all segments read form the cache from the sender, 
and only sends the ACK once all requested segments have been received. When the ACK 
message have been sent, the receiver updates its segment cache with the group of 
segments and send all segments over to a segmentation component such that the 
segments can be assembled and sent to the receiving application.  

An important design decision is to choose the sizes of the conservative and optimistic 
fingerprints, and the number of optimistic fingerprints per conservative fingerprint. The 
conservative fingerprint should be long enough so that the probability of a collision is far 
smaller than a hardware error. The optimistic fingerprint should be short enough to 
maximize the compression ratio of network data, but long enough to minimize the events 
of resending groups of segments. Also, the number of optimistic fingerprints should be 
high enough to maximize the number of fingerprints and low enough to keep the 
probability of collision low. 
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8.4.2.4 Segment cache 
The basic operation of the segment cache is to read and write segments based on their 
optimistic fingerprint. The two main design goals for the segment cache are to make it 
large enough to hold all previously sent segments in a session, and fast enough not to 
limit the throughput of the compression pipeline. For a hundred gigabyte dataset, the total 
size of cached segments exceeds main memory size, such that segments must be stored 
on disk. In addition, an index is required to map optimistic fingerprints to the segments 
location on disk (or in a memory cache). 
The naïve approach of using a large hash table in memory as the index, and storing all 
segments on disk has two problems. First, the memory size limits the maximum number 
of segments that can be indexed by a single hash table resident in memory. Second, most 
segment accesses requires reading segments from disk since all available memory is used 
for the hash table. Therefore, the index should be split into multiple parts that can be 
stored in disk, and a large portion of the memory should be used to cache segments. 
We propose using multiple small hash tables; each indexed using the first l bits of the 
fingerprint. Hash table entries are 64 bits, and contains the remaining fingerprint bits, the 
memory or disk offset of the segment, and the size of the segment. The hash table, and 
the segments indexed by it are stored in a container. Each container is stored in a separate 
file on disk, but can also be cached in memory. 
Segment accesses have no spatial locality with respect to fingerprint values, since the 
hashing function generates random fingerprints for segments. Segments can therefore not 
be efficiently cached if they are distributed to containers based on their fingerprint values. 
Instead we exploit the observation that segments written to the cache at the same time 
tend to be read together. Therefore, all new segments are written to the same container by 
inserting the fingerprint to the hash table and appending the segment to the end of the 
segment buffer. In case of a hash table collision the segment is written to the next 
container in memory. This clustering of segments allows read-ahead of segments from 
disk. The disadvantage of this approach is that a linear search is required to find the 
container containing a specific segment. Therefore, we propose multiple optimizations to 
reduce the number of containers on disk that has to be checked. 

Segments accesses have temporal locality, hence recently accessed containers are cached 
in memory. When a container is accessed, the entire hash table is always read to memory, 
but the segment buffer is divided into several chunks, which are read on-demand from 
disk (similar to demand paging [127]). Writes are buffered such that modified segment 
chunks are only written to disk when the memory becomes full. To evict segment chunks 
or containers, we use a least recently accessed algorithm. 

To further reduce disk accesses we use a Bloom filter [37]. A Bloom filter is a space 
efficient probabilistic data structure that we use to test whether an optimistic fingerprint 
is a member of the set of optimistic fingerprints stored in the segment cache. The test 
may return a false positive; hence an optimistic fingerprint in the Bloom filter may not be 
in the segment cache requiring all hash tables to be checked. But false positives are not 
possible. Therefore in case of a miss, it is not necessary to check the containers before 
requesting a segment from the sender, or writing a segment to the cache. 
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Figure 41: Timeline for an update operation, were the network latency and segment 
transmission times are both assumed to be 10ms. The disk lookup time is 
overlapped with the time to send and receive segments not in the segment cache. 
In addition to reducing the number of disk accesses, the Bloom filter can also be used to 
overlap network transmission time with disk accesses (Figure 41). For a group of 
segments the receiver checks the Bloom filter, and sends request messages for the 
segments not in the Bloom filter. Disk lookups for other segments in the group can then 
be overlapped with the time to send and receive the non-cached segments. 

8.4.3 Protocol and system implementation 
We have implemented the 2-level fingerprinting protocol proposed in section 8.4.1 in a 
system called Canidae, which is designed to support multiple simultaneous hardware and 
software clients from each Canidae installation. It consists of multiple segmentation 
components and a generic compression sub-system that handles the fingerprinting, 
transmission and caching of segments.  

The compression engine and segment cache are implemented as a server and run on a 
dedicated machine. The server is designed to use all available memory, and hundreds of 
gigabytes of disk storage. To avoid dynamic memory and storage resource management 
all share the same compression component. Using multiple compression components, and 
dynamic resource management will complicate the system but probably neither improve 
compression ratio, nor improve the performance of the system. 

To establish a connection over Canidae the application server connects to a segmentation 
component instance on a predefined port. Applications then communicate with Canidae 
using their usual communication protocol. On the receiver side, the application clients 
connect to their Canidae server, which creates and initializes a connection to the 
application server site.  
The main goal of Canidae is to improve bi-directional network transfer time between 
sites where Canidae servers are installed. This is achieved by using the 2-level 
fingerprints protocol that saves bandwidth, but provides in-order strict-consistency 
message delivery for applications. However, the server is implemented to utilize out-of-
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order messages, eventual consistency, and to allow parallel compression and 
decompression of segments. 

In this section we describe the protocol and address implementation implications. 
Although Canidae supports bi-directional compression and multi-cast, we will below for 
clarity usually assume that communication is uni-directional and point-to-point.  

8.4.3.1 Segmentation components and segment protocol 
The segmentation components are either integrated with the Canidae server, run as a 
separate process on another machine, or integrated with the application. The segment 
protocol is used for encoding segments sent by the segment component to the 
compression engine. If both are run in the context of the same process, the segment 
component can send segments by calling functions in the compression component.  

Space efficient encoding of segment protocol messages is not necessary, since these are 
only sent over a high bandwidth local area network. However, efficient encoding is 
necessary for the meta-data used by the receiving segmentation component to assemble 
the segments. The meta-data is sent uncompressed during the two-level fingerprinting 
protocol and its size will therefore limit the achieved compression ratio. For 1-D 
bytestreams only the meta-data may only specify the segment size, but for a multi-
dimensional data sets the position in the data-structure may also have to be specified. But 
with careful design, only 1—4 bytes are required. 

8.4.3.2 Two-level fingerprinting parameters 
The main challenges in implementing the compression sub-system is choosing 
appropriate fingerprint sizes for the 2-level fingerprint algorithm, and choosing the 
number of optimistic fingerprints covered by conservative fingerprints, and implementing 
an efficient caching mechanism.  
The optimistic fingerprint should be small enough to provide good compression ratio, but 
still large enough to have few collisions even for large data sets. The factors influencing 
the optimistic fingerprint size are: 

• The data set size. The number of unique segments, and hence the fingerprint 
collision probability increases with data set size.  

• Data redundancy. With higher redundancy, fewer segments are stored in the 
cache, and hence the collision probability is reduced. 

• Segment size. Reducing the segment size increases the number of segments sent 
and stored in the cache. Thus, the collision probability increases. 

• Optimistic fingerprints covered by a conservative fingerprint. A single optimistic 
fingerprint collision requires sending all segments read from cache, thus 
increasing the collision penalty. 

In this section we answer the following questions:  
1. For which segment sizes is compression ratio limited by the fingerprint size? 

2. Where is the crossing point for when the number of bytes sent due to collisions is 
larger than the fingerprint bytes? 
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3. How many segments per conservative fingerprint give the best compression ratio? 

Parameter Value Parameter explanation 

S 100GB Data set size 

R 75GB (75%) Data redundancy found 
K 40 bits Optimistic fingerprint size 

L 160 bits Conservative fingerprint size 
P 20 Segments per conservative fingerprint 

S 32 bytes Segment size 

Table 17: Default parameters used to model two-level fingerprint compression ratio. 
Canidae is designed to compress very large datasets, so for the analysis we set the data 
set size to 100GB. Segment size is conservatively set to 32 bytes for which 20-byte 
fingerprints gives some compression. The optimistic to conservative fingerprint ratio is 
set to 20, since it usually gives high compression ratio (as shown below). Finally, the 
redundancy is set to 75%, such that the maximum compression ratio is 4.0. The 
parameters are summarized in Table 17. 
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Equation 2: Formula for modeling compression ratio achieved using two-level 
fingerprinting. 
To find the best parameters for the two-level fingerprinting protocol giving the best 
compression ratio, we model the number of segment bytes sent, the number of fingerprint 
bytes sent, and the number of collision bytes sent. We assume that the dataset is 
segmented into S/s segments, where S is the data set size, and s is the average segment 
size. To find the number of fingerprints bytes sent we multiply the number of segments 

with 
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), where k is the number optimistic fingerprint bits, l is the number of 

conservative fingerprint bits, and p is the number of segments per conservative 
fingerprints. The optimistic fingerprints should be random, and hence the probability of a 
new fingerprint having the same value as an existing fingerprint in the segment cache is 

given by 

! 

n

2
k

, where n is the number of segments in the segment cache, and k is the 

number of bits in the fingerprint. To estimate the number of bytes sent due to collisions, 
we find the number of collisions for all cache writes. Then, we assume that each collision 
causes one group of segments to be resent. Putting it all together gives the formula in 
Equation 2. Below we compare the achieved compression ratio to one-level 
fingerprinting using 20 byte fingerprints. 
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Figure 42: Compression ratio for different fingerprint and segment sizes. Data 
redundancy is 75% and collision bytes are ignored. 
To find the segment sizes that are limited by the fingerprint size, we plot the compression 
ratio achieved for different segment size (Figure 42). We find that the fingerprint size 
significantly limits compression ratio for segments less than 1 Kbytes if the data has 75% 
redundancy, but even for smaller segments if the detected redundancy is lower.  

 
Figure 43: Miss penalty bytes sent for different optimistic fingerprint sizes. 
Choosing the conservative fingerprint size is relatively straightforward; it should be large 
enough to guarantee a collision rate smaller than the hardware error rate. Since 2160 is 
considered sufficient for data sets up to an exabyte in size [172], we use 160 bit SHA-1 
hash values as conservative fingerprints.  

The optimistic-fingerprint size is more challenging to choose because it affects two 
competing trends. Reducing the optimistic-fingerprint size will increase the maximum 
achievable compression ratio, but simultaneously increase the number of cache collisions 
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that require entire segments to be resent. So we want to choose an optimistic-fingerprint 
size that is near the inflection point of the competing trends and that works across the 
many data types being transmitted. 
If a 4-byte optimistic fingerprint size is chosen, then 50 GB of segment data will be sent 
due to collisions when transferring a 100 GB data set (Figure 43). Increasing the 
optimistic fingerprint size to 5 bytes reduces the total number of bytes sent since the data 
sent due to collisions is reduced to 0.2 GB, while the increase in fingerprint bytes is only 
6.1 GB. Only when the data set size is less than about 35 GB, does 4 byte fingerprints 
give the best compression ratio. Further increasing the fingerprint size to 6 bytes does not 
improve compression ratio since the reduction in collision bytes (about 0.2 GB) is much 
smaller than the increase in fingerprint bytes (6.1 GB). 
For a smaller data set, the compression ratio will improve if 4 byte fingerprints are used. 
The optimistic fingerprint size could be dynamically set at server startup time. But it is 
not possible to increase the optimistic fingerprint size without flushing the segment 
cache, or re-computing the optimistic fingerprint for all cached segments. 
The number of segments covered by a conservative fingerprints should be chosen such 
that the fingerprint bytes sent remains low, while keeping the bytes sent due to collisions 
low. With the default parameters in Table 17, the minimum number of bytes sent is for 22 
segments per conservative fingerprint (Figure 44). Typically a ratio of 20—25 gives a 
good compression ratio, even if the segment size, redundancy ratio, or data set size is 
changed. 

 
Figure 44: Bytes sent for fingerprint and collisions, when the number of segments 
per conservative fingerprint is changed. 
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Figure 45: Compression ratio for different redundancy levels when using 4 byte, 5 
byte and 20 byte fingerprints. The 5 byte fingerprint compression ratios with and 
without collisions are almost identical, and identical for 20 byte fingerprints that 
have no collisions. 
Above we have assumed that the redundancy level is 75%. Figure 45 shows that using 5-
byte optimistic fingerprints with 20 segments per conservative fingerprint, gives the best 
compression ratio for most redundancy levels. Only if redundancy detection is lower than 
15%, or higher than 95%, is the best compression ratio achieved using other optimistic 
fingerprint sizes.  

8.4.3.3 Two-level fingerprint protocol messages 

 
Figure 46: Two-level fingerprinting messages (FPi is an optimistic fingerprint 
message, and CFPi is a conservative fingerprint message). 
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Message type Size 
(bytes) 

Comment 

Optimistic fingerprint 6 + M M is implicitly set by the message type 
Segment request 5 A 4 byte sequence number identifies the segment 
Segment 7 + S Includes the segments sequence number and size 

(2 bytes) 
Conservative 
fingerprint 

21  

Conservative 
fingerprint ACK 

1 No sequence number since the ACKs are sent in 
the same order as conservative fingerprints 

No-fingerprint segment 3 + S Includes the segment size (2 bytes) 
Multiplexing message 3 2 byte are used to identify the segmentation 

component that should receive the next batch of 
segments 

Table 18: Two-level fingerprint messages. M is meta data size, and S is segment data 
size. Optimistic and conservative fingerprint sizes are respectively 5 and 20 bytes. 
The two-level fingerprinting messages have been designed to use as few bytes as 
possible, since additional bytes sent reduce compression ratio (Table 18). For each 
message, the first byte is used to identify the message type.  

The most frequently sent message is the optimistic fingerprint message. For these 
messages, the message type implicitly specifies the meta-data size (it can be from 0—12 
bytes).  
Each segment is assigned a sequence number that is set by the sender when the optimistic 
fingerprint messages have been sent, and by the receiver when the message is received. 
Segment request, and segment messages must include the sequence number, since it is 
used respectively to identify the requested segment, and to match the segment data to 
meta-data sent with the optimistic fingerprint message. 
The conservative fingerprint message is always sent immediately after the last optimistic 
fingerprint message in a group. It is therefore not necessary to add any information to the 
message about which segments are covered, and thus the message only contains the 
message type and conservative fingerprint. Conservative fingerprint ACK messages are 
always sent in the same order as the conservative fingerprints were received, and 
therefore adding a sequence number is not necessary. 
Segments are addressed to segmentation components by inserting a multiplex message 
between the fingerprint and segment messages. A multiplex message specifies the 
segmentation component that should receive the next batch of segments. Multiplex 
messages are used since adding addressing information to optimistic fingerprint messages 
would reduce the compression ratio. We assume the overhead of multiplex messages is 
small since segmentation components typically sends large burst of data. 
The remaining messages types are the no-fingerprint message used to send data that 
should not be stored in the segment cache, and messages sent during connection 
initialization and closing.  
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8.4.3.4 Data consistency 
Computing and comparing conservative fingerprints gives a very strong guarantee that all 
segments read from the cache are identical to the segments that were not sent over the 
network. However, in order for the fingerprints to match, the secure hash function on 
both sides must be run over the segments in the same order. The segments are ordered 
using the sequence numbers added to optimistic fingerprint messages as described above. 
For simplicity the conservative fingerprint is calculated for all segments even when the 
segment is sent to the receiver.  
The two-level fingerprinting protocol allows disk cache reads, and segment requests to be 
issued out of order, while maintaining consistency and in order delivery of segments. To 
further overlap network latency and transfer time with computation, Canidae implements 
additional optimizations. First, optimistic fingerprints for the next group can be sent 
before the conservative fingerprint ACK message for the previous group has been 
received. Second, the receiver streams the conservative fingerprint computation, such that 
the fingerprint is continuously updated when requested segments are received, or 
segments have been read from the segment cache. Third, multiple segment cache reads 
can be issued in parallel. 

8.4.3.5 Bidirectional communication and multiple clients 
To support bidirectional communication, a separate instance of the protocol is run for 
each direction with one side acting as sender and the other as receiver. The sender writes 
all sent segments to its segment cache, allowing redundancy to be detected for both 
directions, since the same segment cache is used. Any inconsistencies in the segment 
cache are detected during conservative fingerprint comparison. 

To send the same data to multiple clients, Canidae use multi-cast. The two-level 
fingerprinting protocol is not modified, but the segment protocol needs to be changed 
such that recipients for each segment are specified. Since the receiver specification is 
only sent to the local Canidae server, an efficient address encoding is not necessary. In 
the current implementation we use a bitmap with bits set for the receivers of a segment. 
The advantage of multi-cast over multiple point-to-point messages is that optimistic 
fingerprint computation, and local compression is only done once. Conservative 
fingerprints must still be computed for each receiver, since all may not receive the same 
set of segments. The advantage over broadcast is that the amount of data sent to each 
client can be different, and hence the total amount of data sent is not limited by network 
with the lowest throughput. 
Canidae servers can be connected to multiple other Canidae servers, but many-to-one 
communication operations are not supported. All connections are handled by the same 
compression component, and all share the same segment cache. It is therefore possible 
for a server to have received data to be sent from another server. The conservative 
fingerprints takes care of all consistency issues. 

8.4.3.6 Compression pipeline 
The server is implemented using a multi-threaded event based model. The protocol 
handling is divided into several stages. The stages are connected using queues that are 
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used to store segment objects to be processed by the next stage. In addition some stages 
are either read from, or write to a socket. To support multicast, some stages produce 
output destined to several stages. 
 

 
Figure 47: Stages and data structures used in the fingerprint components send path. 
The compression pipeline consist of a send path and a receive path. For clarity we 
describe these separately. 

There are multiple independent send paths (Figure 47). The path for sending optimistic 
fingerprints consists of: (i) a data read stage that reads segments from the segment 
component socket, (ii) a FNV hash stage that calculates the optimistic fingerprint for the 
segment, (iv) a SHA-1 hash stage for each client that computes the conservative 
fingerprint for a group of segments, and (v) a send fingerprint stage for each client that 
write optimistic fingerprint message to the clients socket. 

The path for handling segment requests consist of a request read stage that reads segment 
request message from multiple receiver sockets. The zlib compress stage that does local 
compression, and the send segment stage that writes compressed segment to the receiver 
socket. In addition for bidirectional communication the send path is extended with a stage 
for writing segments to its segment cache. 
There is one segment object for each segment, even if it is going to be sent to multiple 
receivers. The memory allocated for the segment object is reused to avoid allocating and 
freeing memory for each sent segment. Also, to simplify (memory) resource management 
the number of segment objects is statically set, by allocating memory for the segment 
objects and adding all to the free queue, to which segment objects are also added when 
the reference count becomes zero. In addition there is a buffer for storing a group of 
segments until the receiver has acknowledged the group’s conservative fingerprint.  

The two-level fingerprinting protocol does not implement rate limitation. But, only a 
limited number of segments are buffered while waiting for a conservative ACK. If the 
buffer is full no more segments are inserted into the compression pipeline. Additional rate 
limitation must be implemented either by segmentation components or the application. 
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Figure 48: Stages and data structures used in the fingerprint components receive 
path. 
The receive path uses the same data structures as the send path (Figure 48). The socket 
reader stage reads messages from the sender socket. Depending on the message type, 
either the SHA-1 hash stage updates a conservative fingerprint, the cache read stage reads 
a segment from the cache, or the zlib un-compress stage uncompress a received segment. 
Then the request/ ACK write stage either sends a segment request if the segment was not 
in the cache, or a conservative fingerprint ACK message. Finally, when all segments have 
been read from the cache, or received from the sender, and the conservative fingerprints 
match, the segment write stage writes the group of to a socket read by the segmentation 
component. 

Both the send and receive path are implemented to exploit parallelism for respectively 
reducing compression time and overlapping disk accesses with computation. Send path 
parallelism is most useful for scaling the number of receivers, since message ordering and 
conservative fingerprint computation require all stages except FNV hash and zlib 
compress to be run sequentially. But, the stage instances for multiple receivers can be run 
in parallel. 

8.4.4 Segment cache 
A hash table and the buffer storing the segments indexed by the hash table form a 
container. We assume that segments are accessed with temporal and spatial locality with 
respect to segment creation time. Each container is stored in a separate file on disk. The 
entire hash table is always read to memory, but only parts of the segment buffer may be 
in memory as explained below. 
A hash table entry is 64 bits and contains the segments optimistic fingerprint, the segment 
buffer offset, and the segment size (Figure 49). The first i bits of an optimistic fingerprint 
are used to index the hash table. The remaining fingerprint bits are compared with the ID 
bits stored in the hash table entry. If they match the segment can be located in the 
segment buffer using the segment offset and size stored in the hash table entry. The offset 
may be multiplied with a constant to allow a larger segment buffer to be used.  
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Figure 49: A container consists of a hash table used to map fingerprints to segments 
in the containers segment buffer.  

 
Figure 50: Container data structures.  
Container meta-information is always stored in memory. This data structure consists of a 
handle for the file where the container is stored, a pointer to the hash table (if in 
memory), a small bitmap of which hash table entries are in use, a table of segment chunks 
currently in memory, and the timestamps required by the container replacement algorithm 
(Figure 50). The size of the hash table depends on the number of entries. We have set it to 
512KB. Segment chunks are always 1MB.  
Hash tables and segment chunks are stored in two large arrays with a static size. If one of 
the arrays becomes full, a container is evicted (even when only a single segment chunk is 
required). To select a container a simple working set replacement algorithm is used that 
selects the least recently accessed container for eviction. The algorithm is implemented 
by maintaining a timestamp for each container that is updated each time a segment is read 
from, or written to the container. Since the time to write a container to disk is large, and 
the number of containers in memory is relatively small, all containers are scanned 
linearly to find the container with the smallest timestamp.  

8.4.4.1 Operations 
The segment cache supports three operations: read, write, and update.  

The most important design goal for read operations is to reduce disk accesses. Therefore, 
the Bloom filter is first checked. In case of a miss, the segment is not in the cache and the 
operation can return. Otherwise the hash tables are linearly checked starting with the hash 
tables already in memory, and then the hash tables on disk. The search terminates when 
the segment is found and returned, or all hash tables have been checked.  
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Figure 51: For segment writes the last accessed (current) container is first checked. 
If there is a hash table collision, writes are attempted to the N subsequent 
containers, and then the N previous containers. If all collide, writes to the remaining 
containers in memory are attempted, before the containers on disk.  
Write operations are implemented to cluster segments such that spatial locality can later 
be utilized. First, the segment write is attempted to the container last accessed. If the 
fingerprint maps to an entry in use, the write is attempted to hash tables in memory, and 
then to hash tables on disk as illustrated in Figure 51. Finally, if an unused entry is still 
not found a new container is created. The segment data is always appended to the end of 
the containers segment buffer. 

The write operation does not check the Bloom filter, or check whether the hash tables 
already contain a segment with the same optimistic fingerprint. This may create duplicate 
segments with the fingerprint value, and thereby increase the storage used for segments. 
But, the conservative fingerprints calculated during the two-level fingerprinting protocol 
ensure data consistency. Avoiding duplicates would increase the number of disk accesses 
due to searches necessary for each Bloom filter positive, and would require serializing 
write operations (to avoid a race condition where two segments with the same optimistic 
fingerprint are written simultaneously).  

The update operation is only called when a conservative fingerprint collision is detected. 
First the Bloom filter is checked as described for the read operation. When the segment 
has been found it is updated. If the new segment is larger than the old segment, a new 
segment is appended to the end of the segment chunk array, and the memory for the old 
segment is left unused. 

8.4.4.2 Bloom filter parameters 
The most important goal when setting the Bloom filter parameters is to minimize the 
probability of false positives. A Bloom filter is a bitmap. To add an optimistic fingerprint 
k different combinations of the optimistic fingerprint bits are used to set m bits in the 
bitmap. For lookup the same k combinations are used to check whether the m bits have 
been set in the Bloom filter.  If one of the bits is not set, the fingerprint is guaranteed not 
to be in the disk cache. If all are set, any of the n segments in the cache could have set the 
bits.  
A formula for calculating the false positive probability is given by the formula in 
Equation 3. The probability can be minimized with respect to the number of lookups 
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independent of the number of entries. If there are 8 bits per entry, then using 6 lookups 
gives the minimum false positive ratio of 1.56%.  
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Equation 3: Formula for calculating the false positive ratio for Bloom filters (left), 
and the same formula reduced with respect to k (right). n is the maximum number 
of entries, k is the number of lookups, m is the number of bits per entry. 

Bitmap size (MB) Required redundancy 
64 98% 
128 96% 
256 92% 
512 84% 
1024 68% 
2048 36% 

Table 19: Required redundancy for a cache of a given size used to store a 100GB 
data set filled with 32 byte segments. If the segment size is doubled, or the data set 
size is reduced by two, 92% of redundancy is required for a 128 MB Bloom filter, 
84% for a 256 MB Bloom filter, and so on.  
Allocating memory for a Bloom filter with 8 bits for each of the 240 optimistic 
fingerprints would require 1 TB of memory. But since only a small portion of the 
fingerprints are in use, we can set the size based on the data set size and expected 
redundancy as shown in Table 19. 

8.4.4.3 Memory allocation 
 1 GB DS 

2 GB RAM 
10 GB DS 
2 GB RAM 

100 GB DS 
2 GB RAM 

100 GBDS  
4 GB RAM 

100 GB DS 
8 GB RAM 

Bloom filter 128 MB 256 MB 1024 MB 1024 MB 1024 MB 
Compression 
pipeline  

200 
MB 

200 
MB 

200 
MB 

200 MB 200 MB 

Hash tables 650 MB 600 MB 290 MB 1110 MB 2750 MB 
Cache segments 970 MB 900 MB 430 MB 1660 MB 4120 MB 

Table 20: Memory allocation for largest data structures (in addition 100 MB of 
memory is allocated for other data structures, executables, OS, etc). 
The memory on the computer allocated for the Canidae server is shared between the 
Bloom filter, hash tables, segments, and the compression pipeline (Table 20). Memory is 
statically allocated for the Bloom filter and the compression pipeline. The container data 
structures dynamically manage memory such that about 40% is used for hash tables, and 
60% for segments (a similar distribution is used in [209]). 

8.4.4.4 Discussion 
Most existing and new content based segmentation methods can be implemented to use 
the segment cache provided by Canidae. But, the Spring and Wetherall [209] method had 
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to be modified since the redundancy detection requires a cache that stores the last N sent 
bytes. We believe segmentation methods for multi-dimensional data sets require a cache 
that stores a set of segments, since implementing a data structure that support incremental 
appending of data, and that supports efficient comparison of multi-dimensional regions is 
an unsolved problem. 

8.4.5 Segmentation methods 
Several segmentation methods implemented by Canidae are described in section 8.5.3.  

Table 21 summarizes the meta-data size required for each method. The meta-data is sent 
with the optimistic fingerprints and will therefore limit the achieved compression ratio. 

Method Meta-data size Maximum segment size 
1-D Overlapping static 1 byte Fixed (but about 256 bytes) 
1-D Spring and Wetherall [209] 2 bytes 558 bytes 
1-DLBFS [156] 2 bytes 64 KB 
2-D static 4 bytes Fixed 
2-D Varg [49] 6 bytes 216 x fixed width 

Table 21: Meta-data size for different segmentation methods implemented in 
Canidae. 

8.4.6 Initial evaluation 
To evaluate whether a large segment cache will improve compression ratio, we use the 
traces collected for three microarray analysis genomic applications: Java Treeview [193], 
TMeV [192], and GeneVaND [98]. The applications were instrumented using the Java 
AWTEventListener interface. The screen resolution was 1280x1024 pixels and the color 
depth was 32 bits per pixel. We used these to record a 15-minute trace containing all user 
input events for each case. Later the traces were used to create a set of screenshots, each 
taken after playing back a recorded mouse or keyboard event that changed the screen 
content. 

The screenshots are read by a VNC emulator that sends these to a Canidae component 
that updates a local buffer, and uses the Varg method to segment the data. The segments 
are then sent using the two-level fingerprinting protocol. On the receiver side we have 
instrumented the cache such that each segment has been given a sequence number when 
written to the cache. The sequence number is then used to calculate the age of segments 
read from the cache (we define age as the number of segments that have been written 
since this segment was written to the segment cache). 
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Figure 52: Cache size increase for remote visualization of three genomic 
applications. 
Our first observation is that the number of segments cached, and hence the size of the 
segment cache, depends on the redundancy detected. Redundancy detection stabilizes 
after a while, and can be up to 80%. But since the hit ratio never reaches 100% the cache 
size has a steady growth (Figure 52). Even for the short 10—15 minute traces the 
segment cache becomes too large to be stored in memory. 

 
Figure 53: Cache hit entry age. Most cache hits are for recently inserted segments, 
but when execution time increases the number of hits for older entries increase. 
Note that the bucket size is 6021 for Treeview and 2445 for the other two. 
A larger cache improves redundancy detection, as shown in Figure 32 where the age of 
the cache segments read is plotted. Most hits are for recently added segments, but as the 
visualization session proceeds more hits are for older segments. Therefore we believe 
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compression ratio will improve with a large cache for longer traces. However, the 
advantage needs to be evaluated using larger data sets with different segmentation 
methods. 

8.4.7 Future work 

 
Figure 54: The minimum increase in redundancy detection for which reducing the 
segment size increases compression ratio (bytes sent due to collisions are ignored). 
A full evaluation of the advantage of two-level fingerprinting is needed to answer the 
following questions: 

1. Does two-level fingerprinting improve the compression ratio of previous 1-D 
content-based segmentation algorithms? 

2. Does redundancy detection improve with smaller segments (the required increase 
is shown in Figure 54)? 

3. Is the model used to select two-level fingerprinting parameters realistic? 

The segment cache should be evaluated by answering the following: 
4. Are the assumptions that segment accesses have temporal and spatial locality 

true? 
5. How to set the parameters to achieve the best performance, in particular: the 

number of hash table entries, segment buffer chunk size, and the memory 
allocated for hash tables versus segment chunks? 

6. Does the choice of container replacement algorithm significantly improve cache 
hit ratio? 

7. Would using binary search for container tables instead of hashing improve cache 
hit ratio? 

In addition the system performance should evaluated by measuring: 
8. The throughput of Canidae compression. 
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9. The scalability of the Canidae compression pipeline on CMP and SMT 
processors. 

To answer the first two questions the implemented 1-D segmentation algorithms should 
be used to segment a large data set consisting of uncompressed flat files. The 
compression ratio should then be measured when using respectively one level 
fingerprinting, and two levels fingerprinting for redundancy elimination. The last two 
questions can be answered by measuring the throughput of the system on machines with 
processors supporting CMT and SMT.  

8.4.8 Related work 
Related work was presented in section 4.4. 

8.4.9 Conclusions 
This chapter has presented the design and implementation of the Canidae system. 
Canidae is a network data compression framework that allows multiple, data-specific 
segmentation methods to share a segment compression engine. A two-level fingerprinting 
protocol has been proposed to improve redundancy elimination, and hence compression 
ratio by using smaller segments than previous global compression systems. In addition 
we propose storing a large segment cache on disk that is optimized to reduce disk 
accesses by using a Bloom filter. 
The requirements for a 100 GB data set were modeled. Our results shows that two-level 
fingerprinting is most useful for segment sizes ranging from 16 to 256 bytes. In order to 
get the best trade-off between fingerprint bytes, and collision bytes the optimistic 
fingerprint size should be 40 bits, and a conservative fingerprint should cover about 20—
25 segments. In addition, we demonstrated the need for a large segment cache, and how it 
can improve the achieved compression ratio. 
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8.5 Multi-level Content-Aware Segmentation for Compression of 
Network Data 

This section presents an extended abstract that has not been submitted for publication. 
The work was done in collaboration with Kai Li and Olga Troyanskaya. 

Abstract. Previously proposed techniques for eliminating redundant network traffic are 
based on integrated anchoring and analysis of one-dimensional fine-grained data 
segments in data streams.  The main limitation of such methods is that they are effective 
only for simple data types such as web contents, documents, email and binaries.  They do 
not work well with transferring multi-dimensional data such as 2D pixels in remote data 
visualization and high-dimensional scientific datasets. This paper presents a method to 
identify and eliminate redundant data transfers of complex data types over a network.  
Our method is different from the previous approaches in two ways.  First, the method 
separates data segmentation from redundancy elimination such that specific content-
based segmentation methods can apply to complex data types. Second, we use a 2-
dimensional segmentation approach that allows using smaller segments.  

8.5.1 Introduction 
Transferring multi-gigabyte datasets over a wide area network is necessary for many 
scientific and commercial applications. Since wide area network bandwidth is limited, 
compressing the transferred data is necessary to get acceptable performance for the 
applications.  

During the past few years, global compression [156, 171, 209] has been proposed to 
eliminate redundant network traffic data.  We will outline how such an algorithm works 
and then explains why previously proposed approaches work well only with 1D data 
types, whereas many important applications use complex data types (such as remote 
terminals, remote data visualization, and multidimensional datasets). 
Our approach to this problem is to propose a new framework that allows application users 
to build content-aware anchoring mechanisms to significantly improve the network data 
compression.  We propose a content-based anchoring method for 2D pixel segments, and 
a prototype system to show the proposed methods are effective. The prototype is used to 
compare our method to several existing 1D and 2D segmentation algorithms. 

The primary contribution of this paper is: 
• Application specific segmentation method for multi-dimensional data that 

improves the redundancy detection for complex data types. Previous general- 
purpose 1-D segmentation algorithms does not take into account the structure and 
dimensionality of the transferred network data.  

8.5.2 Proposed approach 
The architecture of the proposed framework for network data compression was described 
in section 8.4.2. 
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8.5.3 Segmentation methods 
Canidae implements several 1-D and 2-D segmentation algorithms that are described in 
this section. The 1-D algorithms are all general purpose and can therefore be used on any 
1-D datastream. However, the algorithms work better if protocol headers or file meta data 
is removed [145, 209]. The segmentation components can therefore be implemented to 
parse the protocol messages in order to remove protocol headers. Such parsing is 
necessary for multi-dimensional segmentation algorithms as described in the next section. 

8.5.3.1 Manber’s approach used for global compression 
The basic method for segmenting 1D data streams was proposed by Manber [145]. The 
method computes a Rabin fingerprint [50, 175] for a window of a fixed number of bytes 
in a rolling fashion over a byte data stream and selects fingerprints wherever the k least 
significant bits of the fingerprint are zeros. With a uniform distribution, a fingerprint will 
be selected every 2k bytes. 

Manber used the fingerprints to compare the similarity of files. But the fingerprints can 
also be used for global compression. The disadvantage of this method is that it needs to 
divide data into tiny segments in order to find redundancy, segments partially overlap, 
and the segments may not cover all bytes. Therefore, this type of segmentation is usually 
combined with static segmentation (as in rsync [224] that is described in Related Work). 
The algorithm produces segments with fixed size equal to the Rabin window size. 
Increasing the window size increases the average compression ratio per region, but 
reduces the detected redundancy. Reducing k will increase the redundancy found, but will 
also increases segment overlap, and hence reduce the segment bytes to fingerprint bytes 
ratio.  

8.5.3.2 Spring and Wetherall’s 1-D content based segmentation  
Spring and Wetherall [209] adapted Manber’s approach to find redundant segments in a 
1-D stream of network packets. A cache is used to store previously sent data. To segment 
a packet, Rabin fingerprints are calculated, selected, and checked against fingerprints 
calculated for the data stored in the cache. For each match, the bytes covered by the 
fingerprint window have the same content in the cache and in the packet to be sent. The 
segment can then be expanded, to the left and to the right, by matching bytes in the 
packet and in the cache. Finally, the fingerprint and a description of the covered region 
are sent to the receiver. 
The Canidae segment cache differs from the FIFO buffer used by Spring and Wetherall. 
In order to use the Canidae segment cache, the approach must be slightly modified such 
that a segment can be used to store the data contained in a fingerprint window, and the 
data to the right and left.  We allocate one segment per fingerprint. All segments are fixed 
in size; s bytes. The w bytes covered by the fingerprint are stored in the middle of the 
segment, and the  (s-w)/2 bytes to the left contains the bytes preceding the fingerprint 
window in the last update, and the (s-w)/2 bytes to the right contains the bytes following 
the fingerprint window.  
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In the modified algorithm the sender does the following: 
1. Select fingerprints in the data to be transferred as described above. 

2. Read the segments indexed by the fingerprints from the local segment cache. 
3. Search for redundant region as described, but limit the segment size to s bytes.  

4. Send redundant segments using S&W optimistic fingerprint messages (described 
below), and non-covered bytes using no-fingerprint messages. 

5. Update the segment cache with the transferred data. 
The receiver does the following: 

1. Assemble received segment data, and calculate fingerprints for the data as 
described above. 

2. Use the assembled data to update the segments indexed by the selected 
fingerprints. 

The Canidae two-level fingerprinting protocol described in section 8.4.3 is extended with 
two new messages. In the S&W optimistic fingerprint message the segment size is 
defined as bytes before and after the fingerprint bytes. The segment cache is extended 
such that only the specified range is read (or written) to the cache for segment data 
indexed by such messages. In addition the S&W segment message only includes the data 
covered by the fingerprint, but the segment size in the cache is set to the predefined fixed 
segment size. 
The main drawback of the modification is that segments may overlap. Therefore the 
segment size must be limited to reduce the number of bytes stored in multiple segments 
(but overlapping bits are not sent over the network). We use 256 byte fixed segments. 
This size is larger than the 128 byte average segment size found in [209] (the maximum 
segment size was limited by the number of bits allocated for storing the segment size in 
the protocol messages and was about 4Kbyte). The smaller maximum segment size can 
reduce the compression ratio. However, the Canidae cache allows storing a larger trace, 
which may improve compression ratio. Also, compression throughput may decreases, 
since the cached segments must be updated each time they are accessed. 

8.5.3.3 Anchorpoint content-based segmentation 
In the Low Bandwidth File System (LBFS) [156] Manber’s approach is also used to 
select a fraction of Rabin fingerprints. But, instead of using the selected fingerprints as a 
starting point for growing a segment, these are used as anchorpoints in a 1-D bytestream. 
The anchorpoints divide the bytestream into segments, such that segment consists of all 
bytes in the Rabin fingerprint window, and all following bytes until the beginning of the 
next anchorpoint.  
The median size of the segments found by the algorithm can be set to 2k, where k is the 
number of fingerprint selection bits. In addition, it is necessary to specify minimum and 
maximum segment size to avoid regions that are either too small to get a good 
compression ratio, or too large to find redundancy. In [156], these were set such that the 
average segment size was 8KB, the minimum 2KB, and the maximum 64KB.  
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8.5.3.4 2-D Static Segmentation 
A naïve way to anchor 2-D segments is to divide 2-D data into fixed-size grids statically. 
This approach is used by the VNC desktop systems [184] and by MPEG [88] encoders 
typically use a static 2-D grid to segment screen buffer content or movie frames (typically 
with 8x8 or 16x16 pixel regions). The problem with a static approach is that the 
anchoring is sensitive to data movement. For example if the 2-D data set is a screenshot 
sent by a remote desktop system then scrolling the visualization by one pixel, then 
segmentation of 2-D pixels will be shifted by one pixel relative to the displayed image. 
Even if the entire scrolled screen has been transferred previously, the content of segments 
will typically have changed, giving new fingerprints and hence reducing redundancy. 

8.5.3.5 2-D static and content-based segmentation 
Our approach [49] is to perform content-based anchoring instead of static anchoring. 
Since it is not practical to anchor both dimensions simultaneously due to the high 
computational cost, our algorithm uses Manber’s technique to detect data shift first and 
then use the result to anchor 2D segments. Using screen pixel data as an example, we 
estimate whether the screen has moved mostly horizontally or vertically using Manber’s 
technique. We generate representative fingerprints for every k-th row, and every k-th 
column for the screen (k is a small integer), and compare how many fingerprints are 
similar to the row and column fingerprints of the previous screen. Assuming that 
horizontal scrolling or moving will change most row fingerprints, but only a few column 
fingerprints, we can compare the percentage of similar row and column fingerprints to 
estimate which movement is dominant. 

 
Figure 55: A 2-D array is first divided into fixed size columns. Then for each 
column, content-based anchor rows divide the column into segments. 
For predominately vertical shift we statically divide the data into m columns and divide 
each column into regions by selecting anchoring rows (Figure 56). The anchoring rows 
are selected based on their fingerprint calculated using a four byte at a time Rabin 
fingerprint implementation. The column segmentation is ideal for scrolling because the 
regions move vertically with the content. If we detect predominately horizontal shift 
instead, we transpose the 2-D array before running the algorithm. 
2-D data can include cases when large regions of the data have the same value (e.g. 
portions of a screen have the same color). For such regions, the row fingerprints will be 
identical.  Thus, either all or no fingerprints will be selected. To avoid such cases, our 
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algorithm does fingerprint selection in three steps. First all fingerprints are calculated. 
Second, we scan the fingerprints and mark fingerprints as similar if at least s subsequent 
fingerprints are identical. Third, we select fingerprints using the x most significant bits, 
while imposing a minimum distance m between selected fingerprints. Also, the first and 
last rows are always selected. 

8.5.3.6 2-D content based anchoring 
This method extends the algorithm in the previous section, such that both column and 
row boundaries are selected based on their content. First, the he 2-D array statically into 
large m x m pixel tiles. Each tile is then divided into horizontal strips by using Manber’s 
method to select anchor-columns based on fingerprints calculated for each column. 
Finally, the columns are divided into regions by selecting anchor-rows as described in the 
previous section (Figure 56). 

 
Figure 56 The 2-D array is divided into large tiles (4 tiles in this case). Each tile is 
segmented by first selecting anchor-columns, and then within each column selecting 
anchor-rows. 

8.5.3.7 Rabin and Karp probabilistic 2-D segmentation 
To detect all data movement in a 2-D data structure, we use an algorithm similar to the 
probabilistic 2-D pattern matching suggested by Karp and Rabin [122]. A short 
fingerprint is calculated for all m x m regions including all overlaps. Then regions are 
selected based on the fingerprint value using Manber’s approach. The resulting segments 
divide the 2-D data structure into fixed sized segments that can overlap, and that may not 
cover all data. 

8.5.4 Segment component implementation 
The segmentation component is usually implemented as a standalone server, but can also 
be integrated with the fingerprint component, or application server for improved 
performance. In this section we describe how Canidae implements segmentation for the 
VNC remote desktop protocol. 
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8.5.4.1 VNC 

 
Figure 57: VNC updates segmented using Canidae. The VNC protocol is used for 
communication between the VNC components and the segmentation components. 
Virtual Network Computing (VNC) [183, 184] is a pixel based remote visualization 
protocol, where the screen content on the VNC server is sent to VNC clients in the form 
of rectangles of pixels to be updated. Typically the framebuffer that is replicated is 
relatively small but is frequently updated; about 5MB for a 1280x1024 screen, but for 
large scale display walls [135, 234] the framebuffer can be hundreds of megabytes. Since 
it is an interactive application, low response time is important. Visualization intensive 
applications typically have large bandwidth requirements than can be provided by 
existing wide area networks [49]. 
The VNC server detects changes to the framebuffer and encodes the changes using the 
Remote Frame Buffer (RFB) protocol [183]. RFB is based on a single graphics primitive: 
“put rectangle of pixels at position (x, y)”. Also, RFB defines several compression 
algorithms such as: copy a region of pixels, run-length encoding, JPEG encoding, and 
zlib compression (as discussed above these local compression algorithms either do not 
provide the necessary compression ratio, are slow, or are lossy). In addition RFB 
provides messages for forwarding mouse and keyboard input, authentication, and server 
and client capability negotiation.  
The segmentation components must intercept update request messages sent by the VNC 
client, and screen update messages sent by the VNC server (Figure 57). In Canidae the 
VNC server and VNC client are decoupled. The sender side segmentation component 
sends its own update request message to the VNC server. The received update messages 
are then parsed, and applied to a local 2-D array. The 2-D array is then segmented and the 
segments are sent using the two-level fingerprinting protocol. Simultaneously, the 
receiver side segmentation component intercepts update requests, and responds by 
encoding the received segments in RFB and sending these to the VNC client. 
During initialization the VNC client connects to the VNC server, authenticates itself, and 
negotiates about the screen size, pixel depth, and protocol to be used. The segmentation 
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components must parse the screen size and pixel depth messages to initialize their local 
2-D array. 

The implementation of protocol handling is simplified since the message parsing code 
can be copied from open source VNC implementations. In addition all RFB messages not 
described above, can be forwarded unparsed. Also, it is not necessary to support all 
compression protocols, since the basic Raw, Copy and Hextile provide sufficient 
performance on a LAN network.  

8.5.5 Initial Evaluation 
We evaluate different algorithms for content-based segmentation of 2-D data sets. The 
following questions about the advantages of multi-dimensional segmentation, and the 
tuning of 2-D content-based algorithms are answered: 

1. Does 2-D content-based segmentation improve the compression ratio compared to 
static 2-D segmentation? 

2. Does 2-D application specific segmentation improve the compression ratio and 
time compared to general purpose 2-D segmentation? 

3. What region size should be used to get the best redundancy detection? 
4. Does 2-D segmentation scale with respect to data set size? 

8.5.5.1 Methodology 
We use four VNC data sets, which are 2-D datasets with a high degree of redundancy. 
Each update consists of a screenshot with 1280x1024 or 3328x1536 pixels (display wall), 
and 24 bits per pixel: 

• TMeV: 3786 updates resulting in 14 198 MB of uncompressed data. 
• GeneVaND: 1756 updates resulting in 5910 MB of uncompressed data. 

• Treeview: 7693 screen updates resulting in 28 848 MB of uncompressed data. 
• Treeview-display wall: 994 updates resulting in 14 537 MB of uncompressed 

data. 

8.5.5.2 2-D segmentation 
Compression method GeneVaND TreeView TIGR MeV 
Hextile + Zlib 13.6 19.2 14.8 
Static segmentation 15.9 24.3 16.1 
Probabilistic 2-D segmentation 9.5   
Static + 2-D content based 18.3   
Varg (Static + 1-D content based) 24.0 90.9 29.7 
Varg without movement estimation 23.8 89.6 17.3 
Varg without similar region detection 22.9 82.9 17.1 

Table 22: Compression ratio for different segmentation methods for 2-D screenshot 
data. 
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The achieved compression ratios using the different methods are summarized in Table 
22. This section details the results. First, we compare the Varg compression method 
against other widely used methods, and then find the parameters giving the best 
compression. Finally, the scalability of the Varg method is demonstrated. 

Compared to static segmentation, content-based segmentation improves the compression 
ratio up to 3.0 (Table 20). The improvement is due to content-based segmentation 
achieving higher redundancy detection when using larger segment that compress better 
with local compression algorithms, and hence the total compression ratio improves. 

However, content-based segmentation in both dimensions does not improve redundancy 
detection compared to static segmentation. The problem is that if one of the pixels in an 
anchor-column changes, the fingerprint for the column also changes. The changed 
fingerprint may not be selected as an anchor-column, and when the column boundaries 
are changed, all segment boundaries also change. 

 
Figure 58: Probabilistic 2D pattern algorithm tuned to reduce the pixels in 
overlapping segments, or to reduce the number of pixels not covered by segments. 
Ideally both overlap and coverage should be 100%.  
Probabilistic 2-D segmentation also does not provide better compression ratio than static 
segmentation, since pixels are either not covered or are in overlapping regions. Tuning 
the algorithm parameters either reduces both coverage and overlap, or increases both 
coverage and overlap (Figure 58). In addition, calculating Rabin fingerprints for all 2-D 
regions is computationally costly since a sliding window Rabin implementation cannot be 
used. 
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8.5.5.3 Algorithm parameters 

 

Figure 59: Compression ratio with fingerprinting and static segmentation. 
With static segmentation the best total compression ratio when segments are not 
compressed with zlib is for 4x4 pixel regions (48 bytes), and 32x32 pixels (3072 bytes) if 
zlib is used (Figure 59). Similarly for Varg content-based segmentation, smaller segments 
improve redundancy detection, while larger segments improve zlib ratio and hence the 
total compression ratio. 

The small segment sizes giving the best fingerprint redundancy detection are about 48—
192 bytes. In section 8.4 we found that for such small segments compression ratio is 
limited by the fingerprint size, and that two-level fingerprinting will improve the 
compression ratio. 

There are four parameters in the Varg 2-D segmentation method that can be changed to 
adjust the average region size. Our results for the genomic application traces shows that 
these should be set as follows to achieve the best compression ratio: 

• The static column width should be small. On our experiment platform 16 pixels 
worked well since horizontal scrolling often moved content 16 pixels at a time. 
But a width of 4 pixels gives the best redundancy detection. Small static columns 
increase horizontal redundancy detection, since multiple pixels are typically 
scrolled at a time. In addition redundancy detection may decrease if a column is 
wide enough to include content both inside and outside a scroll-pane.  

• The number of bits used for fingerprint selection, depends on the visualization. 
For the Treeview and TMeV trace the best ratio is when every 8th row is selected 
on the average. For GeneVaND selecting on the average every 32nd row gives the 
best ratio.  

• Minimum region height should be about 8-16 rows if zlib is used, and 4 pixels if 
not. A smaller minimum decreases the total compression ratio due to reduced zlib 
compression ratio. A larger minimum also decreases redundancy detection since 
a change to an anchor row may cause subsequent anchor rows not to be selected 
since they are within the minimum height. 
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• Specifying a maximum region height does not improve compression ratio, but 
may be necessary due to the fingerprint protocol messages having restrictions on 
the number of bits that can be used to store the segment size.  

8.5.5.4 Application specific segmentation 
Setting the parameters as discussed above gives a region size distribution as shown in 
Figure 60. About 10% of the segments have height less than the minimum distance. 
There are three classes of such regions: (i) the segments at the bottom of each column, 
(ii) segments just above a similar region, and (iii) segments below a similar region. Each 
trace has a few segments where the height is above 512 rows. But these often have 
similar content, which compresses well with zlib. 
The last two cases can be avoided by disabling similar detection of column rows with 
identical content (Figure 61). But the total compression ratio is reduced by 1—8% since 
zlib compression ratio decreases. 

 
Figure 60: Segment height distribution for the Treeview trace. Minimum height is 
16, and the median is 19. 
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Figure 61: Segment height distribution for the GeneVaND trace with and without 
similar region detection (the other traces are similar). 
Movement estimation improves the compression ratio for TMeV with 72%, since about 
30% of the updates have predominantly horizontal movement. The compression ratio 
improvement is smaller for the other traces, since few updates had horizontal movement. 

8.5.5.5 Scalability 

 
Figure 62. Cumulative distribution of segment heights shows that these do not 
change when the screen size increases. 
The Varg segmentation method scales with screen size. With a larger screen the same 
algorithm parameters give the best compression ratio, and the distribution of segment 
sizes do not change (Figure 62). However, the total compression ratio improves, due to 
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improved fingerprinting and zlib compression ratio. It is therefore not necessary to tune 
the segmentation method for different screen sizes. 

8.5.6 Future Work 
A full evaluation is required to answer the following questions: 

1. Does 2-D based segmentation methods improve the compression ratio and time 
compared to 1-D segmentation methods for 2-D data? 

2. Does the 2-D based segmentation methods also work well with scientific 2-D 
data? 

3. Does our modified Spring and Wetherall segmentation algorithm achieve similar 
compression ratio as the original algorithm? 

To answer these questions it is necessary to experiment with the 1-D and the 2-D 
segmentation methods described above. The data sets to use in the evaluation could be 
from different scientific domains, such as geometric data, scientific simulation output, 
and satellite images. 

8.5.7 Conclusions 
This paper has evaluated different segmentation methods for 2-D data. The segmentation 
methods are implemented in a network data compression framework called Canidae. It 
allows multiple, data-specific segmentation methods to share a segment compression 
engine. A two-level fingerprinting protocol is used to provide high compression ratio 
with smaller segments than previous global compression systems. Also proposed is a 
novel method to compress 2-D pixel segments by using fingerprinting.  

We found that 2-D content-based segmentation algorithms improve compression ratio up 
to 3.0, compared to static compression methods. In addition we found that applying 
screenshot specific optimizations to the segmentation algorithm, improves screenshot 
compression up to 1.7. In addition we demonstrate that the algorithm parameters can be 
set independent of the visualization and the screen size. 
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