

Reducing the Network Latency and
Bandwidth Requirements of Parallel

and Distributed Applications

Lars Ailo Bongo

A dissertation for the degree of Philosophiae Doctor

UNIVERSITY OF TROMSØ
Faculty of Science

Department of Computer Science

July 2007

 iii

To Kristin.

v

Abstract

Latency and bandwidth requirements often dictate which platform an application must
be run on to achieve acceptable performance. But often there is a cost or availability
incentive for running an application on a platform with lower bandwidth or higher
latency. This dissertation presents four approaches for reducing the network latency
and bandwidth requirements of communication intensive parallel and distributed
applications.
Our first approach for reducing the network latency requirements of parallel
applications is to improve collective communication performance. The latency of
collective operations can be reduced by adapting these to the application and platform
in use. Such adaptation requires performance analysis of message traces collected
internally in the communication system. For large-scale clusters, large volumes of
trace data must be collected, analyzed, and transferred over the network. We propose
a framework for building scalable runtime monitors. Our results show that monitors
for collective operation analysis can be run on large-scale Ethernet and WAN multi-
clusters without significantly perturbing the monitored application. The contributions
are:

• A monitoring framework. It supports the development of a vide variety of
trace based monitors.

• Approach for scalable message tracing with a very small memory footprint
where message traces are processed at runtime by threads run on the cluster
nodes.

• Approach for exploiting underutilized compute and network resources to run a
monitor on a cluster with very low perturbation of the monitored application.

To further reduce the latency of collective operations used for global synchronization
of parallel application threads on a WAN multi-cluster, we implemented new
operations for evaluating global conditions. Measurements demonstrate that the
operation has the same latency on a WAN multi-cluster as on a single cluster for most
global condition evaluations. Our contribution is:

• An allreduce operation that can complete for most cases without WAN
communication, and that does not change the application result.

Our third approach to reduce the network latency requirements of parallel applications
is to overlap communication wait time with computation by overdecomposing a
parallel application. The improvements and limitations of overdecomposition are
documented by analyzing performance data collected for the NAS benchmarks run on
a cluster composed of the first generation simultaneous multithreading (SMT)
processors. The contributions are:

• Method for performance analysis of overdecomposed applications.

• Performance study of overdecomposed parallel applications run on processors
supporting SMT.

Abstract

 vi

Our approach for reducing the network bandwidth requirements of distributed
applications is to divide the transferred data into segments and then eliminate
redundant transfers of segments. Previous approaches do not work well for
compressing multi-dimensional data, such as 2D pixels in remote data visualization
and high-dimensional scientific datasets. In addition, large segments are required to
achieve a high compression ratio. We propose a method to identify and eliminate
redundant data transfers of complex data types over a network. The implemented
prototype allows visualization of genomic data analysis applications interactively
across WANs with relatively low available network bandwidths. Our contributions
are:

• A framework for global compression using two-level fingerprinting and
application specific segmentation, where redundancy detection is separated
from redundancy elimination such that the same compression engine can be
used with different application specific segmentation methods.

• Two-level fingerprinting protocol for efficiently encoding unique segments,
such that smaller segments can be used to improve redundancy detection.

• A novel 2-dimensional content-based segmentation approach for remote
visualization data.

• Design and implementation of a very large cache on disk for storing
previously sent segments.

• A network bandwidth optimized, platform-independent remote visualization
system using two-level fingerprinting to reduce end-to-end latency of screen
updates.

These methods can be composed to improve the end-to-end communication
performance for communication intensive parallel and distributed applications.

vii

Acknowledgements

Many people have helped me with the work presented in this dissertation:

I would like to thank my advisor Professor Otto J. Anshus for his guidance, support,
and encouragement during all my research. In addition, Otto has arranged for me to
collaborate with many smart people.
Also, thanks to my co-advisor Professor Brian Vinter for his guidance and help with
arranging access to the resources necessary for my work on parallel application
scalability.

Prof. John Markus Bjørndalen has helped setting up many experiments and
understanding the results; especially during Otto’s sabbatical.

Prof. Tore Larsen have provided advice and helped write papers, especially during our
stay at Princeton.

Also, thanks to the other Ph.D. students in our group (especially Daniel Stødle and
Espen S. Johnsen) for their valuable comments, and our discussions.

Many thanks to Professors Kai Li and Olga Troyanskaya for arranging for me to stay
a year at Princeton University, and for their guidance during the stay. Kai encouraged
me to work on compression systems, while Olga introduced me to bio-informatics and
showed me how great interdisciplinary work can be. Grant Wallace, William
Josephson, and Christian Bienia have provided help and discussion about the design
and implementation of the Canidae compression system, while Matthew Hibbs helped
with the genomic applications. Also thanks to the other Ph.D. students in Kai’s and in
Olga’s lab, and the other people at Princeton, who made my stay very enjoyable.

Professor Liviu Iftode arranged for me to work with his group, in their fun
atmosphere, at Rutgers University. I very much enjoyed the work on monitoring for
intrusion detection together with Arati Baliga.
Professor Xing Cai at Simula provided a parallel application with an interesting
communication performance problem.
Professor Jonathan Walpole provided us access to a cluster at Oregon Graduate
Institute. Prof. Anne E. Elster provided access to a cluster at the Norwegian
University of Science and Technology, and Profs. Josva Kleist and Gerd Behrmann to
a cluster at Aalborg University.
Our departments technical staff, especially Jon Ivar Kristiansen, but also Ken-Arne
Jensen and Torfinn Holand, have been very helpful with technical support for all our
equipment. Also, thanks to the departments and faculties administrative staff
(especially Svein-Tore Jensen, Jan Fuglesteg, and Ola Marius Johnsen) for practical
help, and the staff at the High Performance Computing Group.

Last, many thanks to the person giving me endless support; my wife Kristin.

Acknowledgements

 viii

My stay at Princeton and Rutgers were supported by grants from The Research
Council of Norway (Project No. 164825), The University of Tromsø, and Princeton
University. The experimental equipment is due to Research Council of Norway grants
159936/V30 and 155550/420.

ix

Contents

Abstract ...v
Acknowledgements..vii
Contents ... ix
List of Figures...xiii
List of Tables...xvii
List of Formulas...xvii
Chapter 1 Introduction ..1

1.1 Latency and bandwidth requirements ..1
1.1.1 Communication intensive application domains2
1.1.2 Execution environments ...4

1.2 Reducing bandwidth and latency requirements ..6
1.2.1 Tuning collective communication operations ..6
1.2.2 Collective operations for WAN multi-clusters ..8
1.2.3 Communication and computation overlap...8
1.2.4 Compression for remote visualization data..9
1.2.5 Compression for large scale-scientific data sets 10

1.3 Approach and methodology... 12
1.3.1 Spanning tree monitoring.. 12
1.3.2 Exploiting application knowledge... 13
1.3.3 Overdecomposition... 13
1.3.4 Content based compression... 14

1.4 Contributions .. 14
1.5 Organization of dissertation... 16

Chapter 2 Collective Operation Performance .. 19
2.1 Introduction... 19
2.2 Summary of papers ... 23

2.2.1 Collective communication analysis... 23
2.2.2 Scalable low overhead monitoring .. 25
2.2.3 Conditional allreduce.. 27

2.3 Discussion... 29
2.3.1 Collective communication analysis... 29
2.3.2 Scalable low overhead monitoring .. 30
2.3.3 Conditional allreduce.. 31
2.3.4 Collective operation benchmarks .. 32

2.4 Additional related work... 33
2.4.1 Collective communication analysis... 33
2.4.2 Scalable low overhead monitoring .. 33
2.4.3 Conditional allreduce.. 34

2.5 Conclusions... 34
Chapter 3 Overdecomposition... 37

3.1 Introduction... 37
3.2 Summary of paper ... 38

3.2.1 Methodology .. 38
3.2.2 Experiment results .. 38

Contents

 x

3.3 Discussion... 40
3.4 Additional related work... 41

3.4.1 Computation-communication overlap ... 41
3.4.2 One-sided communication operations ... 42
3.4.3 Schedulers for parallel applications... 42

3.5 Conclusions... 43
Chapter 4 Content Based Compression ... 45

4.1 Introduction... 45
4.1.1 Varg remote visualization system ... 46
4.1.2 Canidae general purpose compression system....................................... 47

4.2 Summary of papers ... 50
4.2.1 Remote visualization .. 50
4.2.2 Two-level fingerprinting... 53
4.2.3 Multi-dimensional segmentation... 59

4.3 Discussion... 63
4.3.1 Remote visualization .. 63
4.3.2 Two-level fingerprinting... 64
4.3.3 Multi-dimensional segmentation... 65

4.4 Related work ... 66
4.4.1 Redundancy detection... 66
4.4.2 Two-level fingerprinting... 70
4.4.3 Segment cache.. 71
4.4.4 Commercial WAN accelerators .. 73
4.4.5 Remote visualization .. 73
4.4.6 Local compression.. 74

4.5 Conclusions... 75
Chapter 5 Conclusions .. 77
Chapter 6 Future Work ... 79

6.1 Collective performance analysis and monitoring.. 79
6.2 Collective operations for WANs.. 79
6.3 Overdecomposition ... 80
6.4 Remote visualization ... 80
6.5 Two-level fingerprinting ... 80
6.6 Segmenting multi-dimensional datasets ... 81

Chapter 7 Appendix A - Published papers... 83
7.1 Collective Communication Performance Analysis Within the Communication
System... 83
7.2 Low Overhead High Performance Runtime Monitoring of Collective
Communication.. 95
7.3 Extending Collective Operations with Application Semantics for Improving
Multi-cluster Performance.. 107
7.4 Using Overdecomposition to Overlap Communication Latencies with
Computation and Take Advantage of SMT Processors 117
7.5 Systems Support for Remote Visualization of Genomics Applications over
Wide Area Networks.. 129

Chapter 8 Appendix B - Unpublished papers... 151
8.1 The Longcut Wide Area Network Emulator: Design and Evaluation 151
8.2 Impact of Operating System Interference on Ethernet Clusters 159

8.2.1 Introduction.. 159
8.2.2 Methodology .. 159

 xi

8.2.3 Results.. 160
8.2.4 Conclusion ... 160

8.3 Additional overdecomposition experiments... 163
8.3.1 Introduction.. 163
8.3.2 Methodology .. 163
8.3.3 WAN multi-cluster experiments and discussion.................................. 164
8.3.4 User-level scheduler design and evaluation... 165
8.3.5 Conclusions .. 168

8.4 Compression of Network Data Using 2-level Fingerprinting...................... 169
8.4.1 Introduction.. 169
8.4.2 Proposed approach.. 171
8.4.3 Protocol and system implementation... 175
8.4.4 Segment cache.. 184
8.4.5 Segmentation methods.. 188
8.4.6 Initial evaluation... 188
8.4.7 Future work.. 190
8.4.8 Related work .. 191
8.4.9 Conclusions .. 191

8.5 Multi-level Content-Aware Segmentation for Compression of Network Data
 193

8.5.1 Introduction.. 193
8.5.2 Proposed approach.. 193
8.5.3 Segmentation methods.. 194
8.5.4 Segment component implementation .. 197
8.5.5 Initial Evaluation .. 199
8.5.6 Future Work ... 204
8.5.7 Conclusions .. 204

References ... 205

xiii

List of Figures

Figure 1: For the applications in the shaded area, resources must be carefully
scheduled to meet the bandwidth requirements. This “window of scarcity” can be
expanded by exploiting available computational and storage resources. The
figure is based on figure 2 in [16]. ..1

Figure 2: Three approaches for orchestrating the communication and synchronization
for a many-to-many collective operation. The configurations shown are a flat tree
(left), a hierarchy aware spanning tree (middle), and a configuration where four
spanning trees are connected by an all-to-all communication graph (right).7

Figure 3: Timeline visualization from the Vampir tool [53, 164] (now Intel Trace
Analyzer [113]) identifying the MPI_Allreduce as a bottleneck. There is one
horizontal bar per thread that shows when the thread was computing (green) and
communicating (red). ...7

Figure 4: A parallel application decomposed and mapped with one thread per
processor decomposition (left), and overdecomposed such that multiple threads
are run on the same processor (right). ...9

Figure 5: Communication-computation overlap can improve execution time even if
some overhead is introduced. ...9

Figure 6: Global compression used to compress screen content. Previously sent pixel
regions (segments) are stored in cooperating caches at the sender and receiver
side. The data to be sent is segmented, and in place of replicated segments only
the cache index is sent over the WAN. ... 11

Figure 7: Content based 1-D anchoring. First hash values are calculated for fixed size
substrings, including all overlaps. Anchorpoints are then selected based on the k
least significant bits in the hash value. The anchorpoints divide the text into
segments. Modifying the text does not change most anchor points, and hence
most segments are identical. ... 11

Figure 8: Standard allreduce (right) and conditional allreduce (left) as used by an
application (top) and implemented in the communication system (bottom)....... 13

Figure 9: Architecture of proposed compression approach, consisting of components
for content-aware segmentation, redundant segment elimination with two-level
fingerprinting, and a large segment cache. Applications can choose their
appropiate content-based segmemtation method according to their data type. ... 14

Figure 10: Three approaches for selecting a collective operation spanning tree
configuration: static rule (left), latency measurements of predefined algorithms
(middle), reconfiguration based on performance analysis (right)....................... 19

Figure 11: EventSpace architecture. A collective operation spanning tree is
instrumented with multiple event collectors that store trace data in bounded
buffers. Monitors read data from buffers using an event scope that also filters and
reduces the data read. ... 20

Figure 12: Coscheduling implementation. Message tracing is integrated to the
communication system. Monitor threads can be blocked when accessing a trace
buffer. Blocked threads are unblocked either before or after an application thread
calls a communication operation. Scheduling policies are implemented by

List of Figures

 xiv

specifying when to unblock monitor threads (for example: unblock all monitor
threads when all application threads are blocked on a collective operation call).
.. 21

Figure 13: Conditional allreduce implementation for two clusters. First a local result
is calculated on both clusters. If the condition is evaluated to be true, the local
result is returned. Otherwise, the partial result received from the other cluster is
read from the cache, combined with the local result, and returned. 22

Figure 14: Noise delaying one thread in a parallel application causes all other threads
to wait at synchronization points thus increasing the latency of the synchronizing
collective operation. ... 23

Figure 15: The spanning tree from Figure 10 instrumented using the MPI profiling
layer (middle) and our EventSpace tool (right). .. 23

Figure 16: The pathmap visualization shows the computation time, wait time, and
network latency for each thread (left). The measurement points are shown on the
y-axis, while the time spent at each point is shown on the x-axis. The
visualization can also be used to compare the performance of different spanning
tree configurations (right)... 24

Figure 17: Load balance monitor with centralized trace analysis. 25
Figure 18: Load balance monitor with distributed trace analysis............................... 26
Figure 19: Synchronization point and network latency monitor. 26
Figure 20: WAN multi-cluster topology used to measure conditional collective

operation performance improvements... 28
Figure 21: Conditional-allreduce latency for each cluster (results for Dominic are not

shown). For most iteration the latency is equal to the LAN latency. But when the
algorithm is close to converge, data from other clusters are needed and the
latency includes the one-way WAN latency to these clusters. 29

Figure 22: Compression system for remote visualization, consisting of a genomic
application remotely visualized, the VNC remote desktop server, VNC client, 2-
D bitmap aware redundancy detection, and 2-phase fingerprinting. 46

Figure 23: Factors influencing two-level fingerprinting compression ratio. 49
Figure 24: Experimental testbed used to evaluate the compression ratio and

compression time of the Varg system. .. 51
Figure 25: The size of updated screen regions is much larger for the Java Treeview

genomic application, than for Office applications. .. 52
Figure 26: Cumulative communication time distribution for Treeview screen updates

sent over the Princeton-Boston WAN... 53
Figure 27: Compression ratio for different fingerprint and segment sizes. Data

redundancy is 75% and collision bytes are ignored... 55
Figure 28: Miss penalty bytes sent for different optimistic fingerprint sizes. (for all

but the 4 byte fingerprints the miss penalty is insignificant).............................. 55
Figure 29: Fingerprint and collisions bytes sent for different segments per

conservative fingerprint ratios. ... 56
Figure 30: Compression ratio for different redundancy levels when using 4 byte, 5

byte, and 20 byte fingerprints. The 5 byte fingerprint compression ratios with
and without collisions are almost identical. For 20 byte fingerprints these are
identical since there are no collisions.. 57

Figure 31: Cache size increase for remote visualization of three genomic applications.
.. 58

 xv

Figure 32: Cache hit entry age. Most cache hits are for recently inserted segments, but
when execution time increases the number of hits for older entries increase. Note
that the bucket size is 6021 for Treeview and 2445 for the other two................ 58

Figure 33: Probabilistic 2D pattern algorithm tuned to reduce the pixels in
overlapping segments, or to reduce the number of pixels not covered by
segments. Ideally both overlap and coverage should be 100%. 61

Figure 34: Compression ratio with fingerprinting and static segmentation................ 62
Figure 35: SOR execution time and estimated overheads for the Ethernet and WAN

multi-cluster experiments. .. 165
Figure 36: A user-level scheduler layer is added above the communication system

layers and the operating system scheduler. Application threads and helper
threads in the communication system can be blocked and unblocked at this layer.
.. 166

Figure 37: User-level scheduling performance improvements for SOR with allreduce
run on an Ethernet cluster. All numbers are relative to the one thread per
processor mapping. .. 167

Figure 38: User-level scheduling performance improvement for SOR without
allreduce run on an Ethernet cluster. The improvement is relative to the one
thread per processor mapping... 168

Figure 39: Global compression used to compress screen content. Previously sent
segments are stored in cooperating caches at the sender and receiver side. The
data to be sent is segmented, and in place of replicated segments only the cache
index is sent over the WAN.. 170

Figure 40: Architecture of proposed compression approach, consisting of components
for context-aware segmentations, redundant segment elimination with two-level
fingerprinting, and segment directory cache. Applications can choose their
appropriate content-based segmentation method according to their data type.. 171

Figure 41: Timeline for an update operation, were the network latency and segment
transmission times are both assumed to be 10ms. The disk lookup time is
overlapped with the time to send and receive segments not in the segment cache.
.. 175

Figure 42: Compression ratio for different fingerprint and segment sizes. Data
redundancy is 75% and collision bytes are ignored... 178

Figure 43: Miss penalty bytes sent for different optimistic fingerprint sizes. 178
Figure 44: Bytes sent for fingerprint and collisions, when the number of segments per

conservative fingerprint is changed. ... 179
Figure 45: Compression ratio for different redundancy levels when using 4 byte, 5

byte and 20 byte fingerprints. The 5 byte fingerprint compression ratios with and
without collisions are almost identical, and identical for 20 byte fingerprints that
have no collisions... 180

Figure 46: Two-level fingerprinting messages (FPi is an optimistic fingerprint
message, and CFPi is a conservative fingerprint message). 180

Figure 47: Stages and data structures used in the fingerprint components send path.
.. 183

Figure 48: Stages and data structures used in the fingerprint components receive path.
.. 184

Figure 49: A container consists of a hash table used to map fingerprints to segments in
the containers segment buffer. .. 185

Figure 50: Container data structures... 185

List of Figures

 xvi

Figure 51: For segment writes the last accessed (current) container is first checked. If
there is a hash table collision, writes are attempted to the N subsequent
containers, and then the N previous containers. If all collide, writes to the
remaining containers in memory are attempted, before the containers on disk.186

Figure 52: Cache size increase for remote visualization of three genomic applications.
.. 189

Figure 53: Cache hit entry age. Most cache hits are for recently inserted segments, but
when execution time increases the number of hits for older entries increase. Note
that the bucket size is 6021 for Treeview and 2445 for the other two.............. 189

Figure 54: The minimum increase in redundancy detection for which reducing the
segment size increases compression ratio (bytes sent due to collisions are
ignored). .. 190

Figure 55: A 2-D array is first divided into fixed size columns. Then for each column,
content-based anchor rows divide the column into segments. 196

Figure 56 The 2-D array is divided into large tiles (4 tiles in this case). Each tile is
segmented by first selecting anchor-columns, and then within each column
selecting anchor-rows... 197

Figure 57: VNC updates segmented using Canidae. The VNC protocol is used for
communication between the VNC components and the segmentation
components. ... 198

Figure 58: Probabilistic 2D pattern algorithm tuned to reduce the pixels in
overlapping segments, or to reduce the number of pixels not covered by
segments. Ideally both overlap and coverage should be 100%. 200

Figure 59: Compression ratio with fingerprinting and static segmentation.............. 201
Figure 60: Segment height distribution for the Treeview trace. Minimum height is 16,

and the median is 19... 202
Figure 61: Segment height distribution for the GeneVaND trace with and without

similar region detection (the other traces are similar)...................................... 203
Figure 62. Cumulative distribution of segment heights shows that these do not change

when the screen size increases.. 203

xvii

List of Tables

Table 1: Commonly used collective communication operations provided by the
Message Passing Interface (MPI). ..3

Table 2: Characteristics of parallel application platforms. ..5
Table 3: Characteristics of networks used in this dissertation and in related work.......5
Table 4: Application slowdown cause by different monitors. 26
Table 5: Communication behavior, and the overdecomposition improvements for the

SOR and NAS benchmarks. Small messages are less than 1 KB, large more than
1 MB. For benchmarks with collective operations and asynchronous messages
these typically contribute most to the communication time. Improvement is
relative to the one thread per processor composition... 39

Table 6: Overdecomposition performance limitations for the SOR, and the NAS
benchmarks. ... 39

Table 7: TCP/IP throughput and round-trip latency for different networks measured
using Iperf [3]. ... 51

Table 8: Compression ratio for four genomic data analysis applications. 52
Table 9: Average compression time per screen update. The total compression time

depends on the application window size, and how well the differencing and 2D
pixel segment compression modules compress the data before zlib is run. 53

Table 10: Default parameters used to model two-level fingerprint compression ratio.
.. 54

Table 11: Two-level fingerprint messages. M is meta data size, and S is segment data
size. Optimistic and conservative fingerprint sizes are respectively 5 and 20
bytes. ... 57

Table 12: Compression ratio relative to Hextile for different segmentation methods
for 2-D screenshot data... 60

Table 13: Overview of global compression systems. .. 67
Table 14: Number of iterations where at least one of 50 threads is delayed for 1.35

ms, 2 ms or 5 ms. ... 160
Table 15: Average round trip latency in milliseconds between cluster sites in the

emulated WAN multi-cluster topology. .. 164
Table 16: Average bandwidth between cluster sites in the emulated WAN multi-

cluster topology.. 164
Table 17: Default parameters used to model two-level fingerprint compression ratio.

.. 177
Table 18: Two-level fingerprint messages. M is meta data size, and S is segment data

size. Optimistic and conservative fingerprint sizes are respectively 5 and 20
bytes. ... 181

Table 19: Required redundancy for a cache of a given size used to store a 100GB data
set filled with 32 byte segments. If the segment size is doubled, or the data set
size is reduced by two, 92% of redundancy is required for a 128 MB Bloom
filter, 84% for a 256 MB Bloom filter, and so on.. 187

Table 20: Memory allocation for largest data structures (in addition 100 MB of
memory is allocated for other data structures, executables, OS, etc). 187

List of Tables

 xviii

Table 21: Meta-data size for different segmentation methods implemented in Canidae.
.. 188

Table 22: Compression ratio for different segmentation methods for 2-D screenshot
data. ... 199

xix

List of Formulas

Equation 1 models compression ratio achieved using two-level fingerprinting. S is the
data set size, R is the redundancy found, k is the number of optimistic fingerprint
bits, l is the number of conservative fingerprint bits, p is the number of segments
per conservative fingerprints, and s is the segment size. S/s is used to estimate the
number of segments in the data set. The sum estimates the probability of a
segment inserted to the cache having the same optimistic fingerprint as an
existing segment. We assume each collision causes the entire group of segments
to be resent... 54

Equation 2: Formula for modeling compression ratio achieved using two-level
fingerprinting. .. 177

Equation 3: Formula for calculating the false positive ratio for Bloom filters (left), and
the same formula reduced with respect to k (right). n is the maximum number of
entries, k is the number of lookups, m is the number of bits per entry. 187

1

Chapter 1

Introduction

This chapter gives an overview of this dissertation. First, three important classes of
parallel applications are described, and their communication performance
requirements are defined. Then four approaches for utilizing available computation
and storage resources to improve the end-to-end communication performance for
these application classes are presented. The problems for each approach are defined,
the methodology for solving the problems is presented, and contributions are stated.
Finally, the organization of the rest of the dissertation is outlined.

1.1 Latency and bandwidth requirements
Distributed applications require communication over a network. For communication
intensive applications the communication will be frequent and (or) involve large
amounts of data. In these instances, the performance is limited either by the
communication latency; the time to transfer an empty message, or the network
bandwidth; the number of bytes that can be transferred in a given time. High latency
or insufficient bandwidth may cause applications to fail to meet response time,
quality, or resource utilization requirements. Some examples are given below.

Figure 1: For the applications in the shaded area, resources must be carefully
scheduled to meet the bandwidth requirements. This “window of scarcity” can
be expanded by exploiting available computational and storage resources. The
figure is based on figure 2 in [14].
During the last three decades network bandwidth has increased 1000x, and network
latency has decreased 20x [164]. These improvements allow developing new
applications that take advantage of the higher bandwidth and lower latency to provide
new or improved services. However, these applications often operate in a “window of

Introduction

 2

scarcity” where network resources must be carefully managed to meet the
applications requirements (Figure 1).

Processor performance and disk capacity have also had similar improvements [164].
In addition, processors and disks can be added incrementally to distributed computing
platforms, making it much easier to improve computation or storage capacities than it
is to achieve similar improvements for communication throughput or latencies.
Therefore, distributed computing platforms typically have compute and storage
resources that may be exploited to expand the window of scarcity, and hence may
allow running applications with higher network performance requirements than is
provided by the platform.

Below we describe three classes of communication intensive applications, and
motivate why the network is the bottleneck for these applications.

1.1.1 Communication intensive application domains
First three application domains are described. Then the platforms these are typically
run on are characterized.

1.1.1.1 Parallel applications
Parallel computing involves splitting time-consuming computations into tasks that are
executed in less time simultaneously on multiple processors. Parallel computing has
become an important tool in many scientific disciplines, and has transformed many
disciplines [97]. The typical parallel application is a scientific simulation, such as
fluid dynamics simulation or weather prediction. But parallel applications are also
used in other domains, such as rendering of movie special effects.
The parallelization process can be divided into three steps [66]. First, the computation
is decomposed into tasks that are assigned to threads (or processes). The goals of this
step are to expose parallelism, distribute the tasks to achieve a good workload balance
among the threads, and to reduce communication volume. Second, a programming
model and language are chosen, and used to orchestrate data accesses,
communication, and synchronization among threads. Important performance goals are
to reduce communication and synchronization costs as seen by processors, and to
reduce serialization caused by access to shared resources. Third, threads are mapped
to processors such that network locality can be exploited.

However, parallelization does not improve the execution time of all applications for
two reasons. First, not all parts of an application can be run in parallel, and hence the
sequential parts will eventually limit the execution time reduction (Amdahl’s law
[13]). Second, and usually more important, the communication and synchronization
necessary to coordinate all processors introduces an overhead, which typically
increases with the number of parallel application threads.

The two most common parallel programming models are multi-threading and message
passing. Multi-threading usually require fewer changes to a sequential application, but
a shared address space platform must be used. These typically have only 2—16
processors, and hence limit the scalability of the applications [74]. Therefore, many of
the parallel applications written today employ message passing. For message passing
the Message Passing Interface (MPI) [148, 149] has become the de facto standard.
MPI libraries provide both point-to-point and collective communication operations
(Table 1). The collective operations implement coordinated communication involving

1.1 Latency and bandwidth requirements

 3

multiple processors, and can be used to broadcast data, gather data, scatter data,
synchronize processes and execute reduce operations on distributed data.

Operation name Communication pattern Usage

Barrier Many-to-many Synchronize processes

Broadcast One-to-many Send data from one to many processes

Gather Many-to-one One process receives data from many
processes

Scatter One-to-many Divide data from one process to many
processes

Reduce Many-to-one Addition, min, max, multiplication, or
another operation on distributed data.
A single process receives the result.

Allreduce Many-to-many Reduce and then broadcast the result to
all processes. Also synchronizes the
processes.

Table 1: Commonly used collective communication operations provided by the
Message Passing Interface (MPI).
Communication intensive parallel applications require low latency of communication
operations (milliseconds to microseconds), and/or high network bandwidth (up to
several gigabits per second). Failure to meet these requirements on a platform limits
the number of processors that can be utilized efficiently, and hence the performance
of the parallel application.

1.1.1.2 Remote visualization
Data analysis in scientific fields such as genomics is a collaborative process. Studies
typically include multiple researches, often from different institutions, regions, and
countries. Such collaboration requires interactive discussion of the data and its
analysis, which is difficult to do without sharing visualizations. To make discussions
truly effective, interactive exploration of the data should be provided in a seamless
manner, independent of the choice of data analysis applications, platforms, and the
users geographical location.

Remote desktop systems, such as VNC [184] or Microsoft Remote Desktop [67], can
be used for remote collaboration, by allowing several users to share the visualization
on a single desktop. In addition, a remote desktop system can be used to interact with
an application running on a different platform than on a users machine.

Most recent desktop systems are thin-client systems, consisting of a server that runs
the applications logic and stores most of the application state, and clients that only
implement functionality to display received screen updates, and forward user input to
the server. Screen updates and user input events are encoded using a remote display
protocol. The protocol can either provide a rich set of high-level display commands
(as in Microsoft Remote Desktop or the X window system [198]), or fewer low-level

Introduction

 4

commands (as in VNC, Sun Ray [200] or THINC [25]). For high-latency networks,
low-level protocols have better performance [131], since they requires less
synchronization.
For interactive remote visualization the latency of screen updates should be less than
150 milliseconds [204, 219]. The bandwidth requirements range from tens of
megabytes up to hundreds of megabytes depending on the screen resolution and
update frequency. Improvements in latency allows for smoother interaction, while
increased bandwidth allows improving the quality of the visualization including a
higher resolution.

1.1.1.3 Data Intensive Science
Current scientific instruments and simulations are creating peta-scale data volumes,
and the amount of data produced is roughly doubled each year [94]. Examples include
the Sloan Digital Sky Survey (SDSS) astronomical survey [201], the BaBar high
energy physics experiment [21], the Entrez federated health sciences database [158],
and the CERN Large Hadron Collider [56].

The amount of data stored, and the computation necessary for analyzing the data
requires building a data storage and analysis infrastructure. The infrastructure may be
used to access the data by thousands of scientists participating in the project working
at hundreds of institutions. Building a distributed infrastructure has several
advantages including no single point of failure, and load balancing of data,
computation, and user support [57]. In addition the different parts of the infrastructure
can be individually funded by the participating organizations.

A main challenge for such a distributed infrastructure is providing the necessary
network bandwidth between the compute and storage resources. The bandwidth
requirements are large, gigabits or higher per second. Available network bandwidth
limits the data sets that can be transferred over the network, and hence the type of
analysis scientists can do on their local resources.

1.1.2 Execution environments
The bandwidth and latency requirements often dictate which platform an application
must be run on to achieve acceptable performance. But often there is a cost or
availability incentive for running an application on a platform with lower bandwidth,
higher latency, or both.
Parallel applications are run on a wide variety of platforms including: a single
processor with multiple cores and multithreading support, Beowulf clusters were tens
of commodity components computers are connected using Ethernet, large parallel
systems with hundred thousands of processors connected using high performance
interconnects, to a Grid that is a federation of Beowulf clusters connected using a
wide area network (in this dissertation we refer to such systems as WAN multi-
clusters). The platforms mainly differ in the number of processors and the bandwidth
and latency provided by the network interconnect (Table 2).
Many organizations use a Beowulf platform since it provides the best price-
performance ratio. But, the relatively low bandwidth and high latency of the Ethernet
network typically used in Beowulf clusters does not allow some parallel applications
to be run efficiently. Recently, many organizations have connected their clusters to
form a WAN multi-cluster in order to share their compute resources. The even higher

1.1 Latency and bandwidth requirements

 5

latency and lower bandwidth of WANs limits the usability of using such federation of
Beowulf clusters.

Platform Processors Network
interconnect

Network
Bandwidth

Network
Latency

Advantage

A single
commodity
processor
[89, 110,
214]

1 (1-4
cores and
1—16
threads)

None Cost, ease of
programming

Beowulf
cluster [92,
185, 216]

Tens Gigabit
Ethernet [90]

Tens of
GB/s

Micro-
seconds

Performance/
cost

WAN Multi-
cluster (Grid)
[46, 84, 85]

Hundreds Ethernet and
WAN

MB/s Milli-
seconds

Cost
(resources
are shared)

Large parallel
system [11,
95, 132]

Hundred
thousand

Myrinet [40],
Quadrics
[165],
InfiniBand
[109],
proprietary…

GB/s Micro-
seconds

Highest
performance

SETI@home
[236]

Millions WAN MB/s Days Cost (free
resources)

Table 2: Characteristics of parallel application platforms.

Network Latency Total bandwidth TCP/IP throughput
Fast Ethernet Microseconds 100 Mbit/sec 8 MByte/sec
Gigabit Ethernet Microseconds 1000 Mbit/sec 80 MByte/sec
Tromsø-Odense WAN
[42] (shared)

32 ms 155 Mbit/sec 0.32 MByte/sec

Tromsø-Princeton WAN
[49] (shared)

120 ms 2500 Mbit/sec 0.2 MByte/sec

LambdaGrid [116]
(dedicated network)

78 ms 10 Gbit/s 1.13 GByte/sec

CERN LHC Tier-0 [57]
(dedicated network)

Microseconds 2x 10 000
Mbit/sec

1600 MByte/sec
(our assumption)

Table 3: Characteristics of networks used in this dissertation and in related
work.
Remote visualization may require specialized hardware and a dedicated network to
access the raw data, and do the computation for the visualization [116]. But often the
visualization must be sent over a shared wide area network to the user. Also, during
the last decade more users have got access to specialized visualization platforms that

Introduction

 6

provide higher resolution than a typical desktop screen, such as display walls with
very high resolution [135]. When such large displays are used, the bandwidth
requirements become even higher. Current shared wide area networks do not provide
the bandwidth and latency necessary for high-resolution interactive remote
visualizations (Table 3).
The compute and storage resources in a large data set infrastructure are often
connected using dedicated high bandwidth networks [57]. But, it is usually not
economically feasible to build a dedicated network to all users. Many users must
therefore access the data using a public wide area network, where the available
bandwidth is shred among the users. The resulting application level throughput may
be as low as a megabyte per second, limiting the size of datasets that can be
transferred in a reasonable amount of time ((Table 3).

1.2 Reducing bandwidth and latency requirements
The previous section explained how the network bottleneck limits the scalability of
parallel applications run on Beowulf and WAN multi-clusters, the data set sizes that
can be transferred over a WAN, and the quality of remote visualization over a WAN.
Network performance can be improved by modifying the network hardware, the
software communication layer, or the application. Purchasing and deploying new
network hardware is costly, but will improve the performance of many
communication intensive applications. Rewriting applications is often not a practical
solution due to the large number of applications that must be rewritten by the
application programmers. Therefore a solution is needed that is both cheap to deploy,
and that does not require application code changes.
Such a solution can be added to the software communication layer. Most distributed
applications communicate using a well-defined protocol or by using operations
specified by an interface. Usually the protocol or interface only specifies the
semantics of the communication operations. Therefore, different implementations of
the protocol or interface can use the available resources differently, and even add new
functionality internally. Such solutions are described below.

1.2.1 Tuning collective communication operations
A collective operation spanning tree distributes the computation of the operation
among the cluster hosts and specifies how the processors communicate and
synchronize (Figure 2). The performance of the collective operations used by parallel
applications depends on the spanning tree used, and the mapping of the spanning tree
to the computation nodes and network topology [126, 205, 218, 229]. Adapting the
algorithm for the resources in use [32, 80, 81] can therefore reduce collective
operation latency.

1.2 Reducing bandwidth and latency requirements

 7

Figure 2: Three approaches for orchestrating the communication and
synchronization for a many-to-many collective operation. The configurations
shown are a flat tree (left), a hierarchy aware spanning tree (middle), and a
configuration where four spanning trees are connected by an all-to-all
communication graph (right).
The performance of a collective operation spanning tree depends on many factors
including the cluster topology, cluster hosts, the load on hosts, the message size, and
communication-computation overlap. It is therefore difficult to develop a
mathematical model [12, 31, 65] or use simulation to find the best configuration [80,
81, 229]. Furthermore, on shared platforms such as a compute Grid, the resources
allocated to an application may change for each time the application is run. It is
therefore necessary to monitor and analyze the performance of collective operation
spanning trees used by the application running on the actual platform to find the best
configuration [32, 80, 81, 126, 205, 218, 229, 242].

Figure 3: Timeline visualization from the Vampir tool [51, 162] (now Intel Trace
Analyzer [111]) identifying the MPI_Allreduce as a bottleneck. There is one
horizontal bar per thread that shows when the thread was computing (green)
and communicating (red).
Existing commercial [51, 107, 111] and research [55, 99, 115, 119, 144, 155, 178,
194, 225, 241] monitoring and performance analysis tools for parallel applications
have one or more of the following problems:

Introduction

 8

• The performance analysis can identify a certain collective operation call as the
bottleneck (as shown in Figure 3). However, the tools are not able to provide
insight into why the operation has poor performance and how the problem can
be avoided.

• The monitor introduces overheads that can significantly perturb the monitored
application such that a significant error is introduced to the results. The
overheads are due to the monitor and monitored application sharing, and hence
competing, for processor memory and network resources.

• The monitor does not scale to large clusters with hundreds of computers. The
monitors may require storing hundreds of megabytes of data per node, which
must often be transferred to a single node for analysis. Also, processing the
data can take tens of minutes, and thereby not allowing runtime analysis, or
even post-mortem analysis, between two application runs.

• The tools are difficult to use, since they may require application code
modifications, recompiling or re-linking the application, or installing new
software on the platform. Also, applications must usually be re-run in order to
collect performance data.

1.2.2 Collective operations for WAN multi-clusters
Collective operations ease the programming of parallel applications. The small set of
operations provided by for example MPI, can be used to implement most of the
required collective communication for a parallel application. The semantics of these
operations are chosen such that the result of an operation is predictable and
repeatable. But, the latency of the operation is determined by the communication and
synchronization necessary to satisfy the semantics requirements for the collective
operation. For example if the hosts in Figure 2 are connected using WANs, the
latency of using a flat spanning tree includes two WAN latencies (for the reduce and
broadcast phase). To only include a single WAN latency, an all-to-all graph can be
used for WAN communication [126]. But with this change the operation can no
longer guarantee that the same results is always returned for operations on floating
point numbers [126]. However, the latency of the collective operation may still be
orders of magnitude larger than on a single cluster.

In order to run a tightly synchronized parallel application on a WAN multi-cluster
more radical changes to the collective operations are necessary to achieve the
necessary orders of magnitude reduction in latency. For the users of parallel
applications it is important that the changed collective operations does not change the
results produced by the parallel program. Also, application programmers should not
be required to make changes to the applications source code.

1.2.3 Communication and computation overlap
Parallel applications are usually decomposed and mapped such that there is one thread
per processor, since this minimizes the communication and synchronization overhead,
and reduces the number of cache conflict misses. However, a processor will mostly be
idle when its thread is blocked on a communication operation. Parallel application
performance can be improved if the processor is more efficiently used. One approach
is to overlap the wait time with computation for another thread [29, 70, 134, 173,
207]. In order to map multiple threads to each processor, the problem can be
overdecomposed such that there are more tasks than processors (Figure 4). Such

1.2 Reducing bandwidth and latency requirements

 9

overdecomposition requires no changes to application code, since most parallel
applications are coded such that the number of threads can be specified at load time.

Figure 4: A parallel application decomposed and mapped with one thread per
processor decomposition (left), and overdecomposed such that multiple threads
are run on the same processor (right).

Figure 5: Communication-computation overlap can improve execution time even
if some overhead is introduced.
Computation-communication overlap reduces parallel application execution time
when the amount of wait-time used for computation is larger than the introduced
overheads (Figure 5). Another advantage of overdecomposition is that it may provide
the thread level parallelism (TLP) necessary to utilize modern processors with
simultaneous multi-threading (SMT) and chip multiprocessors (CMP).

Overdecomposition is normally not used for parallel applications for two reasons.
First, for most applications the number of communication events, synchronization
events, and number of bytes communicated all increase [66]. Second, the computation
in parallel applications is structured such that data accesses optimize processor cache
usage [170]. Hence, each context switch may require reading a new working set into
the caches.

Motivated by the introduction of processor with CMP or SMT processors, the benefits
and limitations of overdecomposing parallel applications should be re-evaluated. In
particular, the degree of computation-communication overlap, cache miss increase,
communication overhead, and synchronization overhead should be quantified when
applying overdecomposition. To provide the results, performance metrics collected at
multiple software and hardware layers must be combined.

1.2.4 Compression for remote visualization data
A remote visualization system for collaborative scientific research should satisfy three
requirements. First, the response time should be fast enough to allow collaborating
parties to interact smoothly, even when using visualization-intensive software across a

Introduction

 10

relatively low-bandwidth wide area network (WAN). Second, collaborating parties
should not be required to replicate data since datasets can be large, sensitive,
proprietary, and potentially protected by privacy laws. Third, the system should allow
collaborators to use any visualization and data analysis software running on any
platform.
Adding remote collaboration capabilities to applications [63, 82, 150] may satisfy the
first and the second requirements, but achieving universal adaptation is difficult due
to then number of different applications in use. Web browser-based remote
visualization software can satisfy the third requirement, but not the first two because
usually these are single-user system and do not optimize the network bandwidth
requirement. Most thin-client remote visualization systems, such as Sun Ray [200],
THINC [25], Microsoft Remote Desktop [67] and Apple Remote Desktop [19] satisfy
only the second requirement because they do not perform efficient data compression,
and are platform-dependent.

The platform independent thin-client VNC [184] system, satisfies the second and third
requirement. VNC has one graphics primitive: “put rectangle of pixels at position (x,
y)” [184]. This allows separating the processing of application display commands
from the generation of display updates. The client can therefore be stateless and hence
easy to implement, maintain and port. The disadvantage of the protocol is that
bandwidth requirements are high. To reduce bandwidth the screen updates can be
compressed before being transferred over the network. However, existing
compression algorithms for two-dimensional pixel segments do not provide the
compression ratio and low compression time necessary for smooth interaction. In the
following section we propose a novel method to compress a long visualization
session.

1.2.5 Compression for large scale-scientific data sets
Distributed platforms have available computational and storage resources that can be
used to compress network data in order to reduce the bandwidth requirements of
distributed applications. This allows reducing the transfer time for large scientific data
sets, and improving the resolution, color depth, and frame rate of remote
visualizations.

Compression algorithms encode information using fewer bits than the original un-
encoded representation uses. The compression can be either lossy or lossless. Lossy
compression is often used to encode image [235], audio [113] or video data [88] since
it typically achieves a higher compression ratio, and the reduced quality is acceptable.
But for scientific data sets lossless compression is typically required. Similarly, for
scientific remote visualization any changes to the provided visualizations are
undesirable.
Network data is typically compressed using a local compression algorithm [9, 188,
202] which decouples compression from decompression, such that no communication
between the server and client is necessary when doing the compression and
decompression. A popular local compression algorithm is DEFLATE [73], used in the
zlib/gzip library[9]. DEFLATE combines the Lempel-Ziv (LZ77) duplicate string
elimination algorithm [244], with Huffman encoding for bit reduction [103]. LZ77
detects duplicate strings and replaces these with a back-reference to the previous
location of the string. Huffman encoding replaces symbols with weighted symbols
based on frequency of use. The problem with existing local compression algorithms,

1.2 Reducing bandwidth and latency requirements

 11

is that the ratio achieved for scientific data is low, while compression time is to high
for remote visualization.

Figure 6: Global compression used to compress screen content. Previously sent
pixel regions (segments) are stored in cooperating caches at the sender and
receiver side. The data to be sent is segmented, and in place of replicated
segments only the cache index is sent over the WAN.
During the last few years global compression has been suggested to improve
compression ratio and to reduce compression time [156, 171, 209]. The sender and
receiver cooperate to maintain caches of previously sent data. Data is compressed by
eliminating transfer of redundant bytes (Figure 6). First, a redundancy detection
algorithm divides the data to be sent into segments. Then, redundancy elimination is
implemented by sending a fingerprint instead of replicated segments. The fingerprint
is usually a hash value of the segment, and is used to retrieve the data from a segment
cache. Such algorithm can detect redundancy in the entire data sets, while redundancy
detection in local compression algorithms is within a local scope.

Figure 7: Content based 1-D anchoring. First hash values are calculated for fixed
size substrings, including all overlaps. Anchorpoints are then selected based on
the k least significant bits in the hash value. The anchorpoints divide the text into
segments. Modifying the text does not change most anchor points, and hence
most segments are identical.

Introduction

 12

The simplest redundancy detection approach is to anchor segments statically (such as
an 8×8 pixel grid, used in the MPEG [88] compression algorithm). The problem with
a static approach is that the anchoring is sensitive to data movements such as screen
scrolls. To improve redundancy detection, a content-based technique introduced by
Manber [145] is typically used to segment the data. His method applies a Rabin
fingerprint filter [50, 175] over a byte data stream and identifies anchor points
wherever the k least significant bits of the filter output are zeros. With a uniform
distribution, an anchor point should be selected every 2k bytes. The anchor points can
then be used to either divide the data into segments [156] or as starting points for
growing redundant regions [209]. Since the anchor points are selected based on the
data content, they move with the data such that data insertion or removal in a
datastream does not influence anchorpoint selection (Figure 7). Another advantage is
that Rabin fingerprint calculation is very fast compared to the redundancy detection
mechanisms typically used by local compression algorithms.
The compression ratio of global compression depends on the amount of redundancy
found in the data, and the fingerprint to segment size.
Previously proposed segmentation approaches work well only with 1D data types,
such as web content, documents, email and binaries, while many important
applications use complex data types such as 2-D screen buffers for remote data
visualization, and multidimensional scientific datasets. Therefore, using a redundancy
detection algorithm that is aware of the data structure can improve the compression
ratio.
Previous global compression systems [100, 156, 172, 180, 220, 222] typically chose a
secure hash, such as 160-bit SHA-1 [7], as a fingerprint so that the probability of a
fingerprint collision can be lower than a hardware bit error rate. However, since the
global compression ratio is limited by the ratio of the average pixel segment size to
the fingerprint size, using a large fingerprint size will reduce the compression ratio.

1.3 Approach and methodology
The methodology used in this work is to first build a prototype for the approaches
proposed in the previous section, and then use the prototype to document the benefits
and limitations of each approach.

1.3.1 Spanning tree monitoring
We attempt to reduce collective operation latency by adapting the collective operation
spanning tree to the cluster in use. First a trace based method for collective operation
spanning tree performance analysis is developed. Second, a runtime monitor system is
built, and demonstrated to provide the low perturbation and data processing capability
necessary for real-time analysis of the traces. Third, the monitor system is used to
measure how the latency of globally synchronizing collective communication can be
reduced on the WAN multi-cluster.

To get insight into where the bottlenecks of collective operation are and how these
can be avoided, messages traces are collected internally in the communication system.
These traces provide a detailed chronological view of the applications execution, and
are used to calculate statistics and visualizations used to aid in adapting the spanning
tree to the cluster resources in use.

1.3 Approach and methodology

 13

To reduce monitor overhead and improve monitor scalability we use several novel
techniques. Storing message traces in fixed size buffers, where old records are
discarded when a buffer is full, reduces storage overhead. Coscheduling application
and monitor threads to exploit underutilized compute and network resources reduces
monitor computation and communication overhead, and distributes the analysis of
message traces among the cluster nodes. Monitor scalability is further improved by
using efficient collective operations for data gathering, and separating functional
concerns of the monitor such that different parts can run at different speeds.

The research platform consists of Beowulf clusters used independently, and connected
together using a WAN. For these platforms software modifications can significantly
improve collective operation performance. We focus on latency bound collective
operations since these are most commonly used [231]. Also, latency bound operations
are good benchmarks for a monitor, since they are easily perturbed [118, 166], and
more trace data is produced since the operations can be frequently called.

1.3.2 Exploiting application knowledge

delta = computation();
global_delta =
MPI_Allreduce(delta);
if (global_delta > epsilon)
 break;

delta = computation();
global_delta =
cond_allreduce(delta,
 LARGER_THAN_EPSILON, epsilon);
if (global_delta > epsilon)
 break;

MPI_Allreduce(v):
 t = lan_allreduce(v);
 r = wan_allreduce(t);
 return r;

cond_allreduce(v, type, epsilon):
 if (type==LARGER_THAN_EPSILON)
 t = lan_allreduce(v);
 if (t > epsilon)
 return t;
 else
 r = wan_allreduce(t);
 return r;

Figure 8: Standard allreduce (right) and conditional allreduce (left) as used by
an application (top) and implemented in the communication system (bottom).
To reduce the latency of synchronizing collective operations used on a WAN multi-
cluster, we implement a new operation that can be used for calculating a global value
used to make global decisions. Such operations can be used for example to determine
when a linear algebra computation has converged, and hence determine when all
threads should move to the next stage in the applications algorithm. A call to this
operation can return once the condition is determined to be true (Figure 8). This
allows reducing the number of messages sent over a WAN, and hence the latency of
the operation. The experiment methodology is similar as for spanning tree monitoring
described above.

1.3.3 Overdecomposition
To evaluate the benefits of utilizing overdecomposition, the NAS parallel benchmark
suite was used on a Beowulf cluster composed of computers with the first generation
simultaneous multi-threaded processors (Intel Pentium 4). Also, we measured the
benefits of using overdecomposition for WAN multi-clusters. To provide the data
necessary for the performance analysis, we use our monitor tool developed for

Introduction

 14

collective operation analysis, hardware performance counters, operating system
counters, and system level profilers.

1.3.4 Content based compression

Figure 9: Architecture of proposed compression approach, consisting of
components for content-aware segmentation, redundant segment elimination
with two-level fingerprinting, and a large segment cache. Applications can
choose their appropiate content-based segmemtation method according to their
data type.
We propose a network data compression framework called Canidae that allows
application users to build content-aware redundancy detection methods to improve the
compression ratio (Figure 9). Our method is different from previous global
compression approaches in four ways. First, data segmentation is separated from
redundancy elimination such that specific content-based segmentation methods can be
applied to complex data types. Second, we propose a 2-dimensional segmentation
approach that works well with remote data visualization data transfers. Third, we
employ a two-level fingerprinting method to optimize the encoding of unique data
segments. Forth, we use a very large cache for storing segments that allows detecting
redundancy in a larger scope.
Using the compression architecture described above, we built a remote visualization
system called Varg that satisfies all three requirements defined in section 1.2.4. To
satisfy the interactive performance requirement, the Varg system implements a novel
method to compress redundant two-dimensional pixel segments over a long
visualization session. To satisfy the no raw data sharing, and platform independence
requirements, the Varg system is based on a platform-independent remote desktop
system VNC, whose implementation allows remote visualization of multiple
applications in a network environment.
To demonstrate the applicability of the framework for remote visualization, we used
the framework to compress data sent by VNC when using several visualization
intensive genomic applications.

1.4 Contributions
To improve parallel application scalability on Beowulf clusters we improve collective
operation performance. Our contributions are:

1.4 Contributions

 15

• A new performance analysis method to identify bottlenecks in spanning trees
using message traces collected internally in the communication system.
Existing parallel analysis tools has treated the communication system as a
black box.

• A monitoring framework that supports the development of tunable runtime
monitors for parallel applications. Implementation of several monitors has lead
to the discovery of:

o New method to improve the scalability of message tracing. Trace
records are stored in small buffers and processed at the same rate as
they are produced by monitor threads distributed and run on the cluster
computers.

o Novel method for reducing the perturbation of a monitor by
coscheduling monitor threads with parallel application threads, such
that data can be analyzed when the processor is idle.

The implemented monitors were run on Ethernet and WAN multi-clusters with almost
no perturbation of the parallel application, and using only a few megabytes of
memory for storing the traces. The results demonstrate that trace based analysis is,
even when more data produced than for earlier approaches, practical on large scale
clusters. Using the monitors we were able to reduce collective operation latency up to
1.5.

Our contribution to further reduce the latency of globally synchronizing collective
operations on WAN multi-clusters is:

• The novel conditional-allreduce operation used to implement global decisions.
In most cases the condition used to make the decision can be evaluated
without communication over WANs. Only minimal changes are required to
application code, and the result produced by the application does not change.

Conditional-allreduce reduced the latency of the allreduce operations by several
orders of magnitude, such that the threads in a parallel application run on a WAN
multi-cluster can be synchronized with the same overhead as on a single cluster. This
may allow running other than embarrassingly parallel applications on a computational
grid.
To reduce parallel application execution time by improving the parallel efficiency on
Beowulf clusters, we contribute with:

• Method for identifying improved TLP and overdecomposition overheads
using data from multiple software and hardware layers.

• The first, to our knowledge, study of the utility of overdecomposed parallel
applications run on Beowulf type clusters composed of hosts with SMT
processors.

We demonstrate how overdecomposing the NAS parallel benchmarks can reduce
execution time. But it may also increase execution time due to TLP not improving,
and overheads caused by an increase in context switches and cache misses.
To reduce the network bandwidth requirements of distributed applications sending
large scale scientific data sets and remote visualization data over a low-bandwidth
WAN, we make the following contributions:

Introduction

 16

• A framework for global compression using two-level fingerprinting and
application specific segmentation. Compared to previous systems
segmentation is decoupled from redundancy detection such that the same
compression engine can be used with different application specific
segmentation methods. In addition:
o A novel two-level fingerprinting protocol that improves redundancy

detection by using smaller segments, while maintaining data consistency.
Past work used large fingerprints, thus requiring large segments to
maintain a high compression ratio.

o Application specific segmentation method for multi-dimensional data that
improves the redundancy detection for complex data types. Previous
general- purpose 1-D segmentation algorithms do not take into account the
structure and dimensionality of the data.

o The design and implementation of a very large cache on disk for storing
previously sent segments that improves compression ratio. Existing
systems use much smaller segment caches.

• A network bandwidth optimized, platform-independent remote visualization
system using two-level fingerprinting protocol, and:

o A novel segmentation algorithm for 2-D pixel data that detects pixel
movement on a screen. Existing compression methods do not provide
the compression ratio and time necessary for interactive remote
visualization over networks with low bandwidth.

o A novel use of two-level fingerprinting and eventual consistency to
reduce the end-to-end latency of segment messages.

Extending the VNC remote visualization system, we can support interactive
visualization-intensive genomic applications in a remote environment by reducing
bandwidth requirements from 30:1 to 289:1.

1.5 Organization of dissertation
This first chapter has presented the background for this dissertation, motivated the
problems addressed, presented the methodology used to solve these, and summarized
lessons learned solving these. The remaining parts are organized as follows.
The second chapter is about collective operation performance analysis, and is based
on three papers. In the first we develop and use a post-mortem method for
performance analysis (this paper is in Section 7.1). The second paper (Section 7.2)
presents the design of a monitor that allows the analysis to be done in real-time. The
third paper (Section 7.3) describes and evaluates conditional collective operations.

The third chapter is based on a paper (in Section 7.4) that evaluates how
overdecomposition improves parallel application performance on clusters.

The fourth chapter is about global compression and consists of three papers. The first
paper (Section 7.5) describes and evaluates an earlier implementation of the general-
purpose compression framework designed for remote visualization of genomic
applications. The second paper (Section 8.4) describes and evaluates our general-
purpose two-level fingerprinting method. The third paper (Section 8.5) evaluates
application specific segmentation methods for 2-D data.

1.5 Organization of dissertation

 17

The fifth chapter summarizes the dissertation and lists contributions, and the sixth
chapter outlines future work.

In addition published papers are in Appendix A, while Appendix B contains
unpublished papers and experiment results.

19

Chapter 2

Collective Operation Performance

In the previous chapter we motivated the need for improved collective operation
performance. In this chapter three papers for improving collective operation
performance are presented and discussed.

2.1 Introduction
The goal of parallel programming is to improve application performance by utilizing
many processors. Previous work has found that the number of processors that can
efficiently be utilized is for many parallel applications limited by collective operation
performance [174, 231]. Therefore, during the last years there have been many
attempts to improve collective communication performance including [23, 26, 27, 32,
80, 81, 105, 123, 126, 140, 143, 152, 163, 205, 213, 218, 229, 242]. Recent work has
also compared the performance of different collective operation spanning tree
configuration [80, 229]. However, a single best configuration has not been found.
Instead, the spanning tree needs to be adapted to the application and the platform in
use [32, 80, 81, 126, 163, 205, 218, 229].

if (msg_size > 100K)
 t=get_flat_tree();
else
 t=get_binary_tree();

use(t);

if (tested_algorithms
 == n_algorithms)
 t = get_best_tree();
 use(t);
else
 t = get_next_tree();
 s = get_time();
 use(t);
 e = get_time();
 update_perf_data(
 t, e-s);
 tested_algorithms++;

if (first_time)
 t = get_tree();

use(t);
r = do_perf_analy(t);
t = reconf_tree(t,r);

Figure 10: Three approaches for selecting a collective operation spanning tree
configuration: static rule (left), latency measurements of predefined algorithms
(middle), reconfiguration based on performance analysis (right).
There are at least three methods used to tune collective operation performance (Figure
10). The most common is to implement a few algorithms that create spanning trees of
different shape, such as a balanced binary tree. The algorithm to use for a given
collective operation call is then selected at run-time based on a few parameters such
as the message size (as done in MPICH [5] and LAM/MPI [3]). The selection policy
is specified at design time, but an algorithm may adapt the spanning tree to the cluster
topology [36, 126] if a topology specification is provided. Recent work has shown
that performance can be improved by selecting the algorithm dynamically based on
performance measurements of different algorithms run on the actual platform in use
[81, 229]. We present a third method in the paper in section 7.1. Rather than selecting
an algorithm that was specified at design time, we reconfigure different parts of a

Collective Operation Performance

 20

spanning tree based on the results of a performance analysis. The spanning tree can
therefore be intelligently adapted to any cluster configuration, and the resulting
spanning tree may have a shape that is difficult to express algorithmically. For
example, some branches may be binary trees while others are oct-trees.

To detect bottlenecks in a spanning tree it is necessary to collect message traces
internally in the communication system. Such traces provide a detailed chronological
view of the applications execution, and can be used to calculate statistics and
visualizations that provide insight to where time is spent during a collective operation
call. The applicability of the method is demonstrated by adapting spanning trees to
different Beowulf clusters and WAN multi-clusters based on the results.

Figure 11: EventSpace architecture. A collective operation spanning tree is
instrumented with multiple event collectors that store trace data in bounded
buffers. Monitors read data from buffers using an event scope that also filters
and reduces the data read.
The performance analysis method presented in section 7.1 is based on post-mortem
analysis of message traces. Message tracing is a popular performance analysis
approach and is used by many tools [55, 99, 111, 115, 119, 144, 178, 194, 241]. But
message tracing does not scale to large-scale clusters for two reasons. First, hundreds
of megabytes of trace data are collected even on small clusters. Maintaining and
storing such large data sets can significantly perturb the monitored application [61,
160, 230]. Second, the data is typically processed sequentially, and the traces recorded
on all cluster nodes must therefore be gathered to a single front-end computer for
analysis. Transferring the data and running the analysis may take several minutes, and
can only start after the application has exited.
To avoid the overhead of existing message trace monitors [55, 99, 111, 115, 119, 144,
178, 194, 241], alternative data reduction approaches have been used. These include:
recording higher level data [15, 16, 91, 93, 112, 128, 230], recording data only on a
few selected nodes in a cluster [181, 190], and only recording data for a small period
of the applications execution time [151]. However, none of these approaches is able to

2.1 Introduction

 21

provide a complete chronological view of the applications execution, which may
cause some performance problems not to be detected or understood [61].

Figure 12: Coscheduling implementation. Message tracing is integrated to the
communication system. Monitor threads can be blocked when accessing a trace
buffer. Blocked threads are unblocked either before or after an application
thread calls a communication operation. Scheduling policies are implemented by
specifying when to unblock monitor threads (for example: unblock all monitor
threads when all application threads are blocked on a collective operation call).
To solve the problem of high perturbation and storage requirements of existing trace
based monitor systems, we developed the EventSpace system that is presented and
evaluated in the paper in section 7.2. EventSpace is based on the following design
ideas:

• A flexible framework is provided that supports the implementation of many
different runtime trace-based monitoring tools.

• The functional concerns of the monitor are separated (Figure 11). Data
collection is always enabled, but different analysis tools can use the data.
These tools may produce temporarily results gathered and visualized by other
tools. More importantly, the performance and perturbation concerns are also
separated. This allows tuning each part separately to trade-off between
introduced perturbation and data processing capability.

• To reduce memory usage we exploit underutilized compute and network
resources to analyze the trace records at the rate they are produced. Trace
records can be stored temporarily in small fixed size bounded buffers, since
the monitors have sufficient compute power to analyze all records before they
are discarded.

• The analysis of message traces is distributed among the cluster nodes. The
combined compute power can be used to for compute intensive analysis of the
recorded data before records are discarded (two examples of monitors
implementing distributed analysis are shown in Figure 18 and Figure 19).

• To reduce perturbation, the monitor threads are coscheduled, as shown in
Figure 12, such that monitors can use the processor and network when these
are not used by the application.

Collective Operation Performance

 22

Figure 13: Conditional allreduce implementation for two clusters. First a local
result is calculated on both clusters. If the condition is evaluated to be true, the
local result is returned. Otherwise, the partial result received from the other
cluster is read from the cache, combined with the local result, and returned.
Although spanning tree reconfiguration can significantly improve collective operation
performance, the best WAN multi-cluster configuration will still be limited by the
WAN latency, and hence be orders of magnitude slower than on a single cluster [126].
Therefore, it is necessary to make changes to the collective operation to further
improve performance.
In the paper presented in section 7.3 we evaluate two novel changes to collective
operations for further reducing the latency of globally synchronizing collective
operations on a WAN multi-clusters:

• Conditional collective operations that can be used to implement global
decisions. These are typically used to synchronize parallel application threads.
Conditional-allreduce can return once the condition is determined to be true
(or false). Many conditions can be evaluated using only a subset of the
contributed values. Therefore it is often not necessary to wait for values sent
over WANs, and hence the latency of the operation is not limited by the WAN
latency (Figure 13).

• For large clusters, noise introduced by operating system activity and system
daemons has been shown to contribute significantly to collective operation
latency [118, 166, 226] (Figure 14). It may be possible to exploit the noise to
overlap communication wait time with computation, and hence hide some of
the WAN latency.

2.2 Summary of papers

 23

Figure 14: Noise delaying one thread in a parallel application causes all other
threads to wait at synchronization points thus increasing the latency of the
synchronizing collective operation.
The remaining sections in this chapter are as follows. Section 2.2 summarizes the
results of the papers in sections 7.1, 7.2, and 7.3. The results are discussed in section
2.3. Section 2.4 presents related work published after our papers, and section 2.5
concludes.

In addition, a technical report about the WAN emulator used in the papers is in
section 8.1, and a summary of an unpublished paper about operating system
interference on Ethernet clusters is section 8.2.

2.2 Summary of papers
This section summarizes the results of the three papers.

2.2.1 Collective communication analysis
The first paper (section 7.1) answered the following questions:

• What type of statistics and visualization are useful to understand collective
communication bottlenecks?

• Which factors influence the spanning tree performance?
• How should the spanning tree be reconfigured to avoid each type of

bottleneck?
• How much can performance improve by reconfiguring the spanning tree?

2.2.1.1 Methodology

Figure 15: The spanning tree from Figure 10 instrumented using the MPI
profiling layer (middle) and our EventSpace tool (right).

Collective Operation Performance

 24

Many parallel application monitoring tools record message trace using the MPI
profiling layer [149]. However, the collected trace data is not sufficient to understand
collective communication problems, since the communication system is treated as a
black box. We instrumented the communication system to record message traces
internally in the communication system (Figure 15). This provides information about
the time spent on each node for the computation and synchronization in the spanning
tree. Also, the traces can be used to calculate the communication latency for each
message sent. The data collection can be done with very low overhead (less than 3%),
but storing the traces requires hundreds of megabytes even for short runs on clusters
with tens of processors.

To answer the above questions, we used the collected message traces to analyze the
performance of spanning trees on clusters with different number of cluster nodes,
processors per node, network latency, and network bandwidth.

2.2.1.2 Experiment results

Figure 16: The pathmap visualization shows the computation time, wait time, and
network latency for each thread (left). The measurement points are shown on the
y-axis, while the time spent at each point is shown on the x-axis. The
visualization can also be used to compare the performance of different spanning
tree configurations (right).
We use the pathmap visualization (Figure 16) to detect load balance problems, sort
branches in the spanning tree into groups with similar performance, and to detect
bottlenecks. The visualization is created by calculating statistics for the time spent for
synchronization computation, and communication for each thread.
The latency of the allreduce collective operations consists of three parts. First the
arrival time is the time between the operation call of first and last thread. Second, the
reduce latency is the time from the last thread called the operation until the result is at
the root of the spanning tree. Third, the broadcast latency is the time from the root
received the reduced value until the last thread received it. We found the performance
to be mostly influenced by the arrival time, synchronization overheads during
broadcast, and the network latency.

Predicting how a reconfiguration of the spanning tree will change each factor is
difficult, since the factors are not independent. For example, the communication
latency depends on the load on the communicating nodes. Therefore, we found it
necessary to compare the spanning trees by plotting these in a single pathmap (Figure
16).

2.2 Summary of papers

 25

To configure a spanning tree, the depth and width of sub-trees are adjusted. If the
bottleneck is due to the arrival time, either the application workload must be
redistributed, or the spanning tree must be differently mapped to the cluster. If the
bottleneck is due to the load on nodes, a deeper tree can be used such that multiple
partial-reductions and broadcasts can be done in parallel. Similarly, if communication
latencies contribute most, a broader tree can be used to reduce the number of network
links. Our results show that performance could be improved up to 1.5 compared to
collective communication configurations used by popular MPI implementations.

2.2.2 Scalable low overhead monitoring
In the second paper (section 7.2) the EventSpace monitor system is presented. The
evaluation of the prototype answers the following questions:

• How much is the monitored application perturbed when traces are stored in
buffers shared by a single writer and multiple readers, and how much memory
should be allocated for the buffers used to store the traces?

• How should monitors be implemented and tuned to achieve the necessary
performance to analyze the records in a buffer before they are discarded?

• How can monitors be adapted to reduce application perturbation or to increase
monitor performance?

• Is perturbation reduced by coscheduling of monitor and application threads to
utilize unused cluster resources?

• Does collective operation monitoring scale to very large clusters and WAN
multi-clusters?

2.2.2.1 Methodology
We experimented with two collective communication monitors that implement
runtime analysis using the performance analysis method described above. The load
balance monitor provides an overview of how much time each thread spends on
collective operations. Many message tracing libraries collect similar amount of data.
The synchronization point and network latency monitor calculates the statistics
required to draw the pathmap visualization (described above). These collect and
process more data than most existing trace based analysis tools.
The load balance monitor analyses one message trace per thread, and provides results
similar to other parallel application monitors (as discussed in section 1.2.1). The
synchronization point and network latency monitor requires combining and analyzing
more traces, and requires more computation.

Figure 17: Load balance monitor with centralized trace analysis.

Collective Operation Performance

 26

Figure 18: Load balance monitor with distributed trace analysis.
To experiment with different approaches for implementing monitors, the load balance
monitor was implemented using a centralized and distributed approach. The
centralized approach gathers data to a front-end node for analysis (Figure 17). The
event scope used to gather the data does some filtering and reduction of the traces on
the cluster. These are executed close to the data source, and are used to reduce the
data volume transferred to the front-end node. In the distributed approach, analysis
threads are run on the cluster nodes. These read data from the message traces,
calculates derived metrics, and writes these to bounded buffers used to store
intermediate results (Figure 18). The intermediate results are then gathered to a single
node for presentation.

Figure 19: Synchronization point and network latency monitor.
Coscheduling is evaluated using the synchronization point and network latency
monitor (statsm shown in Figure 19). This monitor is implemented using distributed
analysis, since the derived metrics require more computation, and in addition some
metrics are calculated using trace data collected on two nodes.

Experiment LAN overhead WAN overhead
Data collection only None—1% None—1%
Synchronization and latency analysis threads 5—9%
…with co-scheduling 1%
Centralized load balance monitor 0.4% 1%
Distributed load balance monitor 1% 1--3%
Synchronization and latency monitor 2% None

Table 4: Application slowdown cause by different monitors.
To measure monitor performance and perturbation benchmarks with frequent
collective operation calls were monitored. Such communication intensive benchmarks
represent applications for which collective operation performance improvements are
most interesting. In addition, monitoring frequent calls will introduce more
perturbation and require the highest performance from the monitor. The benchmarks
were run and monitored on a Beowulf cluster and a WAN multi-cluster.

2.2 Summary of papers

 27

2.2.2.2 Experiment results
The experiment results are summarized in Table 4. Data collection to bounded buffers
does not significantly perturb the monitored application, since less than 1% execution
time overhead is introduced to the monitored parallel application. Also, application
execution time does not significantly increase when multiple monitors simultaneously
read data from the buffer. The storage requirements are very low. Allocating about 10
megabyte of memory is typically enough to ensure that all trace records are processed
before being discarded.
Both the centralized and distributed implementation of the load balance monitor is
able to analyze over 99% of the data before trace-records were discarded (the buffer
size can be increased to ensure that 100% of the data is analyzed before being
discarded). The application execution time overhead introduced by the monitors
ranged from 0—3%, with the centralized monitor having the largest overhead. With
distributed analysis the functional concerns can be separated, such that all data is
analyzed at the rate it is produced, but gathered to a node for presentation at a slower
rate. Reducing the gather rate can also be used to reduce the perturbation of the
monitor.
Without coscheduling the synchronization point and network latency monitor
introduced 9% overhead to the application. But coscheduling reduced the overhead to
1%.

The monitors scale with cluster size, since the analysis workload is divided among
threads that monitoring a fixed size subtree. For a larger cluster, the number of
analysis threads is simply increased. The data gathering to a front-end node for
presentation also scales well, since the analysis threads can reduce the number of
cluster nodes from which data is gathered. For all monitors the time required to
analyze the collected performance data is smaller than the latency of the operation.
Thus, the monitors can be used even for micro-benchmark consisting of only
collective communication.

Monitoring collective operations on WAN multi-cluster is simpler than on a single
cluster of the same size, since the analysis computation time is the same but the
collective operation latency is larger. Also, the performance for both the collective
operation and monitor data gathering is limited by WAN latency.

2.2.3 Conditional allreduce
In the third paper (section 7.3) we experimented with two approaches for reducing
allreduce execution time on WAN multi-clusters. The experiments answered the
following questions:

• Can collective operation latency be hidden in system noise cause by operating
system interference for a multi-cluster with WAN links?

• Does our conditional allreduce operation reduce allreduce latency compared to
existing approaches?

Collective Operation Performance

 28

2.2.3.1 Methodology

Figure 20: WAN multi-cluster topology used to measure conditional collective
operation performance improvements.
For the evaluation four clusters with about hundred nodes in total were used. The
clusters were located in Norway and Denmark, and the largest WAN latency was
about 35 ms (the topology is shown in Figure 20). The SOR kernel was used for the
evaluation, since it represents a typical usage of collective communication for
synchronizing the threads in a parallel application.
An allreduce operation implemented according to the MPI standard was, as expected,
limited by the two-way latency of the slowest WAN. The wide area network aware
collective operation used in [126], only improved the latency by 10%. But other
WAN topologies show the expected 50% improvement. But, the latency is still
limited by the highest one-way WAN latency in the topology.

2.2.3.2 Experiment results
For most conditional allreduce calls, the condition can be evaluated using values
contributed by threads on a single cluster. Hence, most calls can return without
waiting for messages sent over WANs, and the latency of the operation is similar to
the single-cluster latency. For the remaining algorithm iterations, a message from
another cluster is typically enough to evaluate the condition. For these, the latency is
limited by the smallest WAN latency (Figure 21). Finally, for the remaining iterations
the latency is similar to the WAN aware algorithms.

We find that system noise does not significantly contribute to collective operation
execution time for medium size Ethernet clusters (see section 8.2 for details).

2.3 Discussion

 29

Figure 21: Conditional-allreduce latency for each cluster (results for Dominic are
not shown). For most iteration the latency is equal to the LAN latency. But when
the algorithm is close to converge, data from other clusters are needed and the
latency includes the one-way WAN latency to these clusters.

2.3 Discussion
This section provides a high level discussion of the results presented in the previous
section. In addition, the choice of benchmarks used in the papers is motivated at the
end of this section.

2.3.1 Collective communication analysis
In a dynamic environment such as many compute Grids, the resources allocated to an
application rapidly changes. It is therefore necessary to rapidly reconfigure the
collective operation in order to adapt to the changes. We believe the approach
demonstrated in the paper in section 7.1 provides the necessary insight to rapidly find
the best spanning tree configuration. Our results demonstrate that for some cluster
topologies the best spanning tree has a non-uniform shape that is difficult to predict
and create using an algorithm. However, we have not documented that using
performance analysis to reconfigure a spanning tree can be faster than searching
through a repository of algorithms (as is done in [81]).

Collective operation performance analysis requires collecting data internally in the
communication system. We used a research prototype communication system [32,
233] where adding such instrumentation was easy. But, in order for the method to be
widely adapted the many communication systems implementing the MPI standard
must be instrumented. Such instrumentation is realistic for three reasons. First, the
recorded information is portable and minimal (recorded are: operation type, message
size, start time, and end time). Second, the necessary data can be provided by the new
Peruse monitoring interface (discussed in section 2.4). Third, as demonstrated by the
EventSpace monitoring system, such data collection has very low overhead.
Another important requirement for the method to be applicable is that the
communication system in use supports reconfigurable spanning trees. Recent MPI

Collective Operation Performance

 30

implementations such as Open MPI [87] are module based, making it easy to add such
functionality (as demonstrated in [35, 36, 117]).

To our knowledge this is the first study that attempts to identify the bottlenecks in
collective operations rather than just comparing the performance of several algorithms
[80, 229]. Our evaluation also differs in that we attempt to improve a spanning tree by
configuring different parts of the tree.

In this work performance analysis was limited to the allreduce collective operation.
Other operations that use similar spanning trees can also be analyzed using our
method, as shown in section 7.3 were we extended the method to analyze all-to-all
message exchange, and in Chapter 3 where we also monitor computation-
communication overlap. The method itself is independent of synchronization variable
implementations, and communication system implementation, since it is based on
visualizations and statistical analysis of synchronization point wait time, network wait
time, synchronization call overhead, and the wait time before a calculated result is
returned to all callers. But in practice a monitoring system as described in the
following section is required.

2.3.2 Scalable low overhead monitoring
To tune collective operations we analyzed low-level message traces. Even on our
medium size clusters, a large amount of trace data is produced. But in contrast to
earlier assumptions [189] and results [61, 230] we have demonstrated that all data
collected for collective operations can be analyzed without significantly perturbing
the monitored application, and that the approach is scalable. The approach can also be
used on WAN multi-clusters as demonstrated in the paper in section 7.3.

The low perturbation and low storage requirements of our data collection approach
suggest that it could be added to a parallel programming communication system and
always be enabled. This would provide performance information about the
communication system similar to the information provided by the performance
counters on processors, the /proc filesystem in the Linux operating system, and the
Ganglia [147] tool on clusters running the Rocks distribution [147]. Such an interface
may increase the use of parallel application performance analysis tools, since it would
no longer be necessary to re-compile or re-link the parallel application to enable data
collection. Such an interface allows developing portable performance analysis tools.
Using EventSpace, both simple monitors doing centralized message trace analysis,
and more complex monitors doing distributed analysis can be built. Both require
gathering data from multiple nodes to a single node for presentation. The data is
gathered using collective communication spanning trees. The spanning trees can do
data reduction, filtering, and other computations. The advantage of such spanning
trees is improved performance, and the approach has been used by many other tools
[24, 71, 78, 147, 167, 189, 208].

Distributed analysis handles more data, scales better, and has lower perturbation than
centralized monitoring. The reason for the improvements is that the threads are run
closer to where the data is produced, and they introduce a level of separation between
data collection and presentation. But the monitor is more complex to implement. The
load balance monitor could be implemented using centralized analysis, and we believe
other analysis tools that provide high-level performance information can be
implemented using this simpler approach.

2.3 Discussion

 31

We did not find the monitors spanning tree shape to be important for monitor
performance and perturbation (as speculated in [189]). The most efficient technique
for reducing perturbation is to add a layer of separation, such that threads running on
the compute nodes analyze data at the rate it is produced, but only intermediate results
are gathered for presentation at a lower rate. To implement a level of separation,
monitors must pull data. Pulling also makes scheduling of a multi part monitor
threads easier, since each part can run at maximum speed, independent of the other
parts.

Communication intensive applications run on Ethernet clusters are not able to fully
utilize the compute and network resources, since parallel application threads are often
blocked waiting for data from other nodes, or for collective operations to complete.
The idle resources can be utilized for running monitor threads. Allocating separate
nodes for monitor tasks (as suggested in [189]), can increase perturbation since on
platforms similar to ours, communication requires more processor and network
resources than just locally analyzing the data.
To utilize idle time it may be necessary to coschedule application and monitoring
threads. The scheduler can be implemented by the communication system if both the
monitor and application use it. Such an assumption is realistic since both must access
the shared buffers used for storing the traces. The coscheduling results demonstrate
that the unused processor resources can be exploited to run other tasks such as
monitors, with perturbation similar to other (less powerful) data reduction approaches
[230]. To our knowledge coscheduling has not been used for reducing monitor
perturbation in previous work. In Chapter 3 we explore another approach for utilizing
the idle time.

A limitation of the evaluation is that the monitor approach was evaluated by
monitoring collective communication. Point-to-point communication monitoring may
have higher perturbation, and require even better monitor performance; especially if a
derived metrics is calculated using trace data from both nodes. Also, using a cluster
with a faster interconnect can increase the communication operation call frequency
and therefore increase the amount of data produced, and hence increase the
perturbation and performance requirements. However, even for such clusters there are
idle compute resources that can be used by the monitor [129]. In addition the monitor
will also benefit from the better communication performance. Finally, the monitored
collective operations were not implemented by an MPI communication system. But
previous work [35, 36, 117] has shown that the communication system used in the
evaluation has collective operation performance which is similar to the popular
LAM/MPI communication system [52].
EventSpace provides a library used by analysis tools to access, reduce, and combine
data from message traces. The analysis tools themselves are programmed using a
combination of C and Python, but the results are presented to the user using a GUI.
This is the approach used by most performance tools today. An alternative approach
would be to provide a declarative language like SQL that could be used to access the
trace data (as demonstrated by data stream management systems [22]).

2.3.3 Conditional allreduce
The latency of the conditional allreduce operation is orders of magnitude lower than
ordinary allreduce. But only operations that return a single number, rather than an
array, can be made conditional. Also, performance will probably only improve for

Collective Operation Performance

 32

many-to-many or many-to-one communication, since the main advantage of
conditional operations is that not all participating threads have to be synchronized.
However, the remaining operations that either return an array, or have one-to-many
communication, are typically used to distribute values used in the computation, and
hence cannot be changed without affecting the result computed by the application (an
exception is all-to-all where receivers can continue with its computation before the
message transfer has completed [106].). Reduce operations are also the most
commonly used collective operations [231].

Conditional operations require changes to collective operation semantics. In addition
application code needs to be changed to specify an operation as conditional, and the
condition to evaluate. We believe a pre-compiler could do this automatically.
Previous work has identified noise caused by operating system interference as an
important scalability limitation for application with globally synchronizing operations
run on large clusters with high performance interconnects [118, 166, 226]. We did not
find noise to have a significant effect on parallel application performance on Ethernet
clusters and WAN multi-clusters. Thus, these platforms require different performance
improvement approaches. It is therefore important that research is also done on these
platforms and not only on clusters with high performance interconnects. Conditional
allreduce is one such contribution.
We have focused on WAN collective operation performance in this paper. In Chapter
3, we investigate an approach for tolerating the WAN latency for point-to-point
operations. Other approaches for running parallel applications on a WAN are
described in [168].

2.3.4 Collective operation benchmarks
In the tree papers presented in this chapter micro-benchmarks and benchmarks were
experimented with. Unfortunately there does not exist a parallel benchmark suite
targeted at collective operation performance. In this section we briefly examine the
benchmarks used in related work [34-36, 80, 81, 123, 143, 163, 242].
The parallel programming community has a long tradition of using a small set of
parallel benchmark suites such as Linpack [4], SPLASH-2 [240], NAS [157], the
ASCI Purple benchmarks [133] , and the new HPCC benchmarks [1]. Of these,
Linpack has been ported to many platforms, but it consists of only one kernel, while
SPLASH-2 is oriented toward shared address space multiprocessors. The ASCI
Purple benchmarks is a suite that can be used on large scale clusters [231, 232], but
the benchmark are coded to use a combination of MPI and OpenMP. Unfortunately,
there are few collective communication benchmarks that are widely in use (except the
Pallas PMB micro-benchmarks [6]). In some of the recent papers on collective
communication optimization [44, 105, 126, 143, 205, 213, 229] three papers [123,
140, 218] use two kernels from NAS. Both use the same type of collective
communication. The other papers either use only micro-benchmarks or their own
applications.

A collective communication benchmark should spend most of the execution time
doing collective communication (Chen and Patterson use a similar argument for I/O
benchmarks in [58]). The benchmark should also be realistic. Benchmark with 50%
collective communication time relative to execution time, are realistic since it has
been found that realistic parallel efficiency can be as low as 40% [129]. In [232]
hundreds of processors are required before benchmark execution time was limited by

2.4 Additional related work

 33

communication performance. But, many researchers do not have access to such large
clusters. Instead the size of the problem computed by the benchmark can be reduced
to increase the communication to computation ratio. A large enough reduction will
make most benchmarks communication intensive. This does not only apply to our
benchmarks, but also for the SPLASH-2 benchmarks [129]. We have verified that
reducing the problem size does not change the communication behavior of the
benchmarks used in our papers.

2.4 Additional related work
This section supplements the related work presented in the papers and in the
discussion in section 2.3.

2.4.1 Collective communication analysis
Above we have presented many of the existing approaches for optimizing collective
operation performance (the paper in section 7.1 provides additional details). Below
we describe the new MPI Peruse interface, and relate our work to an approach
published last year for tuning collective operation performance.

Peruse was motivated by the need for detailed information about the communication
system internal activities triggered by MPI calls. The interface has been implemented
in Open MPI [124, 211] and PACX-MPI [125]. The Peruse standard exposes events
including: start and end timestamp of data transfers, and timestamps for when a
message is added or removed from a queue. In addition, a communication system can
expose events not in the specification. Peruse can therefore provide the performance
data necessary for collective operation performance analysis. Our work complements
Peruse in that we demonstrate how to use the exposed data, and we provide a
mechanism for efficient collection, analysis, and gathering of the exposed data.
The importance of tuning collective communication operations to adapt to Ethernet
clusters has been demonstrated in [80, 81]. In the first paper [80], the algorithms are
statically tuned by using two techniques: topology aware spanning trees, and using
linear search for empirically selecting a spanning tree algorithm from a repository.
The second paper [81] reduces the overhead of finding the best algorithm, by reducing
the number of collective operation calls necessary until the best algorithm is found in
the repository. Our approach differs in that we attempt to select the next spanning tree
configuration based on where the bottlenecks of the current spanning tree are. We
have not measured which approach is able to find the best algorithm fastest.

2.4.2 Scalable low overhead monitoring
This section extends the Related Work section in the paper in section 7.2 that
describes other scalable monitoring systems, data stream management systems, and
other uses of coscheduling.

MapReduce [71] is a programming model for processing very large amounts of data
on large clusters. The application programmers specify a map function that filters out
data by computing a set of intermediate key/value pairs, and a reduce function that
merges all intermediate values with the same key. In addition the MapReduce library
simplifies parallel programming by handling load distribution, fault-tolerance, and
locality optimization. Overall the tasks performed by a MapReduce program are very
similar to EventSpace monitors. Both read raw data from a set of buffers/files, filter
out data, and aggregate the result. But most EventSpace monitors can eliminate the

Collective Operation Performance

 34

mapping stage, since all records in a buffer are typically read, and can therefore be
directly reduced. Hence, the model is more similar to data stream management
systems (discussed in section 7.2).
User defined reduction functions that produce derived metrics have also been used to
reduce the data volume and control the overhead caused by writing trace data to files
in the MPI tracing tool [61] developed for the Blue Gene / L system [11]. We have, in
addition to providing a clearer separation of data reduction and data collection,
demonstrated how to coschedule data reduction with parallel application threads.

Another approach for improving the scalability of message tracing is to compress
traces to reduce data volume. Near constant size representation in a scalable manner is
possible if only the temporal-ordering for communication events is stored [160].
However, such compressed traces do not contain information about the latency of
communication events, and hence may miss many performance problems.
Many approaches have been suggested to utilize idle cluster resources. Cycle
harvesters such as Condor [138] or the V System [215] or SETI@home [8, 236] use
idle compute resources on remote computers for running jobs. These systems detect
coarse-grained idle periods and then start the job as a low priority process. But,
utilizing idle time on a cluster running a parallel application requires more fine-
grained control over resource usage. Therefore, virtual machines have been used for
space sharing parallel application with interactive applications on a cluster [136]. A
recent approach with similar goals as our coscheduling is the kernel level idletime
scheduler [77] that attempts to run a background job when the resource is idle. Idle
time scheduling reduces the perturbation of the foreground job by waiting a short
period until starting the background job, thus allowing foreground jobs that arrive
during the period to be serviced immediately. The EventSpace coscheduler is simpler
than these general-purpose virtual machines and schedulers, since the parallel
application and its monitors are closely tied together, and the idle times are caused by
communication operations with predictable latency.

2.4.3 Conditional allreduce
The paper in section 7.3 presents approaches for tolerating the higher latency and
lower bandwidth of WANs, other architecture specific collective operations, and other
distributed systems for group communication over WANs.

2.5 Conclusions
This chapter presented a post-mortem method for collective operation analysis, a
framework for implementing scalable runtime monitors for such analysis, and the
conditional allreduce operation.
Reconfiguring spanning trees based on performance analysis improved collective
operation performance up to 1.5, without changing the application code or the
communication system code. The method is based on analyzing message traces
collected internally to the communication system, and can hence provide insight about
why some collective operation is a bottleneck rather than just identifying it as a
bottleneck. The novel pathmap visualizations can be used to group spanning tree
paths with similar performance in order to reduce the number of paths to analyze, and
to detect bottlenecks.

2.5 Conclusions

 35

We have demonstrated that it is possible to combine message tracing with very low
storage requirements, by storing traces only temporarily in small buffers in memory.
The buffer content is analyzed by monitor threads distributed and run on the cluster
nodes. The monitor can be used on very large scale cluster and Grids, since collective
operation monitors scale better than the monitored collective operations. Monitoring
activity can be coscheduled with application activity to utilize unused processor and
network resources. Thus, the monitoring overhead is very low; only introducing 0—
3% execution time overhead, and hence not significantly perturbing the monitored
application.
When the result of a collective operation is used for testing a condition, many
operations can complete without sending messages over a WAN. Thus the latency of
the operation is reduced by orders of magnitudes and matches the latency of the
operation on a single cluster. The changed collective operation will not introduce any
changes to the result produced by the parallel application.

The presented methods can be composed to improve collective operation performance
on clusters and multi-clusters with high latency networks, thereby allowing more
parallel applications to be run efficiently on these platforms.

37

Chapter 3

Overdecomposition

This chapter presents results from a paper and some additional experiments, about the
benefits and limitation of utilizing overdecomposition for parallel applications run on
Beowulf clusters and WAN multi-clusters. Overdecomposition is most useful for
overlapping point-to-point communication wait time, and hence complements the
approaches for improving collective communication performance presented in the
previous chapter.

3.1 Introduction
Through the last decade computational scientists have been used to a 1.8 annual
performance growth (based on the top500 list [223]). The growth has been due to
improved single processor performance, and supercomputers being built with an
increasing number of processors. But the growth is limited by the relatively smaller
improvements in memory access latency and inter-node communication latency, both
leading to under-utilization of processor resources (today a 70% processor utilization
is considered very good [166]).

One classic solution for hiding I/O or memory wait time is to overlap the wait time
with computation for another task. Memory access latency can be overlapped with
computation if a several threads can be executed in parallel on a processor. The
technique is called thread level parallelism (TLP) and has since 2002 been supported
by processors from Intel, Sun, IBM and others, either by simultaneous multi-
threading (SMT) or by chip multiprocessors (CMP). Similarly, network latency for
inter-process communication can be overlapped with computation for another thread
if parallel applications are overdecomposed (as discussed in section 1.3.2).
Overlapping computation with communication can improve parallel application
performance up to 2.0 [29, 70, 173, 207]. Overdecomposing the problem into more
tasks than there are processors is an easy way to achieve overlap, but it is usually not
used since it introduces overheads due to increased communication volume [66],
cache pollution [170], and coarse-grained context switches. With processors
supporting CMP and SMT, these assumptions may no longer hold. A re-evaluation of
the benefits and limitation of overdecomposition is therefore needed.
The paper in section 7.4 provides a performance analysis of overdecomposed NAS
parallel benchmarks run on the first generation of SMT processors (Intel Pentium 4).
The results provide insight into necessary system software changes to take advantage
of the difference in context switch granularity, cache configuration and communication
latencies for CMP with SMT nodes. In addition, section 8.3 provides additional
WAN experiment results, and user-level scheduling to reduce the overheads.
The rest of the chapter consists of a summary and discussion of the results in
respectively section 3.2 and section 3.3. Additional related work is discussed in
section 3.4, and section 3.5 concludes.

Overdecomposition

 38

3.2 Summary of paper
The paper in section 7.4 and the additional experiments in section 8.3 answers the
following questions:

• Does applying overdecomposition reduce the execution time of parallel
applications run on Ethernet clusters and WAN multi-clusters?

• What characterizes parallel applications for which overdecomposition improve
performance?

• Can overdecomposition be used to exploit the multi-threading support of SMT
processors?

• Which overheads significantly limit the performance of overdecomposed
applications?

• Does system software limit the performance of overdecomposed parallel
applications?

3.2.1 Methodology
To answer the questions above, we measured the benefits of utilizing
overdecomposition for the SOR benchmark and the NAS parallel benchmarks. The
benchmarks were run on an Ethernet cluster comprised of computers with the first
generation simultaneous multi-threaded processors (Intel Pentium 4). SOR was
chosen since its communication behavior should be well suited for
overdecomposition. The NAS benchmarks were chosen since they represent a wide
variety of communication behavior (as described in [239]).

The performance analysis is non-trivial since data collected from multiple software
and hardware layers must be combined to provide a macro view of system behavior.
TLP, communication wait time, and synchronization wait time are all calculated using
message traces. Context switch and synchronization system call time are measured by
the operating system, while hardware performance counters provide cache miss
counts.

Several simplifications of system behavior are made when quantifying TLP and the
different overheads. The error can be estimated, and we found that the calculated
values for the cache miss overhead and operating system time tend to be larger than
the real values with a high degree of overdecomposition. The overheads calculated for
a specific node vary between experiment runs, since communication wait times for a
given node change between runs. But this variation can be avoided by calculating
average overheads for the entire cluster.

3.2.2 Experiment results
Applying overdecomposition improves performance for SOR, and some of the NAS
parallel benchmarks (Table 5). The execution time changes range from a slowdown of
1.69, to a speedup of 1.8. In addition, we found that most of the NAS benchmarks
have low parallel efficiency, even if they were written using non-blocking
communication operations (the MPI standard does not require that the non-blocking
operations must be overlapped with computation [237]). Hence, most have potential
for computation-communication overlap.

3.2 Summary of paper

 39

Benchmark Number and
size of
messages

Collective
operations

Asynchronous
messages

Best speedup

SOR (LAN) Few large Yes No 1.4
SOR (WAN) Few large Yes No 1.8
BT Many small No Yes 0.98
CG Many small,

few large
Manual Yes 0.59

EP Few small Yes No 1.74
FT Few large Yes No 1.11
IS Few large Yes No 0.91
LU Many small No No 1.07
MG Many medium No Yes 0.70
SP Many medium No Yes 0.64

Table 5: Communication behavior, and the overdecomposition improvements for
the SOR and NAS benchmarks. Small messages are less than 1 KB, large more
than 1 MB. For benchmarks with collective operations and asynchronous
messages these typically contribute most to the communication time.
Improvement is relative to the one thread per processor composition.
The benchmarks for which performance improved had a variety of communication
behaviors. Best improvements were for benchmarks with few blocking operations,
low cache miss penalty to execution time ratio, and low parallel efficiency. The
improvements were better for the WAN multi-cluster. For all benchmarks a low
degree of overdecomposition gave the best improvement, since increasing the number
of threads may not significantly improve TLP, but increased cache miss and system
call overheads.
Overdecomposition can be used to exploit SMT processors, since the performance
improvements were better when SMT was enabled. But the improvements were
limited by the lack of TLP. The main advantage of SMT is that some of the system
activity could be run in parallel with the computation.

Benchmark SOR BT CG EP FT IS LU MS SP
Processor saturated  
Lack of TLP      
Cache misses     
TLB misses
System activity      
Global synchronization  

Table 6: Overdecomposition performance limitations for the SOR, and the NAS
benchmarks.
Table 6 summarizes the factors limiting performance improvement. The main
limitations are:

• Some benchmarks have a globally synchronizing collective operation between
a communication intensive and computation intensive phase in the application,
making it impossible to overlap these phases.

• Overdecomposition does not always improve TLP. Often only a single thread
is computing, while the others are blocked on communication operation. Thus,

Overdecomposition

 40

the processor may not be fully utilized even with a high degree of
overdecomposition.

• The overheads due to cache misses and system calls can increase more the
computation-communication overlap.

• The largest increase in cache misses is for the L2 and L1-data caches, and is
due to additional memory copies required for intra-node communication. The
intra-node communication also causes additional context switches that
increase the system time.

System software does influence the performance improvements achieved when
utilizing overdecomposition. Especially important is the behavior of the intra-node
synchronization mechanisms. We compared two Pthread libraries and found that TLP
improves if the synchronization variables are implemented such that a unlock call is
likely to cause a context switch. But this also increases system time. Due to the low
TLP, user-level scheduling or operating system scheduling does not significantly
influence performance. Section 8.3.4 provides additional details.

3.3 Discussion
Overdecomposing the problem is probably the simplest technique for computation-
communication overlap for parallel applications, since it requires no changes to the
application code or the communication system. Our results both confirm and
contradict earlier results (and common knowledge) about the benefits of this
technique. Overdecomposition increases cache misses [170], but not for all
applications. Communication and synchronization overheads increase [66], but idle
time can be exploited to tolerate the increase. A surprising result was that increasing
the number of threads does not always improve TLP. Overdecomposition may
improve parallel application performance but should not be used indiscriminately
since performance can be unchanged or even decrease. Therefore performance
analysis as demonstrated in the paper is useful for identifying the bottlenecks of
overdecomposed application and the system software.

We found four main factors limiting overdecomposition improvements. Avoiding an
increase in cache misses requires either rewriting the application or closing the
memory gap on the processor. For the remaining three, changes to system software
may reduce the problem:

• To improve computation-communication overlap the conditional collective
operations described in section 7.3 can be used to relax the synchronization of
threads.

• Intra-node communication and synchronization overhead can be reduced by
using more efficient mechanisms as shown in [141, 177, 213, 218, 228].

• TLP can be increased by ensuring that threads blocked on synchronization
variables are started immediately (at the cost of work conservation).

The performance improvements achieved for our parallel benchmarks run on medium
size clusters are smaller than reported in earlier studies that used either a simulator
[142, 206], or a single SMT processor [146, 227]. Running parallel applications on
SMTs have two problems. First, the typical parallel application is memory intensive
and uses floating point computations, which have been shown to perform worst on
SMTs [108, 121]. Second, threads are often blocked on communication operations,

3.4 Additional related work

 41

and thus there is not enough TLP to utilize the dual-threaded SMT processors on the
cluster.

SMT support on the processors can be disabled. Related work [191] has shown that
web server performance can decrease when enabling SMT, due to more
synchronization in the kernel. Enabling SMT did not decrease the performance of any
of our benchmarks; hence we believe parallel applications should be run with SMT
enabled, even when applications are not overdecomposed.
Very few of the processors succeeding the Pentium 4 have supported SMT, and
currently in the second quartile if 2007, none of the high-performance processors
available from Intel and AMD have SMT support. However, almost all of the
processors are CMP. The design of the CMP processors is still evolving, especially
with regards to the cache hierarchy. Performance analysis as demonstrated in this
work is therefore important to understand how parallel applications utilize the
processors (and the cache hierarchy).

3.4 Additional related work
The Discussion and related work section in the paper in section 7.4 discusses other
uses of overdecomposition, performance improvement results from other SMT
studies, proposed system support for SMT, and alternatives to overdecomposition.
This section summarizes additional related work for modeling communication-
computation overlap, using one-sided communication operations to achieve the
overlap, and schedulers for parallel applications.

3.4.1 Computation-communication overlap
A model for identifying potential computation-communication overlap in a parallel
applications is presented and used to achieve speedups ranging from 1.1—2.0 in
[134]. The limitations of overlapping are demonstrated in [173], where it is found that
the best possible speedup is 2.0, but much smaller in practice. A compiler
transforming a parallel application to achieve computation-communication overlap on
Ethernet clusters improved benchmark performance from 0—33% when run in 8
processors [139]. Based on our experience, modeling the impact of
overdecomposition is difficult due to the complex behavior of the cache hierarchy on
SMT and CMP processors, and since many components in the underlying systems are
black boxes with unknown system behavior. We complement the earlier models by
presenting a method for performance analysis using data collected for real
applications run on contemporary cluster hardware.
A recent study of large-scale scientific applications found that there is a large
potential for computation-communication overlap that allows hiding most of the
communication latencies in clusters equipped with fast interconnects [195]. Also,
overlapping is most useful for latency bound applications, and allows reducing the
requirements for network latency (with a few microseconds). Our results differ in that
the communication latency we attempt to overlap is orders of magnitude larger due to
the network interconnects used, and hence different approaches for overlap may be
required.
The decomposition approach can have a large impact on cache utilization. A
decomposition taking data dimensionality into account reduced the communication
volume, but decreased application performance since data in non-continuous memory
locations may be transferred [170]. Cache utilization can also be decreased when

Overdecomposition

 42

applying overdecomposition. We find that overdecomposition increases cache misses
for most benchmarks, but that for many the increase can be tolerated since it can be
overlapped with communication wait time.

3.4.2 One-sided communication operations
MPI applications can be programmed for communication-computation overlap using
the MPI immediate operations [148, 149]. But many MPI implementations does not
support the required level of computation-communication overlap necessary to
achieve the expected performance improvements [70, 237]. We experienced similar
limitations for the NAS parallel benchmarks using the popular LAM/MPI
implementation.
To improve the level of computation-communication overlap the communication
activity can be offloaded to a separate processor, typically located on the network
interface card. In addition, one-sided communication operations, such as put and get
in MPI [148, 149] can be used to decouple communication from synchronization. Due
to semantic limitations of MPI operations [41], recent work has used primitives
provided by parallel programming languages such as UPC [29, 70].
The one-sided communication operations can hide the software overhead of
synchronizing the sender and receiver required when sending large messages using a
rendezvous communication protocol. For example, a parallel application can be
transformed to overlap many-to-many collective operation communication activity
with computation [70]. First, the application code is modified such that computation
occurs in blocks. Second, the synchronous collective operation is replaced with
asynchronous point-to-point operations that are called at the end of each block.

One-sided communication operations improved the performance of the NAS FT
benchmark up to 1.9 [29]. The speedup we achieved with overdecomposition was
smaller for this benchmark (1.1), but required no changes to application source code
or system software. Overdecomposition can also be applied to any application,
including applications with point-to-point communication, while the approach in [29]
requires computation and communication to be structured as described above. Also,
with overdecomposition there is no need for a separate processor for running
communication activity, since communication wait time is overlapped, rather than the
computation required for communication.

3.4.3 Schedulers for parallel applications
Often operating system schedulers are general purpose, and may not be optimized for
parallel applications. For example the Linux 2.6.8 scheduler is optimized for fast
responsive time at the cost of a larger operating system overhead [10]. Thus, a domain
specific scheduler may be required. For parallel applications the scheduling can be:

• Global: where all application processes and system daemons on a cluster are
scheduled together to reduce synchronization wait time [118, 166]. A fast
global synchronization operation is required, which is not available on
interconnects such as Ethernet, or WANs.

• Between communicating nodes: where communicating processes are
scheduled to run simultaneously to improve latency by avoiding context
switches [20, 59]. The protocol overhead of TCP/IP, typically used in Ethernet
and WAN clusters, is too high for this type of coscheduling.

3.5 Conclusions

 43

• On a single node: where the operating system scheduler is modified. For
example the SMT aware SOS scheduler was able to improve NAS benchmark
performance up to 17% compared to a non-SMT aware scheduler [206]. Also,
such schedulers may provide performance isolation, such that several services
can share the same server [130]. Performance isolation may also be provided
by using virtual machines [136]. As demonstrated in this paper, performance
isolation for parallel applications is more difficult since performance
degradation due to cache pollution and increased latency of communications
operations must also be taken into account. To our knowledge, these problems
have not been addressed in related work on performance isolation. Another
alternative is idle time scheduling [77] (also described in section 2.4.2) that
runs low priority jobs when a resource is idle.

• For all nodes on a cluster: Overdecomposition can also be used for load
balancing in heterogeneous environments by adding more threads to faster
processors [33, 83].

3.5 Conclusions
We have measured how overdecomposing parallel applications into more threads than
there are processors; can be used to overlap communication wait time with
computation in order to reduce execution time. This was, to our knowledge, the first
performance study of overdecomposition used on processors supporting simultaneous
multi-threading (SMT). In addition, we describe three user-level scheduling
approaches for overdecomposed parallel applications.

We find processors in Beowulf clusters to be underutilized due to communication
wait time, even when the parallel applications are programmed to use non-blocking
communication operations. Initial results using the SOR kernel were promising; with
execution time improvements up to 1.8. The best improvements were for the WAN
multi-cluster. However, execution time decreased for only two NAS benchmarks, and
decreased for three. Performance improvements are limited by lack of TLP, and
overheads due to context switches and cache misses. TLP is limited by application
communication structure, and synchronization variable implementation. User-level
scheduling did give a small performance improvement, but the effect is often limited
by the lack of TLP.

Due to its simplicity overdecomposition can easily be applied for parallel applications
with low parallel efficiency. But to understand the improvements and limitations for
an application run on a given parallel platform, a performance analysis as used in this
work is necessary. To fully utilize overdecomposition, we believe changes to
underlying system are necessary to maintain a high degree of TLP and provide
efficient intra-node communication and synchronization.

45

Chapter 4

Content Based Compression

In Chapter 1 the need for better compression methods for scientific and multi-
dimensional network data were motivated, and the background necessary to
understand global compression algorithms was presented. This chapter presents three
papers describing a framework built to provide such compression.

4.1 Introduction
The goal of compressing network data is to reduce transfer time. The compression
system should therefore reduce the number of bytes to transfer in less time than would
be required to transfer the bytes. The local compression algorithms typically used for
network data [9, 188, 202] do not efficiently compress scientific data, while the
compression time is too high for interactive remote visualization. Therefore, global
compression has been suggested to improve compression ratio and to reduce
compression time.

Previous global compression methods [64, 72, 76, 153, 156, 171, 180, 196, 197, 209,
221, 222], are limited to deal with one-dimensional byte streams and have not
addressed the issue of how to compress multi-dimensional data. In addition, these
typically use large fingerprints to avoid data inconsistency caused by different
segments having identical fingerprints. However, since the global compression ratio is
limited by the ratio of the average pixel segment size to the fingerprint size, using
large fingerprints reduces compression ratio.
To address these problems, we first built a remote visualization system called Varg,
for which we propose a 2-dimensional segmentation approach that works well with
remote data visualization data transfers. Then we generalized the Varg approach into
a network data compression framework called Canidae that allows application users
to build content-aware redundancy detection methods to improve compression ratio
(the architecture is shown Figure 9 in section 1.3.4). In Canidae, data segmentation is
separated from redundancy elimination such that specific content-based segmentation
methods can be applied to complex data types. To solve the problem of fingerprint
size limiting compression ratio, we employ a two-level fingerprinting method to
optimize the encoding of unique data segments. Finally, to improve redundancy
detection we use a segment cache capable of storing hundreds of GB of segment data.

The remaining of this section introduces the Varg system, application specific
segmentation, two-level fingerprinting, and the segment cache. Then follows a
summary of the papers, a discussion about the limitations and impact of this work,
and description of related work. The final section concludes.

Content Based Compression

 46

4.1.1 Varg remote visualization system
Our initial work was motivated by the need for remote collaboration tools to assist
interactive collaborative analysis of microarray data in biology and bioinformatics
[53, 68, 102, 137, 161, 199, 210]. Such tools should:

1. Provide fast response times for visualization-intensive genomics applications
visualized over a low-bandwidth wide area network.

2. Eliminate replication of large and often sensitive datasets.

3. Work with any microarray analysis software.
4. Be platform-independent.

Most thin-client remote visualization systems [19, 25, 67, 200] satisfy the second and
third requirements. In addition the open source VNC system also satisfies the last
requirement, since implementations exists for most popular platforms. However,
VNC does not provide interactive performance over a WAN.

Figure 22: Compression system for remote visualization, consisting of a genomic
application remotely visualized, the VNC remote desktop server, VNC client, 2-D
bitmap aware redundancy detection, and 2-phase fingerprinting.
The paper in section 7.5 describes the design and implementation of a remote
visualization system called Varg that implements a novel method to compress
redundant two-dimensional pixel segments over a long visualization session (Figure
22). The Varg system is based on VNC, whose implementation allows remote
visualization of multiple applications in a network environment.
The basic redundancy elimination algorithm is straightforward and its high-level idea
is similar to previous studies on using fingerprints as identifiers to avoid transfer of
redundant data segments (as described in Chapter 1).

The algorithm for segmenting a 2-D array on the Varg server is:
• Save a copy of the 2-D array.

• Receive a set of updated regions of pixels from the VNC server and apply the
updates to a local 2-D array.

• Segment the 2-D array into 2-D pixel segments.

4.1 Introduction

 47

• Do region differencing by comparing the pixels in each region to the content
in the saved 2-D array.

• For each segment, compute its fingerprint and use the fingerprint as the
segment’s identifier to lookup in the server cache. If the segment has not been
sent to the Varg client previously, compress the segment with a local
compression method and send the segment to the client. Otherwise, send the
fingerprint instead.

The algorithm on the Varg client is:

• If the received data is a 2-D pixel segment, decompress it with a
corresponding algorithm, write the fingerprint and segment to the cache, and
then pass the segment to the VNC client

• If the received data is a fingerprint, retrieve the segment of the fingerprint
from its cache and then pass the segment to the VNC client.

In addition we optimize the basic algorithm to reduce the user perceived end-to-end
latency, by using a two-phase fingerprinting algorithm. With the optimization the
server may send two sets of updates, the first based on optimistic fingerprints that can
have collisions, and the second set of updates consisting of corrections in case of short
fingerprint collisions. End-to-end latency is reduced since updates are sent before the
more computation intensive check for collision has completed.
The redundancy detection method for anchoring 2-D pixel segments in the Varg
system uses two important properties of genomic visualizations that create
opportunities for content-based anchoring. First, microarray datasets tends to be very
large. Second, due to the limitation of display scale and resolution, only a small part
of the microarray can be viewed at a time, causing the frame to be frequently scrolled.
Thus, the same set of pixels will be moved across the display multiple times. Our
algorithm combines the statically divided screen approach used in MPEG [88], with
Manber’s technique [145] of applying a Rabin fingerprint filter [50, 175] for content
based anchoring (both anchoring approaches were described in section 1.2.5). First we
determine whether most content was moved vertically or horizontally. For
predominately vertical motion we statically divide the screen into m columns (m times
screen height) and divide each column into regions by selecting anchoring rows. The
columns are then divided into regions by selecting anchoring rows based on Rabin
fingerprints. If we detect predominately horizontal motion instead, the screen is
transposed before the segmentation algorithm is run.

4.1.2 Canidae general purpose compression system
The Varg system has four problems. First, the segments are large in order to achieve
high total compression ratio (due to zlib compression requiring large regions).
Second, the two-phase fingerprinting protocol sends an optimistic fingerprint
followed by a conservative fingerprint for each segment thereby reducing per segment
compression ratio. Third, the segment cache is in memory, and its size is therefore
limited by the main memory size on the computer. Fourth, the sender keeps track of
which segments have been sent to the receiver, such that recovering after a crash
requires synchronizing the caches on both sides.

The Canidae system, presented in the papers in sections 8.4 and 8.5, solves these
problems. It consists of multiple segmentation components and a generic compression
sub-system that handles the fingerprinting, transmission and caching of segments. To

Content Based Compression

 48

solve the first and second problem, we employ a two-level fingerprinting method to
optimize the encoding of small data segments. The third problem is solved by storing
segments in a large cache on disk. The fourth problem is solved by making the sender
stateless, and storing received segments and all other segment cache data structures on
disk.

4.1.2.1 Application specific multi-dimensional segmentation
The Canidae architecture makes segmentation methods data specific. A segmentation
component implementing a method can be configured to one or more ports of the
system and to support a variable number of data streams of different data types. Each
segmentation component is responsible for the segmentation of a specific class of
data. The segmentation component implements the segmentation mechanisms for both
send and receive data. For send data, the input data stream is divided into segments
and passed to the segment compress component. For receive data, the segments are
assembled into a data stream. In addition, the segment components must parse the
application protocol to retrieve multi-dimensional data to be anchored.

The main challenge when implementing a segmentation module is to employ a
segmentation strategy that will give the greatest likelihood of uncovering, and hence
eliminating, redundancies within the data. This will require significantly different
segmentation techniques depending on if the data is a 1-D bytestream, 2-D visual
display or 3-D scientific data. One example is the Varg 2-D content-based
segmentation algorithm. The paper in section 8.5 describes several other 1-D and 2-D
segmentation algorithms.

4.1.2.2 Two-level fingerprinting
The two-level fingerprinting protocol in Canidae provides a solution to the problem of
compression ratio being limited by data redundancy found and the segment size to
fingerprint size ratio. Using smaller segments typically improves the amount of
redundancy detected [100], but requires using smaller fingerprints to maintain a high
compression ratio. However, to ensure data consistency the fingerprint size must be
large enough to uniquely identify a segment. Therefore previous global compression
systems [39, 69, 72, 100, 153, 156, 171, 172, 222] typically use a 160-bit such as
SHA-1 [7], or even longer secure hash, as a fingerprint so that the probability of a
fingerprint collision is far lower than a hardware bit error rate. But this also required
using segments of several kilobytes in size. To allow smaller segments to be used in
order to maximize the global compression ratio and maintain a low probability of
fingerprint collision, we propose a two-level fingerprinting strategy.
The two-level fingerprinting organizes segments into groups. For each group of
segments, a 160 bit SHA-1 hash is computed as the conservative fingerprint of the
whole group. For each segment in the group, we compute a 40-bit FNV hash [86] as
the optimistic fingerprint.
The two-level fingerprint algorithm is as follows:

• For a group of segments received from the segmentation component the sender
computes an optimistic fingerprint for each segment, and a conservative
fingerprint covering all segments in the group. The optimistic fingerprints and the
conservative fingerprint are then sent to the receiver. The sender also stores the
segments in a buffer for sent segments.

4.1 Introduction

 49

• The receiver uses optimistic fingerprints as segment identifier to look in the
segment cache to see if it has received these segments previously. If there is an
entry in the segment cache for a given fingerprint, it retrieves the segment from
the cache and adds the segment data into an assembly buffer. Otherwise, a
segment request message is sent to the sender.

• When the sender receives a segment request, it reads the segment from the sent
segments buffer and sends the segment to the receiver.

• The receiver inserts received segment data to the segment cache, and copies the
segment data to the assembly buffer.

• The receiver computes a conservative fingerprint for a group of segments when
all has either been read from the cache, or received from the sender. This
fingerprint is then compared to the received conservative fingerprint. If the
conservative fingerprints do not match, all segments that were read from the
cache are requested from the sender. If the conservative fingerprints are identical,
or all requested segments have been received, an ACK message is sent to the
sender, and all segments in the group are sent to the segmentation component to
be assembled into the output data stream.

• When the sender receives the conservative fingerprint ACK message, it deletes
all segments in the group from the sent segments buffer.

Figure 23: Factors influencing two-level fingerprinting compression ratio.
The compression ratio of two-level fingerprinting is determined by the data
redundancy found, the number of fingerprint bytes sent, and the segment data sent due
to collisions (Figure 23).

4.1.2.3 Segment cache
The basic operation of the segment cache is to read and write segments based on their
optimistic fingerprint. The two main design goals are to make it large enough to hold
all previously sent segments in a session, and fast enough not to limit the throughput
of the compression pipeline. For a hundred gigabyte dataset, the total size of cached
segments exceeds main memory size, such that segments must be stored on disk. In
addition, an index is required to map optimistic fingerprints to the segments location
on disk (or in a memory cache).
Our first approach to map optimistic fingerprints to segment data was to use a single
large hash table with linear probing stored in memory, and all segments on disk. This
naïve approach has two problems. First, the memory size limits the maximum number
of segments that can be indexed by a single hash table resident in memory. Second,
most segment accesses requires reading segments from disk since all available
memory is used for the hash table. Therefore, the index should be split into multiple
parts that can be stored in disk, and a large portion of the memory should be used to
cache segments.
We propose using multiple small hash tables; each indexed using the first l bits of the
fingerprint. Hash table entries are 64 bits, and contains the remaining fingerprint bits,
the memory or disk offset of the segment, and the size of the segment. The hash table,

Content Based Compression

 50

and the segments indexed by it are stored in a container. Each container is stored in a
separate file on disk, but can also be cached in memory.

Segment accesses have no spatial locality with respect to fingerprint values, since the
hashing function generates random fingerprints for segments. Segments can therefore
not be efficiently cached if they are distributed to containers based on their fingerprint
values. Instead we exploit the observation that segments written to the cache at the
same time tend to be read together. Therefore, all new segments are written to the
same container by inserting the fingerprint to the hash table and appending the
segment to the end of the segment buffer. In case of a hash table collision the segment
is written to the next container in memory. This clustering of segments allows read-
ahead of segments from disk. The disadvantage of this approach is that a linear search
is required to find the container containing a specific segment. Therefore, we propose
multiple optimizations to reduce the number of containers on disk that has to be
checked.

Segments accesses have temporal locality, so we cache recently accessed containers a
in memory. When a container is accessed, the entire hash table is always read to
memory, but the segment buffer is divided into several chunks, which are read on-
demand from disk (similar to demand paging [127]). Writes are buffered such that
modified segment chunks are only written to disk when the memory is full. To evict
segment chunks or containers, we use a least recently used algorithm.

To further reduce disk accesses we use a Bloom filter [37]. A Bloom filter is a space
efficient probabilistic data structure that we use to test whether an optimistic
fingerprint is a member of the set of optimistic fingerprints stored in the segment
cache. The test may return a false positive; hence an optimistic fingerprint in the
Bloom filter may not be in the segment cache thus requiring all hash tables to be
checked. But false positives are not possible. Therefore in case of a miss, it is not
necessary to check the containers before requesting a segment from the sender, or
writing a segment to the cache. In the Bloom filter can also be used to overlap
network transmission time with disk read time.

4.2 Summary of papers
This section summarizes the paper in section 7.5, and the unpublished papers in
sections 8.4 and 8.5.

4.2.1 Remote visualization
The paper in section 7.5 demonstrates that multi-dimensional content based anchoring
can improve the performance of remote visualization. We have implemented and
conducted an initial evaluation of the Varg prototype system. The goal of the
evaluation was to answer the following questions:

1. Are screen update region sizes, and hence the bandwidth requirements, larger
for genomic applications than for the Office applications normally used in
remote collaboration?

2. What is the Varg compression ratio and time for network data sent for remote
visualization of genomic applications?

3. Is the reduction in communication time larger when using Varg than when
using the local compression algorithms typically used by remote visualization
systems?

4.2 Summary of papers

 51

4.2.1.1 Methodology

Figure 24: Experimental testbed used to evaluate the compression ratio and
compression time of the Varg system.
In order to answer the above questions the Varg system was implemented and
experimented with. A trace-driven approach was used (Figure 24). Traces were
collected for different Office, and visualization intensive genomics applications (Java
Treeview [193], TMeV [192], and GeneVaND [98]). The WAN latencies and
bandwidths emulated during trace playback were based on measurements between
nodes at different sites in USA and Norway (Table 7).

Network Bandwidth
(MB/sec)

Latency (msec)

Gigabit Ethernet 80.00 0.2

100 Mbps Ethernet 8.00 0.2

Princeton – Boston 2.13 11
Princeton – San Diego 0.38 72

Princeton (USA)– Tromsø (Norway) 0.20 120

Table 7: TCP/IP throughput and round-trip latency for different networks
measured using Iperf [2].

4.2.1.2 Experiment results
The updated screen regions are larger for a genomic application than for two office
applications (Figure 25). In addition, screen updates are more frequent. Combined
these increase the bandwidth required.
For the genomic applications, transfer time is larger than the latency for about 50% of
the updates. These updates are larger than 80x80 pixels, which we found to be
segment size for which transfer time is larger than latency for all of the WANs in
Table 7.

Content Based Compression

 52

Figure 25: The size of updated screen regions is much larger for the Java
Treeview genomic application, than for Office applications.

 Differencing 2D pixel
segment

compression

zlib Total
compression

TreeView 1.89 5.74 19.98 216.76
TreeView-Cube 2.87 4.05 24.88 289.19

TMeV 1.52 2.46 7.90 29.54
GeneVaND 3.15 2.72 10.85 92.96

Table 8: Compression ratio for four genomic data analysis applications.
The total compression ratios by our method are 217, 289, 30 and 93 for the four
genomic application traces respectively (Table 8). These high compression ratios are
due to the combination of the three compression methods used: segment differencing,
2D pixel segment compression, and zlib local compression. Zlib contributes the most
in all cases, but zlib alone is not enough to achieve high compression ratios. The 2D
pixel segment compression using fingerprinting contributes fairly significantly to the
compression ratio ranging from 2.5 to 5.7. Without the differencing phase the ratio
would be higher, since the differencing phase has already removed a large amount of
redundant segments.

The total compression time ranges from 16 ms to 91 ms (Table 9). The most
significant contributor is zlib, which consumes more than 10ms in all cases. But 2D
pixel segment compression reduces the data volume to be compressed and hence the
time spent in this stage. The second most significant contributor is anchoring, but it is
below 8ms even for the display wall case. Although SHA-1 calculation contributes up
to 8ms in the worst case, the 2-phase fingerprinting optimization allows computation
to be overlapped with network communication.

4.2 Summary of papers

 53

 Differencing 2D pixel
segment

compression

Zlib Diff. +
Segment.

+ zlib

SHA-1

TreeView 0.9 ms 3.8 ms 11.1 ms 15.8 ms 3.5 ms
TreeView-

Cube
2 ms 7.9 ms 30.2 ms 40.1 ms 7 ms

TMeV 1.3 ms 6.6 ms 83.4 ms 91.3 ms 7.7 ms

GeneVaND 1 ms 2.7 ms 10.1 ms 13.8 ms 1.5 ms

Table 9: Average compression time per screen update. The total compression
time depends on the application window size, and how well the differencing and
2D pixel segment compression modules compress the data before zlib is run.

Figure 26: Cumulative communication time distribution for Treeview screen
updates sent over the Princeton-Boston WAN.
The transmission time is significantly better for Varg than for the commonly used
combination of region differencing and zlib (Figure 26). Without compression the
communication overhead for the Princeton—Boston network is several seconds for
the largest updates. With zlib the communication overhead is more than 300ms for
about 50% of the messages. The communication overhead with Varg is less than
100ms for over 90% of the messages. Even for the cross-Atlantic Princeton—Tromsø
network 80% of the updates have a communication overhead less than 200ms, of
which the latency contributes to 112 ms. The communication time with Varg is also
low for the other traces except for TMeV, where 2-D pixel segmentation did not work
well (due to the movement estimation parameters not being tuned properly).

4.2.2 Two-level fingerprinting
The main challenges in implementing the compression sub-system is choosing
appropriate fingerprint sizes for the 2-level fingerprint algorithm, choosing the
number of optimistic fingerprints covered by conservative fingerprints, and
implementing an efficient caching mechanism. These challenges are addressed in the
paper in section 8.4. The following questions are answered.

Content Based Compression

 54

1. For which segment sizes is compression ratio limited by the fingerprint size?
2. Where is the crossing point for when the number of bytes sent due to

collisions is larger than the fingerprint bytes?
3. How many segments per conservative fingerprint give the best compression

ratio?
4. How many additional bytes are necessary for encoding the two-level

fingerprinting protocol messages?
5. Does a multi gigabyte cache improve compression ratio?

4.2.2.1 Methodology
To find the best parameters for the two-level fingerprinting protocol giving the best
compression ratio, we model the number of segment bytes sent, the number of
fingerprint bytes sent, and the number of collision bytes sent, using the formula in
Equation 1, and the default workload parameters in Table 10. We compare the
achieved ratio to a fingerprinting protocol using 20 byte fingerprints.
To evaluate the benefits of a large segment cache we use the traces collected for three
genomic applications, as described in section 4.2.1.1.

!

compression _ ratio =
S

(S " R) + (
k

8
+

l

8p
)
S

s
+ ps

i

2
k

i=1

i= (
S"R

s
)

#

Equation 1 models compression ratio achieved using two-level fingerprinting. S
is the data set size, R is the redundancy found, k is the number of optimistic
fingerprint bits, l is the number of conservative fingerprint bits, p is the number
of segments per conservative fingerprints, and s is the segment size. S/s is used to
estimate the number of segments in the data set. The sum estimates the
probability of a segment inserted to the cache having the same optimistic
fingerprint as an existing segment. We assume each collision causes the entire
group of segments to be resent.

Parameter Value Parameter explanation

S 100GB Data set size

R 75GB (75%) Data redundancy found

K 40 bits Optimistic fingerprint size
L 160 bits Conservative fingerprint size

P 20 Segments per conservative fingerprint
S 32 bytes Segment size

Table 10: Default parameters used to model two-level fingerprint compression
ratio.
The server is implemented using a multi-threaded event based model. The protocol
handling is divided into several stages. The stages are connected using queues, used to
store segment objects to be processed by the next stage. In addition some stages either

4.2 Summary of papers

 55

read from, or write to a socket. To support multicast, some stages produce output
destined to several stages.

4.2.2.2 Experiment results

Protocol parameters
The fingerprint size significantly limits compression ratio for segments less than 1
Kbytes when the redundancy detection in the data is 75% (Figure 27). With lower
redundancy detection even smaller segments are limited by the fingerprint size.

Figure 27: Compression ratio for different fingerprint and segment sizes. Data
redundancy is 75% and collision bytes are ignored.

Figure 28: Miss penalty bytes sent for different optimistic fingerprint sizes. (for
all but the 4 byte fingerprints the miss penalty is insignificant).
Choosing the conservative fingerprint size is relatively straightforward; it should be
large enough to guarantee a collision rate smaller than the hardware error rate. Since
2160 is considered sufficient for data sets up to an exabyte in size [172], we use 160 bit
SHA-1 hash values as conservative fingerprints.

Content Based Compression

 56

The optimistic-fingerprint size is more challenging to choose because it affects two
competing trends. Reducing the optimistic-fingerprint size will increase the maximum
achievable compression ratio, but simultaneously increase the number of cache
collisions that require entire segments to be resent. So we want to choose an
optimistic-fingerprint size that is near the inflection point of the competing trends and
that works across the many data types being transmitted.

If a 4 byte optimistic fingerprint size is chosen, then 50 GB of segment data will be
sent due to collisions when transferring a 100 GB data set (Figure 28). Increasing the
optimistic fingerprint size to 5 bytes, reduces the total number of bytes sent since the
data sent due to collisions is reduced to 0.2 GB, while the increase in fingerprint bytes
is only 6.1 GB. If the data set size is less than about 35 GB, does 4 byte fingerprints
give the best compression ratio.

Figure 29: Fingerprint and collisions bytes sent for different segments per
conservative fingerprint ratios.
The number of segments covered by a conservative fingerprints should be chosen
such that the fingerprint bytes sent remains low, while keeping the bytes sent due to
collisions low. With the default parameters in Table 10 the minimum number of bytes
sent are for 22 segments per conservative fingerprint (Figure 29). Typically a ratio of
20—25 gives a good compression ratio, even if the segment size, redundancy ratio, or
data set size is changed.
In conclusion, with 5 byte optimistic fingerprints and 20 segments per conservative
fingerprint, the compression ratio is better than 4 byte and 20 byte fingerprints for
most redundancy levels (Figure 30). Only when more than 95% redundancy is
detected is the ratio better for 4 byte fingerprints.

4.2 Summary of papers

 57

Figure 30: Compression ratio for different redundancy levels when using 4 byte,
5 byte, and 20 byte fingerprints. The 5 byte fingerprint compression ratios with
and without collisions are almost identical. For 20 byte fingerprints these are
identical since there are no collisions.

Protocol messages
The message headers used in the two-level fingerprinting protocol also limit
compression ratio, and the messages have therefore been designed to use as few bytes
as possible (Table 11). The first byte is used to identify the message type and to store
the meta-data size in optimistic fingerprint messages.

Message type Size
(bytes)

Comment

Optimistic fingerprint 6 + M M is implicitly set by the message type
Segment request 5 A 4 byte sequence number identifies the segment
Segment 7 + S Includes the segments sequence number and size

(2 bytes)
Conservative
fingerprint

21

Conservative
fingerprint ACK

1 No sequence number since the ACKs are sent in
the same order as conservative fingerprints

No-fingerprint segment 3 + S Includes the segment size (2 bytes)
Multiplexing message 3 2 byte are used to identify the segmentation

component that should receive the next batch of
segments

Table 11: Two-level fingerprint messages. M is meta data size, and S is segment
data size. Optimistic and conservative fingerprint sizes are respectively 5 and 20
bytes.
The conservative fingerprint message is always sent immediately after the last
optimistic fingerprint message in a group. It is therefore not necessary to add any
information to the message about which segments are covered, and thus the message
only contains the message type and conservative fingerprint. Conservative fingerprint

Content Based Compression

 58

ACK messages are always sent in the same order as the conservative fingerprints were
received, and therefore it is not necessary to add a sequence number.

Advantages of a multi gigabyte segment cache

Figure 31: Cache size increase for remote visualization of three genomic
applications.
The number of segments cached, and hence the size of the segment cache, depends on
the redundancy detected. Redundancy detection stabilizes after a while, and can be up
to 80%. But since the hit ratio never reaches 100% the cache size has a steady growth
(Figure 31). Even for the short 10—15 minute traces the segment cache becomes too
large to be stored in memory.

Figure 32: Cache hit entry age. Most cache hits are for recently inserted
segments, but when execution time increases the number of hits for older entries
increase. Note that the bucket size is 6021 for Treeview and 2445 for the other
two.

4.2 Summary of papers

 59

A larger cache improves redundancy detection, as shown in Figure 32 where the age
of accessed cache segments is plotted. Age is defined as the number of segments
added to the cache since the given segment was added. Most hits are for recently
added segments, but as the visualization session proceeds more hits are for older
segments. Therefore we believe compression ratio will improve with a large cache for
longer traces.

4.2.3 Multi-dimensional segmentation
The paper in section 8.5 describes and evaluates different algorithms for content
based segmentation of 2-D data sets. The following questions about advantages of
multi-dimensional segmentation, and the tuning of 2-D content-based algorithms are
answered:

1. Does 2-D content-based segmentation improve the compression ratio
compared to static 2-D segmentation?

2. Does 2-D application specific segmentation improve the compression ratio
and time compared to general purpose 2-D segmentation

3. What region size should be used to get the best redundancy detection?
4. Does 2-D segmentation scale with respect to data set size?

4.2.3.1 Methodology
To answer the above questions we have used the traces collected for the Varg system
(these were described in 4.2.1).
We have experimented with the following 2-D segmentation methods:

• The static 2-D segmentation algorithm used by VNC Hextile [183], and
MPEG [88].

• Static 2-D segmentation combined with the popular zlib [9] local compression
algorithm. This combination is often used by remote desktop systems.

• Our 2-D segmentation algorithm used in the Varg system (described above),
which does static segmentation into columns and then content-based
segmentation within columns. The algorithm has two optimizations for
segmenting screenshot data:

o The algorithm assumes that content movement is vertical. Redundancy
detection can be improved if horizontal movement is also detected. To
determine whether content has moved predominantly vertically or
horizontally, we do movement estimation by comparing Rabin
fingerprints for a subset of rows and columns on the screen, that are
selected based on Manber’s method [145]. If movement is
predominantly horizontal we transpose the 2-D array containing the
pixel data before running the algorithm.

o Some screen regions consists of identical pixels. The row fingerprints
calculated for such regions are identical, and hence either all or none
will be selected. To improve compression ratio we always create a
single large segment since it can efficiently be compressed using a
local compression method (such as zlib).

Content Based Compression

 60

• A novel 2-D content-based segmentation algorithm, that is similar to the Varg
algorithm but uses content-based segmentation in both dimensions. First the 2-
D array is statically divided into large m x m pixel tiles. Each tile is then
divided into horizontal columns by selecting anchor-columns based on
fingerprints calculated for each column. Finally, the horizontal strips are
divided into regions by selecting anchor-rows based on fingerprints calculated
for each row.

• Segmentation based on probabilistic 2D- pattern matching as suggested by
Karp and Rabin [122]. A short fingerprint is calculated for all m x m regions
including all overlaps. Then regions are selected based on the fingerprint value
using Manber’s method. The algorithm divides the 2-D data structure into
fixed sized segments that can overlap.

4.2.3.2 Experiment results
Compression method GeneVaND TreeView TIGR MeV
Hextile + Zlib 13.6 19.2 14.8
Static segmentation 15.9 24.3 16.1
Probabilistic 2-D segmentation 9.5
Static + 2-D content based 18.3
Varg (Static + 1-D content based) 24.0 90.9 29.7
Varg without movement estimation 23.8 89.6 17.3
Varg without similar region detection 22.9 82.9 17.1

Table 12: Compression ratio relative to Hextile for different segmentation
methods for 2-D screenshot data.
The achieved compression ratios using the different methods are summarized in Table
12. This section details the results. First, we compare the Varg compression method
against other widely used methods, and then find the parameters giving the best
compression. Finally, the scalability of the Varg method is demonstrated.

Content-based 2-D segmentation
Compared to static segmentation, content-based segmentation improves the
compression ratio up to 3.0 (Table 12). The improvement is due to content-based
segmentation achieving higher redundancy detection when using larger segment that
compress better with local compression algorithms, hence improving the total
compression ratio (as discussed in section 4.2.1).
However, content-based segmentation in both dimensions does not improve
redundancy detection compared to static segmentation. The problem is that if one of
the pixels in an anchor-column changes, the fingerprint for the column also changes.
The changed fingerprint may not be selected as an anchor-column. When the column
boundaries change, all segment boundaries also change.

4.2 Summary of papers

 61

Figure 33: Probabilistic 2D pattern algorithm tuned to reduce the pixels in
overlapping segments, or to reduce the number of pixels not covered by
segments. Ideally both overlap and coverage should be 100%.
Probabilistic 2-D segmentation also does not provide better compression ratio than
static segmentation, since pixels are either not covered or are in overlapping regions.
Tuning the algorithm parameters either reduces both coverage and overlap, or
increases both coverage and overlap (Figure 33). In addition, calculating Rabin
fingerprints for all 2-D regions is computationally costly since a sliding window
Rabin implementation cannot be used.

Segment size
With static segmentation the best total compression ratio when segments are not
compressed with zlib is for 4x4 pixel regions (48 bytes), and 32x32 pixels (3072
bytes) if zlib is used (Figure 34). Similarly for Varg content-based segmentation,
smaller segments improved redundancy detection, while larger segments improves
zlib ratio and hence the total compression ratio.
The small segment sizes giving the best fingerprint redundancy detection are about
48—192 bytes. In the previous section we found that for such small segments
compression ratio is limited by the fingerprint size, and that two-level fingerprinting
will improve the compression ratio.

Content Based Compression

 62

Figure 34: Compression ratio with fingerprinting and static segmentation.
There are four parameters in the Varg 2-D segmentation method that can be changed
to adjust the average region size. Our results for the genomic application traces shows
that these should be set as follows to achieve the best compression ratio:

• The static column width should be small. On our experiment platform 16
pixels worked well since horizontal scrolling often moved content 16 pixels at
a time. But a width of 4 pixels gives the best redundancy detection. Small
static columns increase horizontal redundancy detection, since multiple pixels
are typically scrolled at a time. In addition redundancy detection may
decrease if a column is wide enough to include content both inside and
outside a scroll-pane.

• The number of bits used for fingerprint selection, depends on the
visualization. For the Treeview and TMeV trace the best ratio is when every
8th row is selected on the average. For GeneVaND selecting on the average
every 32nd row gives the best ratio.

• Minimum region height should be about 8-16 rows if zlib is used, and 4 pixels
if not. A smaller minimum decreases the total compression ratio due to
reduced zlib compression ratio. A larger minimum also decreases redundancy
detection since a change to an anchor row may cause subsequent anchor rows
not to be selected since they are within the minimum height.

• Specifying a maximum region height does not improve compression ratio, but
may be necessary due to the fingerprint protocol messages having restrictions
on the number of bits that can be used to store the segment size.

Application specific optimizations
The two pixel data specific optimizations used in the Varg segmentation algorithm
improves compression ratio. Similar detection of column rows with identical content,
improves compression ratio by 1—8% since zlib compression ratio improves.
Movement estimation improves the compression ratio for TMeV with 72%, since
about 30% of the updates have predominantly horizontal movement. The compression
ratio improvement is smaller for the other traces, since few screen updates had
horizontal movement.

4.3 Discussion

 63

Scalability
The Varg segmentation method scales with screen size. With a larger screen the same
algorithm parameters give the best compression ratio, and the distribution of segment
sizes do not change. However, the total compression ratio improves, due to improved
fingerprinting and zlib compression ratio. It is therefore not necessary to tune the
segmentation method for different screen sizes.

4.3 Discussion
In this section the results presented in the previous section are discussed.

4.3.1 Remote visualization
Our work was motivated by the need for interactive remote visualization tools to be
used for collaborative analysis in bioinformatics and biology. Similar needs for
collaborative visualization tools are required in other fields, such as meteorology,
geosciences, and medicine. Provided that the interaction requires scrolling and
zooming large 2-D visualizations, we believe using Varg will give similar
improvements in compression ratio and time as for the genomics applications we have
experimented with.

The redundancy detection algorithm provides a high compression ratio for 2-D
visualizations. But, some scientific analysis tools provide 3-D visualizations. We do
not expect content-based compression to work as well for these, since the interaction
often involve rotation and zooming of objects such that the same set of pixels are
rarely displayed on the screen. 3-D visualizations are often programmed using
libraries that bypass the framebuffer typically used by remote visualization systems to
detect changes to the screen. To solve this problem the remote visualization server can
intercept the library function calls and forward these to the client using a protocol
such as Chromium [104]. The interception and the protocol implementation may
provide an opportunity for applying compression.

The 2-phase fingerprinting protocol uses eventual consistency to reduce user
perceived end-to-end latency. VNC, and most other remote desktop systems, also uses
eventual redundancy. But, the 2-phase fingerprinting protocol may cause the
replicated screen content to become inconsistent. This can happen if an optimistic
fingerprint collision is detected, and the segment with the corrected pixels is sent after
another update for the same pixels. The Varg prototype is sequential; hence the
problem is avoided since updates cannot be sent between the optimistic fingerprint
and the segment data sent due to a collision.
Even with the very best compression ratio, the end-to-end update latency will be
limited by the network latency. For WANs the latency can be large, often tens of
milliseconds, and hence be noticeable to users. The lower bound for the network
latency is limited by the speed of light. But it is important not to add a high transfer
time on top of an already large latency. In addition to network latency, we found
remote visualization performance to be limited by the VNC server implementation.
A remote visualization system could use a dedicated high bandwidth WAN. Also, we
can expect WAN bandwidth to improve. Either way, we believe our compression
method is still useful for two reasons. First, the requirements for the quality of
visualization, and hence the network bandwidth requirements, will also increase.
Second, with higher network bandwidth the compression time must be smaller in

Content Based Compression

 64

order to reduce transfer time. Our 2-D pixel compression algorithm can provide the
necessary compression ratio without the use of slow local compression algorithms.

Varg used VNC, since it has open source implementations for Linux, Mac and
Windows. But the 2-D pixel compression algorithm is independent of VNC. In order
to use another remote visualization system, all that is required is to parse the screen
update protocol in order to extract the updated region data.

4.3.2 Two-level fingerprinting
We found that the best optimistic fingerprint size for compressing a 100 GB data set
is 5 bytes, due to a reduction in collision bytes compared to 4 byte fingerprints. For a
smaller data set, compression ratio improves with smaller fingerprints. The optimistic
fingerprint size could be dynamically set at server startup time. But it is not possible
to increase the optimistic fingerprint size without flushing the segment cache, or re-
computing the optimistic fingerprint for all cached segments. Similarly, the size of the
statically allocated Bloom filter and number of segments in the compression pipeline,
could also be set at startup time based on the data set size.

The compression component multiplex data received from several segmentation
components. An alternative would be to run a Canidae fingerprint component instance
for each application. This would require dynamic memory and storage resource
management, which complicate the system, and probably neither improves
compression ratio nor the throughput of the system.
Most existing and new content based segmentation methods can be implemented to
use the segment cache provided by Canidae. But, the Spring and Wetherall [209]
method had to be modified since the redundancy detection requires a cache that stores
the last N sent bytes. We believe segmentation methods for multi-dimensional data
sets require a cache that stores a set of segments as in Canidae. The alternative is to
use some multi-dimensional data structure to which data can be incrementally
appended, and that efficiently allows comparison of stored data with a multi-
dimensional segment by growing the region in all dimensions. We are not aware of
any such data structure.

In order to simplify the implementation of the many segmentation components, the
two-level fingerprint component provide in-order delivery of segments. For protocols
supporting out-of-order message delivery, such as the VNC protocol compressed by
Varg, the end-to-end latency can be reduced if the segmentation components on the
receiver side can request messages to be delivered out-of-order before the
conservative fingerprint is verified.

The two-level fingerprint components can also be modified to reduce the latency of
segments sent through it. Currently, three messages may be sent over the WAN for a
segment (optimistic fingerprint, segment request, and the segment message). For
many segments the latency of sending segments can be reduced to a single WAN
latency, by maintaining a Bloom filter with previously sent optimistic fingerprints.
The sender checks the Bloom filter after sending an optimistic fingerprint, and
immediately sends the segment if the optimistic fingerprint is not in the cache.
Canidae throughput may also be improved if the receiver can query multiple servers
for segments not in its cache. This way, the segments may be received from a server
to which the bandwidth is higher, or the latency is lower than to the sender.

4.3 Discussion

 65

Canidae is designed to run on a dedicated machine such that it can utilize all memory
and disk on that machine. The same approach is used by several commercial WAN
accelerators [38, 62, 79, 120, 186]. We believe it is realistic to allocate one machine in
an organization for this purpose. The segmentation components can also be run on
dedicated machines, or they can be integrated with the application if the
communication latency, computational, or memory overhead of maintaining a
separate multi-dimensional data structure is too large. The compression pipeline is
implemented using multi-threading in order to utilize the many cores we expect future
processors to have. But, currently the implementation only scales to 2 CPUs, due to
cost of synchronizing the different parts in the compression pipeline.

We have not addressed security. If the application encrypts data to be sent through
Canidae we should not to be able to find much redundancy. The problem is further
complicated since applications are likely to use a wide variety of security (and
privacy) mechanisms and policies. Related work [220, 221] has proposed to use
convergent encryption [75] such that the fingerprints of segments are used to
compress the data.

Several important questions remain unanswered. The advantage of two-level
fingerprinting should be validated, by answering the following questions:

1. Does two-level fingerprinting improve the compression ratio achieved when
using previous 1-D content-based segmentation methods?

2. Does redundancy detection improve with smaller segments?
The benefit of a hundred GB cache needs to be validated using a larger data set than
the genomic visualization data sets.
In addition the system should be properly evaluated by measuring:

3. The throughput Canidae can support, and which cache parameters gives the
best performance?

4. The scalability of the compression pipeline and segmentation methods on
CMP and SMT systems?

To answer the first two questions the compression ratio of the implemented 1-D
segmentation algorithms should be measured when using different segment sizes,
with one level fingerprinting, and with two-level fingerprinting. A data set consisting
of uncompressed flat files can be used for the experiments. The last two questions can
be answered by measuring the throughput of the system on machines with processors
supporting CMT and SMT.

4.3.3 Multi-dimensional segmentation
Implementing a general-purpose 1-D segmentation component is relatively
straightforward. But, redundancy detection usually works better when protocol
headers or file meta data is removed from the data to be segmented [145, 209]. This
requires parsing the application messages. Typically only a few message types are
used to send the data that need to be compressed, and the remaining message types
can simply be forwarded uncompressed and unparsed. Implementing such limited
parsing for a protocol is easy if an open source implementation of a server and client
exists.

We have applied our segmentation on 2-D arrays of pixels. Data movement in such
data sets is predictable, and neighboring elements tend to have similar values. For

Content Based Compression

 66

other 2-D data sets, data movement may not be so easy to predict, and neighboring
elements may be different. Compression may not work as well for these data sets.
But, additional experiments are required to investigate these limitations.
Application specific optimizations improved the compression ratio for screenshot
data. The need for such optimization can easily be detected by analyzing the segments
produced by an algorithm. For the screenshot data we found it useful to play back the
visualization with the segment boundaries shown.
In our experience, achieving high compression ratio, while keeping the computation
cost low, is more difficult for 2-D segmentation methods than for the 1-D methods.
Our best method for 2-D segmentation combined movement estimation, static
segmentation, and content-based segmentation. Developing a similar algorithm for 3-
D datasets, would require movement estimation in 3-D and keeping two of the three
dimensions static. We do not expect such a method to achieve high redundancy
detection, and alternative approaches are probably required.

To improve redundancy detection for 2-D data, a segment size could be selected at
run-time based on the data type. But we are not aware of any methods that can be
used to predict the segment size to use. In contrast to the optimistic fingerprint size,
the segment size can be changed without flushing the segment cache.

Additional experiments are required to answer the following questions:
1. Does 2-D based segmentation methods improve the compression ratio and

time compared to 1-D segmentation methods for 2-D data?
2. What is the redundancy detection of the 2-D based segmentation when used on

scientific 2-D data?
To answer these question it is necessary to experiment with existing 1-D segmentation
methods [156, 209], and the 2-D segmentation methods described above. The data
sets could be from different scientific domains, such as geometric data, scientific
simulation output, and satellite images.

4.4 Related work
The Related Work in the paper in section 7.5 discusses compression algorithms used
in thin-client systems, MPEG compression and the Access Grid. This section
describes related work in redundancy detection, two-level fingerprinting, disk cache
design, commercial systems, remote visualization, and local compression.

4.4.1 Redundancy detection
Redundancy detection methods can be divided into four classes: duplicate detection,
static segmentation, content-based segmentation, and delta encoding. Each class is
described below. Examples of systems implementing the different methods are
shown in Table 13.

4.4 Related work

 67

Approach Application
domain/ data
transferred

Redundancy
detection

Median
segment
size

Fingerprint
size

Mogul et. al. [153] Web cache Duplicate
elimination

3 KB 128 bit

Santos and Wetherall
[196]

TCP packet data Duplicate
elimination

536 bytes 128 bit

CAS (Tolia et al. [221]) Distributed file
system

Static 4 KB 160 bits

Sapuntzakis et al. [197] Virtual machine
state

Static 4 KB 160 bits

CFS (Dabek et al. [69]) Peer-to-peer
content distribution

Static 8 KB 160 bits

Hong et al. [100] SAN file system Static 4 KB 160 bits
Venti (Quinlan and
Dorward [172])

Backup system Static 8 KB 160 bits

rsync (Tridgell [224]) File synchronizer Static +
Overlapping
static

300 bytes 32+128+
128 bit (2-
level)

Tolia and
Satyanarayanan [222]

Database content Static (row
boundaries)

 160 bits

Spring and Wetherall
[209]

Network data Spring and
Wetherall

128 bytes 64 bits

LBFS (Muthitacharoen
et.al [156])

Distributed file
system

LBFS 4KB 160 bits

Rhea et al. [180] Web objects LBFS 2 KB 128 bit
Pastiche (Cox et al.
[64])

Peer-to-peer
backup system

LBFS 16 KB 160 bits

Shark (Annapureddy et
al. [17])

Peer-to-peer
content distribution

LBFS 16 KB 160 bits

Pucha et al. [171] Multimedia files LBFS 16 KB 160 bits
Tolia et al. [220] Storage system for

reference data
LBFS 4 KB and

128 byte
160 bits

Imrak and Suel [114] Network data LBFS (multi-
resolution)

256 byte –
2 KB

64 bit + 128
bit (2-level)

Denehy and Hsu [72] Storage system Static,
overlapping,
LBFS

4 KB 160 bits

Bobbarjung et al. [39] Storage system LBFS +
differencing

4 KB +
128-256
byte

160 bits +
160 bits

Housel and Lindquist
[101]

Web cache Delta
encoding

no
segments

1

Douglis and Iyengar
[76]

HTML and web
objects

Manber +
delta
encoding

No
segments

1,2

Table 13: Overview of global compression systems.

1 Delta encoding size depends on the difference between the compared files.
2 The Manber feature set has a constant size that is independent of file size.

Content Based Compression

 68

4.4.1.1 Duplicate elimination
Duplicate suppression identifies and eliminates transfers of exact duplicates. Mogul
[153] use it at the document level for web data, such that the cache is indexed using a
fingerprint of the document content instead of an URL. Santos and Wetherall [196]
use it at the packet level. The disadvantage of duplicate elimination is that redundancy
detection is typically low [169].

4.4.1.2 Static segmentation
A static segmentation algorithm divides a dataset into fixed size, non-overlapping,
contiguous segments.

rsync (Tridgell [224]) is a Unix tool for copying a file directory over the network into
an existing directory tree with similar files. Similarity between files is used to reduce
bandwidth usage. The redundancy detection algorithm compares the content of files
with identical filename in the two directory trees. First the receiver segments its
version of the file using static segmentation, computes fingerprints, and sends these to
the sender. The sender computes fingerprints for all overlapping fixed size segments
in its file. If the fingerprint for a segment matches one of the received fingerprints, a
description of the segments location is sent instead of the segment data.

Static segmentation can also be used to segment structured data. Tolia and
Satyanarayanan [222] segment database content by exploiting row boundaries of
relational database results. Their results shows that redundancy detection improved
compared to content-based segmentation using the LBFS approach (described below).
The improvement is due to the large content-based segments crossing row boundaries.
Using the much smaller segments provided by Canidae may avoid this problem.

Static segmentation of large files has been used by peer-to-peer content distribution
system, such as CFS [69], to improve data transfer speed and efficiency by supporting
simultaneous download of segments from multiple sources. Sapuntzakis et al. [197]
use static segmentation to reduce the bandwidth usage when sending memory content
over a network.
Static segmentation algorithms, that for example take data structure into account, can
be implemented as Canidae segmentation modules. These can take advantage of the
two-level fingerprinting protocol and hence use smaller segments than has been used
by existing systems.

4.4.1.3 Content-based segmentation
Content-based segmentation methods divide data to be transferred (or stored) into
variable sized segments. First fingerprints (hash values) are computed for fixed size
substrings in a 1-D bytestream, including overlaps. Then a deterministic random
sample of these fingerprints is selected. The selected fingerprints are then either used
as starting points for finding redundant segments in the data, or as anchorpoints for
dividing the data into segments.

Many methods use Rabin fingerprints [175], since these can be efficiently computed
using a sliding window implementation. A Rabin fingerprint is the polynomial
representation of some data modulo an irreproducible polynomial. Broder [50]
described how Rabin fingerprints can be computed 32 bits at a time using
precomputed tables for the irreproducible polynomial. The sliding window
implementation allows computing the fingerprint for the window content in terms of

4.4 Related work

 69

the previous fingerprint. First the oldest byte in a window is subtracted using
precomputed tables, then the window is advanced with 1 byte, and finally the
fingerprint is updated by adding the terms of the new byte.
To select a random sample of Rabin fingerprints most segmentation methods use
Manber’s [145] approach. To find similar files, Manber selected fingerprints where
the least k significant bits are zero, and then compared these. Since the fingerprints are
selected based on their content rather than location, the same set of fingerprints will
be selected even if the content has moved. With a uniform distribution one of every 2k
fingerprints will be selected.
Spring and Wetherall [209] adapted Manber’s approach to select fingerprints to be
used as starting points for finding redundant segments in a 1-D bytestream. Both the
sender and receiver store previously sent data in a cache (the cache is a large buffer
where data is appended). To segment a 1-D packet to be transferred, Rabin
fingerprints are calculated, selected, and checked against fingerprints calculated for
the data stored in the cache. For each match, the bytes covered by the fingerprint
window have the same content in the cache and in the packet to be sent. The segment
can then be expanded, to cover the bytes before and after the fingerprint bytes, by
matching bytes in the packet and in the cache. Finally, the fingerprint and a
description of the covered region are sent to the receiver.
In the Low Bandwidth File System (LBFS) [156] Manber’s approach is also used to
select a fraction of Rabin fingerprints. But instead of using the selected fingerprints as
a starting point for growing a segment, these are used as anchorpoints in a 1-D
bytestream. The anchorpoints divide the bytestream into segments, such that segment
consists of all bytes in the Rabin fingerprint window, and all following bytes until the
beginning of the next anchorpoint.
Many other fingerprint based systems have either used the Spring and Wetherall or
the LBFS approach for segmenting 1-D data (some examples are give in Table 13).
But these work well only with 1D data types, such as web content, documents, email
and binaries. Our redundancy detection method is aware of the data structure, and
works well with 2-D screen buffers. In addition the two-level fingerprinting protocol
allows using smaller segments than are typically used by previous systems.

4.4.1.4 Delta encoding
Document updates often only make small modifications. These changes can be
encoded using delta encoding (as done by the Unix diff utility). Delta encoding has
been used for web data compression [101, 154], by only sending the difference
between two version of a cached document. Similarly the CVS version management
software [30] saves bandwidth by only sending patches describing required changes
in order to update a set of files. However, these approaches are only able to detect
differences at a single document level.
To apply delta encoding to a large set of files Douglis and Iyengar [76] first chose a
representative base set of files by using Manber’s technique for detecting similar files
[145], and then send delta encoded differences between the files to send and the base
files.
Delta encoding works well when the data is structured into files and the receiver
already has a previous version of the data to be transferred. However, choosing a

Content Based Compression

 70

representative base is more difficult for multi-dimensional data sets, especially if the
data is streamed.

4.4.1.5 Evaluations
Policroniades and Pratt [169] measured the amount of redundancy detected when
using whole-file duplicate elimination, static segmentation, and LBFS content-based
segmentation on 1-D file sets. The data set sizes ranged from a few gigabytes to 100
GB. Overall, content-based segmentation detected most redundancy. But static
segmentation also provided usable levels of redundancy; for some data sets content-
based segmentation was only slightly better. Both were significantly better than
whole-file duplicate elimination. Combining content-based segmentation with zlib
compression of the segments can improve compression ratio. Content-based
redundancy detection was best for code files (45—99%), but worse for more diverse
files (20—25%). The index used to store fingerprint to segment location mapping was
identified as a significant limitation to the achieved compression size.
You and Karamanolis [100] compared the compression ratio achieved using LBFS
content-based segmentation versus Douglis and Iyengar’s delta encoding. The data set
experimented with consisted mostly of uncompressed 1-D files, but there were also
some 2-D images in the TIFF format. Compression ratios ranged from none (content
based on TIFF images) to 100x (Unix log data). For content-based segmentation with
128-bit fingerprints, the best redundancy detection was when using 128-256 byte
segments. Content-based segmentation was best for large volumes of similar data.
Delta encoding is more computation intensive, but better for less similar data due to
the lower storage overhead of the meta-data (the feature set used to find similar files
has a constant size, while the number of fingerprints depend on segment and file size).
Both outperform gzip, especially when zlib is used to compress segments.
Pucha et al. [171] use the LBFS approach for content-based compression of
compressed multimedia files in order to improve multi-source download performance
for cases where the receiver is not able to utilize all its available network bandwidth.
About 99% redundancy was detected for MP3 files, and about 15% for movies. These
files contained identical content but differed in for example header data for MP3 files
or the subtitle language for movies.
These previous evaluations have four limitations. First, only the LBFS approach was
used for content-based segmentation. Second, large fingerprints were used to encode
segments. Third, the average segment size was large. Content-based compression
using Canidae can use smaller segments, and apply multi-dimensional segmentation
methods. A new evaluation is therefore needed for multi-dimensional data.

4.4.2 Two-level fingerprinting
Most fingerprint based network data and storage systems use a single fingerprint to
encode a segment. But some previous work has proposed using multiple levels of
fingerprints as described below.
Rsync [224] uses three sets of fingerprints. However, in contrast to our two-level
fingerprinting protocol the goal is not to efficiently encode small segments, but to
reduce compression time. The three sets of fingerprints are used as follows. First, for
each static segment, the receiver computes a sliding window Adler 32 bit fingerprint
that is fast to compute, and a 128 bit MD4 hash [187] that has low probability of
collision. These are then sent to the sender. The sender uses the sliding window

4.4 Related work

 71

fingerprints when searching for a redundant segment, and only computes the low-
collision probability fingerprint when the fast fingerprints match. The third set of
fingerprints consists of MD4 hashes computed for each file, and are used to verify
that the file assembled by the receiver is identical to the sender’s file. In [224]
Tridgell observed that since the per file MD4 hash ensures data consistency, the per
segment MD4 hashes could be replaced with a smaller fingerprint. The resulting
protocol would be similar to our two-level fingerprinting protocol. However, the
improvements to compression ratio and transfer time were not evaluated.

Imrak and Suel [114] propose a hierarchical segmentation method, where the LBFS
method is run over the same data multiple times with different expected segment
sizes. The segments from the various levels are cached together in a multi-resolution
cache in memory, where recently sent data is indexed using a fine granularity, and
older data is indexed using a coarser granularity. To send a packet of data, the sender
uses the cache to find the coarsest segments covering the packet data, by comparing
fingerprints for the cached segments with the fingerprints calculated for the data to be
sent (using multiple expected segment sizes). When a match has been detected an 8-
byte fingerprint is sent, and then for all data in an object a 16-byte fingerprint is sent
to ensure consistency. Our two-level fingerprinting protocol differs in three ways.
First, our goal is not to improve compression ratio by detecting larger segments, but
more efficiently encoding small segments. Second, segmentation is not integrated
with the cache. Third, we use a much larger segment cache, and do not rely on
information about which segments has previously been sent.

Bobbarjung, Jagannathan and Dubnicki [39] propose fingerdiff that combines
fingerprinting and differencing to improve duplicate elimination in storage systems.
First the LBFS content-based segmentation is used to divide the data into large
chunks. If the chunk is updated, then the large chunk is divided into smaller segments,
such that only the small chunks must be written to the storage. Fingerdiff allows using
small 128-256 byte segments for changed regions, without significantly increasing the
storage required for the fingerprint-to-segment index. The compression ratio
improved with 13-40% compared to the best content-based approach. Canidae differs
from storage systems in that segments are never updated, and will therefore not
benefit from fingerdiff.

Tolia et al. [221] propose the fuzzy blocking approach for sending files over a
network. It is an extension suggested to their content addressable storage (CAS),
where the sender sends a set of fingerprints for statically segmented files, and the
receiver requests segments not in its segment cache. With fuzzy blocking error
correction codes are used to detect changes to 128 byte blocks within a 4 KB segment.
The approach has not, to our knowledge, been implemented nor evaluated.

4.4.3 Segment cache
Few global compression systems have addressed the problem of implementing an
index for mapping fingerprints to segments that that is stored on disk, since for most
system the number of segments is small enough for the index to fit memory.
In the Venti system [172], the index is divided into fixed size buckets and stored in a
separate pointer block on disk. A hash function maps fingerprints to index buckets,
and then binary search is used to find the fingerprint. To optimize index lookups three
optimizations are done. First pointer blocks and data blocks are cached in memory.
Second, the index is stripped across multiple files. Third, writes are buffered. The

Content Based Compression

 72

containers used by Canidae are also cached, and allows to buffer writes. In addition
three additional optimizations are used. First, a Bloom filter is used to further reduce
the number of times the disk must be accessed. Second, writes do not check the index,
since we can tolerate duplicates causing inconsistencies in fingerprint to data
mapping. Third, related segments are written to the same blocks allowing for read-
ahead of segments.

The SAN file system of Hong et al. [100] avoids the fingerprint-to-block index
overhead of Venti, since data is accessed by blocks (redundancy detection is done
after writing the data). But a multi-level index of fingerprint to segment locations is
maintained to improve the performance of fingerprint searches. The first level is 64
MB in size, and contains pointers to second level buckets indexed using the first 24
bits of the SHA-1 fingerprint. Each second level bucket contains a 32 bit segment
location and the next 32 bits of the SHA-1 fingerprint. Since the maximum number of
segments stored for an object is 232, each bucket index is on the average 256 blocks.

Lookup management in fingerdiff [39] is implemented using a variant of a binary
search tree. Such a tree avoids the time and space overheads of hash tables, caused by
the random distribution of fingerprint values leading to similar segments having
completely different hash-key values, and non-similar segments having common
SHA-1 hash substrings. The binary search tree reduces memory usage, since it avoids
storing repeated SHA-1 substrings, and can be dynamically adjusted depending on the
SHA-1 hash values in use, without increasing search time. For 20-byte SHA-1
fingerprints the tree has 20 levels. At the ith level, the ith byte in the SHA-1 fingerprint
is used to decide which of the 256 possible children to check in the i+1th level. To
further reduce storage different data structures are used for tree nodes depending on
the number of children, and linear paths are only stored at the root. However, the
design assumes that the entire tree fits in memory.

Denehy and Hsu [72] implemented a reliable storage system for reference data that
stores multiple copies of redundant data segments. The primary data structure for
accessing segments is a table containing the segment locations for each object. But
there is also a secondary data structure used to maintain reference count and location
of replicated segments. This data structure is indexed using fingerprints calculated for
each segment. The fingerprints are clustered based on when the segment was created
or updated. This allows read-ahead of fingerprint values by exploiting the observation
that similar objects only differ in a few segments, such that for these sequences of
similar fingerprints tend to be read. In addition, the temporal locality of data usage is
exploited, such that entries are only kept for a short period of time in memory and
then archived. Archived entries are only read from the archive when recovering from
a read error.

The problem of using a two-level data structure where the second level “tables” are
located using the fingerprint values is that these will be accessed uniformly, and hence
cannot efficiently be cached in memory (assuming that fingerprints have the desired
property of no locality). Canidae attempts to exploit fingerprint access locality with
respect to segment creation time by storing segments created at the same time in the
same container. This allows containers to be cached in memory, but requires linearly
searching the containers to find a fingerprint. In addition the optimizations described
above reduce the number of disks accesses.

4.4 Related work

 73

4.4.4 Commercial WAN accelerators
Several commercial WAN accelerators have recently been introduced including
Riverbed RiOS [186], Cisco WAAS [62], Juniper Networks WAN accelerator [120],
F5 Networks BIG-IP [79], Blue Coat’s MACH5 [38]. These are proxy systems,
typically combining fingerprint based caching, local compression, protocol
optimization, and TCP optimization.
The cache in RiOS and WAAS probably consist of fingerprinted content-based
segments (in RiOS a 16 byte fingerprint is sent for segments that are on the
average100 bytes in size, and cached on disk [186]). Juniper combines a custom
compression method with fingerprinting, while MACH5 combines duplicate
elimination with fingerprinting. All systems combine fingerprinting with Lempel-Ziv
compression of non-redundant data.
In addition to compression, these systems apply WAN specific optimizations to
application protocols such as the Common Internet File System (CIFS), HTTP,
Microsoft Exchange, and the Message Application Programming Interface (MAPI).
RiOS, WAAS, and Juniper also optimize TCP by using larger windows to allow more
data in flight and repacking of data.

The BIG-IP WAN accelerator [79] runs a local compression engine on a proxy
machine and dynamically tunes the compression ratio and compression time to
achieve the best reduction in transfer time.
Canidae has the same architecture as these commercial systems, and use many of the
same techniques, but it is designed to work well with multi-dimensional data sets.

4.4.5 Remote visualization
Varg was based on the VNC [184] thin client remote visualization system. Other thin
client remote visualization systems include Microsoft Remote Desktop [67], Sun Ray
[200] and THINC [25]. In such systems all graphical processing is at the server. The
clients only forward mouse and keyboard events to the server and apply updates
received from the server to a local framebuffer, and are therefore easy to implement,
maintain, and port.

The display updates sent in VNC consist of raw pixels read from the server’s
framebuffer. Since, processing of application display commands is decoupled from
the generation of display updates, the clients are stateless and hence very portable. In
addition it is easy to send the updates through a compression engine such as Canidae.
Other systems, such as Microsoft Remote Desktop, have a rich set of low-level
commands for encoding the updates sent over the network. But, these commands do
not compress well leading to decreased WAN performance [131]. Sun Ray achieves
better WAN performance since a few low-level operations are used [131]. THINC
provides an efficient mechanism, in the form of a device drive, to translate application
display commands into a command set similar to that being used in Sun Ray. The
disadvantage of THINC is that the device driver needs to be ported to different
platform. In addition, our experience with deploying the Varg system is that users are
often reluctant to install new software on their machines. Hence, we believe the VNC
approach has advantages in that both the server and client can be implemented in
Java, and therefore started by a single mouse click in a web browser. Interesting
future work would be to use Varg redundancy detection on screenshots to detect the

Content Based Compression

 74

same operations on pixels that THINC detects (for example a move of a region
pixels).

Early remote visualization systems such as Unix X [198] have thick-clients doing all
display processing, and high level graphics primitives for sending display updates.
This approach has several disadvantages. First, the client is more complex and
therefore harder to implement, maintain and port. Second, the high-level operations
are not bandwidth efficient. [131, 200] Third, the client and server need rapid
synchronization that decreases performance for high latency wide area networks
[131, 200]. The cost of synchronization also decreases performance of replicated
application-sharing systems [28].

Remote visualization systems for Grids are often application specific, and often the
purpose is to provide access to powerful 3D graphics rendering machines such as in
the SGI OpenGL Vizserver system [203] or the cluster based Chromium system
[104]. The disadvantage of this approach is that it requires writing applications using
specific graphics primitives.
The Scalable Adaptive Graphics Environment (SAGE) [116, 179] is a middleware
system for streaming high-resolution graphics over local area-, and wide area
networks. SAGE differs from Varg in that it is designed to utilize high bandwidth
networks, and hence does not require the compression ratio necessary for shared
WANs.

Thin-client systems have previously been benchmarked using video playback [159]
and Web browsing [60, 159]. For both the user interaction rate will be very low, and
hence the benchmark results will not be realistic for the type of interaction required by
Genomics analysis tools.

4.4.6 Local compression
Local compression libraries such as zlib [9], bzip2 [202] and rar [188] combine
several compression methods. This section describes the most commonly used.

The Lempel-Ziv (LZ77) [244] algorithm detects duplicate strings in a sliding window
and replaces these with a back-reference to the previous location of the string. In zlib
the default sliding window size is typically 32 KB, and the strings lengths are 3—258
bytes. Hence, redundancy detection is within a local scope. The search for strings is
computationally expensive, but to reduce compression time the number of string
lengths to check can be reduced. The algorithm complements global compression
algorithms since it can be used to detect redundancy within a small segment.
Huffman [103] entropy encoding replaces symbols with weighted symbols based on
frequency of use. The resulting Huffman tree provides prefix-free codes that express
the most common symbols using fewer bits than less commonly used symbols. In
zlib, Huffman encoding is run after the Lempel-Ziv algorithm, creating a tree with
space for 288 symbols. Huffman encoding can also be applied to segment data, and it
can significantly compress segments with few symbols such as pixel values.
Run-length encoding (RLE) replaces long runs of symbols with a single <data value,
count> encoding. A variant of RLE is used by remote visualization systems (e.g. in
the VNC Hextile [183] and RRE encodings [183]), to split a region into smaller
regions that can be represented using a single <pixel value, region position, region
size>. RLE is fast to compute and can therefore be applied to segments if the
overhead of Lempel-Ziv and/or Huffman is too large.

4.5 Conclusions

 75

Value-prediction can be used for lossless compression of floating point data [176].
This algorithm predicts the next value, XOR encodes the difference between the
predicted value and the actual value, and then encodes the resulting value with a
leading zero count and the remaining bits. The assumption is that the sign, exponent,
and top mantissa bits, stored in the most significant bits, are easy to predict and hence
will be zero after the XOR. This compression may work well with segments produced
for a scientific dataset.

4.5 Conclusions
This chapter has presented the design, implementation, and initial evaluation of the
Canidae and Varg systems that reduce the bandwidth requirements of distributed
applications.

Canidae is a network data compression framework that allows multiple, data-specific
segmentation methods to share a segment compression engine. A two-level
fingerprinting protocol has been proposed to improve redundancy elimination by
allowing using smaller segments than previous global compression systems. Also
proposed is a novel method to compress 2-D pixel segments by using fingerprinting.
In addition we propose a segment cache on disk used to store a hundred GB dataset,
and optimized to reduce disk accesses by using a Bloom filter.

The requirements for a 100 GB data set were modeled. Our results shows that two-
level fingerprinting is most useful for segment sizes ranging from 16 to 256 bytes. In
order to get the best trade-off between fingerprint bytes, and collision bytes the
optimistic fingerprint size should be 40 bits, and a conservative fingerprint should
cover about 20—25 segments. In addition, we demonstrated the need for a large
segment cache, and the benefits of such a cache.

Varg allows users to interactively visualize multiple remote genomic applications
across a WAN. We found that genomic applications have much higher network
bandwidth requirements than office applications, and hence require substantial
compression of network data to achieve interactive remote data visualization on some
WANs.
An initial evaluation of the Varg system shows that the proposed 2-D pixel segment
compression method works well and imposes only modest overheads. By combining
with zlib and differencing compression methods, the prototype system achieved
compression ratios ranging from 30:1 to 289:1 for three genomic visualization
applications that we have experimented with. Such compression ratios allow the Varg
system to run remote visualization of genomic data analysis applications interactively
across WANs with relatively low available network bandwidths.

The Canidae system provides a framework that can be used to implement application
specific compression methods for large-scale data storage infrastructures, or between
other sites where collaborative work requires sending large amounts of complex data,
such as in remote visualization. The compression method complements the methods
for reducing the latency requirements of parallel applications. Combined these allows
to efficiently transfer a large dataset to a remote cluster, run a parallel application
analyzing the data on a federation of clusters, and remotely visualize the results.

77

Chapter 5

Conclusions

This dissertation has presented and evaluated how end-to-end performance of
distributed and parallel applications can be improved by better CPU utilization,
reducing latency of communication primitives, overlapping computation-
communication, and lowering bandwidth requirements.
Chapter 2 presented two approaches for improving parallel application scalability by
reducing the latency of collective communication. First, performance monitoring and
analysis was used to adapt collective communication to the application and platform
in use. Collective communication performance analysis required message traces
collected internally in the communication system. We proposed monitoring methods
to reduce the high storage requirements of such data collection, and to satisfy the
computation requirements of the data processing. Second, a commonly used collective
operation was extended with knowledge about how the result was used in order to
reduce the number of messages sent over WANs. The improvements due to the
performance analysis, the performance and perturbation of the implemented monitors,
and the improvements due the changed collective operation, were documented with
benchmarks run on Ethernet and WAN multi-clusters. The following contributions
were made:

1. A monitoring framework that supports the development of runtime monitors
for parallel applications. Monitors can be tuned to trade-off between
performance and perturbation. In particular:
• Message traces are stored in small buffers and processed at the rate data is

produced by monitor threads run on the cluster nodes to reduce the
memory footprint.

• Monitor and application threads are coscheduled to reduce monitor
perturbation.

• Documentation that data for collective communication performance
analysis can be processed with insignificant perturbation.

2. A performance analysis method to identify bottlenecks due to network latency,
synchronization overhead, and computation overhead, and:
• Demonstration that such a method can be used to reduce collective

operation latency.
3. We described how the allreduce operation can be modified to reduce the

number of messages sent over high latency networks, without changing the
application results, and:

• Demonstrated that the conditional-allreduce operation has similar latency
on a WAN multi-cluster as on an Ethernet cluster.

Conclusions

 78

In Chapter 3 parallel applications were overdecomposed to introduce thread level
parallelism in order to reduce execution time by overlapping communication wait
time with computation, and by utilizing SMT processors. The improvements and
limitations of overdecomposition were documented by collecting data during the
execution of benchmarks run on a cluster composed of the first generation SMT
processors. The contributions are:

4. Method for identifying TLP improvements and overdecomposition overheads
using data from multiple software and hardware layers.

5. Demonstration that overdecomposition can reduce the execution time of
parallel applications, and identification of significant performance limitations.

Chapter 4 presented an approach for reducing the network bandwidth requirements of
remote visualization, and for applications transferring large scientific data sets. We
proposed a lossless global compression system for multi-dimensional network data.
Performance improvements of data transfer are validated with experiments. The
contributions are:

6. A framework for global compression using two-level fingerprinting and
application specific segmentation, and:
• Redundancy detection is separated from redundancy elimination, such that

application specific segmentation algorithms can be implemented to
improve redundancy detection.

• Two-level fingerprinting protocol that improves redundancy detection by
using smaller segments, while maintaining data consistency.

• The design and implementation of a very large cache on disk for storing
previously sent segments to improve compression ratio.

7. A network bandwidth optimized, platform-independent remote visualization
system. In particular:

• Two-phase fingerprinting protocol for reducing compression time.
• Redundancy detection algorithm for 2-D pixel data that exploit data

movement on screens to improve compression ratio.
• Demonstration that the system allows visualization of genomic data

analysis applications interactively across WANs with relatively low
available network bandwidth.

79

Chapter 6

Future Work

The work in this dissertation has explored four approaches for reducing the bandwidth
and latency requirements of distributed and parallel applications. Even for these there are
unexplored paths, and room for improvement; some of which are described in this
section.

6.1 Collective performance analysis and monitoring
Spanning tree reconfiguration for improving collective operation performance could be
validated by additional experiments using benchmarks and applications with different
communication structures.

To validate that spanning tree adaptation based on performance analysis is better than
testing many different algorithms for creating spanning trees [80, 81, 229], measurements
should be made to compare the performance of the tuned collective operations, and the
time required to find the best configuration.

Better visualizations for presenting the performance results are needed to aid users.
Developing scalable visualizations is regarded as an important research problem for
performance analysis of applications run on large scale clusters [151, 178, 217, 238, 243].
High resolution displays may be of use to visualize such data as demonstrated in [96]. For
non-expert users it may be necessary to automate the analysis and tuning of collective
communication. Using our monitoring approach, automatic performance tuning tools
[151, 182] could be implemented to use underutilized cluster resources.
Some parallel applications are implemented by decomposing an unstructured graph to
threads, and using asynchronous point-to-point communication operations for exchanging
data. For one such application [54], we were not able to understand a communication
performance problem using traces collected using the MPI profiling layer. The necessary
insight to understand the problem could be provided by using message traces collected
internally in the communication system to create visualization that show which threads
wait, and have waited, for which other threads during the execution.

6.2 Collective operations for WANs
Tools analyzing a parallel applications source code could be used to automatically detect
which collective operations can be made conditional.
To validate the applicability of WAN multi-clusters for real parallel applications,
experiments should be conducted to compare the performance of applications run on a
single cluster, versus an application run on a multi-cluster that is optimized with all the
methods presented in this dissertation.

Future Work

 80

6.3 Overdecomposition
The improvements and limitations of overdecomposition should be validated on CMP
processors.

Multiprogramming can be used to also overlap collective communication wait time. The
coscheduling method we developed for the EventSpace monitor system could be used to
allow two parallel applications to share a cluster without performance degradation of the
primary application. We believe this functionality can be implemented in the
communication system. Such scheduling also needs to take into account cache pollution,
and provide predictable and low latency communication operations.

System software could be changed to avoid the overdecomposition limitations identified
for the NAS benchmarks. Especially, the following changes should be investigated; each
motivated by the limitations for a benchmark:

• In BT and SP each thread communicates with multiple neighbors, and
computation-communication overlap is implemented using the immediate
functions provided by MPI. A better mapping of threads to processors may reduce
the inter-node communication overhead.

• Applying overdecomposition for CG and MG decreases performance due to
increased cache misses and operating system activity. Therefore, intra-node
communication should use asynchronous communication operation that provides
low memory-bandwidth user-level non-blocking synchronization.

• System software should be changed such that a high degree of TLP is maintained,
even at the cost of work conservation.

6.4 Remote visualization
Performance comparison of remote visualization using Varg and other thin-client systems
should be conducted by using the systems over real WANs.

A longer trace should be used to evaluate the compression ratio and time achieved using
Varg.

The scalability of theVarg system should be demonstrated by compressing the data for
cross Atlantic collaboration using display walls.

6.5 Two-level fingerprinting
Improvements to Canidae throughput, and the end-to-end latency of individual segment
transfers, should be evaluated using a sender cache. This cache could be implemented
either using a hash table or a Bloom filter.

The latency of segments sent through Canidae should be measured by compressing data
by a Varg type remote visualization.

The effect on compression ratio and compression time of using bi-directional
communication should be measured.

The benefit of a hundred GB cache should be validated using a larger data set than the
genomic visualization data sets used in the initial evaluation.

6.6 Segmenting multi-dimensional datasets

 81

A full evaluation of the advantage of two-level fingerprinting is needed to answer the
following questions:

• Does two-level fingerprinting improve the compression ratio of previous 1-D
content-based segmentation algorithms?

• Does redundancy detection improve with smaller segments?
The segment cache should be evaluated by answering the following:

• Are the assumptions that segment accesses have temporal and spatial locality
true?

• How should the parameters be set to achieve the best performance, in particular:
the number of hash table entries, segment buffer chunk size, and the memory
allocated for hash tables versus segment chunks?

• Does the choice of container replacement algorithm significantly improve cache
hit ratio?

In addition the system should be properly evaluated by measuring:
• The throughput of Canidae compression.

• The scalability of the Canidae compression pipeline on current CMP and SMT
processors.

To answer the first two questions the compression ratio of the implemented 1-D
segmentation algorithms with different segment sizes should be measured when using
one level fingerprinting, and when using two-level fingerprinting. A data set consisting of
flat uncompressed files could be used for the experiments. The last two questions can be
answered by measuring the throughput of the system on machines with processors
supporting CMT and SMT.

6.6 Segmenting multi-dimensional datasets
Segmentation algorithms for scientific 2-D data or 3-D data should be developed, and
used to demonstrate network transfer time improvements when used to detect redundancy
in multi-dimensional scientific datasets.

Methods could be developed for predicting the segmentation method and segment size to
use for a given dataset.

Additional experiments are required to answer the following questions:
• Does 2-D based segmentation methods improve the compression ratio and time

compared to 1-D segmentation methods?
• Does the 2-D based segmentation methods also work well with scientific 2-D

data?
To answer these question it is necessary to experiment with existing 1-D segmentation
methods [156, 209], and the 2-D segmentation methods we have developed. The data sets
to use in the evaluation should be from different scientific domains, such as geometric
data, scientific simulation output, and satellite images.

83

Chapter 7

Appendix A - Published papers

7.1 Collective Communication Performance Analysis Within the
Communication System

This paper was published in the Proceedings of Euro-Par 2004 [43].
An earlier version of the paper was published as a technical report [44].

���������	��

������������������������
���������� �
!"���#�������$�&%'������(*)+��)
, ��
�-.���/
�-��0�����������.�����1

�����324(*)5
��6�

7�8:9<; =6>@?BADC$AFEHGFAHIHJLKMKMA*NHOP=6EH;MQSRH;�IT8FEHUVNFAWQTEVXY8:9[ZSRH; C+\^]F9MEPUT8:?@_�E

` a<bdc�egfih�a<j"flk�m+n
koh�bWpWfia[e�q:r<sta<jdr[aoudv�jdstwxa[eiygszf|{}k�m�~Peik�h�yg�WuW�$k�eg�#c<{
�o�o�o�F�����+�D���x�:�P�D�x���x���d�o�:�x�����d�������F�

�����<�<�� S¡��o¢¤£ a6¥Wa<ygrMeis§¦¨a6c�j4c�bdbWeikoc�r^©*c�jd¥�fik"k�ª§y�m«k�e¬kobWfisth�st­<stjd®¯r<koªtªta<r[fistwxa
k�b¨a[e^c�fistkoj°ygbdc�jWjdstjd®±fgeia<a*b¨a[egm«k�eih�c�jWr<ao²�~#©daDc�ª§ªzeia�¥Fpdr<a*k�b¨a[e^c�fistk�j°s§y�c�jSc�³
ªz{F­<a�¥Y¦"{´r<koªtªta<r[fistjW®�b¨a[egm@k�eih�c�jWr<a4¥Wc�f^c±c�f�cDªtk��#a[e�ªta<wxa[ª#fi©Sc�jYfge^co¥Fszfis§k�jSc�ª
h�k�jdszfik�eistjd®	yµ{Fyµfia<h�y<² £ alr<c�ªtr<pdª§c�fia�ª§c�fia[jdr<sta<y�c�jd¥¯�lc�szf+fisth�a<y5fik6¥Wa[fia<rMf�ªtkoco¥
¦dc�ª§c�jWr<aDbWeiko¦Wªta<h�y<u�¶SjS¥·ygpd¦Ffgeia<a<y1��szfi©¸ygsth�stªBc�e�¦¨a<©Sc�w:stk�e�u
¥WkVr<k�yµf�¦Weia�c�¹:³
¥Fk���jHuxc�jS¥Lr<koh�bdc�eia#fi©da
b¨a[egm«k�eih�c�jdr[alk�mSf|�#k ygbdc�jdjWstjd®$fgeia<alr[kojW¶d®opFe^c�fistkojWy<²
£ a�a[woc�ª§pdc�fia�fi©da�b¨aMegm«k�eih�c�jdr<a�k�m¬¥WszºTa[eia<j"fLr<kojF¶S®�pWe^c�fistk�jdy1c�jS¥�h�c�bdbWs§jW®oy
k�m�c�ª§ªzeia�¥Fpdr<a¬eipdj�k�j�r[ª§pWyµfia[eiy
k�m�¥FszºTa[eia<j"f
ygst­<a$c�jd¥���szfi©�¥WszºTa[eia[j:f�j:pdh¤¦¨a[e+k�m
n#»�v$y<²5¼½kojdszfik�eis§jW®*k�wxa[ei©da<co¥�sty6ªtk��	u�c�jd¥.fi©da�c�jSc�ªt{FygstyLs§yLygsth�bdªtsz¶Sa�¥±ygstjdr<a
h�c�j:{$ygpd¦Ffgeia<a<y�©dc�wxa�ygs§h�stª§c�e�¦¨a<©Sc�w:stk�e�²�¾�k��
a<wxa[e�u[fi©da�r�c�ªtr<pWª§c�fia�¥6woc�ªtpda<yP©Sc�wxa
ª§c�ei®�a#w�c�eis§c�fistkojWy<u�c�jS¥	eia<r<k�jW¶d®opWe^c�fistkojLh�c�{ c�ºTa<rMf5pdjWrM©dc�jd®�a�¥	bSc�egfiy<²�`$a<ygbdszfia
fi©Wa<yga	bWeik�¦dªta<h�y<u:�#a6c�rM©Ws§a[wxa6c¯ygb¨a<a�¥Fpdb}k�m5pWb}fik½¿�² ÀoÁ¯m«k�e c�ª§ªzeia�¥Fpdr<a�²

Â ÃdÄ¬Å¨ÆTÇ	È¤ÉLÊ�ÅTËiÇ¬Ä

Ì ?BRH;^KM_�9[;$8:9[_6Í�_�Î�AFÏ4>BEHG}8:E±>BEHÎ�9M_o8F;M>BEHGF?@Ð}>@Ï4ÑPAW9^K<8:EdK�ÑT?«8"KMÒ�AF9[ÏÓÒ�AF9 ;MÎ�>B_�EWK[>§Ô�ÎLÎ�AWÏ4ÑTR¨K^Õ
>BETGPO"XY8:ESÐ1ÑH8:9<8:?@?@_�?W8FÑTÑT?@>@Î�8"K[>BAWEH;+9[RTE}AFE�Î�?BRH;^KM_�9[;�RH;M_$8¤Î�AWÏ½Ï}RTET>«Î�8:KM>@AFE�?@>BÍH9[8F9MÐWI�;MRHÎ<Q
8F;6X´Ö¬×�Ø ÙxÚµI�Û	QT>@Î<QVÑT9[A"ÜS>@UT_�;6Î�AF?@?B_oÎ�KM>@ÜF_�AWÑP_�9[8:KM>@AFEH;$K[A±;M>BÏ4ÑT?@>§Ò�Ð�K[QT_�U¨_�ÜF_�?@AFÑHÏ½_�EdK6A:Ò
ÑH8:9<8:?@?B_�?58:ÑTÑT?@>«Î�8"K[>BAWEH;�OTJLÒ
KMQH_¯_�>BGWQdK	;[Î�8F?@8FÍT?@_¯;[Î�>@_�EdKM>BÔPÎ18:ÑHÑT?B>«Î�8:KM>@AFEH; >@ESÜF_o;iK[>BGd8"KM_oUD>@E
ØBÝxÞoÚßIHÏ½Ad;iK	Û$AFRT?«U.ÍP_�ET_�ÔTKLÒ�9MAWÏà>BÏ4ÑT9[A"ÜF_�Ï4_�EdK[;�KMA*X´Ö¬×�á ;6Î�AF?@?B_oÎ�K[>BÜW_¯AWÑP_�9[8:KM>@AFEH;�O

â QT_¤Î�AFÏ4Ï�RTEH>@Î�8"KM>@AFED;^KM9[RHÎ�KMRT9[_LAFÒ+8�Î�AW?B?@_�Î�KM>@ÜF_¤AFÑ�_�9<8"KM>@AFEDÎ�8:EDÍ�_LAW9MGd8:ET>@ã�_oU*8F;�8
;^ÑH8FETET>@ETG½KM9[_�_WI¨Û	>§K[QVKMQT9[_�8WUT; 8F; ?@_�8"Òä;�O Ì AWÏ½Ï}RTET>«Î�8:KM>@AFE�ÑT9MA¨Î�_�_�UH;$8F?BAWETG½KMQT_�8F9[Î�;$A:Ò
KMQT_1K[9M_�_�8:EHUV8½ÑH8:9MKM>«8:?5AWÑP_�9[8:KM>@AFE�>@;LU¨AFET_�>@EV_�8WÎ<Q.ETAWE¨Õµ?B_o8"Ò#ETA¨U¨_FOTå�;M;M_�EdKM>«8:?�Ò�AW9	KMQH_
ÑP_�9^Ò�AW9MÏ*8:EPÎ�_1A:Òl8*Î�AW?B?@_�Î�KM>@ÜF_1AFÑ�_�9<8"K[>BAWE.>«; KMQH_�;^QP8:Ñ�_¯AFÒ#KMQT_1K[9M_�_FIH8FEHU.KMQT_�Ï*8:ÑHÑT>BEHG
A:Ò
KMQT_1K[9M_�_¤K[A½KMQT_�Î�?BRH;^KM_�9[; >@EVRH;M_½Ø æTI+ÝFÝ:I5ÝxçSI�Ý�è"ÚßO

éê_YÑH9M_o;^_�EWK�8°Ï4_�KMQHASUTAF?@AFGFÐë8:EPUëÑT9MA"ÜS>«U¨_Y>@EH;M>BGWQWK.>BEdKMAìÑP_�9^Ò�AW9MÏ*8:EPÎ�_Y8:EP8:?@ÐS;M>«;
Û	>§K[QT>BE.KMQH_1Î�AFÏ4Ï�RHET>@Î�8"K[>BAWE±;^Ð¨;^KM_�Ï�OSéí_�U¨_�Ï4AFEP;iK[9[8:KM_18:EHU±_�Ü"8:?@RH8"K[_LK[QT_¯Ï½_�KMQTA¨U¨AW?§Õ
AFGFÐ±ÍdÐ.Î�AFÏ4ÑH8F9M>@ETG*8:EPU.AWÑ¨KM>@Ï4>Bã�>BEHG}K[QT_�Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_¤AFÒ#U¨>Bî�_�9[_�EdKL8:?@?B9[_�UTRHÎ�_�Î�AWE¨ÔHGFÕ
RT9[8:KM>@AFEH;�O

Ö
_�9^Ò�AW9MÏ*8FEHÎ�_6Ï4AWET>§K[AF9[>BEHG�KMASAF?«;¬Ò�AF9 X´Ö�×�ÑT9[AFGW9[8FÏ*;	ØzïoÚ�GW_�ET_�9[8F?B?@Ð}KM9[_�8"K�KMQT_1Î�AWÏ½Õ
Ï�RTET>«Î�8:KM>@AFE�;^Ð¨;^KM_�Ïà8W; 8�ÍT?«8FÎ<Z4Í�Axð±8:EHU.Î�AW?B?@_�Î�K UT8:K[8½8"K$KMQT_�X´Ö¬×¬ÑT9[A:ÔH?@>@ETG}?«8xÐF_�9¤ñ|8
?@8xÐW_�91ÍP_�KiÛ�_�_�EíKMQH_D8:ÑTÑT?@>«Î�8"K[>BAWEí8FEHU·KMQT_DÎ�AFÏ4Ï�RTEH>@Î�8"KM>@AFE¸;MÐS;^KM_�ÏDò�O+â�AVRTEHU¨_�9[;^K[8FEHU
Û	QdÐ�8*;^Ñ�_�Î�>§Ô�Î¯KM9[_�_�8:EPU.Ï*8FÑTÑT>@ETG*QH8xÜF_1Í�_�KMKM_�9¤ÑP_�9^Ò�AW9MÏ*8FEHÎ�_¯KMQP8:EVA:K[QT_�9<;	>BK6>@;	EH_�Î�Õ
�;[;M8F9MÐ�K[A�Î�AW?B?@�Î�K¬UT8"K<8¯Ò�AF9¬8FEH8:?@Ð¨;^>«;#>BEP;^>«U¨_ KMQH_LÎ�AWÏ½Ï}RTET>«Î�8:KM>@AFE4;^Ð¨;^KM_�ÏVOWéê_6U¨_o;MÎ�9M>@Í�_
r
©
q:bWeistjd®�a[eg³äó�aMeiªBc�®

Appendix A - Published papers In Proc. of Euro-Par 2004

85

AFRT9 _�ð¨Ñ�_�9[>B_�EHÎ�_o;	8:Í�AFR¨K	Û	QH8:K KiÐdÑ�_�A:Ò#UT8"K<8½>@; ET_�_�U¨_oU5I¨QTA"Û KMA*U¨A½KMQT_�8FEH8:?@Ð¨;^>«;�I¨8FEHU
Û	QH8"K	K[QT_�Î<QH8:?@?B_�ETGF_o;	8:9[_LÒ�AW96Î�AW?B?@_�Î�KM>@ÜF_�Î�AWÏ½Ï}RTET>«Î�8:KM>@AFE�ÑP_�9^Ò�AW9MÏ*8:EPÎ�_18:EH8F?BÐ¨;M>@;�O

�L;MRH8:?@?BÐWIFX´Ö�×#>@Ï4ÑT?B_�Ï4_�EdK[8:KM>@AFEH;¬AFET?@Ð}8F?B?@A"Û K[QT_LÎ�AWÏ4Ï�RTET>«Î�8:KM>@AFE*;^KM9[RHÎ�K[RT9M_ K[A�Í�_
>BÏ4ÑT?@>@Î�>§K[?BÐ¸Î<QH8FETGF_oUY_�>BKMQH_�9�ÍSÐ·RP;^>@ETG�KMQT_.X´Ö�×¤KMAFÑ�AF?@AFGWÐYÏ4_�Î<QH8FET>«;^Ï AW9�ÍSÐê;M_�K^K[>BEHG
8"K^K[9M>@ÍTR¨K[_�;¤A:Ò¬Î�AFÏ4Ï�RTEH>@Î�8"KMAW9[;�OHâ�AD_�ð¨Ñ�_�9[>BÏ4_�EWK¯Û	>§K[QêU¨>Bî�_�9[_�EdK¯Î�AF?@?B_oÎ�KM>@ÜF_}Î�AFÏ4Ï}RTET>BÕ
Î�8"K[>BAWE·Î�AWE¨ÔHGWRT9[8:KM>@AFEH;�IHÛ$_�RP;^_}KMQT_½Ö5=lâ����ê;^Ð¨;^KM_�Ï&ØzçoÚµI5;^>@EHÎ�_½>BK18F?B?@A"Û6;	K[A±>@EH;^Ñ�_�Î�K�I
Î�AFETÔHGFRT9[_18:EHU�Ï*8:Ñ.KMQT_�Î�AF?@?B_oÎ�K[>BÜW_1Î�AFÏ4Ï�RHET>@Î�8"K[>BAWE±K[9M_�_¤K[A½KMQT_�9[_�;MAFRT9<Î�_o;$>BE�RH;M_FO

�TAF9�8VGW>BÜW_�EYK[9M_�_*Î�AFETÔHGFRT9<8"K[>BAWEê8FEHU·Ï*8FÑTÑT>@ETGHI�AWRT9�8:EH8F?BÐ¨;M>@;�8FÑTÑT9[AW8WÎ<Q·8:EHUêÜS>§Õ
;^RH8F?B>@ã�8:KM>@AFEH;¤8:?@?BA"Û6;¤RH;¤KMA±ÔHEHUêÑP_�9^Ò�AW9MÏ*8FEHÎ�_�ÑH9MAWÍT?B_�Ï*;LÛ	>BKMQT>@EêKMQT_4Î�AWÏ½Ï}RTET>«Î�8:KM>@AFE
;^Ð¨;^KM_�ÏVI58:EPU´KMAVÎ�AWÏ4ÑH8:9[_�K[QT_}Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_�AFÒ�;^_�ÜF_�9[8F?�Î�AWE¨ÔHGWRT9[8:KM>@AFEH;�OPâ QH>@;18:?@?@A"Û6;
RH;	K[ADU¨AD84Ï4AF9[_1ÔHET_�GW9[8F>BET_oU±AWÑ¨KM>@Ï4>Bão8"K[>BAWE�AFÒ#KMQT_�Î�AFE¨ÔPGFRT9<8"K[>BAWE±K[QH8:E´8:ÑHÑT9MAd8FÎ<QT_o;
KMQH8:K6AFET?@ÐDRH;M_¯KMQT_1K[>BÏ4_�Ñ�_�9LÎ�AF?@?B_oÎ�KM>@ÜF_1AWÑP_�9[8:KM>@AFEêñ|8F; >@E¸ØBÝoèxÚ�ò�O

×gE�8WUTU¨>BKM>@AFE�KMA49[_�Ï*8:ÑTÑH>BETG½K[9M_�_�;�ITÎ�AF?@?@_�Î�K[>BÜW_1AFÑ�_�9<8"KM>@AFE.ÑP_�9^Ò�AW9MÏ*8FEHÎ�_�Î�8FE.Í�_�>@Ï}Õ
ÑT9MA"ÜW_�U*ÍSÐ4K<8:ZS>BEHG½8WU¨Ü"8:EdK[8FGF_6AFÒ
8:9<Î<QT>BKM_oÎ�KMRH9M_¯;^Ñ�_�Î�>§ÔPÎ¤AFÑTKM>@Ï½>@ã�8:KM>@AFEH;¯Ø@ÝFÝ:I�ÝxçoÚßI¨AW9�ÍSÐ
RH;^>@ETG�8�?BA"Û$_�9MÕß?@_�ÜW_�?¨ET_�KiÛ�AW9MZ}ÑT9[A:KMA¨Î�AF?�ØzÞSI�ÝoçoÚµO��LA"Û�_�ÜF_�9oI"K[QT_L8FUTÜx8FEdK[8:GW_	A:Ò�KMQH_�;M_LAFÑTÕ
KM>@Ï½>@ã�8:KM>@AFEH;¯U¨_�ÑP_�EHUT;¤AFE´K[QT_}Ï4_o;M;[8:GW_�;^>@ã�_WO��HAF9¯_�ðT8:Ï4ÑT?@_FIPÒ�AF9¯;^Ï*8:?@?
Ï½_o;M;[8:GW_�;M>Bã�_�;�I
8F;	RH;M_�U�ÍSÐ�Ï½Ad;iKLÎ�AF?@?B_oÎ�K[>BÜW_¯AWÑP_�9[8:KM>@AFEH;�ITÑ�AF>@EdK^ÕßKMA:ÕµÑ�AF>@EWK	ÍH8W;^_oUVÎ�AFÏ4Ï}RTET>«Î�8"K[>BAWEVÛ$8W;
Òä8F;^KM_�9}KMQP8:E ålK[QT_�9[ET_�K4ÍP8F;M_�U¸ÍT9[AW8WUTÎ�8W;iK�>@E ØzÞoÚµIl8:EHU 8ê;^QP8:9[_�U°Ï4_�Ï4AW9MÐíÍTR¨î�_�94>@Ï}Õ
ÑT?B_�Ï4_�EdK[8:KM>@AFE¸Ò�AF9	�¨X´Ö¬;�>BE ØBÝWÝ�ÚßOlJ¤RT9�8FÑTÑT9[AW8FÎ<Q°8F?B?@A"Û6;�Î�AWÏ½ÑP8:9[>BETGY8WU¨Ü"8:EdK[8FGF_o;1A:Ò
Î<QH8:ETGW>BEHG6KMQH_ Î�AFÏ4Ï�RHET>@Î�8"K[>BAWE�ÑT9[A:K[ASÎ�AF?ßI�AW9l;^ÐSEHÎ<QT9[AFEH>Bão8"KM>@AFE�ÑH9M>@Ï4>§K[>BÜW_�;�Ò�AF9lU¨>Bî�_�9M_�EdK
Ï½_o;M;[8:GW_¯;M>@ã�_�;�O

J¤E
�¨XYÖ¬;�I�Î�AF?@?B_oÎ�K[>BÜW_VÎ�AFÏ4Ï�RHET>@Î�8"K[>BAWEìÑ�_�9MÒ�AF9[Ï48FEHÎ�_VÎ�8FE 8F?@;MA¸;^>@GFET>BÔPÎ�8:EdKM?@Ð Í�_
9M_oU¨RHÎ�_oU5I�ÍSÐ¯>BEdK[_�9MÒ�_�9[_�EHÎ�_¬Î�8FRH;^_oU1ÍSÐ¯;MÐ¨;iK[_�Ï UT8:_�Ï4AFEH;lØ �"ÚµO
�	_�U¨RPÎ�>@ETG	KMQH_¬>@EWK[_�9MÒ�_�9[_�EHÎ�_
Û	>B?@?TÏ*8:ZW_�K[QT_6Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_$8FEH8:?@Ð¨;^>«;#Û	>§K[QT>@E}K[QT_LÎ�AFÏ4Ï�RTEH>@Î�8"KM>@AFE4;MÐS;^KM_�Ï _�ÜW_�E4Ï4AF9[_
>BÏ4Ñ�AF9MK[8:EdKoO

XY8"K[QT_�Ï*8"K[>@Î�8:?$Ï4ASUT_�?«;½Î�8:E Í�_VRH;M_�U¸K[Aí8FEH8:?@ÐSã�_DK[QT_�ÑP_�9^Ò�AW9MÏ*8:EPÎ�_±AFÒ¤U¨>Bî�_�9M_�EdK
;^ÑH8FETET>@ETGVKM9[_�_o;Dñä8W;�>@E ØBÝ�Ú�ò�I�ÍTR¨K�K[QT_�;M_±U¨A´EHA:K�K[8FZF_*>@EdKMAY8FÎ�Î�AWRTEdK�KMQT_DA"ÜW_�9[?@8FÑê8FEHU
Üx8F9M>«8"K[>BAWE±>@E�KMQT_�Î�AFÏ4Ï�RTEH>@Î�8"KM>@AFE.KMQP8"K6A¨Î�Î�RT9[;$>@E´Î�AF?@?@_�Î�K[>BÜW_1AFÑ�_�9<8"KM>@AFEP;¤Ø@Ý�è"ÚßO

�TAF9�_o8FÎ<QêKMQT9[_�8WU5I5AFRH9�Ï4AFET>BKMAW9M>@ETGV;^Ð¨;^KM_�Ï KM9<8FÎ�_�;1Ï4_�;[;M8FGF_o;LK[QT9[AFRTGWQí8��������¸>@E
KMQT_LÎ�AFÏ4Ï�RHET>@Î�8"K[>BAWE4;MÐ¨;iK[_�ÏVOFéí_LÎ�8:?«Î�RT?«8"K[_	?@8:KM_�EPÎ�>@_�;�8FEHU4Û$8F>§KlK[>BÏ4_o;�Id8:EHU½RH;M_	KMQH_�;M_
KMA°U¨_�K[_�Î�K4?@AW8WU ÍH8F?@8FEHÎ�_�ÑT9[AFÍT?@_�Ï*;�I
ÔHEHU ;^RTÍTKM9[_�_�;½Û	>BKMQë;^>@Ï4>B?«8:94Í�_�QH8xÜS>@AF9oI
UTA¸Î�AW;^K
ÍT9M_o8:Z¨U¨A"Û	E±Ò�AF96;MRTÍ¨KM9[_�_o;�IT8FEHU�Î�AFÏ4ÑH8F9M_¯K[QT_1ÑP_�9^Ò�AW9MÏ*8:EPÎ�_1A:Ò�KiÛ�A*Î�AWE¨ÔHGWRT9[8:KM>@AFEH;�O

X´AFET>BKMAW9M>@ETG�A"ÜW_�9[QT_�8WU½>@;$?@A"Û�IFÒ�9[AFÏ ET_o8:9[?BÐ	��K[A½è��DOS=6EP8:?@ÐS;M>«;¬>«;�;M>@Ï½ÑH?B>BÔH_�U.;^>@EHÎ�_
Ï48FESÐ±;^RHÍ¨KM9[_�_o; QH8xÜF_1;^>@Ï4>B?«8:9	Í�_�QP8xÜd>@AF9oO��6A"Û$_�ÜW_�9oIFK[QT_�Î�8F?@Î�RT?@8:KM_oU±Ü"8:?@RT_o; QH8xÜF_¯?@8F9MGW_
Üx8F9M>«8"K[>BAWE�IS9M_oÎ�AWE¨ÔHGFRH9[8:KM>@AFEDÏ*8xÐ±8:î�_oÎ�K	RTEHÎ<QH8FETGF_oU±ÑP8:9MK[;�IT8:EHU.ÑT9[_�U¨>«Î�K[>BETG½K[QT_�_�î�_�Î�K
A:Ò�9[_�Î�AFE¨ÔPGFRT9<8"K[>BAWEH;�>«; U¨>��DÎ�RT?§KoO��¤_�;MÑT>§K[_¯KMQT_o;^_1ÑT9[AFÍT?@_�Ï*;$Û$_¯8WÎ<QT>B_�ÜF_oU±8½;^Ñ�_�_oU¨RTÑ�A:Ò
RTÑ�KMAVÝFO ���}Ò�AF968FE�8F?B?@9[_�U¨RHÎ�_1ÍP_�EHÎ<QTÏ*8:9[Z*RH;M>BETG*AWRT9$KMASAF?«;�O

â QT_.9[_�;^K}AFÒ6KMQH>@;½ÑH8FÑP_�9}ÑT9[A¨Î�_�_�UT;½8F;}Ò�AF?@?@A"Û6;�O
Ö5=lâ����ì>@;4U¨_o;MÎ�9M>@ÍP_oU°>@E ;M_�Î�K[>BAWE
ç¨O�J¤RT94Ï4AFET>BKMAW9M>@ETGêKMASAF?	8FEHU 8FEH8:?@Ð¨;^>«;48:ÑTÑH9MAd8FÎ<Q 8:9[_VU¨_�;[Î�9[>BÍ�_�U >@E ;M_�Î�KM>@AFEëèê8FEHU
U¨_�Ï4AFEP;iK[9[8:KM_�U >BEë;^_oÎ�K[>BAWE��HO#×gE ;M_�Î�KM>@AFEëÞYÛ$_.U¨>«;[Î�RH;[;½AFRT9½9M_o;^RH?§K<;�Il8:EPU°ÔHEH8F?B?@ÐFI#>@E
;^_oÎ�KM>@AFEVæ½Û�_�Î�AFEHÎ�?BRPU¨_�8:EHU.AFR¨K[?B>@ET_1Ò�R¨K[RT9[_�Û�AW9MZ�O

Appendix A - Published papers In Proc. of Euro-Par 2004

86

� ���+Ê�Ç¬Ä����¬ÉLÆ	��
��
���íÇ��
�
�+Ê�ÅTË�����������Æ	�
ÅTËiÇ�Ä��

éê_�RP;^_1K[QT_�Ö5=lâ����V;MÐ¨;iK[_�Ï ØzçxÚ+KMA*_�ð¨Ñ�_�9[>BÏ4_�EWK¤Û	>§K[QVUT>§î�_�9[_�EdK¤Î�AF?@?B_oÎ�KM>@ÜF_1AWÑP_�9[8:KM>@AFE
;^ÑH8FETET>@ETG½KM9[_�_�Î�AFE¨ÔHGWRT9<8"KM>@AFEP;$8FEHU�Ï*8:ÑTÑT>@ETGd; A:Ò
KMQT_�K[9M_�_¯KMA4KMQH_�Î�?@RH;iK[_�9<;	>@E�RP;^_WOT×gE
8:?@?B9[_�U¨RPÎ�_FI�_�8WÎ<Q´KMQH9M_o8FU´QH8W;1UT8"K<8*KMQP8"K1>@;¯9[_�U¨RHÎ�_�U´RP;^>@ETGV8:E·8W;M;MA¨Î�>«8"KM>@ÜF_�AFÑ�_�9<8"KM>@AFE+I
Ò�AF?@?BA"Û$_�U4ÍSÐ48�ÍT9[AW8WUTÎ�8W;iK�AFÒ�K[QT_L9[_�UTRHÎ�_oU*Ü"8:?@RT_FOSâ QT_L;M_�Ï*8:EdK[>@Î�;¬U¨>Bî�_�9[;¬Ò�9[AFÏ X´Ö�×�>@E
KMQH8:K	KMQT_�9[_�U¨RPÎ�_�U.Ü"8:?@RT_1>@;L;iK[AF9[_�U.>BE.KMQT_�Öl8W;iK �S_�KL;^KM9[RHÎ�K[RT9[_�U�;^QH8F9M_oU±Ï4_�Ï½AW9MÐ´Ø@Ý�æ"ÚßO

����� ¢ �S¢"! j�c�ªtªzeia�¥WpWr<a1fgeia<a�pdyga<¥�¦"{*fi©Weia�c�¥WyL~$¿$#"~&%DstjWyµfgeipdh�a<j"fia�¥4��szfi©Va<wxa[j:f6r[koªtªta<r[fik�eiy
')(n�¿$# (n�¿+*-,M²H~#©Wa$eia<ygpdªzf¬sty�yµfik�eia�¥½stj4c¯»5c�yµfMqFaMf�a[ª§a[h�a<j"f ' n
k�eia (ªth.,M²

�L;M>BETG¸Ö5=lâ���� Û$_´Î�9[_�8"K[_´8ê;MÑH8:EHET>BEHGêK[9M_�_VÛ	>§K[Që8F?B? K[QT9[_�8FUH;}ÑP8:9MKM>«Î�>@ÑH8"K[>BETG¸>@E
KMQT_½8:?@?B9[_�U¨RPÎ�_�8W;L?@_�8:Òä;�ñ�ÔPGFRT9[_±Ýxò�O �HAF9¯_�8WÎ<QVKMQT9[_�8WUVÛ�_½;^Ñ�_�Î�>§Ò�Ð´8	�������YKMQT9[AFRHGFQVKMQH_
Î�AFÏ4Ï}RTET>«Î�8"K[>BAWE.;MÐ¨;iK[_�Ï K[A�K[QT_19MASA:K	AFÒ�KMQT_1K[9M_�_½ñ�KMQT_�;[8:Ï4_¯ÑH8"K[Q.>«;$RH;M_�U±Ò�AF9	9[_�U¨RHÎ�_
8:EHU°ÍH9MAd8FUTÎ�8F;^K<ò�OlJ¤E _�8WÎ<Q°ÑH8"K[Q�Il;^_�ÜF_�9[8F?�/&0 � ���	120+3�Î�8:E Í�_V8FUTU¨_oU5O
å¬8FÎ<Q Û	9<8:ÑHÑP_�9
QH8F;�Î�ASUT_}K[QH8"K�>«;�8:ÑHÑT?B>@_�U¸8W;�UT8"K<8.>«;1Ï4A"ÜF_oUêU¨A"Û	E·KMQT_*ÑP8"KMQ ñä9M_oU¨RHÎ�_xò18:EHUêRTÑíKMQH_
ÑH8"K[Qêñ�ÍH9MAd8FUTÎ�8F;^K<ò�Odéí9[8FÑTÑP_�9[;$8:9[_6RH;M_�UDKMA4;iK[AF9[_¤UT8:K[8�>BE.Ö#8W;iK �S_�K	8:EPU*KMA½>@Ï½ÑH?B_�Ï½_�EdK
Î�AFÏ4Ï}RTET>«Î�8"K[>BAWE°ÍP_�KiÛ�_�_�EìÎ�?BRP;iK[_�9½QTAW;^K[;�O�=L?@;MAHI#;^AWÏ4_DÛ	9[8FÑTÑ�_�9<;�I
;^RHÎ<Q 8F;�8F?B?@9[_�U¨RHÎ�_
Û	9[8FÑTÑP_�9[;�Io\iAF>@EVÑH8"K[QH;	8:EHU�QH8FEHU¨?@_¯KMQT_�ET_oÎ�_o;M;[8:9[ÐD;^ÐSEHÎ<QH9MAWET>Bão8"K[>BAWE�O

â QT_·Ö5=lâ����54xÖl8F;^K �S_�K´9MRTEdK[>BÏ4_ê;MÐ¨;iK[_�Ï�>«;.>@Ï4ÑT?@_�Ï4_�EdKM_oU 8W;.8ì?B>@ÍT9<8:9[ÐìK[QH8"KV>@;
?B>@ETZF_oU Û	>BKMQ K[QT_ 8FÑTÑT?@>@Î�8"KM>@AFE+O¤â QT_ 8:ÑTÑT?@>«Î�8"K[>BAWE >@;êRH;MRH8:?@?@Ð Ï}RT?BKM>BÕ|K[QT9M_o8FU¨_oU5O¤â QH_
Ö�=lâ�� �*;M_�9[ÜF_�9lÎ�AFEH;M>@;^K[;#AFÒ�;M_�ÜW_�9<8:?SK[QT9M_o8FUT;
K[QH8"K¬;M_�9[ÜS>@Î�_ 9M_�Ï½AFKM_6Î�?B>@_�EdK[;�OFâ QT_6;M_�9[ÜS>@Î�_
KMQT9[_�8WUT;48:9[_±9[RTEì>@EìK[QT_´Î�AWEWK[_�ðSK4A:Ò6K[QT_´8:ÑTÑT?@>«Î�8"K[>BAWE�Ol=6?«;^API#Ö#8W;iK �S_�K*_�?B_�Ï½_�EdK[;48:9[_
QTAW;^KM_oUVÍdÐ�K[QT_�Ö5=lâ����·;^_�9MÜW_�9oOTå¬8WÎ<Q´ÑH8"K[QYQH8F;L>§K<;LA"Û	EYâ Ì Ö64x×gÖ Î�AFETET_oÎ�K[>BAWE ñ�KMQSRH;
KMQT_�9M_�8:9[_1;^_�ÜF_�9<8:?�â Ì Ö74"×gÖëÎ�AFETEH_�Î�K[>BAWEH;$ÍP_�KiÛ�_�_�E�Ö5=lâ�����;^_�9MÜW_�9<;[ò�Odâ QH_1Î�?B>@_�EdKMÕµ;M>@UT_
;iK[RTÍ*>@;¬>BÏ4ÑT?@_�Ï4_�EWK[_�U4ÍSÐ48��80$9;:=<}Û	9[8FÑTÑ�_�9oO:éê9<8:ÑHÑP_�9[;�8F9M_	9[RTE4>@E4KMQT_LÎ�AFEdKM_�ðSK¬A:Ò�KMQH_
Î�8:?@?@>BETG�K[QT9M_o8FUT;�I�RTEdKM>@?¬8�Û	9[8FÑTÑ�_�9�AFE¸8:EHA:KMQH_�91QTAW;^K�>@;�Î�8:?@?@_�U5O�â QT_o;^_4Û	9<8:ÑTÑ�_�9<;18:9[_
9MRTE�>@E.K[QT_�Î�AWEdKM_�ðSK	A:Ò
KMQH_1KMQT9[_�8WUT;	;^_�9MÜS>@ETG}KMQT_�Î�AFETET_oÎ�K[>BAWE�O

×gEV8F?B?@9[_�U¨RHÎ�_FI¨K[QT9[_�8FUH;6;^_�EHU´UT8:K[8*U¨A"Û	E�KMQH_�ÑH8"K[Q´ÍSÐ.>@ESÜFAFZS>@ETG½KMQT_�Û	9[8FÑTÑP_�9[; AWE
KMQT_�>B9#ÑH8:KMQ�O:â QT_ 8:?@?@9M_oU¨RHÎ�_�Û	9[8FÑTÑ�_�9<;+ÍT?@A¨Î<Z�8:?@?SÍTR¨K
KMQT_ ?«8"KM_o;iKl8:9[9[>BÜS>@ETG	KMQH9M_o8FU5IxÛ	QT>«Î<Q
>@;¤KMQH_}AWET?BÐVK[QT9[_�8FU·Î�AFEdK[>BESRT>@ETG.UTA"Û	EYKMQH_}ÑH8:KMQ�O5â QT_}ÔHEH8F?#9M_oU¨RHÎ�_oU´K[RTÑT?@_}>«;1;iK[AF9[_�U
>BE¸K[QT_±Öl8F;^K �¨_�K�_�?B_�Ï½_�EdK�ÍP_�Ò�AF9[_*>§K½>@;�ÍT9MAd8FUTÎ�8F;^KM_oUêÍSÐí8xÛ$8FZF_�EH>BETGVÍT?@A¨Î<ZF_oU·K[QT9[_�8FUH;
KMQH8:KL9M_�KMRT9[E´Û	>BKMQY8DÎ�AFÑSÐ±AFÒ
K[QT_�K[RTÑT?@_FO �TAF9L>BÏ4ÑT9[A"ÜF_oU.Ñ�AF9MK[8FÍT>@?B>BKiÐFIH;MÐSEHÎ<QT9[AFET>@ã�8:KM>@AFE
>@;	>@Ï4ÑT?@_�Ï4_�EdKM_oU�RH;^>@ETG4ÖlK[QT9M_o8FU�Î�AWEHU¨>BKM>@AFEVÜ"8:9[>@8FÍT?B_o;�O

Appendix A - Published papers In Proc. of Euro-Par 2004

87

� ��Ç�ÄLËgÅ¨Ç�ÆPË^Ä�� �lÄLÈ�� Ä��&��� �SË$�

â+A¸Î�AW?B?@_�Î�K½Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_±UT8"K<8·Û$_�RH;^_.KMQH_.å�ÜW_�EdK �¨ÑH8FÎ�_�;MÐ¨;iK[_�Ï�Ø èxÚßO�â QH_.ÑH8:KMQH;½>@E
8êÎ�AF?@?B_oÎ�KM>@ÜF_�AFÑ�_�9<8"K[>BAWE K[9M_�_�8F9M_�>BEP;iK[9MRTÏ4_�EWK[_�U ÍSÐ°>BEH;M_�9MKM>@ETG 1�� 1	����
+9
����1�
 ��9 0+3�I�>@Ï}Õ
ÑT?B_�Ï4_�EdKM_oU·8F;¯Ö5=lâ����·Û	9<8:ÑTÑ�_�9<;�I�Í�_�Ò�AF9[_48:EHUê8"Ò�KM_�91_�8FÎ<Q·Û	9[8FÑTÑP_�9�O�×gEYÔPGFRT9[_.ÝWI�8FE
8:?@?B9[_�U¨RPÎ�_6K[9M_�_¤RP;^_oU*ÍSÐ4KMQT9[_�8WUT;�â1Ý��Sâ	Ù�>@;�>BEP;iK[9MRTÏ4_�EWK[_�U5ISÍSÐ*_�ÜW_�EdK$Î�AF?@?B_oÎ�K[AF9<;�å Ì Ý��
å Ì Ý�èHO �HAF9�_o8FÎ<Q 8F?B?@9M_oU¨RHÎ�_DAFÑ�_�9<8"K[>BAWE�I+_o8FÎ<Q°_�ÜW_�EdK}Î�AF?@?B_oÎ�KMAW9�9[_�Î�AF9<UT;�8´K[>BÏ4_o;iK<8:Ï4Ñ
Û	QT_�E Ï½A"ÜS>@ETGêUTA"Û	E�I
8FEHU RHÑ KMQH_.ÑH8:KMQ�Olâ QT_.KM>@Ï4_�;^K[8FÏ½ÑP;½8F9M_�;iK[AF9[_�U°>@EìÏ4_�Ï½AW9MÐ
8:EHUVÛ	9[>§KMKM_�E´KMA*K[9[8WÎ�_�ÔP?B_o;6Û	QT_�EVKMQT_}ÑH8"K[QH;L8F9M_�9[_�?@_�8W;^_oU5OT×gE´K[QT>«;6ÑH8FÑP_�9¤8:EP8:?@ÐS;M>«;	>@;
U¨AFET_1Ñ�AW;^K^ÕµÏ4AF9MKM_�ÏVO

�L_�ÑP_�EHU¨>@ETG·AWE¸KMQT_.EdRHÏ�Í�_�9�AFÒ KMQT9[_�8WUT;�8FEHUíKMQT_�;^QP8:Ñ�_DA:Ò KMQH_DKM9[_�_WI�K[QT_�9[_±Î�8FE
ÍP_½Ï*8:ESÐV_�ÜF_�EdK¤Î�AW?B?@_�Î�KMAF9<;�O �TAW9¤_�ðT8:Ï4ÑT?@_FIPÒ�AF918±è �DQTAW;^K�I�U¨RH8F? Ì Ö �ÓÎ�?@RH;^KM_�9�I�8*K[9M_�_
QH8F;�Ý �WÙ½_�ÜF_�EdK¤Î�AF?@?B_oÎ�K[AF9<;	Î�AF?@?@_�Î�K[>BEHG.Þ:èdç:ÙlÍSÐdKM_o;�AFÒ�UT8"K<84Ò�AF96_o8FÎ<QYÎ�8:?@?¬ñäèWælÍSÐWK[_�;	Ñ�_�9
�ÜF�EdK¬Î�AF?@?@_�Î�K[AF9�ò�OFâ QH_6A"ÜF_�9MQT_o8FU}A:Ò5_�8WÎ<Q4_�ÜF_�EdK�Î�AW?B?@_�Î�KMAF9l>«;�?@A"Û ñ �TOzÞ

µs
AFE*8*ÝFO ��� �Lã

Ö
_�EdKM>@RTÏ �Sò�Î�AFÏ4ÑH8F9M_oU*KMA½K[QT_1QdRHEHU¨9[_�UT; AFÒ�Ï4>@Î�9MAd;^_oÎ�AWEHUT;$ÑP_�96Î�AW?B?@_�Î�KM>@ÜF_¯AFÑ�_�9<8"KM>@AFE+O
X´AW;^K¯_�ÜF_�EWK1Î�AW?B?@_�Î�KMAF9<;¯8:9[_�ETAFK¯AWE´KMQT_*;M?BA"Û$_�;^KLÑH8:KMQ�I�K[QdRP;1Ï½Ad;iK1UT8"K<8.Î�AF?@?B_oÎ�K[>BETG.>@;
U¨AFET_1AWR¨K[;M>@UT_1KMQT_�Î�9M>BKM>«Î�8F?5ÑH8"K[Q�O

â QT_�9[_�8:9[_�K[QT9M_�_�KiÐSÑP_o;LAFÒ�Û	9[8FÑTÑ�_�9<;	>BEê8:E·8F?B?@9M_oU¨RHÎ�_�;^ÑH8FETET>@ETG*K[9M_�_���GF9[_�U°ñ�ÑP8:9MÕ
KM>«8:?#8:?@?B9[_�U¨RPÎ�_oò�IPÑH9MAxð¨Ð¸ñ�ET_�KiÛ�AW9MZTò68FEHUYÎ�AF9[_.ñ�Öl8W;iK �S_�K�ò�O �TAW9¤Î�AW9M_}Û	9[8FÑTÑ�_�9<;	KMQH_�KiÛ$A
KM>@Ï½_o;iK<8:Ï4ÑH; Î�AW?B?@_�Î�KM_oUDÍSÐ4KMQT_¯_�ÜW_�EdK	Î�AF?@?@_�Î�K[AF9$8:Í�A"ÜF_L>BK�ñ�å Ì Ýoè�>@E±ÔPGFRT9[_�Ýxò¬8F9M_¤RH;^_oU
KMA}Î�8:?«Î�RT?«8"K[_6K[QT_.3 ��9 0$1�� ����1���
 <��dKMQT_¤KM>@Ï4_LK[A½;^KMAW9M_	K[QT_¯9M_o;^RT?BK�>@E±Öl8W;iK �S_�KoO �HAF9$ÑT9MAxð¨ÐWI
Û�_ Î�8F?@Î�RT?@8:KM_�KMQT_$KiÛ$A:ÕµÛ$8xÐ1â Ì Ö74"×gÖê?«8"K[_�EHÎ�Ð�ÍdÐ

(t4−t1)−(t3−t2)
I"Û	QT_�9M_

t1
ñäU¨A"Û	E�ò

8:EHU
t4
ñ�RTÑPòL8:9[_�Î�AW?B?@_�Î�KM_�UVÍSÐ.KMQT_�_�ÜF_�EdK¤Î�AW?B?@_�Î�KMAF9¤8:Í�A"ÜF_¯KMQT_}ÑT9[AxðSÐ.>BEY8DÑH8"K[Q�IP8FEHU

t2
ñ|U¨A"Û	EPò$8:EPU

t3
ñ�RHÑPò$8:9[_¯Î�AF?@?B_oÎ�KM_oU±ÍSÐ4K[QT_�_�ÜW_�EdK Î�AF?@?B_oÎ�K[AF9$ÍP_�?BA"Û�OTâ�A½8WÎ<QT>@_�ÜF_¤KMQH_

ET_�_oU¨_�UDÎ�?BA¨Î<Z4;^ÐSEHÎ<QH9MAWET>Bão8"K[>BAWE48WÎ�Î�RT9[8WÎ�Ð}Ò�AF9$Î�8:?«Î�RH?@8:KM>@ETG�AFEH_�ÕµÛ$8xÐ}?@8:KM_�EPÎ�>@_�;¯ñ�KM_�EH;�A:Ò
µs
ò ;MÑP_oÎ�>«8:?5QH8F9[UTÛ$8F9M_¯>@; EH_�_�UT_�UíØBÝ �xÚµO
�¯9M_oU Û	9<8:ÑHÑP_�9[;4QH8xÜW_VÏ�RT?BKM>@ÑT?@_·Î<QT>@?@U¨9[_�E K[QH8"K.Î�AFEdKM9[>@ÍTR¨KM_´Û	>BKMQ�8¸Ü"8F?BRT_VK[A Í�_

9M_oU¨RHÎ�_oU5OFâ QT_6Î�AFEdKM9[>@ÍTR¨KMAW9�Î�8FE½Í�_68¯KMQH9M_o8FU}AF9¬UT8:K[8¤Ò�9[AFÏ 8FETA:K[QT_�9lGW9M_oU�Û	9<8:ÑHÑP_�96ñ�>@E
ÔHGFRT9[_�Ý¤KMQH9M_o8FUT;$â6Þ��¨â	æ�Î�AWEdKM9[>BÍTRTKM_¤KMA½GF9[_�UHçTIFÛ	QT>@?B_1GW9M_oU5Ý��¨è�Î�AFEdK[9M>@ÍTR¨K[_LK[A}GW9M_oU��dò�O
â QT_�9[_�>«;#AFEH_�_�ÜF_�EdKlÎ�AW?B?@_�Î�KMAF9
AFE�KMQT_ ÑH8:KMQ}KMA¤KMQT_ ÑH8F9M_�EdK�K[QH8"K�Î�AW?B?@_�Î�K[;�KM>@Ï4_�;^K[8FÏ½ÑP;

t28:EHU
t3
I"Û	QT>@?B_$K[QT_�ÑP8"KMQP;
Ò�9MAWÏ KMQT_$ÖêÑP8:9[_�EdK[;
�8WÎ<Q�QH8xÜW$8FE�_�ÜW_�EdKlÎ�AF?@?@_�Î�K[AF9#Î�AW?B?@_�Î�KM>@ETG

KM>@Ï½_o;iK<8:Ï4ÑH;
t1,i

I�8FEHU
t4,i

O�éê_½U¨_�ÔPET_�K[QT_�� 9 /���� ����1	��
2<±Ò�AW9¤8DGW9M_oU�Û	9[8FÑTÑP_�96K[A±Í�_
t2 − t1,l

IHKMQT_�UTA"Û	E�?«8"K[_�EHÎ�Ð±Ò�AW9	KMQH_�?@8W;iKL8F9M9[>@Üx8F?
l
OHâ QH_! ��� ����1���
 <D>«;

t4,f − t3
ITKMQH_

RTÑV?@8:KM_�EPÎ�Ð*Ò�AW9 KMQT_1ÔH9<;^K	UT_�ÑH8F9^K[RT9M_�9
f
O

�TAF9 8�GW>BÜW_�EDESRTÏ}ÍP_�9 A:Ò�Î�AF?@?B_oÎ�KM>@ÜF_LAFÑ�_�9<8"KM>@AFEP;¬Û$_¤Î�8:?«Î�RT?«8"K[_6Ò�AF9 _o8FÎ<QDÑH8F9^K[>@Î�>BÑP8:EdK
KMQT_ � 0 0�"��
�#�69 0$�=120%�
" 3 � 0�"'&� ��(" 9
�ë8:EPU·K[QT_)� 1 ��� 0 �(0$1 9 0$� 1 0*�#" 3 � 0�"'&	 ��+" 9#�,��KMQP8"K�>«;�KMQH_
EdRHÏ�Í�_�9�AFÒ�K[>BÏ4_�;�KMQT_±Î�AFEdKM9[>@ÍTR¨KMAW9�8:9[9M>@ÜF_oUê8FEHUêUT_�ÑH8F9^K[_�U¸8"K�K[QT_*GF9[_�UíÛ	9<8:ÑTÑ�_�9�8W;
KMQT_LÔH9[;^K�Id;^_oÎ�AWEHU5IF8FEHU*;^A�AFE�OW×gED8FUTU¨>BKM>@AFE*Û$_LÎ�8:?«Î�RT?«8"K[_���� 0 0�"��
�#� / �
" � �("�- 1

t1,l − t1,i

�
KMQT_D8FÏ½AWRTEdK�A:Ò$KM>@Ï4_4KMQT_±Î�AFEdKM9[>@ÍTR¨KMAW9

i
QH8WU·K[A´Û$8F>§K1Ò�AW9�KMQT_*?«8F;^K�Î�AWEdKM9[>BÍTRTKMAF9

l
K[A

8:9[9M>@ÜF_WIx8FEHU.�=1 � � 0 �+ 0$1�/ �#" � �("�- 1
t4,i− t4,f

�"_�?«8:ÑH;M_�U�KM>@Ï4_L;^>@EHÎ�_�K[QT_ ÔH9<;iK�Î�AFEdKM9[>BÍHR¨KMAW9
f
U¨_�ÑH8:9MKM_oUDÒ�9[AFÏ KMQT_�GW9M_oUDÛ	9<8:ÑTÑ�_�9oI¨RTEdKM>@?+Î�AWEdKM9[>BÍTRTKMAF9

i
U¨_�ÑH8:9MKM_oU5O

�TAF9�KMQT_¯8:EH8F?BÐ¨;M>@;lÛ$_6AFÒ�KM_�E.U¨>BÜS>«U¨_6K[QT_6ÑH8:KMQ*Ò�9[AFÏ 81K[QT9M_o8FU½K[A�8�Öl8F;^K �S_�K�_�?B_�Ï½_�EdK
>BEdKMA�;M_�ÜW_�9<8:?T;^K[8FGF_�;lÎ�AFEH;M>«;iK[>BETG�AFÒ�KMQT_6?«8"K[_�EHÎ�>B_o;�8:EPU}Û 8:>BKlKM>@Ï4_�;�U¨_�;[Î�9[>BÍ�_�U48FÍPA"ÜW_FO:â�A
Î�8:?«Î�RH?@8:KM_}KMQT_½KM>@Ï4_*8DK[QT9M_o8FUê;^Ñ�_�EdK�>BE¸8�;^Ñ�_�Î�>§ÔPÎ½ÑH8F9^K1A:Ò�KMQT_½K[9M_�_�ñäAF9�8±ÑP8"KMQ�ò�I5Û$_
8FUTU�KMAWGF_�K[QT_�9
K[QT_$KM>@Ï½_68:Kl_�8FÎ<Q½;iK<8:GW_�>@E�K[QT_ KM9[_�_1ñ�AW9lÑH8"K[QPò�O �¤;^RP8:?@?BÐ�Ï4_o8:E}KM>@Ï½_o;l8:9[_

Appendix A - Published papers In Proc. of Euro-Par 2004

88

RH;^_oU5O �S>BÏ4>@?@8F9M?@ÐFI�Û$_}Î�8FE·U¨A�8DQTAFK[;MÑPAFK¯8:EP8:?@ÐS;M>«;6A:Ò$8*KM9[_�_}ÍSÐVÎ�AFÏ4ÑH8F9M>@ETG*K[QT_�Ï4_�8FE
KM>@Ï½_o;�O

�TAF91K[QT_*Ñ�_�9MÒ�AF9[Ï48FEHÎ�_48:EP8:?@ÐS;M>«;1Û�_´ñ�>�ò1U¨_�KM_�Î�K�?BAd8FUêÍH8:?«8:EPÎ�_4ÑT9[AFÍT?@_�Ï*;�I�ñ�>@>«ò¯ÔPEHU
ÑH8"K[QH;�Û	>BKMQ±;M>@Ï½>@?«8:9¬Í�_�QP8xÜd>@AF9oIHñä>B>@>«ò�;M_�?@_�Î�K�9M_�ÑT9M_o;^_�EdK[8"K[>BÜW_	ÑH8"K[QH;lÒ�AW9�Ò�RT9MKMQH_�9�8FEH8:?@Ð¨;^>«;�I
ñ�>@Ü¨òLÔHEPUêQHA:K[;MÑ�A:K[;¯ÍSÐ´ÍT9[_�8FZd>@ETGVU¨A"Û	EYK[QT_*Î�Ad;iK�A:Ò$8.ÑP8"KMQí>@EWK[A�;M_�ÜW_�9<8:?#;iK<8:GW_�;�I#ñäÜTò
9M_oÎ�AFETÔHGFRT9[_VKMQH_·ÑH8:KMQ�I 8:EHU�ñ�ÜS>«ò±Î�AWÏ½ÑP8:9[_VKMQT_êÑP_�9^Ò�AW9MÏ*8:EPÎ�_YAFÒ�KMQT_êET_�Û 8FEHUëAF?«U
Î�AFETÔHGFRT9<8"K[>BAWE�O

�TAF9l8FÑTÑT?@>@Î�8"KM>@AFEP;+Û	>BKMQ½?BAd8FU�ÍH8:?«8:EHÎ�_�ÑH9MAWÍT?B_�Ï*;�IxAFÑTKM>@Ï½>@ã�>@ETG�Î�AW?B?@_�Î�KM>@ÜF_�AFÑ�_�9<8"KM>@AFEP;
Û	>B?@?�EHA:K¯;M>@GFET>BÔPÎ�8FEdKM?@Ð.>@Ï4ÑT9MA"ÜW_�ÑP_�9^Ò�AW9MÏ*8FEHÎ�_�;M>@EHÎ�_�Ï4Ad;iK¯A:ÒlKMQH_�KM>@Ï4_�Û	>@?B?#Í�_};MÑP_�EdK
Û$8F>§K[>BETGDÒ�AF9¤;M?@A"Û�_�9 KMQT9[_�8WUT;�O�â+A.U¨_�K[_�Î�K¯?BAd8FU�ÍH8F?@8FEHÎ�_�ÑH9MAWÍT?B_�Ï*;�IPÛ�_�RP;^_�K[QT_}8F9M9[>@Üx8F?
AF9<U¨_�968:K _o8FÎ<Q�GF9[_�U.Û	9[8FÑTÑ�_�9 KMADÎ�9M_o8"K[_18½Û$_�>@GFQdKM_oU�GF9<8:ÑTQ.Û	>§K[Q´GF9[_�U.Û	9[8FÑTÑP_�9[; 8FEHU
KMQT9[_�8WUT;L8W;6ETA¨U¨_o;�I�8:EHU´KMQT_}EdRHÏ�Í�_�9¯A:Òl?@8W;iK18:9[9M>@Ü"8:?«;68F;LÛ�_�>BGWQdK[;6AWE´KMQH_�_�UTGF_�;�OPâ QH_
ÑH8:9MK$AFÒ+K[QT_¯KM9[_�_4ñ�AF9$K[QT9M_o8FUHò�Î�8FRH;M>BETG48}?BAd8FUD>@Ï�ÍP8:?«8:EHÎ�_¯Î�8:E±Í�_¯Ò�AFRTEPU±ÍSÐD;M_�8:9<Î<QT>@ETG
Ò�AF9 KMQH_�?BAWETGF_o;iK	ÑH8:KMQ¸ñ�>ßO _WOTÛ	>§K[Q´Ï4AW;^K ?«8F;^K68:9[9M>@Ü"8:?«;[ò�O

�L;MRH8:?@?BÐWI�Ï*8FEdÐ¤KMQH9M_o8FUT;�QH8xÜF_�;^>@Ï4>B?«8:9�ÑH8"K[QH;�IoÛ	>BKMQ};M>@Ï½>@?«8:9+Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_�Í�_�QH8xÜS>@AF9oO
â QdRP;�IxÛ$_$Î�8:E};M>@Ï½ÑH?B>BÒ�Ð�KMQH_ 8FEH8:?@Ð¨;^>«;
8:EHU�AFÑ¨K[>BÏ4>@ã�8"K[>BAWE�ÍSÐ�;M_�?@_�Î�K[>BEHG¯8¤9M_�ÑT9[_�;M_�EdK[8:KM>@ÜF_
ÑH8"K[Q±Ò�AW9	_�8FÎ<Q±KiÐSÑP_�AFÒ�Í�_�QH8xÜS>@AF9oOS=L?@;MAHISÒä8W;iK	ÑH8:KMQH;	Î�8:E�ÍP_1_�ð¨Î�?BRPU¨_�UV;M>BEHÎ�_¯KMQT_�8:?@?@9M_�Õ
U¨RHÎ�_VAWÑP_�9[8:KM>@AFE°K[>BÏ4_V>@;*UT_�KM_�9MÏ4>@ET_�UìÍSÐ°KMQT_´;M?BA"Û ÑP8"KMQP;�Oléí_VQH8xÜF_._�ð¨ÑP_�9M>@Ï4_�EdKM_oU
Û	>§K[Q�I#ÍTR¨K4ETA:K4;^RHÎ�Î�_�_�U¨_oU°>BEìÔHEHU¨>@ETGí8:EH8F?BÐ¨;M>@;}8:EHUìÜd>«;MRH8:?@>Bão8"K[>BAWE 8:ÑTÑT9[AW8WÎ<QT_�;�KMQH8:K
8:?@?BA"Û6;�Ò�AF9684U¨_�K[8F>B?@_�UV8:EP8:?@ÐS;M>«;�AFÒ
Ï}RT?BKM>@ÑT?B_�ÑP8"KMQP;	8"K	KMQH_�;M8FÏ½_¯K[>BÏ4_FO

é QT_�E 8:EH8F?BÐSã�>@ETG 8ì9[_�ÑT9[_�;M_�EdK<8"KM>@ÜF_·ÑH8"K[Q Û$_êÍT9[_�8FZ KMQT_°Î�Ad;iKVA:Ò½8:E 8F?B?@9[_�U¨RHÎ�_
AFÑ�_�9<8"KM>@AFE4>@EdKMA�;MRTÍ¨KM9[_�_o;#KMQP8"K�Î�8:E4ÍP_¤AFÑ¨K[>BÏ4>@ã�_oU4>BEHUT_�Ñ�_�EHU¨_�EdKM?@Ð½;MRHÎ<Q*8F;#K[QT_L;MRTÍ¨K[9M_�_
Ò�AF9V8:E �TX´Ö QTAd;iKoI	8ìÎ�?@RH;^KM_�9�I AF9Vâ Ì Ö74"×gÖ ?«8"KM_�EHÎ�>@_�;.Û	>BKMQT>@E 8 Î�?@RH;^KM_�9V8:EPU�AFE 8
é·=���O+=L;¯Ò�AW9�8.GW9M_oUYÛ	9<8:ÑTÑ�_�9oI�Û�_*Î�8:?«Î�RT?«8"K[_�Ò�AW9�8�;MRTÍ¨K[9M_�_½KMQT_*U¨A"Û	Eí?@8:KM_�EHÎ�ÐWI5RTÑ
?@8:KM_�EPÎ�ÐFI	8FEHU�U¨_�ÑH8:9MKMRT9[_·Û 8:>BK�KM>@Ï½_ëñ�RP;^>@ETG Ò�AF9�KMQT_¸;MRTÍ¨KM9[_�_êAFE QTAW;^KVC'>@E�ÔPGFRT9[_
ÝY_�ÜW_�EdK±Î�AW?B?@_�Î�KMAF9<;*å Ì Þ �SÙ°8FEHUëå Ì Ý�èdò�O$= ?«8:9[GF_´U¨A"Û	E ?«8"KM_�EHÎ�Ð >@Ï½ÑH?B>@_�;DKMQH8:K±KMQH_
Î�AFÏ4ÑTRTK[8"K[>BAWE >@E KMQH_±AFÑ�_�9<8"K[>BAWE¸K[8FZF_�;½8Y?@AFEHG´KM>@Ï4_FOl= ?«8:9[GF_±RTÑ ?«8"KM_�EHÎ�Ð¸>@EHU¨>«Î�8:KM_�;
ÑP_�9^Ò�AW9MÏ*8:EPÎ�_LÑH9MAWÍT?B_�Ï*;�>@E.KMQT_¯GF9[_�U±>BÏ4ÑT?@_�Ï4_�EdK<8"KM>@AFE+IdÛ	QH>B?@_�8�?«8:9[GF_¯U¨_�ÑH8F9^K[RT9[_LÛ 8:>BK
KM>@Ï½_ê>BÏ4ÑT?@>@_�;±;[Î�8F?@8FÍT>@?B>BKiÐìÑT9[AFÍH?B_�Ï4;DA:Ò1KMQT_ê;^ÐSEHÎ<QT9[AFEH>Bão8"KM>@AFE Ü"8:9[>@8FÍT?@_�;�I�?B_o8FU¨>@ETG¸K[A
RTETET_oÎ�_�;[;[8:9[ÐD;^_�9M>«8:?@>Bão8"K[>BAWE�O

� ��� ����ÆHË�� ��Ä¬Å	�

×gE´KMQT>«;¯;^_oÎ�KM>@AFE´Û$_�8FEH8:?@ÐSã�_�K[QT_�Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_�A:Ò¬U¨>Bî�_�9M_�EdK¤8:?@?B9[_�UTRHÎ�_�Î�AFE¨ÔPGFRT9<8"K[>BAWEH;
Ò�AF9�8�ÍT?@8WU¨_LÎ�?BRH;^KM_�9¬Û	>BKMQ*K[_�E*RTEH>§ÕµÑT9[ASÎ�_�;[;^AW9�ÍT?«8FU¨_o;6ñäC$?«8FU¨_xò�IS8�Î�?@RH;^KM_�9¬A:Ò�K[QT>B9MKiÐ}KiÛ�AFÕ
Û$8xÐDQHAW;^K[;�ñ��1J	é ò�IH8*Î�?@RH;^KM_�9	A:Ò#_�>@GFQdK Ò�AFRT9MÕßÛ 8xÐ*QTAd;iK<;�ñ��Fé ò�IH8:EPU�84Î�?BRH;^KM_�96A:Ò�Ò�AFRT9
�>@GFQdK^ÕµÛ$8xÐ±QTAW;^K[;}ñäÙ:é ò�O�â QH}Î�?@RH;^KM_�9[;68F9M_}Î�AFEHET_�Î�KM_�U�K[QT9[AFRTGWQ°Ý � �*XYÍTÑH;6å�KMQT_�9MET_�K�I
8:EHUëK[QT_·AWÑP_�9[8:KM>@ETGì;MÐ¨;iK[_�Ï >@;�7�>@ESR¨ð5O�éí_êU¨_o;^>@GFEH_�Uë_�ð¨Ñ�_�9[>BÏ4_�EWK<;DK[A 8F?B?@A"Û RP;DK[A
Ï½_o8F;MRT9[_ KMQT_6Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_ A:Ò�U¨>Bî�_�9M_�EWK¬;MQH8FÑP_o;¬8:EPU}Ï*8FÑTÑT>@ETGW;lAFÒ�KMQT_L;MÑH8FETET>@ETG1KM9[_�_o;
RH;^_oU.KMA4>BÏ4ÑT?@_�Ï4_�EWKL8F?B?@9[_�U¨RHÎ�_FOT= Ï4AF9[_1U¨_�K<8:>@?B_oU�8FEH8:?@Ð¨;^>«; Î�8FE.Í�_1Ò�AFRTEPU.>@E¸Ø �FÚßO

éê_�RH;^_$8	Ï4>@Î�9MAWÍP_�EHÎ<QTÏ*8:9[Z�I �1;MRTÏVIoÛ	QH>@Î<Q�Ï4_�8W;^RH9M_o;5KMQH_�KM>@Ï4_�>BK+K<8:ZW_�;+âíK[QT9[_�8FUH;
KMA�U¨A	��8F?B?@9[_�U¨RHÎ�_ AFÑ�_�9<8"KM>@AFEP;�O:â QT_¤8:?@?B9[_�U¨RPÎ�_	Î�AWÏ½ÑHR¨KM_o;�81GF?@AFÍH8F?T;^RHÏ�Odâ QT_	ESRTÏ�Í�_�9
A:ÒPÜ"8F?BRT_o;
KMA�;MRTÏ >«;#_�
dRH8:?dK[A¤K[QT_	ESRTÏ�Í�_�9#AFÒHKMQH9M_o8FUT;�I:â1O:â QT9[_�8FUH;
8F?§K[_�9[EH8"K[_�Í�_�KiÛ$_�_�E
RH;^>@ETG*KiÛ$A*>«U¨_�EdKM>«Î�8F?�8F?B?@9M_oU¨RHÎ�_�KM9[_�_o; KMA�8xÜFAF>«U±KiÛ�A±8F?B?@9[_�U¨RHÎ�_�Î�8F?B?«;	K[AD>BEdK[_�9MÒ�_�9[_�Û	>§K[Q
�8FÎ<Q�A:K[QT�9oO

Appendix A - Published papers In Proc. of Euro-Par 2004

89

éê_�8:?«;^AYRP;^_�8:Eì8FÑTÑT?@>@Î�8"KM>@AFEìZF_�9[ET_�?|I �HJ ��I#8Y9[_�USÕµÍT?«8FÎ<Z¸Î<QT_�Î<ZW_�9�Ñ�AF>@EdKM>@ETG·ÜW_�9MÕ
;^>@AFE A:Ò�;^RPÎ�Î�_o;M;M>@ÜF_�A"ÜF_�9MÕµ9M_�?@8:ð¨8:KM>@AFE�O+×gE _o8FÎ<Q >§K[_�9<8"K[>BAWE�I#ÍT?@8WÎ<Zì8:EPUì9[_�U Ñ�AF>@EWK<;*8:9[_
Î�AFÏ4ÑTRTKM_�U 8:EHU�_�ðTÎ<QH8:EHGF_�UëRP;^>@ETG ÑPAW>BEdK±K[A Ñ�AF>@EdKVÎ�AFÏ4Ï�RHET>@Î�8"K[>BAWE�I¬Í�_�Ò�AW9M_¸8°K[_�;^K
Ò�AF91Î�AFESÜW_�9[GF_�Û	QT>«Î<Q·>«;¯>BÏ4ÑT?@_�Ï4_�EdK[_�UYRP;^>@ETG.8F?B?@9[_�U¨RHÎ�_FO�= Î�AFÏ4Ï�RHET>@Î�8"K[>BAWEY>BEdK[_�EH;M>BÜW_
ÑT9MAWÍT?@_�Ï ;M>Bã�_4Û$8W;1RH;^_oU ñßÞWï�� A:Ò$KMQT_*_�ð¨_�Î�RTKM>@AFEêKM>@Ï½_*Û 8F;�;MÑ�_�EdK�Î�AWÏ½Ï}RTET>«Î�8:KM>@ETGdò�O
â QT_}Î�AFÏ4ÑTR¨K<8"KM>@AFEY8FEHUVÑ�AF>@EWKMÕ|K[A:ÕµÑPAW>BEdK¤Î�AFÏ4Ï�RHET>@Î�8"K[>BAWE�9[_�;MRT?BK[;L>BE·8DÏ½AW9M_}Î�AFÏ4ÑT?@_�ð
>BEdKM_�9[8WÎ�K[>BAWE.Û	>BKMQ�KMQH_�RTEHU¨_�9M?@ÐS>BETG*;MÐ¨;iK[_�Ï K[QH8:E�>BE �1;MRTÏVO

�1;^RTÏ Û$8W;19MRTEêKM_�EíKM>@Ï½_o;1Ò�AF9�çWÞ ��� �D>BKM_�9[8:KM>@AFEH;1AWEê_o8FÎ<Q¸Î�?@RH;^KM_�9oI5ÍTR¨K�AWET?@ÐYKMQH_
9M_o;^RT?BK[;¤Ò�9[AFÏ AWET_½_�ð¨_�Î�R¨KM>@AFE¸8:9[_}RP;^_oUY>@E·K[QT_D8:EH8F?BÐ¨;M>@;�O�â QT_!�1;^RTÏ _�ð¨_�Î�R¨KM>@AFEêKM>@Ï4_
QH8F;¤8*;^Ï*8:?@?�;^K[8FEHUT8F9[UVU¨_�Üd>«8"K[>BAWE°ñ�?@_�;[;	KMQP8:E°Ý
�½ò�O�=L?@;MAHI¨K[QT_};M?@A"Û6U¨A"Û	E�UTRT_�K[A±UT8"K<8
Î�AF?@?@_�Î�K[>BAWE·>«;�;^Ï*8F?B?	ñ�Ò�9[AFÏ ETA´;^?@A"Û6U¨A"Û	EYRTÑêKMA´è��}ò�O �TAW9 �PJ � K[QT_4_�ð¨_�Î�R¨KM>@AFEêKM>@Ï4_
Üx8F9M>«8"K[>BAWE´>@;1;M>BÏ4>@?@8F9M?@ÐV?BA"Û�I�8:EPUVKMQT_½Ï4AFET>BKMAW9M>@ETG.A"ÜF_�9[QT_o8FU�>@;¯?@A"Û�_�9¤;M>BEPÎ�_ �PJ � QH8W;
9M_�?@8:KM>@ÜF_�?@Ð*?@_�;[;	Î�AFÏ4Ï}RTET>«Î�8"K[>BAWE±K[QH8:E �1;MRTÏVO

â QT_·;^K[8:EPUT8:9<U U¨_�ÜS>«8"K[>BAWEëÒ�AF9DK[QT_¸8:?@?B9[_�U¨RPÎ�_´AFÑ�_�9<8"K[>BAWEëKM>@Ï4_·>«;±?«8:9[GF_WO$J¤E KMQH_
�¯J6é Î�?@RH;iK[_�9}KMQT_�Ï4_�8FE >@;48FÍPAWR¨K.Ý � � �

µ
;�8:EHU KMQT_�;iK<8:EHUH8:9<U U¨_�ÜS>«8"K[>BAWE >@;½8:Í�AFRTK

ç � �
µ
;�O:=L?@;MA1KMQT_	Ü"8F9M>«8"K[>BAWE½>«;l?«8:9[GF_$Ò�AF9�KMQT_6Î�AFÏ4ÑTR¨K[_�U4?«8"KM_�EHÎ�>@_�;¬8:EHU½Û 8:>BKlKM>@Ï½_o;�O �TAW9

Ï48FESÐ½;^K[8FGF_�;�ÍPAFKMQ*K[QT_LÏ4_�8FED8:EHU*KMQT_¯;iK<8:EHUT8F9[U4U¨_�ÜS>@8:KM>@AFED8:9[_L8FÍPAWR¨KLÝ �
�¨çWÞ
µ
;�O:â QH_

AFET?@ÐêÜ"8F?BRT_o;�Û	>BKMQì?BA"Û ;^K[8:EPUT8:9<U¸U¨_�ÜS>«8"KM>@AFE 8F9M_DKMQT_�â Ì Ö74x×gÖ#I#8:EHU ;^KMAW9M_*?«8"K[_�EHÎ�>B_o;�O
�L_o;^ÑT>BKM_1K[QT_�?«8:9[GF_¯Üx8F9M>«8"K[>BAWE�I¨RH;M>BEHG½Ï4_o8:E�>BE�KMQH_�8:EH8F?BÐ¨;M>@;$GF>@ÜF_o;$RH;M8FÍT?@_¯9[_�;MRT?BK[;�O

â QT_V?@8F9MGW_.;^K[8:EPUT8:9<UìU¨_�ÜS>@8:KM>@AFE Ò�AW9*GF9[_�UìRTÑ�I�8:EPU U¨A"Û	E ?«8"KM_�EHÎ�Ð°>«;*Î�8FRH;M_�U ÍSÐ

WRH_�RT>@ETG�>BEêKMQT_*;MÐSEHÎ<QT9[AFET>@ã�8:KM>@AFEYÜ"8:9[>«8:ÍT?@_�;�IPÛ	QH>B?@_½KMQT_*U¨_�ÑH8:9MKMRT9[_½Û$8F>§K¯KM>@Ï4_DU¨>@;^KM9[>BÕ
ÍTR¨KM>@AFE´>«;L8*Î�AFÏ}ÍT>BEP8"KM>@AFEVAFÒl;M_�ÜW_�9<8:?�U¨>«;^KM9[>BÍTRTKM>@AFEH;¤;^>@EHÎ�_1K[QT_�Û 8:>BK6KM>@Ï4_�U¨_�ÑP_�EHUT;6AWE
KMQT_*U¨_�ÑH8:9MKMRT9[_½AF9<U¨_�9*ñ�Û	QH>@Î<Q�I5>@EíAFRT9�>@Ï4ÑT?B_�Ï4_�EdK[8:KM>@AFE�I�U¨_�ÑP_�EHUT;1AWE·K[QT_*8:9[9M>@Ü"8:?
AF9MÕ
U¨_�9�ò�OPéê_}_�ð¨ÑP_oÎ�K¯Ï½Ad;iK¤>BÏ4ÑT?@_�Ï4_�EdK<8"KM>@AFEVK[A±QH8xÜW_�;^>@Ï4>B?«8:9L?@8F9MGW_�Üx8F9M>«8"K[>BAWEH; Ò�AW96KMQH_�;M_
;iK<8:GF_o;�O��HAF9 �1;^RHÏ�IP8:9[9M>@Ü"8:?�Û$8F>§K KM>@Ï4_�Ü"8:9[>@8:KM>@AFE±>«;	Î�8FRH;M_�UDÍSÐDÜ"8F9M>«8"K[>BAWEH;$AFE.KMQT_1RTÑ¨Õ
ÑH8"K[Q�I+Û	QT>@?@_DÒ�AF9 �HJ � 8:EHU¸AFKMQT_�9�8:ÑHÑT?B>«Î�8:KM>@AFEH;�KMQT_�9M_D8F9M_.8FUTU¨>BKM>@AFEP8:?�ETAW>@;M_±;MAFRT9<Î�_o;
;^RHÎ<QV8F;	;MÐ¨;iK[_�Ï UH8:_�Ï4AWEH;1Ø �:ÚßO

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

-80000 -60000 -40000 -20000 0 20000

st
ag

e
#

time (usec)' c ,$q����ír<k�jW¶S®�pWe^c�fis§k�j���szfi©�c�egeistw�c�ªS�#c�szf#fisth�a<y<²

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

-400-300-200-100 0 100 200 300 400 500 600

time (usec)' ¦ ,��$ygpWh r<kojF¶S®�pWe^c�fistk�j&��szfi©dkopFf c�egeistwoc�ª
�#c�szf�fisth�a<y<²

��� � ¢��H¢ ~#sth�a<h�c�b�w:stygpSc�ªtst­�c�fis§k�jdy¬m«k�e¬��� £ r<ªtpWyµfia[e¬ygbSc�jWjdstjd®Lfgeia<a	r<k�jW¶S®�pWe^c�fis§k�jdy<²

Appendix A - Published papers In Proc. of Euro-Par 2004

90

-10

-8

-6

-4

-2

 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

time (usec)

A4
B4

A256
B256

' c ,�~#sth�a<h�c�bdy m@k�e f|�#k À £ r[kojW¶d®opFe^c�fistkojWy
��©Wa<j½pWygs§jW®1À�c�jS¥�������¦"{Ffia$h�a<ygyic�®�a<y<²

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 1 2 3 4 5 6 7up
 la

te
nc

y
+

 d
ep

ar
tu

re
 w

ai
t t

im
e

(u
s)

departure order

oct
quad

binary

' ¦ ,¬qFaMeisBc�ªts§­<c�fistkoj±stj:fgeik:¥Fpdr<a<¥½¦"{ % £ ©Wkoyµf
ygpd¦Ffgeia<a r<k�jW¶d®opWe^c�fistkojdy<²

����� ¢��H¢ ó�stygpSc�ªtst­�c�fis§k�jdy�m«k�e$r<k�h�bSc�eis§jW®¤fi©Wa	b¨a[egm«k�eih�c�jdr[a k�m+¥FstºTaMeia<j"f�r<kojF¶S®opFe^c�fistkojWy<²

�TAF9*Û$_�?@?6ÍH8F?@8FEHÎ�_oUë8:ÑTÑT?@>«Î�8"K[>BAWEH;�I�;^RHÎ<Q 8W;!�1;^RTÏ�8:EPU
�PJ ��IlKMQH_�9[_´>@;*EHA:KDAFEH_
KMQT9[_�8WU�Î�8FRH;M>BETG18¯?BAd8FU�>BÏ}ÍH8:?«8:EHÎ�_FO �HJ � QH8F;#8¯?@AW8FU�>BÏ}ÍH8:?«8:EPÎ�_$Û	QT_�E½9MRHE}AWE�K[QT_ �Fé
8:EHUVÙ:é Î�?@RH;^KM_�9[;6Î�8:RH;M_�U�ÍSÐ.UT>§î�_�9[_�EHÎ�_�;	>@EVÑPAW>BEdKMÕ|K[A:ÕµÑPAW>BEdKLÎ�AWÏ4Ï�RTET>«Î�8:KM>@AFE�?@8:KM_�EHÎ�Ð
;^>@EHÎ�_6KiÛ�A1K[QT9M_o8FUT;�AFE4_�8WÎ<Q½QHAW;^K�Î�AWÏ½Ï}RTET>«Î�8:KM_	Û	>BKMQD8�ET_�>BGWQSÍPAW9lAFED8�U¨>Bî�_�9M_�EdK¬QTAW;^K�O
�LRT_.KMAêKMQH_.?@AW8WU°>BÏ}ÍH8:?«8:EPÎ�_±Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_DÛ	>@?B? ETAFK4;M>BGWET>BÔPÎ�8FEWK[?BÐ¸Í�_.>@Ï4ÑT9[A"ÜF_�U¸ÍSÐ
AFÑ¨K[>BÏ4>@ã�>@ETG´8:?@?B9[_�U¨RPÎ�_*8F;�;MQTA"Û	E·>@EíÔHGFRH9M_Dç:8HI�Û	QT_�9[_½KMQT_DU¨A"Û	EíÑH8:KMQH;*ñ

x < 0
ò¯8:9[_

U¨AFÏ4>@EH8"K[_�UVÍSÐ�8F9M9[>@Üx8F?5Û$8F>§K	K[>BÏ4_�ñ�>ßO _WOH?@AW8FUV>@Ï�ÍP8:?«8:EHÎ�_oò�OPC$8W;^_oU�AFE´AFRH96_�ð¨Ñ�_�9[>B_�EHÎ�_o;
Ï½Ad;iK�AFÒ KMQT_DAWÑ¨KM>@Ï4>Bão8"K[>BAWEH;�Î�8FE¸ÍP_±UTAFET_*AWE¸KMQT_DRHÑ°ÑH8"K[QH;Dñ

x > 0
ò�O �HJ � Î�8FE°ÍP_

9M_�>BÏ4ÑT?@_�Ï4_�EdK[_�UêKMA´QT>«U¨_*K[QT_DÑ�AF>@EdK^ÕßKMA:ÕµÑ�AF>@EWK�Î�AFÏ4Ï�RTEH>@Î�8"KM>@AFE¸?«8"K[_�EHÎ�ÐFI+8FEHUêKMQT_�9M_�ÍdÐ
9M_oU¨RHÎ�>@ETG½KMQH_�?BAd8FU.>BÏ}ÍH8:?«8:EHÎ�_FO

�L>Bî�_�9M_�EHÎ�_o;L>@E·EH_�KiÛ$AF9[Z.?«8"K[_�EHÎ�ÐV8F?@;MA±Î�8:RH;M_}8±?BAd8FUV>@Ï�ÍH8F?@8FEHÎ�_}Û	>§K[QT>BE·KMQT_4Î�AWÏ½Õ
Ï�RTET>«Î�8:KM>@AFE�;^Ð¨;^KM_�Ï Û	QT_�E �1;^RHÏà>@; 9[RTE.AFEV8�Ï}RT?§K[>§ÕgÎ�?@RH;^KM_�9�O �LA"Û�_�ÜF_�9oI:K[QT_�ÑT9[AFÍT?@_�Ï
>@;1Î�8FRH;M_�UYÍSÐVK[QT_½;MÑH8FETET>@ETG±K[9M_�_½8FEHU·Î�8:EêÍP_4>@Ï½ÑH9MA"ÜW_�U´ÍSÐV9M_oÎ�AWE¨ÔHGFRH9M>@ETGDK[QT_}KM9[_�_FO
�TAF9�KMQH_¤9[_�Ï*8:>@ET>@ETG}8FEH8:?@Ð¨;^>«;�Û�_¤>BGWETAF9[_	KMQH_18F9M9[>@Üx8F?HÛ 8:>BK¬K[>BÏ4_�;�I¨;^>@EHÎ�_LK[QT_�;M_¤QH>@U¨_¤KMQH_
U¨>§î�_�9[_�EPÎ�_1ÍP_�KiÛ�_�_�E�Òä8F;^K68:EHUV;M?BA"Û ÑH8"K[QH;�O

â+A�GF_�K�8FEêA"ÜW_�9[ÜS>B_�Û A:Ò�KMQT_*Î�AWÏ4Ï�RTET>«Î�8:KM>@AFEíÍP_�QH8xÜS>BAW91A:Ò¬K[QT_*U¨>Bî�_�9M_�EWK�K[QT9[_�8FUH;
Û�_6RP;^_¯8 �+"�- 1	-	� �VÜS>«;^RH8F?B>@ã�8:KM>@AFE½KMQP8"K$;MQTA"Û6;�KMQT_¤Ï½_o8:E4K[>BÏ4_¤;MÑ�_�EdK¯ñ

x
Õg8"ð¨>@;<òl>@ED_o8FÎ<Q

;iK<8:GF_}A:Ò�KMQT_4ÑH8:KMQ ñ
y
Õµ8:ðS>«;<ò	Û	QT_�EêÏ4A"ÜS>BEHG.U¨A"Û	Eí8:EHU·RTÑ·K[QT_½KM9[_�_WO

X = 0
>@;¯Û	QT_�E

KMQT_¯KMQH9M_o8FUT;�_�EdKM_�9$KMQT_1Í�A:K^K[AFÏ4Ï4AW;^K$Û	9<8:ÑHÑP_�9�O��TAW9 Ï½AW9M_¯U¨_�K<8:>@?@;$Û$_¤RP;^_¤K[8FÍT?B_o; Û	>§K[Q
;iK<8"KM>«;^KM>«Î�;¤Ò�AF9�_o8FÎ<Q´K[QT9M_o8FU5I�8FEHU´Ò�AW91_�8FÎ<Qí;iK<8:GW_FO5â QT_½KM>@Ï4_�Ï*8:Ñí>BEêÔHGWRT9M_*ç"Íí;^QHA"Û6;
KMQH8:K�K[QT_¯æ��1KMQH9M_o8FUT;�9MRHE±AFEDKMQT_ �¯J6é Î�?@RH;^KM_�9$QH8xÜW_¤;M>BÏ4>@?@8F9�Í�_�QH8xÜS>@AF9oOW=L9M9[>BÜ"8F?HÛ 8:>BK
KM>@Ï½_o;�8:9[_$ETA:K¬;MQTA"Û	E�I"8:EPU�K[QT_	RTÑ¨ÕµÑH8:KMQ½QH8F;#Ü"8:9[>«8"KM>@AFEP;
UTRT_ KMA¯KMQH_68:9[9M>@Ü"8:?BÕµU¨_�ÑH8:9MKMRH9M_
AF9<U¨_�9 U¨_�Ñ�_�EPU¨_�EHÎ�ÐFOTâ QT_¯K[QT9M_o8FUT; Î�8:E±9[AFRHGFQT?@Ð*ÍP_�U¨>@ÜS>@UT_�U.>BEdKMA4Î�?«8F;[;M_�;$8FÎ�Î�AF9<U¨>@ETG�K[A
KMQT_}EdRHÏ�Í�_�9¯A:Ò¬â Ì Ö74"×gÖ Î�AWETET_�Î�KM>@AFEH;L>BE·KMQT_�>B9¤ÑH8"K[QH;�O�=LE·AFÑTKM>@Ï½>@ã�_oUYÎ�AWE¨ÔHGWRT9[8:KM>@AFE
Ò�AF9	ç"é QH8W;�8}Ï4AF9[_L>@9M9[_�GWRT?«8:9�;MQH8FÑP_¯Î�AFÏ4ÑT?@>«Î�8"K[>BEHG�KMQH_¯8FEH8:?@Ð¨;^>«;�UTRT_LK[A}9<8"K[QT_�9�?@8F9MGW_
Üx8F9M>«8"K[>BAWEDÒ�AW9	Ï½Ad;iKL;^K[8FGF_o;�O

�TAF9�KMQT_.Ï4AW;^KM?@ÐêRH;M_�U°8F?B?@9[_�U¨RHÎ�_DÏ4_�;[;M8FGF_D;M>Bã�_�;.ñ�Í�_�?@A"Û çFÞ:æVÍSÐdKM_o;DØ@Ý �"Ú�ò�I#8·Î�AW;^K
ÍT9M_o8:Z¨U¨A"Û	E°;MQTA"Û6;1KMQP8"K�ÍT9[AW8WUTÎ�8W;iK�>«;�Ï4AF9[_D_�ðSÑ�_�EP;^>@ÜF_4K[QH8:E 9[_�UTRHÎ�_WO+â QT_±RHÑ�I�8FEHU
U¨A"Û	E±GW9M_oUSÕß?«8"K[_�EHÎ�Ð*8:9[_¤AWET?BÐD8�Ò�_�Û

µ
;�I¨QH_�EHÎ�_¤K[QT_¯KM>@Ï4_¤K[A*U¨A�K[QT_19M_oU¨RHÎ�_¤AWÑP_�9[8:KM>@AFE

Appendix A - Published papers In Proc. of Euro-Par 2004

91

>@;�>BEP;^>@GFET>BÔPÎ�8:EdK�O��TAW9 �¨X´Ö�;¬K[QT_1U¨_�ÑH8F9^K[RT9[_6Û$8F>§K�KM>@Ï4_¤Î�8FEDÍ�_¤?«8:9[GF_WIFÍTR¨K�Ò�AF9�KMQT_¯Í�_�;^K
Î�AFETÔHGFRT9<8"K[>BAWEYK[QT_±â Ì Ö74"×gÖ ;^K[8FGF_o;�U¨AFÏ4>@EH8"K[_}K[QT_D_�ðS_oÎ�R¨K[>BAWE·K[>BÏ4_WO�=6?«;MAHI�KMQH_*KM>@Ï4_
;^Ñ�_�EdKL;^KMAF9[>@ETG½KMQT_�9[_�;MRT?BK >@E´Öl8F;^K �S_�K	>@;	>@EH;M>BGWET>BÔPÎ�8FEWKoO �TAW9L;^AWÏ4_1;M>@ETGF?@_�Õ Ì Ö � Î�?@RH;^KM_�9
Î�AFETÔHGFRT9<8"K[>BAWEH;¯Û�_*QP8xÜF_*8�Ò�_�ÛÓAFR¨K[?B>@_�9<;1>@E¸KMQT_*ÑT9[Axð¨Ð·;^K[8:GW_½KMQH8:K�Î�8:E°;M>BGWET>BÔPÎ�8FEWK[?BÐ
9M_oU¨RHÎ�_LÑP_�9^Ò�AW9MÏ*8:EPÎ�_FO �TAW9¬AFEH_LC$?@8WU¨_ �1;MRTÏ Î�AFETÔHGFRT9<8"K[>BAWE½KMQT_�Ð4Î�8:RH;M_�U*8};^?@A"Û6U¨A"Û	E
A:Ò�Þ��HOzç¨O

é QT_�E´K[RTET>@ETGDK[QT_�Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_�A:Ò�8.Î�AFETÔHGFRT9<8"K[>BAWEV>§K¯>@;L>BÏ4Ñ�AF9MK[8:EdK¤KMA*ÔHEPU´KMQH_
9M>@GFQdK ÍH8:?«8:EHÎ�_¤Í�_�KiÛ$_�_�E±?@AW8WUDAFE 0$9 9���QTAW;^K[; 8:EPU±ESRTÏ}ÍP_�9$AFÒ�ET_�KiÛ�AW9MZ4?@>BEHZS;�OT7�Ad8FU*AWE
9MASA:KlQTAd;iK<;lÎ�8FE}Í�_	9M_oU¨RHÎ�_�U}ÍdÐ�Ï½A"ÜS>@ETG¯GF9[_�U}Û	9[8FÑTÑP_�9[;�K[A¯AFKMQT_�9lQTAW;^K[;�O:â QT>«;#Û	>B?@?H8F?@;MA
>BÏ4ÑT9[A"ÜF_¤ÑPAFKM_�EdK[>@8F?�ÑP8:9<8:?@?B_�?B>«;^ÏVIdÍTR¨K >§K	Û	>@?B?�>@EdKM9[ASUTRHÎ�_18:ETAFKMQT_�9$â Ì Ö64x×gÖëÎ�AFEHET_�Î�KM>@AFE
KMA°;^AWÏ4_.K[QT9[_�8FUH;}ÑP8"KMQP;�O �HAF9 �¨X´Ö�;�IlK[QT_VÑP_�9^Ò�AW9MÏ*8FEHÎ�_�A:Ò18êQHAW;^K*;MRTÍ¨K[9M_�_´Î�8:E Í�_
>BÏ4ÑT9[A"ÜF_oUDÍSÐ.8WUTU¨>@ETG4AF9 9M_�Ï4A"Üd>@ETG48:EV8FUTUT>§K[>BAWEH8:?5?@_�ÜW_�?5>@E.K[QT_�;MÑH8:ETEH>BETG½K[9M_�_FO

�	_�Î�AFE¨ÔHGWRT9<8"KM>@AFE·>BÏ4ÑT9[A"ÜF_oUVKMQT_4Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_}AFÒ �1;MRTÏ RTÑêKMA´8±Òä8FÎ�K[AF91A:Ò¯ÝFO ���HO
�6A"Û$_�ÜF_�9�I�K[QT_D_�î�_�Î�K[;�AFÒ 8V9[_�Î�AFE¨ÔPGFRT9<8"K[>BAWEêÎ�8FE¸ÍP_DU¨> �DÎ�RT?BK�K[AYÑT9[_�U¨>«Î�KoO �TAW9�8 �Fé
�1;^RTÏ Î�AFETÔHGFRT9<8"K[>BAWE�Û�_ U¨AWRTÍT?@_�U�K[QT_ ESRTÏ�Í�_�9#A:Ò�â Ì Ö74x×gÖ¸Î�AWETET_�Î�KM>@AFEH;�AFE½86K[QT9[_�8FUH;
ÑH8"K[Q�I�ÍTRTK�KMQT_�KM>@Ï½_�;^Ñ�_�EdK+>@E1KMQT_o;^_�;iK<8:GF_o;�AFET?@ÐL>@EHÎ�9M_o8F;M_�U¯ÍSÐ�ÝFOzÞFÞ$U¨RH_lKMA	K[QT_¬â Ì Ö74"×gÖ
?@8:KM_�EPÎ�Ð½ÍP_�>BETG}U¨_�Ñ�_�EHUT_�EdK�AWE*?BAd8FU½AFE4K[QT_¤Î�AFÏ4Ï�RTEH>@Î�8"KM>@ETG�QTAd;iK<;�Od= 9[_�Î�AWE¨ÔHGWRT9[8:KM>@AFE
Î�8:E.8:?«;^A}QH8xÜF_L8}ET_�GW8"K[>BÜW_6Ñ�_�9MÒ�AF9[Ï48FEHÎ�_¤_�î�_�Î�K$AWEDRTEHÎ<QH8FETGF_oUD;MRTÍ¨KM9[_�_o;�Od×gE.8WUTU¨>BKM>@AFE�I
KMQT_}ÍP_o;iK�Î�AWE¨ÔHGFRH9[8:KM>@AFE�Ò�AF9¯8±Î�?@RH;^KM_�9L>«;¤U¨_�ÑP_�EHU¨_�EWK1AFE Ì Ö ��;MÑP_�_�U´AWEYQTAd;iK<;�I�7+= �
?@8:KM_�EPÎ�ÐFI�ESRTÏ�Í�_�9¯A:Ò�QTAW;^K[;¤>BEíÎ�?@RH;^KM_�9oI�8:EHUVK[QT_½Ï½_o;M;[8:GW_�;M>Bã�_�RH;M_�U´>@EYK[QT_4Î�AF?@?@_�Î�K[>BÜW_
AFÑ�_�9<8"KM>@AFE+O

=6E A"ÜF_�9MÜS>@_�Û A:Ò¯KMQT_íU¨>§î�_�9[_�EPÎ�_�;DÍP_�KiÛ�_�_�EëKiÛ$A Î�AFETÔHGFRT9<8"K[>BAWEH;4>«;DÑT9[A"ÜS>@U¨_oUìÍSÐ
8½KM>@Ï½_�Ï*8:ÑVÜS>@;MRH8:?@>@ã�8"K[>BAWEDK[QH8"K¤;MQTA"Û6; ;M_�ÜF_�9[8F?�Î�AWE¨ÔHGFRH9[8:KM>@AFEH;¬Ò�AF96AWET_¯KMQT9[_�8WU5O �S>@EHÎ�_
ÑH8"K[QH;
>BE�KiÛ$A¤Î�AFE¨ÔPGFRT9<8"K[>BAWEH;+Î�8:E�QH8xÜW_¬RTEH_�
dRH8:?d?@_�ETGFKMQ�IoKMQH_�ÐdÕgÎ�ASAF9<U¨>@EH8"K[_�;�8F9M_$;MÎ�8:?@_�U
;^RHÎ<QYKMQH8:K¯Í�A:K[Q·QH8xÜW_�KMQT_4;[8:Ï4_

y0

8:EHU
ymax

O �
>BGWRT9M_½èF8.;^QTA"Û6;6KMQH8:K¯ÍSÐVÏ4A"ÜS>BETG.8
GF9[_�U�Û	9[8FÑTÑ�_�9	K[A±8:ETAFKMQT_�9 �Fé QTAd;iK½ñäC �±8:EPU´C çWÞ:ædò�I¨GF>@ÜF_o;	Í�_�K^K[_�9¯ÑP_�9^Ò�AW9MÏ*8FEHÎ�_1Ò�AW9
�´ÍdÐdK[_DÏ4_�;[;M8FGF_�;�I5ÍTR¨K}Û�AW9[;M_½Ò�AF9}çWÞ:æ�ÍSÐWK[_DÏ4_�;[;M8FGF_o;�I�U¨RH_*KMAY8�K[9[8WU¨_�ÕµA:îìÍ�_�KiÛ$_�_�E
>BEHÎ�9M_o8F;M_�U.â Ì Ö74x×gÖë?«8"KM_�EHÎ�>@_�;�IH8FEHU.;M>@ETGF?@_1QTAW;^K6;^RTÍTKM9[_�_1ÑP_�9^Ò�AW9MÏ*8FEHÎ�_WO

��>@GFRH9M_�èFÍ·;MQTA"Û6;6QTA"Û 8WUTU¨>@ETG.8WUTU¨>BKM>@AFEH8F?+?@_�ÜF_�?@;6KMA�8±;MRTÍ¨KM9[_�_}>BÏ4ÑT9[A"ÜF_o;	Ñ�_�9MÒ�AF9MÕ
Ï48FEHÎ�_*AWE°8:E°Ù"ÕµÛ$8xÐ´QHAW;^K�O+â QT_4ÔPGFRT9[_*;^QTA"Û6;¯K[QT_D>@EdKM9[ASUTRHÎ�_oUê?«8"K[_�EHÎ�Ðìñ�ð�� �dò�I+8FEHU
KMQT_½8:Ï4AFRTEdKLAFÒ¬;^_�9M>«8:?@>@ã�8"K[>BAWE°ñä;M?BAWÑP_�AFÒlKMQT_½Î�RT9[ÜF_WI��P8:K^K[_�9L>«;¤ÍP_�K^KM_�9<ò�O5J¤EVK[QT_�ðSÕg8"ð¨>«;
KMQT_½AF9<U¨_�9LA:Ò¬U¨_�ÑH8:9MKMRT9[_�>«;¯;^QTA"Û	E+IP8:EPU´AFE´K[QT_½ÐWÕg8"ð¨>«; KMQH_}RTÑ·?@8:KM_�EPÎ�Ð��ÓU¨_�ÑP8:9MKMRT9[_
Û$8F>§K
KM>@Ï4_$>«;l;MQTA"Û	E�O �6AFKM>«Î�_�KMQH8:K
K[QT_ RTÑ¨Õµ?@8:KM_�EHÎ�Ð�>«;
KMQT_ ;[8:Ï4_¬Ò�AW9�8:?@?¨U¨_�ÑH8F9^K[RT9[_�;�Io8FEHU
KMQH8:K�Ò�AF9�K[QT_4ÔH9<;iK�U¨_�ÑH8:9MKMRT9[_�9Dñ�ð�� �Wò¤QH8F;�ã�_�9[AVU¨_�ÑH8F9^K[RT9[_½Û 8:>BK�KM>@Ï4_FO+â QH_*AFÑ¨K[>BÏ*8:?
QT_�>@GFQdK	A:Ò
KMQT_1K[9M_�_�U¨_�Ñ�_�EHUH;	AFE.KMQT_�?@AW8WU±AWE±K[QT_�QTAd;iK<;�O

â+A*ÔPEHUVKMQH_�Òä8F;^KM_o;iK1Î�AWE¨ÔHGFRH9[8:KM>@AFE�IT>BK1>@;LRH;^RP8:?@?BÐV_�EHAFRTGWQVKMA±Î�AFÏ4ÑH8:9[_�K[QT_�ÑH8:KMQH;
KMQH8:K18F9M_}AFE´K[QT_½8xÜW_�9<8:GW_�;^?@A"Û�_o;iKoIPÍHR¨K¯EHA:K�8:?@Û$8xÐ¨;�OH= �Fé �1;MRTÏ Î�AWE¨ÔHGFRH9[8:KM>@AFE��1I
>@;	;M?BA"Û$_�9�KMQP8:EVÎ�AFETÔHGFRT9<8"K[>BAWE	��_�ÜW_�E±>BÒ
KMQT_4Ýoç};M?BA"Û$_�;^K¬K[QT9M_o8FUT; 8F9M_¤Òä8F;^KM_�9�ISÍ�_�Î�8FRH;M_
KMQT_*9[_�Ï*8:>@ET>@ETGYç �.KMQH9M_o8FUT;1>@E
�Ó8:9[_4;M?@A"Û�_�9�I58:EPUYK[QT_D?«8:9[GF_½Üx8F9M>«8"K[>BAWEíÎ�8:RH;M_�;�� K[A
QH8xÜF_¤KMQT_�;M?@A"Û�_o;iK KMQH9M_o8FU±Ò�AF9	Ï4AW;^K68:?@?B9[_�U¨RPÎ�_�Î�8F?B?«;�O

�
�Ë$�SÊ5É�� �SËiÇ¬Ä

â QT_�K[>BÏ4_�;^K[8FÏ4ÑH;¤Î�AF?@?B_oÎ�K[_�UVÍSÐ.å¬ÜF_�EdK �SÑH8FÎ�_}8F?B?@A"Û6;	RH;LKMA±8FEH8:?@ÐSã�_�K[QT_�Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_
A:Ò5;^ÑH8FETET>@ETG1KM9[_�_o;l8:EHU½K[QT_�>@9�Ï*8:ÑHÑT>BEHG1KMA1KMQH_6Î�?@RH;iK[_�9<;l>@E½RP;^_WO��6A"Û$_�ÜW_�9oIx>BE¨Ò�AW9MÏ*8:KM>@AFE

Appendix A - Published papers In Proc. of Euro-Par 2004

92

Ò�9MAWÏ Û	>§K[QT>BE}KMQH_�AWÑP_�9[8:KM>@ETG¤;MÐ¨;iK[_�Ï >«;�EH_�_�UT_�U�KMA¯RTEHU¨_�9[;^K[8FEHU�Û	QSÐ�8¤;MÐSEHÎ<QT9[AFET>@ã�8:KM>@AFE
AFÑ�_�9<8"KM>@AFE+IdAW9	8}â Ì Ö74"×gÖ Î�AFETEH_�Î�K[>BAWE±>«;	;^?@A"Û�O��6_�EHÎ�_WI¨>BE¨Ò�AW9MÏ*8:KM>@AFEDÒ�9[AFÏ Û	>BKMQH>BE�KMQH_
AFÑ�_�9<8"KM>@ETG4;^Ð¨;^KM_�Ï ;MQTAFRT?«U.ÍP_�Î�AF?@?B_oÎ�KM_oU.8FEHU�RH;M_�U.>BE�KMQH_�8:EH8F?BÐ¨;M>@;�O

�TAF95_o8F;M_lA:ÒSÑT9[A:KMAFKiÐSÑT>BEHG$Û$_lRH;M_�U¯AFRH9�A"Û	E1ÑH8:9<8:?@?B_�?"ÑT9[AFGF9<8:Ï4Ï4>@ETG$;MÐ¨;iK[_�ÏÓñ�Ö5=lâ����Tò�O
J¤RT9¤8FEH8:?@Ð¨;^>«;L8FÑTÑT9[AW8FÎ<QV;MQTAFRT?«U´Í�_}8FÑTÑT?@>@Î�8:ÍT?@_�Ò�AF91X´Ö�×	9[RTEdKM>@Ï4_};MÐ¨;iK[_�Ï*;6ÑT9[A"ÜS>@UT_�U
KMQH8:K}Û$_±Î�8FE Î�AF?@?@_�Î�K�KM>@Ï½_o;iK<8:Ï4ÑH;�KMQH8:K}Î�8FE°ÍP_�Î�AW9M9[_�?«8"K[_�UêKMA·8YGF>@ÜF_�E XYÖ�×�Î�AW?B?@_�Î�Õ
KM>@ÜF_VAFÑ�_�9<8"K[>BAWE Î�8F?B?ßO�J¤EHÎ�_�Ï4AWET>§K[AF9[>BEHG·K[AdAW?@;½RH;M>@ETGíKMQT_VÑT9[AFÑ�AW;M_�U X´Ö�×}Ö�å � ���Så
>BEdKM_�9^Òä8WÎ�_WØ��:Ú�8:9[_L8xÜ"8:>@?@8FÍT?@_6KMQH_�;M_LÏ*8xÐ4ÍP_¯RH;M_�U4K[A}Î�AW?B?@_�Î�K¬K[QT_¯UH8"K[8�ET_�Î�_�;[;M8F9MÐ}Ò�AF9$AFRH9
8:EH8F?BÐ¨;M>@;�O �6A"Û$_�ÜW_�9oI5A:KMQH_�9�9[RTEdKM>@Ï4_D;^Ð¨;^KM_�Ï*;�Û	>@?@?¬QH8xÜW_½Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_4ÑT9MAWÍT?@_�Ï*;�ETAFK
KM9[_�8"K[_�U.ÍSÐ*KMQT>«;	Û$AF9[Z�IWÒ�AW96_�ðT8FÏ½ÑH?B_1Û	>BKMQV9M_�GW8F9[UT;¬KMA*ÍHR¨î�_�9M>@ETGPO

â QT_�Î�8F?@Î�RT?@8:KM_oU.Ü"8F?BRT_o;	RH;M_�UV>@EVKMQT_�8FEH8:?@Ð¨;^>«;	QH8xÜW_1?@8F9MGW_¯Ü"8F9M>«8"K[>BAWE�IT8:EHUVAWR¨KM?@>@_�9<;
Î�8:E1QH8xÜW_�8	;^>@GFEH>§ÔPÎ�8:EdK�_�î�_�Î�K�AWE¯Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_FO�=ìÎ�AFÏ4ÑT?@_�K[_lKM9<8FÎ�_lA:ÒT8:?@?:Ï4_�;[;[8:GF_o;5;^_�EdK
Û	>§K[QT>BEV8½GF>@ÜF_�EDKM>@Ï4_1ÑP_�9M>@A¨U±ÑT9[A"ÜS>@UT_�;�_�ETAWRTGFQ�;M8FÏ½ÑH?B_o;¬Ò�AW9	;iK<8"KM>«;^KM>«Î�8:?�8FEH8:?@Ð¨;^>«;�Id8FEHU
Î�8:E.ÍP_1RH;M_�UDKMA4U¨_�K[_�Î�K	8FESÐ½Ñ�_�9[>@ASUT>@Î�8:?�ÑP_�9^Ò�AW9MÏ*8FEHÎ�_o;�Òä8FRT?§K<;1ñ�_FO GHOTÎ�8:RH;M_�UDÍdÐD;MÐ¨;iK[_�Ï
UT8:_�Ï½AWEH;.Ø �:Ú�ò�O
å¬ÜF_�EdK �SÑH8FÎ�_�8F?B?@A"Û6;�K[AíÎ�AF?@?B_oÎ�K*;^RPÎ<Q KM9<8FÎ�_�;�Û	>§K[Q 8í;^Ï*8F?B?$A"ÜF_�9MQT_o8FU
8:EHU.Ï4_�Ï4AF9[ÐDRH;[8:GW_4ñ^Ý+XYC AFÒ�Ï4_�Ï4AW9MÐ±Î�8:EV;iK[AF9[_�ç �TO@Ýoçdï1å�ÜW_�EdK �¨ÑH8FÎ�_¯_�ÜF_�EWK<;[ò�O

éê_4AFEH?BÐ·;^KMRPU¨>B_oU·AWET_*8:ÑTÑH?B>«Î�8:KM>@AFE � �HJ ��O �¨>BEHÎ�_*X´Ö�×1U¨_�ÔHEH_�;¯KMQH_4;M_�Ï*8FEWK[>@Î�;¯A:Ò
Î�AF?@?@_�Î�K[>BÜW_ AFÑ�_�9<8"KM>@AFEP;
KMQT_6Î�AFÏ4Ï�RTEH>@Î�8"KM>@AFE4ÑH8:K^K[_�9[E½AFÒ �PJ � >«;lGW_�ET_�9[8F?S8FEHU}Ò�9M_
dRT_�EdK�O
�S>BEPÎ�_ �PJ � QH8F;¤8D?@AW8WUV>BÏ}ÍH8:?«8:EHÎ�_�8*Í�_�KMKM_�918:ÑHÑT?B>«Î�8:KM>@AFEVÒ�AW9LK[QT_};^KMRHUTÐ�Û$AFRH?@UVQH8xÜW_
ÍP_�_�EVAFET_�AFÒ+K[QT_�8:ÑTÑH?B>«Î�8:KM>@AFEH;	U¨_o;MÎ�9M>@Í�_�U�>BE¸Ø �xÚµOH=6?«;^APITAFEH?BÐ*K[QT_�8:?@?@9M_oU¨RHÎ�_1AWÑP_�9[8:KM>@AFE
QH8F;�ÍP_�_�E 8:EP8:?@Ðdã�_�U5O�éê_±ÍP_�?B>@_�ÜW_*KMQT_�8:EH8F?BÐ¨;M>@;�Û	>B?@?¬Í�_.;M>BÏ4>@?@8F9�Ò�AW9�A:K[QT_�9½Î�AF?@?@_�Î�K[>BÜW_
AFÑ�_�9<8"KM>@AFEP;6Û	>BKMQ·;MÏ*8:?@?�Ï4_�;[;[8:GF_�;M>@ã�_};MRHÎ<QY8W;L9[_�U¨RPÎ�_�8FEHU´ÍH8F9M9[>B_�9�OPX´_�;[;M8FGF_�8F9M9[>@Üx8F?
AF9<U¨_�9oIH;MÐdEPÎ<QT9MAWET>@ã�8"K[>BAWEVÑPAW>BEdK[;�IP8FEHU´ET_�KiÛ�AW9MZ.?@8:KM_�EHÎ�>@_�;¤8:9[_�8:?«;^AD>@Ï4ÑPAW9^K<8:EdK6Ò�AW96KMQH_
ÑP_�9^Ò�AW9MÏ*8:EPÎ�_�A:ÒlAWÑP_�9[8:KM>@AFEH;	Û	>BKMQ·?@8F9MGW_�9	Ï4_�;[;M8FGF_o;�IH;MRHÎ<Q´8F;¤8:?@?§K[AW8F?B?ßIH8:?@?@GW8"K[QT_�9oIH8FEHU
KMQT_�XYÖ�×µÕß×MJ Î�AF?@?B_oÎ�KM>@ÜF_�AWÑP_�9[8:KM>@AFEH;�O �TAW9LX´Ö�×µÕµ×MJ�Û�_�Î�8:EVÛ	9<8:Ñ�KMQT_}×$4FJ AFÑ�_�9<8"KM>@AFEP;
RH;^>@ETG4Ö5=lâ�����Û	9<8:ÑTÑ�_�9<;�O

� �êÇ�ÄLÊ �^É��SËiÇ¬Ä �lÄLÈ��6É6ÅTÉ6Æ	���0Ç�Æ��

éê_*QH8xÜW_½UT_�;[Î�9[>BÍ�_�U¸;MÐS;^KM_�Ï*;LÒ�AW9�Ï4AFET>BKMAW9M>@ETG´8:EHU·KMRHET>BEHGVKMQT_*Ñ�_�9MÒ�AF9[Ï*8:EHÎ�_}AFÒ Î�AF?BÕ
?B_oÎ�KM>@ÜF_.AFÑ�_�9<8"K[>BAWEíÛ	>BKMQH>BEìKMQT_�Î�AFÏ4Ï}RTET>«Î�8"K[>BAWE ;^Ð¨;^KM_�Ï�O �TAW9�_o8FÎ<Q¸KMQH9M_o8FU¸Û$_DKM9<8FÎ�_
KMQT_.Ï½_o;M;[8:GW_�;¯K[QT9MAWRTGFQ°8 ������� >BE°K[QT_±Î�AFÏ4Ï�RTEH>@Î�8"KM>@AFE°;MÐ¨;iK[_�ÏVO+éí_.U¨_�Ï4AFEH;^KM9<8"K[_�U
8:Eê8FEH8:?@Ð¨;^>«;¯8:ÑTÑT9[AW8WÎ<Q·8:EPUYÜS>@;MRH8F?B>@ã�8:KM>@AFEH;¤ÍSÐ´_�Ü"8:?@RH8"K[>BEHG�8FEHUYAWÑ¨KM>@Ï4>Bã�>BETGVU¨>Bî�_�9M_�EdK
;^ÑH8FETET>@ETG:ÕßKM9[_�_1Î�AWE¨ÔHGWRT9[8:KM>@AFEH; 8FEHU.Î�?BRP;iK[_�9	Ï*8:ÑTÑH>BETGd; A:Ò
KMQT_�8F?B?@9[_�U¨RHÎ�_¤AWÑP_�9[8:KM>@AFE�O

â QT_ Ï½AWET>BKMAF9[>@ETG¤A"ÜW_�9[QT_�8WU�>«;#?BA"Û�IxÒ�9[AFÏ EH_�8:9[?@Ð �LK[A�è �±I:8:EHU�KMQH_ 8FEH8:?@Ð¨;^>«;
>@;l;M>@Ï}Õ
ÑT?B>BÔH_oU*;^>@EHÎ�_	Ï*8FEdÐ}ÑH8"K[QH;lQH8xÜW_	;^>@Ï4>B?«8:9�Í�_�QP8xÜd>@AF9oO �6A"Û$_�ÜW_�9oIoKMQT_LÎ�AFÏ4ÑTR¨K[_�U4?«8"K[_�EHÎ�>B_o;
8:EHU½Û 8:>BK
K[>BÏ4_o;�QH8xÜW_�?«8:9[GF_ Ü"8:9[>@8:KM>@AFE�I"9[_�Î�AFE¨ÔPGFRT9<8"K[>BAWE�Ï*8xÐ}8"î�_�Î�K�RTEHÎ<QH8FETGF_oU�ÑP8:9MK[;�I
8:EHU.>§K6>«;6U¨> �DÎ�RT?BK	KMA*ÑH9M_oU¨>@Î�K KMQT_�_�î�_oÎ�K6A:Òl;MAFÏ4_�Î<QH8:ETGW_�;�O

=L;1Ò�R¨K[RT9[_*Û�AW9MZ�I5Û$_*Û	>B?@?�RH;M_4KMQT_±å�ÜF_�EWK �SÑH8WÎ�_D;MÐS;^KM_�Ï Ø èxÚ¬Ò�AW9�9MRHE¨Õ|K[>BÏ4_D8FEH8:?@ÐdÕ
;^>«;�O
=6?«;^API�Û$_DÛ	>B?@?¬_�ðT8:Ï4>BEH_*QTA"ÛÓUH8"K[8·Î�AF?@?@_�Î�K[_�Uí>@EH;^>«U¨_*K[QT_DAWÑP_�9[8:KM>@ETGY;^Ð¨;^KM_�Ï Î�8FE
ÍP_*RH;M_�Uê>@EêK[QT_D8:EP8:?@ÐS;M>«;�I58:EPU·>BÒ ;MAFÏ4_4?@AW8FUêÍH8F?@8FEHÎ�_4ÑT9[AFÍT?@_�Ï*;1Î�8FEêÍ�_D8xÜFAW>@UT_�UYÍSÐ
9M_oÎ�AFETÔHGFRT9[>@ETG¯KMQT_6Î�AF?@?B_oÎ�KM>@ÜF_	AWÑP_�9[8:KM>@AFE*;MÑH8:ETEH>BETG1K[9M_�_�;�O �
>BEP8:?@?BÐWI:AFRT9¬?BAWETG:ÕßKM_�9MÏ GWAW8F?
>@;�KMA�ÍTRT>@?«U*8�Î�AWÏ½Ï}RTET>«Î�8:KM>@AFE4;^Ð¨;^KM_�ÏÓÛ	QT_�9M_6Î�AF?@?B_oÎ�KM>@ÜF_6Î�AFÏ4Ï�RHET>@Î�8"K[>BAWE}>«;¬8FEH8:?@ÐSã�_�U�I
8:EHU�8FUT8FÑ¨KM_oUV8"K	9MRHE¨Õ|K[>BÏ4_WO

Appendix A - Published papers In Proc. of Euro-Par 2004

93

� ��� �+Æ	�+ÄLÊ � �

� ¿������
	���
�����������������
�������
������! " $#��&%'�Ln
k�ª§ªta<rMfis§woa1r<koh�h¤pdjWs§r<c�fistkoj*k�b¨a[e^c�fistkojWy)((+* ³
b¨a[eisth�a<j"f^c�ªSeia<ygpdªzfiylw:y<² fi©da<k�eg{"²-,�.0/�1�24353768/91�:<;�=>3@?"1�A�BC156D?0/9EGF�H8I!6835B�68/�156KJ$L�u � ' ¿�Á�Á % ,M²

� �M����N5OP	����9
� "�
�+�RQ��S���UT5VWI93@.0X�BY/4Z'A\[]6_^$I!676�E02MI`.@aG=b?03�?0cYcd6�c>?0/9E'e-BYf7A�38BCg�24Ah6�Eji&I"I�c B�k
17?0A�BC.l/]fm.0/n,+c 24f7Ah6838fo?0/�Eqpj2
c A�B�k7,+c 24f7Ah6838fi²°»�©d`�fi©da<ygsty<u+` a<bdc�egfih�a<j"f¯k�m6n
k�h�bdpFfia[e
q:r<sta<jdr<a�udv�jdstwxa[eiygszfß{�k�m+~Peikoh�yg�Fu �lr$r;*F²

� *l����#���s�#��+tu�wv_���+vG������x��"��ym���w
����z��N5OP	����9
� "�!�w��Q��+��� (woa<j"fMqFbSc�r<a$³ (+* b¨k�ygs§jW®
c�jS¥4ko¦Wyga[eiw:stjd®�r<k�h�h¯pdjWstr�c�fistkoj*¦¨a[©Sc�w:s§k�e$k�m+bSc�e^c�ªtª§a[ª5r<ªtpdyµfia[e c�bdbWªts§r<c�fistkojWy<²W{|j|F>243�.0k
=b?03 ' �lr$r * ,MuFwxkoª�² �$}�Á$r¯k�mw~P671�A�243�6-��.0Ah68fWBY/|,�.0VWI]2
Ah683W^�1�B�68/9186Mudq:bWeistjd®�a[e�u:bdbH²:À<} # ���:²

� À0����#���s�#���tu��v_���-vD������x��"��ym���-
�������N8O�	����9
� $�!�w��Q��-�`� (w�c�ªtpSc�fistjd®.fi©Wa4b¨a[eg³
m@k�eih�c�jWr<a6k�m�fi©daLc�ª§ªzeia�¥Fpdr<a6r<k�ªtª§a[r[fistwxa¯k�b¨a[e^c�fistkojDk�j*r<ªtpdyµfia[eiy)(! bdbFeikxc�r^©*c�jS¥½eia<ygpWªtfiy<u
�lr$r�ÀF²�~Pa<rM©Wjdstr�c�ª ��a<b¨k�egf �lr$r�À�³äÀ-%:²W`$a<bP² k�m�n
koh�bWpWfia[e#qFr[s§a[jdr<aouxv$jdstwxaMeiygstf|{1k�m�~Heikoh�yg�W²

� �M���K
�)�b
��������Kv������Kx�
��w���m����
�����t	���
������
�]���m�G�o� nln�³ß¼4»�{5(�c´r<koh�bWstª§a<¥
r<k�h�h¯pWjdstr�c�fistk�j±r<c�bSc�¦dªta�¼4»+{$bFeik�fik�fß{Fb¨a¤m@k�e (fi©da[eijWa[f	yµ��szfirM©Wa�¥Dr<ªtpdyµfia[eiy<²G{ßj�=&3�.�1M�
.@a�A\[]6m/]BY/!A\[�i�,Pp�^
Tl��=�~PiR��f7:0VRI
.0f7BY24V�.0/�=&35BY/�1�B I9cd68fm?l/�E_I93@?"1�A�BC156j.@aGI
?03@?$cYcd6�c
I93@.7Z03�?0VGVDBY/<Z ' �lr$r * ,Mu ! nl¼ »�eia[ygy<uSbdbH²WÁ � #d¿�r��F²

� �l�������! "�b
����w���������G#P�<�b
��w�������-���������-
� !���_���������u 0
�
$�w��v_����
���������#P�
��N7
���s��
����v����-��¼4c�®x»+{ßa0(T¼4»+{8� ylr<koªtªta<r[fistwxa	r[koh�h¯pWjdstr�c�fis§k�j}k�b¨a[e^c�fistk�jdylm«k�e�r<ªtpdyµfia[eia�¥���s§¥Wa
c�eia�c�yµ{Wyµfia[h�y<²R{|j|=>3@.�1M�&.@a�A\[]6Gf�68X068/]A\[ji�,Pp�^4Tl��=�~PiR��f7:lVWI
.0f7BY24V�.l/q=&38BY/91�B I�cd68f
?0/9E�I]3�?"1�A�BC156D. abI
?l3�?$cYcd6�c4I93@.7Z03�?0VGVDBY/<Z ' ¿�Á�ÁoÁ-,MudbdbH²H¿+*F¿
#S¿<À$rF²

� }M���¡#P#�	����9¢+���9�m�d£�]#P��¤��9t&#�����#��+�]�o���]
����qQ��¥�K#P��s�
�	�	9
�² ��a<w:sta[�Yk�m¨b¨a[egm«k�eih�c�jWr<a
c�jSc�ªz{Fygsty}fik"k�ª§y�m«k�eD¼4»+{�bSc�e^c�ªtª§a[ª bWeik�®�e^c�h�y<²¦{|jn§$A\[¨F>243@.8I!6�?0/©=Dª�p�«!po=�T­¬�f�6838f
®
�>3@.02MI�p�6768A�BY/<Z0¯�~�6�1�A�24376S��.0Ah68fSBY/j,�.0VRI924Ah683u^91�B�68/�156R°
Jl±4J ' �0r0rF¿ ,Mu:qFbWeistjW®oa[e+ó+a[eiª§c�®W²

� %l��¼4»+{8(! ¼½a[ygyic�®oaM³ß»5c�ygygstjd®j{ßj"fia[egm«c�r<a�q"f^c�jd¥dc�e^¥T²�p�68f7f8?�Z<6D=S?0f7f7BY/<ZmT5/!Ah683Ya)?$186�²P.03524V
' ¼4c�e�²P¿<ÁoÁ�À-,M²

� Ál�_�S�
��	������h�+�-���w���
	�³!´���#P�w���m��Q�����
����­�P
�¤��\�w��¢+�¬~#©da	r<c�ygaLk�m5fi©da	h�stygygstjd®¯ygpdb¨a[eg³
r<k�h�bdpFfia[e�b¨a[egm«k�eih�c�jWr<a$(! r^©dsta<w:stjd® k�bWfisth�c�ªWb¨a[egm«k�eih�c�jdr[a¬k�j¯fi©da�%:u§¿<Á �	bWeik"r<a[ygygk�eiy
k�m
! qdn&{�µ¤²�{|jo=&3�.�1M��. aWA\[]6�°4L"L0±Di�,Pp�«!T�F�F�F�17.0/�a)683768/�156�.0/o^]2MI!683@15.lVWI924A�BY/<Z ' �0r0r * ,M²

� ¿)rl�_�b¶���·0��#P	���v�����
����¹¸K�
�������w���m� »�r±¦Sc�yga<¥¸bWeia<r<stygstkoj fisth�stjd®V��szfi©dk�pWf}®obdy<²�{ßj
=&3�.�15676�E0BY/4Z0fo.@a�A\[!6o°4L"Ll°|i�,Pp�^4Tl��poF-º�»STl,w^�BY/!Ah6838/9?0A�BC.0/9?$cS17.0/�a)683768/�156j.0/¨p|67?0k
f7243768V�68/]AS?0/9E�VK.�E<6�c BY/<Z�.@a�17.0VRI924Ah683Gf7:lf5Ah68VGf ' �0r0r �;,Mu ! nl¼ »�eia<ygy<udbdbH²H¿
#S¿)rF²

� ¿�¿��_¢��\�)�0
�	����S¢w���&¼0
������
¸&
�
�	l�w�S������
����©t&#��+�b��� �$bWfisth�st­�c�fistk�j�k�m�¼4»�{�r<koªtªta<r[fistwxa<y
k�j4r<ªtpdyµfia[eiy¬k�m�ª§c�ei®oa[³äygr�c�ª§a¯qd¼4»b� y<²b{ßj'=>3@.�1M��.@a-A\[]6DJ$½"½"½Ki�,Pp�«!T�F�F�F¾17.0/)a�683768/9186K.l/
^!2lI!683@17.0VWI924A�BY/<Z ' ¿�Á�ÁoÁ ,M²

� ¿ �M�����\¿
¿)
�	9
�N8xw�9¸_���9ÀD���!¿
 "#�����
+�]Q����]
����q�P
����9
+���_��ÁSc�yµf�r<k�ªtª§a[r[fistwxalkob¨a[e^c�fistkojdy+pdygstjW®
yg©dc�eia�¥�c�jS¥¤eia<h�k�fialh�a<h�k�eg{¤c�r<r<a<ygy�bWeik�fik"r[koªty
k�j�r<ªtpdyµfia[eiy<²�{|jjJ<ÂMA\[KT5/!ACcd�]=b?03@?$cYcd6�c9?l/�E
e-BYf7A�38BCg�24Ah6�E�=&3�.�1568f7f7BY/4Z�^]:lVWI�� ' ¼4c<{��0r0r *-,M²

� ¿+*l��¸>
������d´<
�	��&¢+�&¢+������
�sPs��>%o��������
������K#���s�
�	�	9
��>Q�� ! pFfikoh�c�fis§r<c�ªtªz{4fipdjWa�¥½r<k�ªt³
ªta<r[fistwxa�r<k�h�h¯pdjWstr�c�fistkojWy<²U{|j­=&3�.�15676�E0BY/<Z0f'.@a_A\[!6_°
L"L"Lji�,Pp�«
T�F�F�F¹15.l/�a�683�68/�156q.l/
^!2lI!683@17.0VWI924A�BY/<Z ' �0r0r$r ,M²

� ¿[À0��¸D�
�����
	���Q����R
����Ã�¡x��! " $�!	����-� n
koh�h¤pdjWs§r<c�fistkojYr^©Sc�e^c�r[fia[eistyµfistr<y�k�m	ª§c�ei®�a[³äygr�c�ªta
ygr<sta<j"fisz¶Sr
c�bWbdªtstr�c�fistkojWy5m«k�e�r[koj"fia<h�b¨k�e^c�eg{	r<ªtpdyµfiaMe+c�eir^©dszfia<r[fipFeia<y<²4{ßjmJ"ÄlA\[�T5/]ACcd�4=b?03@?$cYcd6�c
?0/9EKe-BYf7A�38B�g�2
Ah6�EK=>3@.�1868f7f7BY/<Z�^]:lVWI�� ' ¼4c�{��0r0r �;,M²

� ¿ �M��¸D�
�����
	���Q���¢w����
����Ã�K#P#���v_� ! j¸a[h�bdszeistr�c�ª¬b¨a[egm«k�eih�c�jWr<aDa<woc�ªtpSc�fistk�j°k�m6ygr�c�ªt³
c�¦dªta$ygr<sta<j"fisz¶Sr c�bdbWªts§r<c�fistkojWy<²w{ßjm=&3�.�156767ElBY/4Z0f�.@auA\[]6�°4L"Ll°Ki�,Pp�«!T�F�F�F`17.0/�a�683�68/�156G.l/
^!2lI!683@17.0VWI924A�BY/<Z ' �0r0r �;,Mu9{ ("("(n
koh�bWpWfia[e�q:k"r<sta[fß{½»5eia<ygy<²

� ¿ �l��¸D�\�����!	��!�K��=b?0f7A�^�68A�?�^!A�382!1�A�24376�E�e-BYf7A�38B�g�2
Ah6�E�^
[!?03�6�E-p�68VK.035:-^]:lf7Ah68V¯²d»+©W`êfi©da[ygs§y<u
` a[bSc�egfih�a[j:f
k�m�n
k�h�bdpWfiaMe�qFr<sta<jWr<aouWv$jdstwxaMeiygstf|{�k�m+~Peik�h�yg�WuH¿�Á�ÁoÁF²

Appendix A - Published papers In Proc. of Euro-Par 2004

94

7.2 Low Overhead High Performance Runtime Monitoring of Collective Communication

 95

7.2 Low Overhead High Performance Runtime Monitoring of
Collective Communication

This paper was published in the Proceedings of ICPP 2005 [47].

The first paper about the EventSpace system was published in the Proceedings of Euro-
Par 2003 [45]. How to use EventSpace to analyze the performance of parallel
applications was demonstrated in [18].

Low Overhead High Performance Runtime Monitoring of Collective
Communication

Lars Ailo Bongo, Otto J. Anshus and John Markus Bjørndalen
Department of Computer Science, University of Tromsø, Norway

{larsab, otto, johnm}@cs.uit.no

Abstract

Scalability of parallel applications run on clusters and
multi-clusters is often limited by communication perfor-
mance. Message tracing can provide data for under-
standing bottlenecks, and for performance tuning. How-
ever, it requires collecting, storing, analyzing, and trans-
ferring potentially gigabytes of data. We have designed
the EventSpace system for low overhead and high per-
formance runtime collective communication trace analy-
sis. EventSpace separates the perturbation and perfor-
mance requirements of data collection, analysis, gathering
and visualization. Data collection overhead is low since
the minimum amount of data is recorded and stored tem-
porarily in main memory. The recorded data is either dis-
carded or analyzed on demand using available cluster re-
sources. Analysis is distributed for high performance, and
coscheduled with the computation and communication sys-
tem threads for low perturbation. Gathering of analyzed
data is done using extensible collective communication op-
erations, which can be tuned to trade off between perfor-
mance and monitoring overhead. EventSpace was used to
do run-time monitoring and analysis of collective commu-
nication micro-benchmarks run on clusters, multi-clusters,
and multi-clusters with emulated WAN links. Performance
data was collected, analyzed and gathered with 0–3% mon-
itoring overhead.

1 Introduction

In Grids rapid changes will be the norm. Hence, it is nec-
essary for applications and the underlying systems to adapt,
at run-time, to changes in the availability and performance
of resources. An important part of the adaptation will be
to reconfigure the point-to-point and collective communi-
cation structures used by parallel applications.

On large clusters, a much less dynamic environment
than a Grid, communication system performance is impor-
tant. Of eight scalable scientific application studied in [30],

most would benefit from improvements to collective opera-
tions, and four would benefit from improvements in point-
to-point communication performance. Improved communi-
cation performance is essential if Grids are to be used as a
high performance computing platform.

Collective operation performance has been shown to im-
prove by using better mappings of computation and data
to the clusters in use [16, 24, 26, 27]. In earlier work, we
have shown how to tune the mapping based on a perfor-
mance analysis within the communication system [9]. We
found that a global view of the system was needed to de-
tect hotspots and simplify the hotspot analysis. Also, traces
of all messages sent in a collective operation spanning tree
were needed to understand some performance problems (as
the problems described in [21]). Thus, we need to collect,
store, analyze, gather, and visualize a large amount of per-
formance data.

Monitoring tools need to collect data with minimal per-
turbation of the monitored application. For runtime analysis
the performance data must be analyzed and often gathered
to a single front-end host for use before the data becomes
irrelevant. We have built the EventSpace system [8] for low
overhead and high performance runtime collective commu-
nication trace analysis.

EventSpace is evaluated on clusters, multi-clusters, and
multi-cluster with emulated WAN links. We demonstrate
how data gathering performance can be tuned to either pro-
vide high performance or low perturbation. Our results
show that performance data can be collected with less than
1% overhead. The data can be analyzed and gathered with
0–3% overhead, since collective communication intensive
applications have low CPU utilization, and since analysis
threads can be coscheduled with application and communi-
cation system threads.

2 Related Work

Generally performance monitoring tools for MPI pro-
grams [19] treats the communication system as a black box

Appendix A – Published papers In Proc. of ICPP 2005

97

and collect data at a layer between the application and the
communication system (the MPI profiling layer). To un-
derstand why a specific collective operation spanning tree
and mapping have better performance than others it is nec-
essary to collect data for analysis inside the communication
system, as EventSpace does.

MRNet [23] is the system most similar to EventSpace.
Both use collective operations spanning trees to build scal-
able multi-cast/reduction overlay networks used by perfor-
mance monitoring tools. MRNet shares the flexible orga-
nization and extensibility of EventSpace. In MRNet, com-
munication is only between compute hosts and the front-
end host, while EventSpace allows arbitrary communication
structures resulting in more flexible and efficient analysis.
EventSpace is also more tightly integrated with the under-
lying communication system, allowing the monitor activity
to be coscheduled with the application. Our evaluation dif-
fers in that we use EventSpace for a different problem do-
main than used in [23], and we examine the performance of
more complex spanning tree topologies than the balanced
trees used in [23]. Another data aggregation tool for Grids
is Yggdrasil [4].

PHOTON [28] allows monitoring point-to-point oper-
ations used by MPI applications run on large clusters.
EventSpace is designed for collective operations, but share
the same goals as PHOTON in reducing the monitoring
overhead, perturbation and storage requirements of post-
mortem trace analysis tools. PHOTON appends informa-
tion to messages, which requires modifications to the MPI
runtime system. This information is sampled and statistics
are computed at runtime. Our experience in collective oper-
ation analysis [9] is that statistical profiling does not provide
the necessary level of detail to understand all performance
problems. Hence message tracing is necessary.

NetLogger [25] provides end-to-end application and
system level monitoring of high performance distributed
systems. It can provide similar performance data as
EventSpace does. However, our focus is on how to aggre-
gate and analyze the communication performance of collec-
tive operations. This requires monitoring more hosts than
the single path usually monitored by NetLogger.

Data stream management systems (for an overview of
DSMSs see [3]) have been used to implement network mon-
itors [12]. DSMSs provide a relational/ query interface for
the performance analyst. Such an interface could be useful
for specifying EventSpace scopes as SQL queries. How-
ever, to achieve the desired performance and perturbation,
it is still necessary to map, configure and tune the query plan
to the clusters in use; as shown in this paper.

Astrolabe [22] is a system for collecting, aggregating and
updating large scale system state. Astrolabe is targeted for
widely distributed applications and the primary design goal
was scalability. EventSpace uses some of the Astrolabe

techniques for improving scalability such as hierarchies and
aggregation. Other aggregation and filtering systems for In-
ternet are publish-subscribe systems [10], and Grid moni-
toring and discovery services such as Remos [13]. The fil-
tering and aggregation functions in EventSpace are more
specialized towards performance analysis. Also, since As-
trolabe and publish-subscribe systems are targeted at widely
distributed applications run on the Internet, low latency ag-
gregation is not important.

Cluster monitoring tools such as Ganglia [18], and Grid
monitoring tools such as the Network Weather Service [32],
does not support the high sample rate necessary for collec-
tive operation analysis.

To reduce monitoring overhead, EventSpace coschedule
execution of monitoring threads with application and com-
munication system threads. Coscheduling has traditionally
been used to schedule communicating processes [1]. Our
design is similar to [11], where coscheduling is used to
boost the priority of communication threads doing collec-
tive communication to improve application performance.
However, we do not modify kernel code since coschedul-
ing can be added to the communication system.

Many research projects have optimized MPI collective
operations. Some of the approaches used are: (i) using
knowledge about the topology hierarchy, going from multi-
cluster [16] to individual clusters of SMPs [24, 17] and uni-
processors. (ii) taking advantage of architecture specific op-
timizations [24, 26], (iii) using a lower-level network pro-
tocol [14, 26], and (iv) automatically trying different algo-
rithms and buffer sizes [27].

3 Performance Analysis and Optimization

Applications monitored by EventSpace use the PATHS
communication system [5], which is an extension to the
PastSet structured shared memory system [31]. Threads
communicate by reading and writing tuples to shared mem-
ory buffers.

The purpose of the analysis is to detect performance
problems in a spanning tree and understand how the tree
can be reconfigured to improve performance. We briefly
describe the metrics computed for the allreduce operation.
Other synchronizing collective operations will have similar
metrics. For a more detailed description see [9].

Central to the analysis are communication paths through
the communication system starting from a thread and end-
ing in a PastSet buffer. Each path consists of several wrap-
pers; each wrapper has code that is run before and after call-
ing the next wrapper in the path. Wrappers are used to im-
plement communication between hosts and for instrumen-
tation. Also, some wrappers join paths used to implement
collective operation spanning trees, and handle the neces-
sary synchronizations. The spanning tree is configured by

Appendix A – Published papers In Proc. of ICPP 2005

98

Figure 1. PATHS allreduce spanning tree.

specifying properties of the wrappers and the mapping of
wrappers to cluster hosts [5, 9].

In summary, we do for the performance analysis the fol-
lowing steps: (i) detect load balance problems, (ii) find
paths with similar behavior, (iii) select representative paths
for further analysis, (iv) find hotspots by breaking down the
cost of a path into several stages, (v) reconfigure the path,
and (vi) compare the performance of the new and old con-
figuration.

Figure 1 shows an allreduce spanning tree used by
threads T1–T8 instrumented with event collectors (EC1–
EC14). These collect entry and exit timestamps for each
wrapper. The reduced value is stored is a PastSet buffer. CT
is a communication thread serving one TCP/IP connection.

For inter-host communication we calculate the two-way
TCP/IP latency by (t4 − t1) − (t3 − t2), where t1 and t4
are collected by the event collector before the stub in a path
(EC12), and t2 and t3 are collected by the first event collec-
tor called by the communication thread (EC13).

Allreduce wrappers are called by multiple threads each
contributing with a value to be reduced. There is one event
collector after the allreduce wrapper, that collects times-
tamps t2 and t3, while the paths from each contributor i

have an event collector collecting timestamps t1,i and t4,i.
For each contributor three latencies are calculated: down
latency t2 − t1,i, up latency t4,i − t3, and total latency
(t4,i − t1,i) − (t3 − t2).

Also calculated for each contributor are the arrival order
distribution and the departure order distribution; the num-
ber of times the contributor arrived, and departed, at the
allreduce wrapper as the first, second, and so on. In addi-
tion we calculate: arrival wait time t1,l − t1,i; how long
contributor i had to wait for the last contributor l to arrive,
and departure wait time t4,i − t4,f ; elapsed time since the
first contributor f departed from the allreduce wrapper, un-
til contributor i departed.

4 EventSpace

The architecture of the EventSpace system is given in
figure 2. An application is instrumented by inserting event
collectors into its communication paths. Each event collec-
tor record data about communication operations into a trace
tuple and stores it in an event space consisting of PastSet
bounded buffers. Different views of the communication be-
havior can be provided by extracting and combining trace
tuples provided by different event collectors. Consumers
use an event scope, an aggregation/gather network, to do
this.

4.1 Design

Runtime monitoring tools need to provide the data nec-
essary for analysis at high performance and without per-
turbing the monitored application. We describe the design
choices made in EventSpace to achieve these goals.

Configurability and extensibility. Being a research
tool, EventSpace is designed to be extensible and flexible
in order to experiment with different approaches for tuning
the trade-off between monitoring performance and pertur-
bation. It is also possible to extend EventSpace by adding
other event collectors, and event scopes.

Separation of functional concerns. The tasks of col-
lecting, storing, analyzing, gathering and presenting data
are clearly separated in order to allow each part to be im-
plemented and tuned separately. Data is collected by com-
munication system wrappers, and stored using the PastSet
structured shared memory system. EventSpace provides
mechanisms for distributed analysis and fast collective op-
erations for gathering data from compute hosts to a front-
end host, which is responsible for presentation or further
analysis of the data.

Low overhead data collection. We expect the num-
ber of trace tuple writes to be much larger than the number
of reads; hence an event collector only record the minimal
information for each communication operation and stores
it in binary format in memory using native byte ordering.
For heterogeneous environments, the tuple content can be
parsed to a common format when it is read. Due to separa-
tion of concerns all communication paths are instrumented,
and data is recorded for each operation, since event collec-
tors do not know what data monitors need and when they
need it.

Temporal trace storage. The challenge for large scale
message tracing is the amount of data produced [28].
EventSpace provides temporal storage requiring only a few
megabytes of memory (each trace tuple is 28 bytes allow-
ing about 37 450 tuples to be stored in one megabyte of
memory). The event scopes used by monitors need to have
sufficient performance to read the trace tuples before they

Appendix A – Published papers In Proc. of ICPP 2005

99

collector
event

collector
event

collector
event

collector
eventParallel

application

thread

thread

thread

thread

M
onitorA

MonitorB������ ��������
������������������������

	�	
�

view

view

Monitors

event scope

gather

filter

reduce

sort

event space

Figure 2. EventSpace architecture.

are discarded. Presently, the amount of tracing can not be
dynamically be adjusted as in other monitoring systems (for
example NetLogger [25]).

Distributed data analysis. Monitors use event scopes
to analyze and gather data from compute hosts. The perfor-
mance and perturbation of an event scope can be tuned by
configuring the collective communication structures used
by the event scope, and the mapping of these to the clus-
ters. Data can be reduced or filtered close to the source, to
avoid sending all data over a shared resource such as Ether-
net, or a slow Internet link. Also some data preprocessing
can be done on the compute clusters, thereby reducing the
load on the front-end host.

Monitors using distributed analysis can be implemented
either as a process on a front-end using an event scope or as
a distributed application with several analysis threads. Each
analysis thread can read and analyze trace tuples, and stores
the result in a PastSet buffer. The results can then be gath-
ered to a front-end for presentation.

Coscheduling. During a synchronizing collective opera-
tion all threads on a host must wait for data from other hosts.
During the wait-time it is possible to run analysis threads if
they are coscheduled with computation, and PATHS/PastSet
communication threads. Coscheduling is possible since
computation threads are blocked inside the communication
system during collective operations and analysis threads
also use the communication system for reading trace tuples.
Hence, the release order of the different threads can be con-
trolled by releasing all communication threads before com-
putation threads, and finally any blocked analysis threads.
No changes to the operating system scheduler are required.

On demand data gathering. Analyzing and gathering
performance data comes at a cost. Computation is needed
for the analysis, communication for moving data between
hosts, and storage for intermediate results. Often these ac-
tivities use the same resources as the monitored application.
Pulling is used by monitors such that shared resources are
not used until the data is needed.

Separation of performance concerns. Different parts
of the monitoring system have different performance re-
quirements. Event collectors run at the rate the application
uses a collective operation. Some analysis threads must also

run at this rate, but some lag is allowed due to the trace
buffers. With distributed analysis, it is not necessary to
gather all intermediate results; hence the gather rate can be
lower than the event collecting rate. Further performance
relaxation is allowed for presentation to users. The separa-
tion of performance concerns also makes it easier to trade-
off between monitoring performance and perturbation.

4.2 Implementation

Event Space. An event space is implemented using Past-
Set buffers. Each trace buffer can have a different size and
lifetime. The oldest tuple is automatically discarded when
the number of tuples is above a specified threshold.

Event Collectors. An event collector writes a trace tu-
ple to a trace buffer using the blocking PastSet write opera-
tion. During the write, the traced communication operation
is blocked. As a result it is important to keep the intro-
duced overhead low. The write consist of a mutex lock, a
memory copy of 28 bytes, and a mutex unblock (a read is
similar). The recorded information is: event collector iden-
tifier, PastSet operation type, tuple sequence number, return
value, and the start and completion timestamps.

Event scopes. An event scope for a specific monitor is
implemented as a spanning tree with PATHS wrappers for:
(i) storage, (ii) data manipulation including aggregation, fil-
tering and conversion, (iii) data gathering and scattering,
and (iv) inter-host communication. Storage wrappers pro-
vide access to PastSet buffers, while inter-host communi-
cation wrappers allow setting properties of TCP/IP connec-
tions such as socket buffer size. Only the data manipulation
wrappers are aware of tuple format and content.

Gather wrappers read tuples from several PastSet
buffers, concatenate these and returns one large tuple. Scat-
ter divides and writes a tuple into several PastSet buffers.
The gathering and scattering is done in the context of the
calling thread. It is also possible to specify that a given
number of helper threads should be started for the wrapper.
The helper threads allow parallel reads and writes on remote
PastSet buffers.

Appendix A – Published papers In Proc. of ICPP 2005

100

Figure 3. Load-balance monitor with a single event scope (top), and with distributed analysis (bottom).

4.3 Monitors

Load balance monitor. The load balance monitor is
used to find load balance problems, which can be caused
by workload imbalance, differences in point-to-point com-
munication latency, or the mapping of a spanning tree to
clusters. Two implementations are used. The first has a sin-
gle event scope (figure 3). A gather thread uses the event
scope to pull trace tuples produced by the event collectors
on each compute host. A reduce wrapper is used to find the
tuple with the largest down timestamp. All reduced tuples
are then gathered to the front-end where they are scattered
to PastSet buffers (one per allreduce wrapper). The tuples
contain the number of last arrivals for each participant, and
are read by a thread which applies updates to a weighted
tree with the number of last arrivals for each participant.
This tree is used to generate visualizations.

Distributed analysis reduces communication cost by in-
creasing computation cost, but also complicates the monitor
(figure 3). Each host has one analysis thread that counts the
last arrivals for each participant by reading and reducing
trace tuples as described above. After each read an interme-
diate result tuple is written to a PastSet buffer, containing
the number of last arrivals for each participant. The gather
thread gathers all intermediate result tuples from the com-
pute hosts and scatters these to the local PastSet buffers. In
the visualization we are only interested in the newest state
of the system. Hence, not all intermediate result tuples need
to be gathered since the arrival order state is maintained by
the analysis threads.

Statistics monitor. The statistics monitor (statsm) is
used to find paths with similar behavior and to detect
hotspots. Computation is offloaded from the front-end by
having on each compute host one or more analysis threads
computing all statistics for the spanning tree wrappers on

the host (figure 4). Our analysis assumes that all trace tu-
ples are read before being discarded.

For each PATHS wrapper, statsm computes mean, mini-
mum, maximum, standard deviation and median (using the
sliding window median implementations from NWS [32]
with window size set to 100) for the up, down and total la-
tencies. For each wrapper, the results are stored in three 24
byte result tuples and written to three PastSet buffers. In
addition, for allreduce wrappers similar results tuples are
written for each arrival and departure order wait time. Also,
for allreduce wrappers per thread arrival and departure wait
time means are computed and stored in a PastSet buffer.

Two gather threads are used. The first gathers all up and
down latencies in addition to the arrival and departure wait
times. The second gathers per thread statistics (these are
not always needed). Results are stored in two buffers at the
front-end. These are used by an updater thread that main-
tains an analysis tree structure with statistics for each wrap-
per. The analysis tree is used by visualization threads.

5 Methodology

Two micro-benchmarks are monitored. In Gsum threads
alternate between using two identical allreduce trees to
compute a global sum. Gsum is run for 20 000 itera-
tions using 8 byte messages (most scientific applications
use small messages in allreduce [29]). Compute-gsum al-
ternates between computing (integer sort) and calling allre-
duce. The benchmark can easily be perturbed since delay-
ing one thread causes all others to wait for it [21]. Compute-
gsum is run for either 10 000 or 20 000 iterations, and is
tuned to spend 50% of its execution time computing and
50% in allreduce. Both have one computation thread per
CPU. Each experiment is repeated at least three times and

Appendix A – Published papers In Proc. of ICPP 2005

101

Figure 4. Statistics monitor threads and gather tree.

execution time averages are used to compute monitor over-
head. Standard deviation is low (less than 1% of mean).
To ensure fairness and experiment repeatability, all event
scopes were set up and analysis threads were started before
the monitored application.

Four clusters are used: Copper 18 dual-CPU Pentium
II 300 MHz, 256 MB RAM, Lead 10 single-CPU Mobile
Pentium III 900 MHz, 1024 MB RAM, Tin 51 single-CPU
Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM, Iron 39
singe-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM
with EM64T extension.

Copper and Lead share a two-way Pentium II 300 MHz
with 256 MB RAM which is used as a gateway and which
all communication to/from the cluster goes through. For Tin
and Iron one host similar to the compute-hosts is used as
gateway. A host outside the clusters, a Pentium 4 1.8 GHz
with 2 GB RAM, is used as monitor front-end.

The Tin and Iron clusters have Gigabit Ethernet, while
Copper, Lead, and all inter-cluster communication use
100 Mbit Ethernet. The operating system on all clusters is
Linux, with the LinuxThreads Pthread library. Iron runs 32-
bit code. Hyper-threading was enabled for Tin and Iron. On
all TCP/IP connections the Nagle algorithm was disabled
and default socket sizes were used.

We emulate WAN links between our clusters using the
Longcut WAN emulator [7]. The design of Longcut is sim-
ilar to the Panda WAN emulator [15]. Tin and Iron are each
split into three sub-clusters. For each sub-cluster we se-
lect one host to act as a gateway. All communication to the
sub-cluster is routed through its gateway, which adds de-
lays to the routed messages to simulate the higher latency
and lower bandwidth of a WAN TCP/IP connection. The
emulator is implemented using PATHS wrappers.

To calculate the delay added to a message of a given
size, we use a latency and bandwidth trace collected by run-
ning an instrumented communication intensive application
on hosts in Tromsø, Trondheim, Odense and Aalborg. The
largest latency is between Tromsø and Aalborg, and is about
36 milliseconds ([7] has additional details about the topol-
ogy). The sub-clusters are assigned to these sites with two
sub-clusters in Tromsø and Odense.

For each cluster we choose an allreduce spanning tree
with, to our knowledge, the best performance. For Tin, Iron
and Copper this is a hierarchy aware (as in [24, 17]), 8-way
spanning tree, while for Lead it is a flat tree. For the LAN
multi-clusters the cluster spanning trees are connected by
adding an inter-cluster allreduce. For WAN multi-clusters
the inter-cluster allreduce is replaced by an all-to-all for im-
proved performance (as in MagPIe [16]). The average time
per allreduce for the different topologies is about 0.5 ms for
Tin with 32 hosts, 0.6 ms for Tin with 49 hosts, 1 ms for
a LAN multi-clusters and 65 ms for a WAN multi-cluster
(both multi-clusters with 43 Tin hosts and 39 Iron hosts).

6 Experiments

6.1 Data Collection

The overhead added to a PastSet operation by a single
event collector is low (1.1 µs on a 3.2 GHz Pentium 4), com-
pared to the hundreds of microseconds per collective op-
eration. Thus, for the gsum and gsum-noise experiments
presented below, the overhead due to event collectors range
from 0–2%.

The storage requirement for temporal traces is small. For
our 8-way allreduce, the hosts with most event collectors
(9) stores 252 bytes per call. We use one megabyte memory
for trace tuples and one megabyte for intermediate results.
Thus, trace buffer size is set to 3750 tuples, and the inter-
mediate result buffers have size set to 5000 tuples.

6.2 Event Scope

To experiment with the performance, perturbation and
tuning of an event scope, we instrumented both allreduce
trees used by gsum with event collectors, but only mon-
itored one. The allreduce tree for 49 Tin hosts has 241
event collectors, but only data from 57 are needed to com-
pute the arrival order at each allreduce wrapper. These are
on 8 hosts, and due to the reduce wrapper only 28 bytes
need to be gathered from each host. For a single cluster,

Appendix A – Published papers In Proc. of ICPP 2005

102

Event Scope Overhead
Event collectors none–1%
32 Tins, sequential tuples discarded
32 Tins, parallel 0.4%
LAN multi-cluster, seq. tuples discarded
LAN multi-cluster, par. none
WAN multi-cluster, seq. 1%

Table 1. Load balance monitor with single
event scope.

the event scope has only one gather wrapper which is run
on the cluster gateway. For multi-clusters the event scopes
have a gather wrapper on each cluster gateway and a gather
wrapper on the monitor front-end gathering from these.

Gsum. Adding event collectors to a 49 Tin spanning tree
does not introduce a measurable overhead (monitored mean
is within one standard deviation of un-monitored mean).
Neither does the load balance monitor. To ensure that all
trace tuples are read before being discarded, helper threads
must be added to the gather wrappers such that data is gath-
ered in parallel. LAN and WAN multi-clusters have similar
results.

Compute-gsum. The largest monitoring overhead was
for a multi-cluster with emulated WAN links with 49 Tin,
18 Copper and 10 Lead hosts (table 1). However, the over-
head is caused by the WAN emulator becoming inaccurate
when there are many emulated connections. As for gsum,
sequential gathering has often not sufficient performance.

Scalability. For the event scope achieving sufficient per-
formance is harder than keeping the overhead low. The
event scope need to be hierarchy aware and do all intra-host
reduces before inter-host gathers, and intra-cluster gathers
before inter-cluster gathers. Further reconfiguration by for
example moving gather wrappers to unused cluster hosts
does not improve performance. Also, for the cluster sizes
we had available a flat gather tree had sufficient perfor-
mance. For larger clusters additional levels may be nec-
essary.

Increasing the number of hosts by connecting clusters
with LANs or WANs often lowers the performance require-
ments for the monitor, since the performance of the moni-
tored operation decreases. Also, the event scopes used by
monitors such as load balance scale better than allreduce
trees, since data is not needed from all hosts.

The higher WAN latency is usually tolerated since the
monitored operation is latency bound, and the messages
sent by the event scope are small (a few hundred bytes)
making them also latency bound. We believe most WAN
links have enough bandwidth for concurrent transfers of ap-
plication and monitor data.

The monitoring scales well with number of monitored

Event Scope Overhead Gather rate
49 Tins, sequential (gsum) 2% 51%
49 Tins, parallel (gsum) 2% 99%
49 Tins, sequential 1% 65%
49 Tins, parallel 1% 99%
LAN multi-cluster, seq. none 45%
LAN multi-cluster, par. 3% 100%
WAN multi-cluster, seq. 1% 94%
WAN multi-cluster, par. 3% 100%

Table 2. Load balance monitor with dis-
tributed analysis.

spanning trees. Monitoring both spanning trees in gsum and
gsum-compute does not increase monitoring overhead or re-
duce monitoring performance. Similarly modifying gsum
to use four spanning trees and monitoring all trees did not
increase overhead or reduce performance.

6.3 Distributed Analysis

Load balance monitor. Distributed analysis uses more
resources than the single event scope. For each host with
allreduce wrappers, 352 bytes are gathered (compared to
224). Also, there is additional computation cost for run-
ning the analysis threads, and storage must be allocated for
intermediate results. Using distributed analysis increases
monitoring overhead from none to about 2% for gsum on a
single cluster (table 2). For compute-gsum the monitoring
overhead has not changed.

Monitoring cost can be reduced since it is not necessary
to gather all intermediate results to the front-end. Hence,
the overhead on a LAN multi-cluster can be reduced from
3% to none, by removing the helper threads in all gather
wrappers (parallel vs. sequential in table 2). The perfor-
mance difference between sequential and parallel gather is
smallest for the WAN multi-cluster, and largest for the LAN
multi-cluster.

6.3.1 Statistics monitor

Gsum. The statistics monitor is a computation and commu-
nication intensive monitor; the analysis threads read data
from all trace buffers on the host. Some are also read twice;
when computing statistics for the wrapper before and after
the associated event collector. Also, to compute TCP/IP la-
tencies a trace tuple must be read from another host.

Initially we have one analysis thread per host. Running
distributed analysis on a 32 Tin host spanning tree, has 9%
monitoring overhead. We tried different approaches for re-
ducing the overhead. Removing all statistics computation
(but still reading trace tuples) did not reduce the overhead,

Appendix A – Published papers In Proc. of ICPP 2005

103

Event Scope Overhead Wrapper Thread
Event collectors none–1% - -
Analysis threads 5–9% - -
with coscheduling 1 3% - -
with coscheduling 2 1% - -
32 Tins, sequential 2% 50% 69%
32 Tins, parallel 2% 77% 99%
LAN multi, seq. see text 43% 68%
LAN multi, par. +1% 100% 100%
WAN multi, seq. none 100% 100%

Table 3. Statsm overhead and gather rates.

showing that the slowdown is not caused by computation.
Similarly, removing the read and computation of statistics
for allreduce wrappers did not reduce the overhead. Thus
the problem was not caused by synchronization in the many
buffer reads. Removing statistics computation for TCP/IP
connections reduced the overhead to 4%, showing that the
slowdown was caused by reads on trace buffers on other
hosts.

For TCP/IP connections we can choose whether statis-
tics should be computed at the source or destination (the
direction of a path is from the thread to a PastSet buffer).
Moving the computation from the source to destination host
reduced the overhead to 5%. However, the analysis thread
was not able to read all trace tuples before they were dis-
carded (since it reads from 8 hosts sequentially). Running
two analysis threads on each host allowed reading all tuples,
but increased the overhead to 6%.

Finally, we used two coscheduling strategies: (i) analysis
threads are blocked until all participating threads have con-
tributed and a message is sent to the next-level host, and (ii)
analysis threads are blocked until all participating threads
are unblocked. The first strategy tries to do the analysis
while the host is idle waiting for the broadcasted reduced
value. The second makes sure the broadcast is done before
unblocking analysis threads. The first strategy reduced the
overhead to 3%, while the second reduced it to 1%. For the
remaining experiments the second coscheduling strategy is
used.

Adding gathering increased the overhead to 2%. There
was no difference in overhead when gather wrappers had
helper threads, but with the latter more intermediate results
could be gathered (table 3).

The allreduce spanning trees for a LAN multi-cluster
with 43 Tin hosts and 39 Iron hosts had about 20% slower
inter-cluster communication than expected. We were not
able to reconfigure or remap the spanning tree to remove the
problem. However, when data is gathered from the cluster,
allreduce operation time decreases with up to 18%. Thus
we cannot measure the gather overhead for the multi-cluster
topology. But we can compare the performance of a gather

tree with sequential and parallel gathering. The latter im-
proved wrapper-, and per thread statistics gather rate, but
increased monitoring overhead with 1% (table 3).

The larger latency of emulated WAN links hides the per-
formance problem described above. With WAN links, anal-
ysis threads introduce a 1% overhead, but data gathering
can be done without helper threads, without increasing the
overhead, and with sufficient performance to gather all in-
termediate results.

Compute-gsum. For compute-gsum the execution time
variation is larger than for gsum (about 2% of mean), hence
we could not see any monitoring overhead. Also, the gather
rate is better. Both are probably due to less communication,
since compute-gsum has one less allreduce per iteration.

Scalability. Analysis thread performance is independent
of cluster size, since each only monitors a subtree. How-
ever, the subtree is dependent on the spanning tree shape.

Gather scalability depends on how analysis threads are
mapped to the cluster. For example in our initial configura-
tion all hosts had analysis threads which produced interme-
diate results that had to be gathered, while the final configu-
ration only had analysis threads on the hosts with allreduce
wrappers.

Data gathering for multi-cluster with WAN links has bet-
ter performance, relative to allreduce performance, than for
a single-cluster. This could be due to the small cluster sizes
used. The largest cluster had only 12 hosts, requiring only
4400 bytes to be sent over a WAN link. For larger clusters
the message size would increase, probably decreasing the
gather rate.

Monitoring both 32 Tin host allreduce spanning trees in
gsum, increased the analysis thread overhead to 5%. We
were not able to reconfigure the event scope or cosched-
ule the monitoring to reduce it. The overhead is caused by
increased communication activity in the monitor. Adding
data gathering does not increase the overhead. Neither does
increasing the number of allreduce trees to four, since the
communication frequency does not increase neither for the
benchmark nor the analysis threads. We have similar results
for LAN multi-clusters. However, with emulated WAN
links monitoring both allreduce trees does not increase the
overhead, since the time between each allreduce operation
call is larger (due to WAN latency), hence monitoring activ-
ity can be scheduled to run during the WAN communication
part of the allreduce operation.

We also modified compute-gsum to alternate between
using two and four different spanning trees. Monitoring
overhead did not increase, since the number of compu-
tations, number of allreduce calls, and allreduce call fre-
quency did not change (we reduced the size of all trace and
intermediate PastSet buffers to reflect the fewer allreduce
calls per spanning tree).

Appendix A – Published papers In Proc. of ICPP 2005

104

7 Discussion

The low monitoring overhead and high performance of
EventSpace suggest that runtime analysis can be incorpo-
rated into a communication system for automatically tuning
collective operation performance. In earlier work we have
shown how our performance analysis approach can be used
to improve allreduce performance up to 49% [9].

It is probably easier to reduce monitoring overhead and
improve monitoring performance for real applications than
the micro-benchmarks we used, which were designed to
stress the monitoring system. We believe the benchmarks
are representative for the type of applications interesting to
monitor with EventSpace, but real applications will have a
more complex interaction between computation, communi-
cation and I/O providing further challenges for the analysis
and tuning of collective operations.

For the load balance monitor we achieved the same per-
formance and scalability when using an aggregation net-
work than with distributed analysis. Due to the increased
complexity of distributed analysis aggregation networks
should be used. However, for monitors such as the statis-
tics monitor aggregation networks do not have the neces-
sary performance. Event scope performance was tuned by
allocating more resources to the collective operations used
to implement them. Changing the spanning tree shape or
mapping to clusters did not improve performance.

All our clusters use Ethernet for communication. Faster
interconnects, such as Myrinet [6], will improve the per-
formance of collective operations. Thus, application with
high enough communication ratio to be interesting to moni-
tor with EventSpace will have a higher communication fre-
quency. This requires the analysis computation to be done
in a shorter time, but the event scopes will benefit from the
improved communication performance.

Even when using Ethernet, communication latency can
be improved by using a lower level protocol than TCP. But,
we believe it is easier to add distributed analysis than to
implement an event scope with a non-reliable lower level
protocol.

We have not measured, or focused, on the time to setup
and initialize the event scopes (as in [23, 4]). Currently it
can take seconds due to the implementation using Python
and XML-RPC. A significant performance improvement is
possible by using a more efficient implementation.

Coscheduling the computation threads, communication
system threads and the analysis threads did reduce pertur-
bation for one benchmark. We believe further reduction
could be achieved by priority scheduling all inter-host com-
munication such that the applications messages always had
higher priority than EventSpace messages. This would re-
quire a reimplementation of the PATHS/PastSet communi-
cation system.

8 Conclusions

We have described the EventSpace system for runtime
performance monitoring of collective operations within
the communication system. EventSpace allows high-
performance message tracing without a large perturbation
of the monitored application. By combining distributed
analysis with fast collective operations to gather and an-
alyze performance data, temporal storage for only a few
megabytes of data is required. Separation of performance
concerns allows us to tune the different parts of the sys-
tem to achieve the required monitoring overhead and perfor-
mance. Close integration with the communication system
allows to coschedule analysis activity with the computation
and communication of the monitored application.

We evaluated different monitors for collective operation
performance analysis. Our findings were as follows: (i)
monitor overhead was low, from none to maximum 3%, (ii)
for many monitors it is harder to get sufficient performance
than low perturbation, (iii) coscheduling allowed to reduce
monitoring overhead from 9% to 1% for one benchmark,
(iii) the monitoring has good scalability both with regards to
the number of cluster hosts, number of clusters, and number
of monitored spanning trees, (iv) high performance moni-
toring of a WAN multi-cluster is often easier than a single
cluster, and (v) performance tuning should be done by allo-
cating more threads to a monitor rather than reconfiguring
its communication structure.

9 Future Work

Our long term goal is to build automatically reconfig-
urable collective operations. We will build and evaluate
such a system based on the data provided by the monitoring
tools in this paper.

Presently we are porting the NAS parallel bench-
marks [20] to PATHS/PastSet to be able to use our tools.
EventSpace may also be used to monitor other type of com-
munication systems, for example to optimize global work
scheduling in distributed work queues [2]. For data Grid
applications large data sets are accessed. For such appli-
cations communication performance is important, making
them interesting to monitor with EventSpace.

Also, important for the usability of EventSpace are
graphical tools to simplify the building and tuning of event
scopes.

References

[1] A. C. Arpaci-Dusseau. Implicit coscheduling: coordinated
scheduling with implicit information in distributed systems.
ACM Transactions on Computer Systems, 19(3):283–331,
2001.

Appendix A – Published papers In Proc. of ICPP 2005

105

[2] R. H. Arpaci-Dusseau. Run-time adaptation in River. ACM
Transactions on Computer Systems, 21(1):36–86, 2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings
of the twenty-first Symposium on Principles of database sys-
tems, pages 1–16. ACM Press, 2002.

[4] S. M. Balle, J. Bishop, D. LaFrance-Linden, and H. Rifkin.
Ygdrasil: Aggregator network toolkit for the grid. In Pro-
ceedings of PARA’04 - Workshop on State-of-the-Art in Sci-
entific Computing, volume To appear of Lecture Notes in
Computer Science. Springer, June 2004.

[5] J. M. Bjørndalen. Improving the Speedup of Parallel and
Distributed Applications on Clusters and Multi-Clusters.
PhD thesis, Department of Computer Science, University of
Tromsø, 2003.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, 1995.

[7] L. A. Bongo. The Longcut wide area network emulator:
Design and evaluation. Technical Report 2005-53, Dep.of
Computer Science, University of Tromsø, 2005.

[8] L. A. Bongo, O. Anshus, and J. M. Bjørndalen. EventSpace -
Exposing and observing communication behavior of parallel
cluster applications. In Euro-Par, volume 2790 of Lecture
Notes in Computer Science, pages 47–56. Springer, 2003.

[9] L. A. Bongo, O. Anshus, and J. M. Bjørndalen. Collective
communication performance analysis within the communi-
cation system. In Euro-Par, volume 3149 of Lecture Notes in
Computer Science, pages 163–172. Springer, August 2004.

[10] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19(3):332–383, 2001.

[11] G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das.
Coscheduling in clusters: Is it a viable alternative? In Pro-
ceedings of the 2004 ACM/IEEE conference on Supercom-
puting. IEEE Computer Society Press, 2004.

[12] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: a stream database for network applications.
In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 647–651. ACM
Press, 2003.

[13] P. Dinda, T. Gross, R. Karrer, B. Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland. The architecture of the
Remos system. In Proc. 10th IEEE Symp. on High Perfor-
mance Distributed Computing, 2001.

[14] A. Karwande, X. Yuan, and D. K. Lowenthal. CC-MPI: a
compiled communication capable MPI prototype for Ether-
net switched clusters. In Proc. of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, pages 95–106. ACM Press, 2003.

[15] T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort,
L. Eyraud, R. Hofman, and K. Verstoep. Programming
environments for high-performance grid computing: the
Albatross project. Future Generation Computer Systems,
18(8):1113–1125, 2002.

[16] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. MagPIe: MPI’s collective communica-
tion operations for clustered wide area systems. In Proceed-

ings of the seventh ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, pages 131–140.
ACM Press, 1999.

[17] LAM-MPI homepage. http://www.lam-mpi.org/.
[18] M. Massie, B. Chun, and D. E. Culler. The Ganglia dis-

tributed monitoring system: Design, implementation, and
experience. Parallel Computing, 30, 2004.

[19] S. Moore, D.Cronk, K. London, and J.Dongarra. Review of
performance analysis tools for MPI parallel programs. In 8th
European PVM/MPI Users’ Group Meeting, Lecture Notes
in Computer Science 2131. Springer Verlag, 2001.

[20] NASA. NAS Parallel Benchmarks.
[21] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of

the missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of ASCI Q. In Proc. of
the 2003 ACM/IEEE conference on Supercomputing, 2003.

[22] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system mon-
itoring, management, and data mining. ACM Transactions
on Computer Systems (TOCS), 21(2):164–206, 2003.

[23] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet:
A software-based multicast/reduction network for scalable
tools. In Proceedings of the 2003 ACM/IEEE conference on
Supercomputing. IEEE Computer Society Press, 2003.

[24] S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI
collectives on clusters of large-scale SMP’s. In Proceed-
ings of the 1999 ACM/IEEE conference on Supercomputing.
ACM Press, 1999.

[25] B. Tierney, W. E. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter. The NetLogger methodology for high per-
formance distributed systems performance analysis. In Proc.
7th IEEE Symp. On High Performance Distributed Comput-
ing, pages 260–267, 1998.

[26] V. Tipparaju, J. Nieplocha, and D. Panda. Fast collective op-
erations using shared and remote memory access protocols
on clusters. In 17th Intl. Parallel and Distributed Processing
Symp., May 2003.

[27] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automati-
cally tuned collective communications. In Proceedings of
the 2000 ACM/IEEE conference on Supercomputing, 2000.

[28] J. Vetter. Dynamic statistical profiling of communication ac-
tivity in distributed applications. In Proceedings of the 2002
ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, pages 240–250.
ACM Press, 2002.

[29] J. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster
architectures. In 16th Intl. Parallel and Distributed Process-
ing Symp., May 2002.

[30] J. S. Vetter and A. Yoo. An empirical performance evalu-
ation of scalable scientific applications. In Proceedings of
the 2002 ACM/IEEE conference on Supercomputing. IEEE
Computer Society Press, 2002.

[31] B. Vinter. PastSet a Structured Distributed Shared Memory
System. PhD thesis, Department of Computer Science, Uni-
versity of Tromsø, 1999.

[32] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing. Future Generation Computer Sys-
tems, 15(5–6), 1999.

Appendix A – Published papers In Proc. of ICPP 2005

106

7.3 Extending Collective Operations with Application Semantics for Improving Multi-
cluster Performance

 107

7.3 Extending Collective Operations with Application Semantics
for Improving Multi-cluster Performance

This paper was published in the Proceedings of HeteroPar 2004 [46].

Extending Collective Operations With Application
Semantics for Improving Multi-cluster Performance

Lars Ailo Bongo, Otto Anshus, John Markus Bjørndalen and Tore Larsen
Department of Computer Science, University of Tromsø, Norway

Email: {larsab, otto, johnm, tore}@cs.uit.no

Abstract— We identify two ways of increasing the performance
of allreduce-style of collective operations in a multi-cluster with
large WAN latencies: (i) hiding latency in system noise, and (ii)
conditional-allreduce where knowledge about the application is
used to reduce the number of WAN messages. In our multi-
cluster, system noise was not large enough to hide the WAN
latency. But, the latency could be hidden using conditional-
allreduce, since on many iterations only cluster-local values were
needed, and many of the values needed from other clusters were
prefetched. A speedup of 2.4 was achieved for a microbenchmark.
Prefetching introduced a small overhead in the cluster with the
slowest hosts.

I. INTRODUCTION

Computational Grids is an emerging platform for computa-
tional science [1]. In a grid, multiple computers and clusters
are connected using wide-area networks (WAN). Ideally, ap-
plications developed for more tightly connected platforms (e.g.
SMPs, clusters) should run effectively without modifications
on grids. However, for many applications, modifications are
required to tolerate the higher latencies and lower bandwidths
of WAN links [2].

Many applications are written using a communication li-
brary, such as MPI [3], which provides operations for point-
to-point and collective communication. Examples of collective
operations are broadcast, reduce, and allreduce. In allreduce,
the reduced value is broadcasted to all threads that contributed
with a value.

For clusters, the performance of collective operations is
an important factor in determining application performance
[4]. For grids, we expect collective operation performance to
be even more critical. Sensitivity to WAN latency has been
shown to be the primary cause for poor collective operation
performance on grids [5].

If the provided operations can be made to tolerate WAN
latencies and bandwidths, many applications can run on Grids
with only minor modifications. In this paper we evaluate two
approaches for improving the performance of the allreduce
collective operation on Grids: (i) latency hiding, and (ii)
extending collective operations with application semantics.

We propose a novel algorithm, conditional-allreduce, where
we apply application knowledge to reduce the number of WAN
messages exchanged. Many algorithms, such as converging
iterative algorithms for linear algebra, use the reduced value
only to test whether a particular condition is true. In many
cases where multiple clusters communicate over a WAN link,
each of the clusters may have enough information locally

to determine that the condition is true. In these cases, time-
consuming WAN communication can be avoided by returning
the result of the cluster-local operation.

Another performance problem is caused by system activities
causing ’noise’ that takes resources (e.g. CPU) from individual
threads and, by implication, delays both the thread itself
as well as all other threads participating in a synchronous
operation [6], [7]. We evaluate whether some of the WAN
latencies can be hidden in the noise.

We describe a micro-benchmark for analyzing noise on
clusters, as well as systems for configuring and monitoring
the performance of different allreduce algorithms. The per-
formance analysis is based on traces from actual runs on an
available multi-cluster.

Our results show that the system noise in our multi-
cluster is too low to allow us to hide the WAN latency.
Using conditional-allreduce, the WAN latency was avoided
for most operations, since these only required values from
one cluster. For the remaining operations the required values
were often already prefetched. Conditional-allreduce only in-
troduced overhead on the cluster with the slowest hosts. Thus
applications using conditional-allreduce can be run on a grid
with good performance.

The rest of this paper proceeds as follows. Related work
is discussed in section II. Our parallel programming and
monitoring systems are described in section III. The design
and implementation of conditional-allreduce is described in
section IV. Section V describes the clusters and benchmarks
used in section VI to compare the performance of conditional-
allreduce with other algorithms. Section VII concludes and
outlines future work.

II. RELATED WORK

Improving the performance of collective operations is the
focus of this paper. However, three additional techniques were
applied in [2] to enable applications to tolerate the high
latency and low bandwidth associated with WANs. These
techniques were (i) distributed work queue implementation,
(ii) message combination, and (iii) exploiting asynchronicity
in applications.

Typically, collective operations are implemented using a
spanning tree. [5] identifies two requirements for collective
operations to be wide area optimal: (1) ‘every sender-receiver
path used by an algorithm contains at most one wide area
link’, and (2) ‘no data item travel multiple times to the same

Appendix A - Published papers In Proc. of HeteroPar 2004

109

cluster’. Our work is complementary in that we evaluate how
we can avoid sending messages over a WAN, or hide the WAN
latency.

For clusters, many implementations apply SMP aware
spanning trees [8]–[11]. Many implementations also use fast
interconnects [12] or applies special features of the selected
interconnect, such as native broadcast in Ethernet [13] or
fast remote memory operations [14]. Our implementation is
SMP-aware but uses TCP/IP for intra-cluster communication.
With faster local interconnects; WAN latencies become even
more important. Also, the overhead introduced by the different
WAN algorithms measured by us are valid even with faster
interconnects.

In [15] it was shown that for barrier operations on an SMP,
most of the time was spent waiting for the last thread to arrive.
Even for highly balanced applications, noise caused by e.g.
system daemons may cause random processes to be delayed
[6], [7]. Noise can be reduced by leaving one processor on
each SMP idle, by eliminating unnecessary system daemons
[7], or by modifying the scheduler to implement co-scheduling
[6]. In a Grid, many clusters have either single or dual CPU
hosts, and eliminating daemons and modifying the scheduler
may be difficult due to administrative issues. Hence, we be-
lieve the noise cannot be avoided, and algorithms and systems
should be designed to take the noise into account. Conditional-
allreduce does so, as fewer threads need to be synchronized,
thereby reducing the impact of a delayed thread.

Relaxing the restrictions on a collective operation, as in
conditional-allreduce and MagPIe [5], can be regarded as
the same approach as using a weaker consistency models to
improve the scalability of distributed shared memory systems
[16]. Weaker consistency models generally introduce a more
complex programming model. However, we believe the relax-
ation is necessary to get efficient collective communication
performance in Grids.

Astrolabe [17] is a recent system for collective (or group)
communication in WANs. The primary design goal in Astro-
labe was scalability. For collective communication in scientific
computing applications, the focus is often on the latencies of
operations.

III. SYSTEMS

A. PATHS

Usually, MPI implementations only allow the communica-
tion structure to be implicitly changed either by using the MPI
topology mechanism or by setting attributes of communicators.
The PATHS system [18] allows inspecting, configuring and
mapping the collective communication structure to the re-
sources in use. PATHS is an extension to the PastSet structured
shared memory system [19], where threads communicate by
reading and writing tuples to named elements.

Using PATHS, we create a sequential spanning tree with
all threads participating in the allreduce as leafs (figure 1).
For each thread we specify a path through the communication
system to the root of the tree (the same path is used for reduce
and broadcast). On each path, several wrappers can be added.

process A

CT1 CT2

Host A

process B

CT3 CT4

Host B

process C

ST1 ST2

Host C

CT5 CT6

TCP/IP

function
call

tuple
server

Fig. 1. An application with six computational threads (CT) and two TCP/IP
service threads (ST) using a collective operation tree implemented using
allreduce wrappers (small ovals). Results are stored in a PastSet element.

Each wrapper has code that is applied as data is moved down
the path (reduce) and up the path (broadcast). Wrappers are
used to store data in PastSet and to implement communication
between cluster hosts. Also, some wrappers, such as allreduce
wrappers, join paths and handle the necessary synchronization.

Figure 1 shows the PATHS/PastSet runtime system. It is
implemented as a library that is linked with the application.
The application is usually multi-threaded. The PATHS server
consists of several threads that service remote clients. The
service threads are run in the context of the application. Also,
PastSet elements are hosted by the PATHS server. Each path
has its own TCP/IP connection (thus there are several TCP/IP
connections between PATHS servers). Wrappers are run in the
context of the calling threads, until a wrapper on another host
is called. These wrappers are run in the context of the threads
serving the connection.

The allreduce wrappers block all but the latest arriving
thread, which is the only thread continuing down the path.
The final reduced tuple is stored in the PastSet element before
it is broadcasted by awakening blocked threads that return with
a copy of the tuple.

B. EventSpace

To collect performance data we use the EventSpace system
[20]. The paths in a spanning tree are instrumented by inserting
event collectors, implemented as PATHS wrappers, before and
after each wrapper. For each allreduce operation, each event
collector records a timestamp when moving down and up the
path. The timestamps are stored in memory and written to
trace files when the paths are released. In this paper, analysis
is done post-mortem.

Depending on the number of threads and the shape of the
tree, there can be many event collectors. For example, for a
30 host, dual CPU cluster, a tree has 148 event collectors
collecting 5328 bytes of data for each call (36 bytes per event
collector). The overhead of each event collector is low (0.5µs

on a 1.4 GHz Pentium 4) compared to the hundreds of mi-
croseconds per collective operation. Most event collectors are
not on the slowest path, thus most data collecting is done
outside the critical path. Hence, even for the noise-allreduce

Appendix A - Published papers In Proc. of HeteroPar 2004

110

Fig. 2. Conditional-allreduce implementation for two clusters.

microbenchmark the overhead due to data collection is less
than 1%.

IV. CONDITIONAL-ALLREDUCE

Many parallel applications, such as iterative algorithms, use
the result of an allreduce operation to check for convergence
(one such application is described in section V-A). Hence, the
result value is only needed in the last iteration of the algorithm.
For all others it is only necessary to reduce enough values until
it can be determined whether the convergence condition is true
or not. To determine if the condition is true, only values from
a subset of the threads may be required. If these threads are
on the same cluster, no WAN communication is necessary.

There are some limitations to how the allreduce can be
used: (a) the value should only be used for the convergence
test and perhaps debugging, (b) the allreduce should not be
used as a barrier, and (c) only positive (or only negative)
values should be contributed. We believe many applications
meet these requirements.

The implementation of conditional-allreduce is based on a
wide-area optimal algorithm used in MagPIe [5], but with
some differences. As shown in figure 2, we have a sequential
allreduce tree on each cluster (as described in section III-A).
Between the clusters an all-to-all is implemented using a fully
connected graph. An allreduce is done on each cluster and the
result is stored in a PastSet element. On each root node there
are prefetch threads that pull1 tuples from the result elements
on other clusters, and store these tuples in caches implemented
using PastSet elements. The pulled tuples and the local result
are reduced, and broadcasted to all threads on the cluster.

To use conditional-allreduce, the application programmer
specifies that an allreduce should be conditional, the type of
evaluation to use (greater than, less than or equal), and the
constant to evaluate against. The operation type (sum, max
or min) is already specified for the allreduce. As the PATHS

1We can easily implement pushing also (as in MagPIe).

system allows us to set properties of individual nodes in the
allreduce tree at initialization time, we have set the condition
and constant as properties of the allreduce tree nodes.

The condition check is done after storing the result for the
cluster in the local PastSet element. After that, a new check is
made every time a tuple is read from a cache. If the condition
is found to be true, a broadcast is initiated for the local cluster,
and no more caches are accessed.

Since the allreduce operation no longer synchronizes all
participants, some clusters (or allreduce trees) may get ahead
of others. To reduce the amount of buffering needed for the
result values, a sequence number is stored with the result. If
allreduce tree A pulls a tuple from allreduce tree B, and the
tuple has a larger sequence number than A’s result tuple, then
B must have found the condition to be true for the iteration A
is at (otherwise B would have needed A’s result tuple). Hence,
the condition must also be true for A. The sequence number
allows the memory for the caches on a host to be limited to
only one tuple for each remote cluster.

As described in section III-A, there are multiple threads that
are synchronized by the allreduce root wrapper. To reduce the
introduced overhead, and simplify the implementation, only
the thread arriving latest reads tuples from the caches. The
read operation is non-blocking, since a tuple from any of the
remote clusters can be enough to make the condition true, and
we do not know which tuple will arrive first. Between each
pull there is a yield call to allow other threads to run.

On each root host there is one prefetch thread per remote
cluster. Each thread only fetches the newest tuple from the
remote cluster. Hence some tuples are not fetched if the
difference between the WAN latency and the time per local
allreduce on the remote cluster is large. The read operation
blocks on the remote cluster if there are no new result tuples.

V. METHDOLOGY

A. Noise-allreduce Microbenchmark

To measure the performance of the different allreduce
algorithms, and the system noise in our clusters, we use
a benchmark that imitates the behavior of medium grained
parallel applications (which are realistic to run on a Grid [2]).
Each thread independently sorts a list of integers, a task that
is automatically tuned to take 30ms (about the same as the
largest WAN latency). The benchmark is run for about 15.000
iterations. It has been shown that system noise resonating
with the computation granularity of a synchronous application
will cause a substantial performance loss [7]. Thus, for our
benchmark the worst kind of noise delays the computation for
about 30 ms [7].

We only use 8 byte messages. Most scientific applications
have message sizes of less than 256 bytes for most collective
operations [21]. Also, we are mostly interested in avoiding the
WAN latency.

B. Input Data

The performance of conditional-allreduce depends on the
values used in the operation, which depend on the input data.

Appendix A - Published papers In Proc. of HeteroPar 2004

111

Each noise-allreduce thread reads the values it contributes
with from a file. We use five sets of input files. Two sets
are the unrealistic best-case and worst-case allreduce values
for conditional-allreduce. The three others are traces of actual
values used in Successive Over-Relaxation (SOR), when using
different data sets. The data sets have different convergence
rates.

SOR is a well known iterative converging linear algebra
algorithm that approximates each element in a matrix to
its neighbors until the sum of all changes in an iteration
converges below a given value. We have traced a Red-Black
implementation of SOR. Each worker-process updates all its
red points and then exchanges red border point values with its
neighbors using point-to-point communication. Then the black
points are updated and exchanged. Each process calculates a
delta, by summing, for all its matrix elements, the absolute
value of the new value subtracted from the old value. At the
end of each iteration there is a check for convergence. First,
the sum of all deltas is calculated using MPI Allreduce. Then
the resulting global delta is compared to a constant epsilon.
The algorithm terminates if the global delta is smaller than
epsilon.

A 1380×1380 matrix was divided among 138 processes.
Epsilon is 0.01904. The first data set, frosty, is from a heat dis-
tribution simulation where the top row is set to 27760 degrees
Celsius2, while the remaining elements are set to −273.15
degrees Celsius3. SOR converges after 5403 iterations.

The second data set, tridiagonal, uses a tridiagonal matrix
where all dialog elements, and all elements on the three
sub-diagonals and super-diagonals are set to a random value
between 0 and 10000. The remaining values are zero. Conver-
gence is after 1737 iterations.

For the third data set, random, the matrix elements are
initialized with random values between zero and 10.000. The
computation converges after 273 iterations.

C. Clusters

The hardware platform comprises six clusters:

RoadRunner: 48 single-CPU Celeron 1700 MHz, 256 MB
RAM. Odense, Denmark.

Dominic: 7 dual-CPU Pentium III 733 MHz, 2 GB RAM.
Aalborg, Denmark.

Blade 10 single-CPU Mobile Pentium III 900 MHz,
1024 MB RAM. Tromsø, Norway.

2W 18 dual-CPU Pentium II 300 MHz, 256 MB RAM.
Tromsø, Norway.

4W Eight four-CPU Pentium Pro 166 MHz, 128 MB
RAM. Tromsø, Norway.

8W Four eight-CPU Pentium Pro 200 MHz, 2 GB RAM.
Tromsø, Norway.

The clusters are not directly accessible from the Internet.
Communication through and from the Tromsø clusters goes
through a two-way Pentium II 300 MHz with 256 MB RAM.

2The surface temperature of a blue star.
3Zero Kelvin, or absolute zero.

Fig. 3. Clusters, gateway hosts and WAN link emulator hosts of the multi-
cluster used in the experiments. For each WAN link the average and standard
deviation of the two-way TCP/IP latency is given.

For Roadrunner, a Pentium III 1400 MHz with 1 GB RAM
is used as a gateway host. The gateway host for Dominic is
a dual-CPU Pentium III 733 MHz with 640 MB RAM. The
clusters use TCP/IP over a 100 Mbps Ethernet for intra-cluster
communication. Inter-cluster communication uses the Nordic
interconnection of national research networks (NORDUnet).

There was no background workload on the cluster hosts.
However, there was other traffic on the department networks,
and on the Internet. On all TCP/IP connections the Nagel
algorithm is disabled to ensure that even small data packets
are sent immediately. The operating system on all clusters is
Linux.

D. Wide-area Network Emulator

To increase the number of WAN links we emulate WAN
links between the Tromsø clusters. The emulator is inspired
by the Panda WAN emulator [22]. We use two of the 8W hosts
as gateways for Blade and 2W. Thus, a message from a 2W
host to a Blade host is first sent to the 2W’s gateway, which
forwards it to Blade’s gateway, which finally forwards it to the
Blade host. Figure 3 shows the topology of the multi-cluster.

The emulator is implemented using PATHS wrappers that
emulate a WAN link. These wrappers are run on the gateway
hosts. For all messages a delay time is calculated by using
the latency and bandwidth of the emulated WAN link, and the
message length. The latency and bandwidth are read from a
file. For each WAN connection we have one trace file for each
direction consisting of latency and bandwidth traces.

We have collected the WAN traces using the Unix ping
tool. The ping latency is similar to the TCP latency due to the
small message size used in the experiments (8 bytes). Also,
bandwidth is not measured; instead the maximum bandwidth
of the link is used. Bandwidth is not important for the small
messages used.

The measured WAN connections were between the Uni-
versity of Tromsø and: (i) Norwegian University of Science
and Technology in Trondheim, Norway, and (ii) Finnmark
University College in Alta, Norway. The average two-way
latencies are given in figure 3.

Appendix A - Published papers In Proc. of HeteroPar 2004

112

VI. EXPERIMENTS

In this section we analyze the performance of different
allreduce implementations using the benchmark and clusters
described in section V. Also, for each allreduce implementa-
tion we measure the noise in the system.

A. Sequential Allreduce

To identify a baseline, we analyze the performance of a se-
quential multi-cluster allreduce tree implemented as described
in section III-A. The algorithm is similar to the algorithms
used in LAM-MPI [11] and MPICH [23]. However, our
spanning tree is SMP and WAN aware. The noise-allreduce
benchmark was run on the five clusters described in section
V-C, with the root of the spanning tree on a 4W host. Two of
the WAN links were emulated, as described in section V-D.
For each sender-receiver path there is one WAN link, but two
messages are sent over the link (one for reduce, and one for
broadcast). For 15.000 iterations the execution time was 1412
seconds.

As the sequential spanning three synchronizes all threads,
one slow cluster may delay all others. By analyzing the
message arrival order at the spanning tree root, we find that the
two slowest clusters are 2W and Dominic, arriving last 69%
and 23% of the times respectively. The many last arrivals for
Dominic were expected since the WAN link between Dominic
and 4W has the highest latency.

The 2W cluster has a performance problem caused by
the interaction between the allreduce spanning tree and the
workload. As described in section III-A, the broadcast of a
reduced value is implemented by unblocking a set of server
threads that return the value to their clients. The broadcast
may unblock a worker thread that uses the CPU, causing
server threads to wait. Hence, the last message may be sent
up to 30 ms later than the first. The spanning tree on the
other cluster with 2-way SMPs (Dominic) has a similar, but
smaller, problem. For the 2W send-receive paths, 58% of the
time spent in an allreduce was as a result of the WAN link,
compared to 87–89% for the paths on the other clusters (expect
for 4W where the paths do not have a WAN link). This shows
that the spanning tree on a cluster may have a significant
effect of the multi-cluster allreduce performance. Possibly, a
re-mapping or re-implementation may improve the spanning
tree performance.

For some RoadRunner hosts we had unexpected perfor-
mance irregularities, increasing the computation time from
30 ms to 36 ms for most iterations. A similar increase in
computation time was observed on other RoadRunner hosts
in other experiments. We do not believe the problem is
caused by other background workload, nor the spanning tree
implementation. Also, the disturbances occur too frequently
to be caused by system daemons. However, the increase is
overlapped by the larger WAN latencies and the performance
problems on 2W, demonstrating that the sequential spanning
tree tolerates noisy hosts as long as the noise doesn’t occur in
a cluster with the largest WAN latency to the root.

For the 15.000 iterations, only in 41 iterations at least one
of the threads was delayed for more than 30 ms compared to
the average computation time4. In 223 iterations at least one
thread was more than 10 ms delayed, in 359 iterations some
thread was more than 5 ms delayed, and in all iterations at
least one thread was 1 ms delayed. Thus the potential benefit
of hiding the WAN latency in the system noise is limited.

Earlier we have documented that there are large variations
in execution time per allreduce, and where within the commu-
nication system time is spent [24]. The multi-cluster spanning
tree exhibits even larger variations. However, the standard
deviation for the WAN links is low (figure 3). Thus, for our
system, variations in the communication systems have larger
impacts than variations in computation time.

To conclude, for a sequential spanning tree the WAN latency
is the primary cause of poor performance. However, the
implementation of the spanning tree on a cluster may also
cause performance problems. The potential for latency hiding
is small.

B. MagPIe Allreduce

When using the worst-case data set for conditional-
allreduce, the condition is never true and hence every iteration
requires an all-to-all exchange. This behavior is similar to the
MagPIe allreduce algorithm [5]. However, due to differences
in the underlying systems, the implementation differs5. The
MagPIe algorithm should improve performance as each allre-
duce operation introduces just a single one-way latency. As
we do not have global clock synchronization, we assume the
one-way latency to be half of the measured two-way latency.

For 15 000 iterations, the execution time was 1474 seconds,
which is slower than for the sequential configuration. The
potential speedup of MagPIe is dependent on the multi-cluster
topology, in particular the difference between the largest two-
way and one-way WAN latency. For our case, the expected
speedup was 1.16. However, when running the benchmark on a
multi-cluster with an emulated topology where the largest two-
way latency was twice the largest one-way latency and there
was 50% communication, we achieved speedups of around
2.0.

In our implementation a potential bottleneck are the pre-
fetch threads, as we assume the time to send the read request is
overlapped with computation. The performance data confirms
this assumption as the largest two-way WAN latency is around
60 ms indicating that the send request latency (30 ms) is
overlapped with computation.

To analyze the performance of conditional allreduce, we
compare for each cluster-root host, the order, and wait time
until tuples where read from the pre-fetch thread caches.
Wait times longer than the one-way latency indicate that the

4By comparing with the average value, we can ignore the performance
faults on RoadRunner.

5MagPIe is implemented on top of MPICH.
6The largest one-way WAN latency is in the all-to-all graph is 30 ms, and

the largest two-way latency for the sequential tree is 36 ms giving a speedup
of 1.2. However, only 63% is spent communicating reducing the potential
speedup to 1.1.

Appendix A - Published papers In Proc. of HeteroPar 2004

113

cluster must wait for another cluster to complete its sequential
allreduce. Smaller wait times indicate that tuples where either
in the cache or already sent (but not yet arrived).

For all cluster-roots, most last arrivals are either from
RoadRunner or from 2W, indicating that these are the slowest
clusters. Also, the wait times on 4W, Blade and Dominic are
larger than the one-way latency for these two clusters. On 2W
and RoadRunner all wait times are smaller than the one-way
latency, except for 2W waiting for Roadrunner and vice versa.
Hence no single cluster is especially slow.

As for the sequential experiment, the 2W cluster has perfor-
mance problems caused by the spanning tree. The difference
between the first and last send in broadcast is larger, probably
due to the increased load due to the pre-fetch threads on the
root host. On RoadRunner, some hosts still compute for 36 ms
in most iterations.

The MagPIe algorithm allows some of the WAN latency
to be hidden in the noise since the allreduce time for the
slowest cluster may not include WAN latencies as messages
can be exchanged while waiting for the slowest thread. If
the probability of two cluster being slowest are equal, the
clusters will alternate being slowest. However, due to the
performance problems on 2W and RoadRunner, these were
slowest for most iterations. Due to the large variations within
the communication system, it is difficult to determine whether
these actually allowed some of the WAN latency to be hidden.

In conclusion: The potential for speedup was limited due to
the multi-cluster topology used, and we were unable to demon-
strate significant speedups due to problems with the workload-
balancing on RoadRunner and the sequential spanning tree
implementation on the 2W cluster.

C. Conditional-allreduce

1) Best-case: For the best-case data set, inter-cluster com-
munication is only necessary in the last of the 15 000 itera-
tions. Compared to the sequential spanning tree, the speedup
is 2.4. Average time per iteration is 38.6 ms, which is close to
the computation time for the slowest thread. The performance
improvement is due to all but the latest iterations not needing
any results from the other clusters.

There is no problem with the broadcast on the 2W cluster,
but some RoadRunner threads still have a computation time
of 36 ms for most iterations. Also, the computation time for
the 4W root host threads has increased to 34 ms. The other
cluster roots are unaffected (these hosts are much faster than
the 4W hosts). Due to the performance problems on 4W and
RoadRunner, the three other clusters wait 53 and 102 seconds
for results from these clusters in the last iteration.

The amount of computation noise is about the same as for
the worst-case data set. But the variation of the measured
performance within the communication system is lower, since
fewer threads are synchronized on each iteration, and there is
no broadcast problem on 2W.

To conclude, the best-case data set for conditional-allreduce
allows the WAN latency to be completely hidden. Also, the

overhead introduced by the prefetch threads is low on fast
hosts.

2) Frosty: The frosty heat distribution was simulated three
times; hence all threads had to contribute in at least 3 of the
16210 allreduce operations. The average time per operation
is comparable to best-case (39.6 ms) even if the data set has
more operations requiring results from other clusters. As for
the best-case experiment, some RoadRunner threads compute
for 36 ms, while the 4W root host threads compute for 34 ms.

For 4W and Dominic, only four operations required values
from other clusters (the spikes at each 5403rd iteration in
figure 4). Both clusters waited longest for the results from
RoadRunner due to the difference in the computation time
between RoadRunner and the other clusters (13 and 26 seconds
respectively). For the other clusters, 4W waited between 1 ms
(for Dominic) and 21 ms (for 2W), and Dominic waited
between 99 ms (for Blade) and 14 seconds (for 4W).

RoadRunner has more threads than 4W, which provides it
with more local results to check the condition for. However,
14 operations need remote results due to the input data
dependency7. For nine of these operations, only one remote
result was required to determine the condition to be true. All
required values were prefetched, so the wait time was only a
few microseconds (figure 4).

2W required values from other clusters for 165 operations.
For 161 of these, only prefetched values from Blade were
needed, thus the wait time for these operations were only a
few microseconds.

On Blade there were 5291 operations that required values
from other clusters, due to the cluster having only 10 threads.
The number of operations requiring remote cluster values
increase as the computation is close to convergence (figure
4). The average wait time ranges from 2.5 ms (for Dominic)
to 133 ms (for 4W). However, the median wait times were only
a few µs indicating that for most iterations prefetched values
could be used.

The results show that, even if there are more operations
that require values from other clusters, performance is not
degraded compared to the best-case experiment as most values
are prefetched, resulting in a median wait time of a few
microseconds. Furthermore, only values from one or a few
clusters are required for most operations that require values
from remote clusters.

3) Tridiagonal: Using the tridiagonal data set, the average
time for the 15635 iterations was 38.6 ms. For 4W and
Dominic, only the 9 convergence iterations required values
from other clusters. For the other clusters, more remote values
where required: 55 for RoadRunner, 254 for 2W, and 6013 for
Blade. The wait times are as in the frosty data set.

4) Random: For the random data set, the average time per
iteration was 38.3 ms. The computation converges after 273 it-
erations and is repeated 55 times. As for the other conditional-
allreduce experiments, some threads on RoadRunner compute
for 36 ms, and the 4W root threads compute for 34 ms. Figure

74W has the top row that initially has different values than the other rows.

Appendix A - Published papers In Proc. of HeteroPar 2004

114

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(u
s)

iteration #

2W

Blade

4W

RoadRunner

Fig. 4. For each cluster root, the time to determine whether the condition is true using the frosty data set. For clarity the graph for Dominic is not shown
(it is similar to the 4W graph).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(u
s)

iteration #

2W

Blade

4W

RoadRunner

Fig. 5. For each cluster root, the time to determine whether the condition is true using the random data set. For clarity the graph for Dominic is not shown.

5 shows the time to determine if the condition is true for all
clusters.

Dominic and 4W has fewest (55) operations that require
values from other clusters. The average wait times ranged
from 0.5 ms (4W from Blade) to 1.8 seconds (Dominic from
RoadRunner).

On RoadRunner, 235 operations required remote cluster
results. The wait time was low with most operations waiting
only a few microseconds. For the 759 cache reads on 4W,
the medians were 4–64 µs. But the means were larger for
RoadRunner (64 ms) and 2W (21 ms).

2W has 3267 operations that require results from other
clusters, of which 112 required values from 4W. The mean
wait time for values from 4W was 411 ms (median 205 ms).

The median values for the other clusters were lower since
prefetched values could be used for most operations.

As for the other data-sets, Blade has many operations
requiring results from other clusters (4388). However, for most
operations prefetched values could be used.

To conclude, even with a data set that converges after 273
iterations we get similar performance results as for a data
set with converge after 5403 iterations. Hence, we believe
conditional-allreduce allows the WAN latency to be hidden
for many converging iterative algorithms.

VII. CONCLUSION AND FUTURE WORK

Collective operations for Grids containing multiple clusters
should be designed to tolerate the high latency and low

Appendix A - Published papers In Proc. of HeteroPar 2004

115

bandwidth of WANs. We have evaluated two approaches
for improving the performance of the allreduce collective
operation on Grids of this kind: (i) latency hiding, and (ii)
extending collective operations with application semantics.

We have described conditional-allreduce, a novel allreduce
algorithm that applies application knowledge to reduce the
number of WAN messages exchanged. The performance of
conditional-allreduce was compared to other allreduce algo-
rithms by running a benchmark on a real multi-cluster.

We proposed hiding some of the WAN latency in system
noise, which delays the arrival of threads at synchronizing
collective operations. However, our results demonstrate that
the system noise in our multi-cluster is too low to allow a
significant part of the WAN latency to be hidden.

For our setup, a wide area optimal allreduce algorithm did
not perform significantly better than a sequential allreduce
spanning tree. This is due to the multi-cluster topology,
workload tuning problems on one cluster, and competition
for resources between the communication system and the
workload on another cluster.

Using conditional-allreduce, WAN latency was avoided for
most operations since these require values from only one
cluster. For the remaining operations, only values from a
few clusters were needed, and these where often pre-fetched.
There was no difference in performance when using a data
set from an iterative converging algorithm that converged
after 5403 iterations, or a data set from another algorithm
which converges after 273 iterations. Conditional-allreduce
only introduced overhead on the cluster with the slowest hosts.

Applications using conditional-allreduce can be run on
a grid without performance degradation, provided that the
point-to-point and other collective operations can tolerate the
WAN latency and bandwidth problems. For many applications
asynchronous point-to-point communication can be used [2].
We will as future work evaluate algorithms and communication
systems for Grids using other types of collective operations
with larger messages, such as all-to-all. We believe pre-
fetching and replication may improve the performance of
these operations. An open question is whether and how the
semantics of these operations can be relaxed, or if other
programming models may be required for applications using
these operations.

ACKNOWLEDGMENT

Thanks to Brian Vinter for providing us access to the
clusters in Denmark, and helpful discussions about the ex-
periments. Also thanks to Josva Kleist and Gerd Behrmann
for allowing us to use the cluster in Aalborg.

REFERENCES

[1] I. Foster and C. Kesselman, Eds., The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[2] A. Plaat, H. E. Bal, R. F. Hofman, and T. Kielmann, “Sensitivity of
parallel applications to large differences in bandwidth and latency in
two-layer interconnects,” Future Generation Computer Systems, vol. 17,
no. 6, pp. 769–782, 2001.

[3] “MPI: A Message-Passing Interface Standard,” Message Passing Inter-
face Forum, Mar. 1994.

[4] J. S. Vetter and A. Yoo, “An empirical performance evaluation of
scalable scientific applications,” in Proceedings of the 2002 ACM/IEEE
conference on Supercomputing. IEEE Computer Society Press, 2002.

[5] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F.
Bhoedjang, “Magpie: Mpi’s collective communication operations for
clustered wide area systems,” in Proceedings of the seventh ACM SIG-
PLAN symposium on Principles and practice of parallel programming.
ACM Press, 1999, pp. 131–140.

[6] T. Jones, W. Tuel, L. Brenner, J. Fier, P. Caffrey, S. Dawson, R. Neely,
R. Blackmore, B. Maskell, P. Tomlinson, and M. Roberts, “Improving
the scalability of parallel jobs by adding parallel awareness to the
operating system,” in Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, 2003.

[7] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of ASCI Q,” in Proc. of the 2003 ACM/IEEE conference on
Supercomputing, 2003.

[8] S. Sistare, R. vandeVaart, and E. Loh, “Optimization of mpi collectives
on clusters of large-scale smp’s,” in Proceedings of the 1999 ACM/IEEE
conference on Supercomputing. ACM Press, 1999.

[9] H. Tang and T. Yang, “Optimizing threaded mpi execution on smp
clusters,” in Proceedings of the 15th international conference on Su-
percomputing, 2001.

[10] P. Husbands and J. C. Hoe, “Mpi-start: delivering network performance
to numerical applications,” in Proceedings of the 1998 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 1998, pp.
1–15.

[11] LAM-MPI homepage. http://www.lam-mpi.org/.
[12] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Bunti-

nas, P. Wyckoff, and D. K. Panda, “Performance comparison of MPI
implementations over InfiniBand, Myrinet and Quadrics,” in Proc. of
the 2003 ACM/IEEE conference on Supercomputing, 2003.

[13] A. Karwande, X. Yuan, and D. K. Lowenthal, “CC-MPI: a compiled
communication capable MPI prototype for Ethernet switched clusters,”
in Proc. of the ninth ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM Press, 2003, pp. 95–106.

[14] V. Tipparaju, J. Nieplocha, and D. Panda, “Fast collective operations
using shared and remote memory access protocols on clusters,” in 17th
Intl. Parallel and Distributed Processing Symp., May 2003.

[15] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh, “Evaluating syn-
chronization on shared address space multiprocessors: methodology
and performance,” in Proceedings of the 1999 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems. ACM Press, 1999, pp. 23–34.

[16] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, 1996.

[17] R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining,” ACM Transactions on Computer Systems (TOCS), vol. 21,
no. 2, pp. 164–206, 2003.

[18] J. M. Bjørndalen, “Improving the speedup of parallel and distributed
applications on clusters and multi-clusters,” Ph.D. dissertation, Tromsø
University, 2003.

[19] B. Vinter, “PastSet a Structured Distributed Shared Memory System,”
Ph.D. dissertation, Tromsø University, 1999.

[20] L. A. Bongo, O. Anshus, and J. M. Bjørndalen, “EventSpace - Exposing
and observing communication behavior of parallel cluster applications,”
in Euro-Par, ser. Lecture Notes in Computer Science, vol. 2790.
Springer, 2003, pp. 47–56.

[21] J. Vetter and F. Mueller, “Communication characteristics of large-scale
scientific applications for contemporary cluster architectures,” in 16th
Intl. Parallel and Distributed Processing Symp., May 2002.

[22] T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort, L. Eyraud,
R. Hofman, and K. Verstoep, “Programming environments for high-
performance grid computing: the albatross project,” Future Generation
Computer Systems, vol. 18, no. 8, pp. 1113–1125, 2002.

[23] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, no. 6, pp. 789–828, September 1996.

[24] L. A. Bongo, O. Anshus, and J. M. Bjørndalen, “Collective communi-
cation performance analysis within the communication system,” 2004,
to appear in Proceedings of Euro-Par 2004.

Appendix A - Published papers In Proc. of HeteroPar 2004

116

7.4 Using Overdecomposition to Overlap Communication Latencies with Computation
and Take Advantage of SMT Processors

 117

7.4 Using Overdecomposition to Overlap Communication
Latencies with Computation and Take Advantage of SMT
Processors

This paper was published in the Proceedings of ICPP Workshops 2006 [48].

Using Overdecomposition to Overlap Communication Latencies with
Computation and Take Advantage of SMT Processors

Lars Ailo Bongo1, Brian Vinter2, Otto J. Anshus1,
Tore Larsen1 and John Markus Bjørndalen1

1) Department of Computer Science, University of Tromsø, Norway
{larsab, otto, tore, johnm}@cs.uit.no

2) DIKU, University of Copenhagen, Denmark
vinter@diku.dk

Abstract

Parallel programs running on clusters are typically de-
composed and mapped to run with one thread per processor
each working on its disjoint subset of the data. We evalu-
ate performance improvements and limitations for a micro-
benchmark and the NAS benchmarks, by using overdecom-
position to map multiple threads to each processor to over-
lap computation with communication. The experiment plat-
form is a cluster with Pentium 4 symmetric multithread-
ing (SMT) processor nodes interconnected through Gigabit
Ethernet. Micro-benchmark results demonstrate execution
time improvements up to 1.8. However, for the NAS bench-
marks overdecomposition and SMT provides only slight
performance gains, and sometimes significant performance
loss. We evaluated improvement and limitation sensitivity
to problem size, communication structure and whether SMT
is enabled or not. We found that performance improve-
ments are limited by: applications having communication
dependencies that limit thread-level parallelism, increase
in cache misses, or increased systems activity. Our study
contributes a better understanding of these limitations.

1 Introduction

In this paper we investigate when and how overdecompo-
sition may be applied to improve performance without any
changes to source-code for MPI-based [17] parallel scien-
tific applications running on clusters of simultaneous multi-
threading (SMT) enabled single-processor Pentium 4 nodes
interconnected through low-cost Gigabit Ethernet.

As shown in figure 1, scientific parallel applications are
typically decomposed such that one processor in the cluster
runs one thread for a disjoint subset of the data.

Increasing the decomposition of the data will increase

the number of threads and may allow for overlapping com-
putation with communication to improve single-application
performance. However, increasing the decomposition will
typically also increase the number of messages exchanged
and the latencies and other costs associated with those mes-
sage transfers. Our goal is to identify when and how we
may increase the decomposition to achieve the performance
benefits of overlapping computation and communication
while not incurring communication costs that alleviate the
increased performance.

The paper makes three contributions:

• We provide an experimental evaluation of the perfor-
mance benefits of overdecomposition for parallel ap-
plication with a wide range of communication charac-
teristics.

• We also provide an experimental evaluation of the ben-
efit of SMT for parallel applications implemented us-
ing MPI.

• We provide insight into system software issues that
effect overdecomposition improvements by describing
and using an analysis methodology that combines mes-
sage traces, operating system counters and hardware
performance counters.

2 Experiment setup

2.1 Hardware platform

All experiments were run on a cluster of 44 nodes in-
terconnected over Gigabit Ethernet. Each node is a single
processor system with 2 GB RAM and local disk. The pro-
cessor used is a 90 nm 3.2 GHz version of the Intel Pentium
4. This is an SMT processor applying the second iteration

Appendix A – Published papers In Proc. of ICCP Workshops 2006

119

Figure 1. A parallel application without (left), and with overdecomposition (right).

of Intel’s Hyperthreading (HT) Technology [1] which of-
fers several improvements over previous implementations
in terms of increased or enhanced resources and more dy-
namic resource allocation.

Each processor has a 12 KB L1 execution trace cache for
microoperations, 16 KB 8-way L1 data cache, and a 1 MB
8-way unified L2 cache. Memory access latencies measured
using Cachebench [13] are: L1 data: 1.25 ns, L2 unified:
8.78 ns, and main memory: 36.6 ns.

2.2 Software platforms

The cluster nodes run the Linux 2.4.18 uni-processor
kernel for the experiments where SMT is disabled, and
Linux 2.4.18smp or 2.6.9smp for the SMT experiments.
The 2.4 kernel was the first Linux kernel with explicit sup-
port for Intel HT Technology. The 2.6 kernel further im-
prove the handling of HT.

The Native POSIX Thread Library (NPTL) [5] was used.
NPTL synchronization variables are implemented using the
fast user-space locking system call (futex) which handles
any non-contended case without requiring a system call.

The communication runtime system used was LAM/MPI
version 7.1.1 [11]. LAM/MPI supports hierarchy aware col-
lective operation and shared memory intra-node commu-
nication. But when applying overdecomposition multiple
processes must be used. For the SOR experiments PastSet
[25] was used instead of LAM/MPI. PastSet differs from
LAM/MPI in that it supports multi-threading, buffers are
explicitly allocated, the communication system has helper
threads, and the same protocol is used for all message sizes.

2.3 Benchmarks

The successive over-relaxation (SOR) kernel was cho-
sen under the assumption that the latency of its block-
ing point-to-point communication operations can easily be
overlapped with computation. The benchmark is run for
three problem sizes: large, medium and small. For these
communication operations contribute to respectively 25%,

Benchmark Messages Coll. Asynch.
BT Many small No Yes
CG Many small, Manual Yes

few large
EP Few small Yes No
FT Few large Yes No
IS Few large Yes No
LU Many small No No
MG Many medium No Yes
SP Many medium No Yes

Table 1. NAS benchmark communication be-
havior. Small message is less than 1 KB,
large more than 1 MB. Yes for collectives if
execution time is dominated by them. Yes for
asynchronous if asynchronous operations
are used.

50% and 75% of the execution time, when run on 32 nodes
with SMT disabled. SOR is compiled with gcc 3.2.3.

The NAS benchmarks [18] are widely used to evaluate
different aspects of parallel architectures. They represent
a variety of communication behaviors as shown in table 1.
We use the NAS 2.4 MPI implementation with the class B
and C problem sizes. The benchmarks were compiled using
the Intel Fortran 8.1, and Intel C++ 8.1 compilers.

2.4 Data collection

PAPI [4] is used to access the Intel Pentium performance
counters. The Linux kernel is patched with perfctr 2.6.9 to
provide virtual performance counters. These are per-thread
counters that increase only when the thread runs user level
code. Since this release of perfctr lacks SMT support, we
have no hardware counter data for the SMT experiments.

Linux maintains process statistics including user level
time and system level time per thread, and idle and inter-
rupt handling time per processor context.

For runtime monitoring we use runtime statistical pro-

Appendix A – Published papers In Proc. of ICCP Workshops 2006

120

filing (as described in the next section). For the SOR ex-
periments we use EventSpace [2] to collect message traces
for post-mortem analysis. EventSpace allows us to record
timestamps inside the communication system, such as be-
fore and after writing a message to a buffer.

2.4.1 Overhead

For SOR, the overhead for reading the OS resource counters
was less than the variation in execution time.

Message tracing overhead depends on the communica-
tion characteristics of the application. For our experiments,
the overhead is typically in the 0–4% range. The PAPI over-
head due to the in-kernel collection of data is in the 0–2%
range. The perturbation introduced by the data collection
may influence which mappings shows best performance, fa-
voring mappings with fewer threads per processor. Simi-
larly, execution time improvements due to overdecomposi-
tion may also be negatively affected. Still, we believe the
data collected demonstrates important trends such as reduc-
tion in idle time and increased overhead.

3 Analysis methodology

We characterize each benchmark by: (i) thread-level par-
allelism (TLP): number of threads ready to run (or running)
application computation code, (ii) memory-wait: time the
processor is stalled due to cache misses, (iii) system over-
head: number of cycles used for running operating sys-
tem code, (iv) communication overhead: number of cycles
for communication activity, (v) network-wait: time waiting
due to network latency, and (vi) synchronization-wait: time
waiting for data arrival or thread synchronization.

TLP is estimated from the thread count by subtracting the
number threads blocked on communication, assuming the
remaining threads are compute ready. To characterize the
distribution of TLP over a benchmark run we define TLPN

as the ratio of execution time where TLP is larger than or
equal to N. Thus, TLP1 is the percentage of execution time
when at least one thread was, our could have been, comput-
ing. Without operating system instrumentation we cannot
distinguish between these two states.

Memory wait is calculated based on the recorded num-
ber of cache misses and the miss penalties determined pre-
viously using Cachebench.

System overhead includes operating system activity for
inter-node communication, synchronization overhead, con-
text switches, and TLB misses. System time statistics are
maintained by Linux.

Communication overhead was typically either to small
to be significant, or accounted for elsewhere. The main
sources are thread synchronization and memory copying.

Threads:processor 2:1 4:1 8:1 16:1 32:1
Idle 1435 1565 1417 1644 976
System activity 70 130 250 500 1040
Memory wait 226 603 1492 3147 6576
TLB wait 10 20 41 81 165
Unknown 97 163 483 958 1991
in % of exec 1.0% 2.0% 5.7% 10.3% 18.9%

Table 2. Breakdown of SOR overhead in-
creases relative to the one thread per pro-
cessor mapping. The measurements are for
the medium problem size run on 32 nodes
with SMT disabled. Unknown is the differ-
ence between estimated and measured exe-
cution time reduction. All times are in ms.

Both are already accounted for respectively as system over-
head and memory wait.

Network wait, the time between sending a request and
receiving a response, excluding request processing time on
the other node, and synchronization wait, the time between
a receive operation blocked until a send is initiated, are de-
termined from message traces. Wait time at synchronization
points is calculated as described in [3].

3.1 TLP and overhead variation

During our analysis we assume that the metrics are sim-
ilar on all nodes if the benchmark is load balanced. Using
the SOR benchmark we measured the variation for the cal-
culated metrics for SOR run on 32 nodes with the medium
problem size. The benchmark was run five times.

TLP and data cache miss averages are similar for all
nodes for all runs, with standard deviations less than 5%
of mean. L1-instruction cache misses and system time have
more variation (standard deviation is about 10% of mean).

SOR has non-deterministic waiting pattern where most
nodes waits for other nodes, due to a small load imbalance
in the communication workload since two of the nodes only
have one neighbor. Therefore the variation is large for net-
work wait and synchronization wait (and hence idle time).
Which nodes have large synchronization wait change when
rerunning an experiment, while network wait is similar for
all runs. We believe we still can use the average synchro-
nization wait time for all cluster nodes in the analysis, since
the average has less variation.

3.2 Overhead accuracy

The overhead metrics combine data from several sources
and abstraction levels. Also, we make several simplifica-
tions for system behavior. Here, we evaluate the accuracy

Appendix A – Published papers In Proc. of ICCP Workshops 2006

121

of the estimated overheads. In addition we have verified that
TLP results correspond with idle ratio statistics collected by
the operating system.

Subtracting all overheads from the reduction in idle time
should give the reduction in execution time. The sum of
overheads is usually overestimated (table 2). There are two
sources of error. First the memory miss penalty is too large.
Probably since overlapped cache misses are not taken into
account. For SOR increasing the number of threads in-
creases the number of cache misses and hence the miss
penalty overestimation. If we assume computation time
does not increase, then we can find the overestimation by
comparing the sum of memory wait and user level time. The
second source of error is system time which is too high for
frequently communicating benchmarks.

3.3 Runtime monitor implementation

Our MPI runtime monitor intercepts all communication
operations. Statistics about operation times and TLP are up-
dated for each operation. In addition OS statistics and PAPI
counters are read at selected collective operations (usually
when calling MPI Init and MPI Finalize).

Since we do not have any tracing inside the communi-
cation system we cannot distinguish between network wait
and synchronization wait. TLP counters are in a shared
memory map, and these are updated before and after calling
a blocking communication operation.

Usually metrics results are presented as statistics over
of all nodes over all iterations. But for applications with
load balance problems per node statistics are useful. Simi-
larly for applications with several phases, per phase statis-
tics should be used.

4 Performance improvement

Results from running the benchmarks with one thread (or
process) per processor with SMT disabled provides insight
into which benchmarks have communication wait that can
be overlapped with computation. We do similar experiment
with SMT enabled, to verify that SMT does not slow down
the benchmarks.

We measure overdecomposition execution time improve-
ments with SMT disabled to get insight into the degree of
overlapping, and overhead increase we can achieve when
threads are not run in parallel on a processor. Then we en-
able SMT to measure how TLP and the overheads increase
when threads can run and compete for resources in parallel.

For all experiments we first analyze the simpler SOR
benchmark, before analyzing how the different communica-
tion behavior of the NAS benchmarks influence the results.
All experiments are repeated ten times and the mean is re-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 32 16 8 4 2 1

Im
pr

ov
em

en
t

Threads per processor

Large
Large - SMT

Medium
Medium - SMT

Small
Small - SMT

Figure 2. SOR execution time improvements
relative to sequential code.

ported. The standard deviation for the execution times was
low if not otherwise noticed, usually less than 2% of mean.

4.1 Baseline

For problem constrained scaling with SMT disabled, ex-
ecution time is reduced for SOR for all three problem sizes
when increasing the number of nodes from 1 to 44. Sim-
ilarly, execution time is reduced for all NAS benchmarks
with both problem sizes when increasing the number of
nodes from 1 to 32 or 36 (BT and SP can only be run with
a square number of processes). For the remaining experi-
ments we use either 32, 36, or 44 nodes.

The SOR problem sizes were chosen such that 25%, 50%
and 75% of the execution time is spent blocked in commu-
nication operations. For these respectively 20%, 40% and
55% is due to network latency, the remaining is for synchro-
nization wait.

For most NAS benchmarks wait operations, collective
operations or blocking receiving operations contribute sig-
nificantly to the execution time (table 3).

In conclusion, all benchmarks scale to the cluster size
used, and most have operations that can partially or totally
be overlapped with computation by using overdecomposi-
tion.

4.2 Overdecomposition

SOR was run with 2, 4, 8, 16 and 32 threads per pro-
cessor (below we use 2:1 when referring to a mapping with
two threads per processor core). Execution time improves
compared to the one thread per processor mapping for all
problem sizes (figure 2). The large problem size has best
parallel efficiency, but the relative reduction in execution
time is largest for the small problem size (1.5). The best
mappings have few threads; 2:1 with SMT disabled. The

Appendix A – Published papers In Proc. of ICCP Workshops 2006

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 16 4 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(a) BT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(b) CG

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(c) EP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(d) FT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(e) IS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(f) LU

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(g) MG

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 16 4 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(h) SP

Figure 3. NAS benchmark execution time improvements relative to one thread per processor map-
ping. Experiments were run on 32 or 36 (BT and SP) nodes.

Appendix A – Published papers In Proc. of ICCP Workshops 2006

123

Benchmark class B class C
BT wait (54%), waitall (10%) wait (32%), waitall (8%)
CG wait (53%), send (24%) send (40%), wait (32%)
EP none none
FT alltoall (62%) alltoall (53%)
IS alltoallv (54%), allreduce (29%) alltoallv (47%), allreduce (20%)
LU recv (12%), send (10%), wait (7%) recv (9%), send (8%), wait (4%)
MG wait (24%), send (16%) send (18%), wait (8%)
SP waitall (80%) waitall (60%)

Table 3. MPI operations contributing to more than 4% of the execution time.

results shows that overdecomposition can improve applica-
tion performance even on uni-processors.

Figure 3 shows that with SMT disabled overdecompo-
sition improves performance significantly only for FT for
both class B and class C. However, performance decreased
for for CG, IS and MG.

4.3 Overdecomposition with SMT

Enabling SMT does not change 1:1 mapping execution
time, but the improvements with overdecomposition are
better. For SOR the best improvement is 1.81 compared
to the 1:1 mapping. For the large problem size the parallel
efficiency is improved from 30 to 40 (figure 2). The best
performance is for mappings with more threads than pro-
cessor contexts (four threads per 2-way SMT core).

Figure 3 shows that for the NAS benchmarks, enabling
SMT gives performance improvement for EP, FT, LU and
SP (only for class B). For BT and LU performance was un-
changed, while CG and IS got a significant slowdown. For
most experiments overdecomposition had best performance
with two processes per processor.

The benchmarks for which performance improves have:
(i) few and small messages, (ii) few large collective opera-
tion messages, and (iii) many small blocking point-to-point
messages.

Performance is either not changed or decreased for
benchmarks with many asynchronous point-to-point opera-
tions with medium or small sized messages. The IS bench-
mark has two execution phases with almost all communi-
cation taking place in the second phase, as well as a global
synchronize operation between the phases preventing any
overlap.

In conclusion, applying overdecomposition demon-
strates a potential performance gain for some application
characteristics, but should not be applied indiscriminately
as it may result in unchanged or reduced performance for
other applications. The mappings with best performance
have few threads per processor, but some have multiple
threads per processor context. Also, the best performance

improvements are for problem sizes where more than 50%
of the 1:1 execution time is due to communication.

5 Performance limitations

In this section we analyze how many threads are run-
ning at the same time, and which overheads increase most
for the different benchmarks. Finally, we measure the ef-
fect of synchronization variable implementations, user-level
schedulers and operating system kernels.

5.1 Thread level parallelism

When run with SMT disabled, SOR does not have
enough TLP1 to fully utilize the single processor context
even with 32 threads per processor. The TLP limitation is
not due to system code using the processor, since with more
than four threads the idle ratio increases. Rather the lim-
itation is due to data dependencies in the application and
scheduling policies in the system software.

Enabling SMT improves TLP1 for SOR, but still TLP1

decrease when there are too many threads per processor.
Also, when the problem size gets smaller the ratio of execu-
tion time where at least two threads are runnable decreases.
Often it can be as low as 5%, even for configurations with
32 threads.

With SMT disabled, increasing the number of processes
per processor does not always increase TLP1 for the NAS
benchmarks. For EP and MG the processor is saturated,
but for the other benchmarks processor utilization is usually
less than 76% (table 4).

Enabling SMT may increase TLP1 with a few percent-
ages. Also, as shown in table 5 TLP2 is low for BT, CG,
LU and SP.

5.2 Overhead increases

For SOR, all overheads increase. The increase in data
cache misses is most significant for the medium problem

Appendix A – Published papers In Proc. of ICCP Workshops 2006

124

Benchmark B C
BT 44–76% 70–67%
CG 21–7% 27–9%
EP 100-99% 100-99%
FT 32–64% 33–75%
IS 19–32% 31–42%
LU 67–38% 77–56%
MG 20–53% 68–41%
SP 23–35% 47–48%

Table 4. TLP1 increase when the number of
processes per processor is increased from 1
to 8 or 16 (BT and SP). SMT is disabled.

Benchmark B, 2 C, 2 B, 4 C, 4
BT 12% 15% 9% 6%
CG 8% 3% 8% 3%
EP 99% 99% 97% 99%
FT 35% 64% 20% 39%
LU 5% 7% 4% 2%
MG 40% 39% 39% 37%
SP 8% 21% 6% 16%

Table 5. Maximum TPL2 and TLP4 for the
class B and class C problem sizes (minimum
is always zero). SMT is enabled (for some
benchmark these numbers are higher when
SMT is disabled).

size, but with the small problem size system activity be-
comes the most significant overhead. Also, network wait
which is the overhead we are trying to overlap, increase
when the processor load increase with more threads.

Enabling SMT does not increase per thread user level
time or system level time for SOR. Thus, we can assume
that cache miss penalties and system activity increase are
similar. However, the reduction in idle time is larger, giving
a larger reduction in execution time.

Table 6 shows that for most NAS benchmarks either
memory wait or system activity dominate the increase in
overheads. Usually, the dominating overhead does not de-
pend on problem size, but on the process to processor ra-
tio. With four or less processes per processor, cache miss
penalty increase most. But with more processes, system ac-
tivity increase more. Also, cache misses may not always
increase with more processes, but system activity always
increases.

Of the cache misses the largest penalty is due to L1-D
or L2 caches misses. However, with class B; L1-I and TLB
miss penalty may be significant.

For most benchmarks the increase in user and system

Benchmark Class B Class C
BT Memory, system System, memory
CG Memory, system Memory, system
EP None None
FT (System) (System)
IS None None
LU Memory, system Memory, system
MG System System
SP Memory, system Memory, system

Table 6. Significant overheads.

time is similar with and without SMT. But for CG and SP
both are lower, and for MG system time increase is lower.

Table 7 summarizes which parts of the platform limits
overdecomposition performance for the NAS benchmarks.

5.3 System software

Using oprofile [19] we find that most kernel samples for
SOR with 1:1 mapping are for the Ethernet driver, while
for 32:1 most are for synchronization and context switches.
Since synchronization may cause a context switch, we can-
not differentiate between these.

We evaluated system software effect on TLP and the sys-
tem activity overhead using two synchronization variable
implementations, two user-level schedulers, and two oper-
ating system kernels. The results are for SOR run with the
medium problem size.

We replaced NPTL [5] with LinuxThreads [12], and as
expected system overhead increased, due to more system
calls for synchronization. However, for small messages
sizes TLP improved. LinuxThreads improved TLP2 two
threads were runnable from 2% to 34%. The reduction
is caused by difference in scheduling policy. With Linux-
Threads, synchronization variable calls are likely to cause a
context switch.

We implemented two user level schedulers in the PastSet
communication system. The first attempts to reduce cache
misses by only allowing one or two threads to run compu-
tation code at the same time. The second attempts to better
overlap inter-node communication by reordering the com-
putation order of the threads in one node. However, due to
TLP limitations most of the time there is only one runnable
thread, and hence user-level scheduling will not work.

Replacing the 2.4 SMP Linux kernel with the SMT op-
timized 2.6 kernel does not significantly improve TLP for
SOR. Also, system overhead does not significantly change.

6 Discussion and related work

Overlapping I/O wait time with computation to achieve
higher CPU utilization is a well known and widely used

Appendix A – Published papers In Proc. of ICCP Workshops 2006

125

Benchmark BT CG EP FT IS LU MG SP
Processor idle Yes Yes Yes
Processor saturated Yes Yes
Lack of TLP Yes Yes Yes Yes Yes
Cache misses Yes Yes Yes Yes
TLB misses
System activity Yes Yes Yes Yes Yes
Comm. phases Yes

Table 7. Overdecomposition performance limitations for the NAS benchmarks.

technique. For parallel applications overdecomposition has
been described in text books [7], and has been for load bal-
ancing by running more threads on underutilized processors
[7, 6], and to mask communication latency in a Grid envi-
ronment [10]. To our knowledge this is the first study on
overdecomposition performance improvements on Ethernet
clusters with SMT processors. In [10] experiments were
conducted to measure application slowdown when the WAN
latency between clusters was increased. Our experiments
differ in that we attempt to improve the performance of an
applications run on a network with a fixed LAN latency. We
have unpublished results showing that overdecomposition
improvement becomes better for SOR in a WAN environ-
ment.

Early simulator results have shown that SMTs [15] can
improve parallel application performance [15, 22]. How-
ever, recent studies show that SMT has best performance on
the POWER5 [9] when cache performance is at its worst,
and SMT is not well suited for floating-point workloads
and memory bandwidth bound applications [8]; all typical
characteristics of parallel scientific applications. Our results
show that only four of the NAS benchmarks had significant
increase in memory wait time.

A thorough study of SMT on the HT Technology en-
abled Pentium 4 processors used in our cluster is [23]. The
average multithreaded speedup recorded is 1.20 for multi-
threaded workloads and 1.24 for parallel workloads running
on a single node. The applications that were worst affected
by running with SMT enabled were those that had the low-
est instructions per cycle ratio. Another study [16] on Intel
Xeon, shows speedups ranging from 1.05 to 1.28 for data-
parallel numerically intensive benchmarks. Intel Xeon per-
formance improvements for web servers were found to de-
pend on the server design and implementation, and could
get worse when enabling SMT due to more synchronization
in the operating system kernel [21]. Our results for SMT
improvement shows smaller improvements for our message
passing parallel applications run on a cluster, than the sin-
gle node shared memory applications in [23, 16]. We do not
experience slowdown when using a SMP kernel rather than
an uni-processor kernel.

Proposed system support for SMT includes: (i) new

synchronization mechanism that permits cheaper synchro-
nization [24], (ii) compiler optimizations including new
approaches for inter-thread data-sharing, application of
latency-hiding, and loop distribution [14] (iii) kernel mode
behavior [20], and (iv) operating system schedulers [22] at-
tempting to benefit from possible constructive inter-thread
behavior.

Our results shows that synchronization contributes sig-
nificantly to system overhead, which is the overhead that
increase mostly when the number of threads increase. In
addition to using more efficient hardware mechanisms, syn-
chronization variable improvements should also attempt to
improve TLP by minimizing the time between unblocking
and running a thread. Due to the TLP limitations kernel
mode behavior and operating system schedulers are less im-
portant, since there usually are few runnable threads. Sim-
ilarly compiler optimizations and schedulers designed for
minimizing competition for processor resources will prob-
ably not improve performance since our benchmarks have
low TLP, in addition to being memory intensive and hence
have low instructions per cycle.

Alternatives to overdecomposition are to rewrite the ap-
plication to either use both message passing and shared
memory, or to use asynchronous communication opera-
tions. Both increase the complexity of the parallel pro-
gram.

7 Conclusion and future work

We evaluated if parallel application performance can be
improved by overdecomposition the data into more pieces
than there are processors in order to overlap communication
operation latencies with computation and taking advantage
of SMT processors.

Microbenchmark results are promising with execution
time improvements up to 1.8. However, performance im-
proved for only two NAS benchmark, and decreased for
three, showing that improvements are sensitive to appli-
cations communication structure, cache miss behavior, the
problem size used, and also of the underlying system com-
ponents. The best results were for applications with few

Appendix A – Published papers In Proc. of ICCP Workshops 2006

126

blocking communication operations, and low cache miss
penalty to execution time ratio.

Performance improvements are better when SMT is en-
abled, and never significantly worse. Hence for Pentium 4
based cluster SMT can be enabled as default. But changes
to system software are necessary for fully utilizing SMT
enabled processors. Especially intra-node communication
must be designed to reduce system calls and cache misses,
and synchronization primitives must strive to keep the num-
ber of runnable processors high.

As future work, we will investigate if the techniques de-
scribed in this paper can be used with multiprogramming
to overlap globally synchronizing operations with compu-
tation, without decreasing single application performance.
Also, we intend to investigate system changes tailored for
the NAS benchmarks for which performance did not im-
prove.

The monitoring tool used for measuring TLP and over-
head increase is available at:

http://www.cs.uit.no/l̃arsab/minim/

Acknowledgment

Thanks to Jon Ivar Kristiansen for help configuring the
cluster.

References

[1] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller,
P. Roussel, R. Singhal, B. Toll, and K. S. Venkatraman. The
microarchitecture of the intel pentium 4 processor on 90nm
technology. Intel Technology Journal, 8, February 2004.

[2] L. A. Bongo, O. Anshus, and J. M. Bjørndalen. EventSpace -
Exposing and observing communication behavior of parallel
cluster applications. In Euro-Par, volume 2790 of Lecture
Notes in Computer Science, pages 47–56. Springer, 2003.

[3] L. A. Bongo, O. Anshus, and J. M. Bjørndalen. Collective
communication performance analysis within the communi-
cation system. In Euro-Par, volume 3149 of Lecture Notes
in Computer Science, pages 163–172. Springer, 2004.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A scalable cross-platform infrastructure for ap-
plication performance tuning using hardware counters. In
Proc. of the 2000 ACM/IEEE conference on Supercomput-
ing, 2000.

[5] U. Drepper and I. Molnar. Native POSIX thread library for
linux. http://people.redhat.com/drepper/nptl-design.pdf.

[6] R. J. O. Figueiredo and J. A. B. Fortes. Impact of hetero-
geneity on dsm performance. In Proc. of Sixth International
Symposium on High-Performance Computer Architecture,
2000.

[7] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and
D. Walker. Solving Problems on Concurrent Processors,
volume Volume I: General Techniques and Regular Prob-
lems. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[8] IBM systems & technology group. how DB2 exploits
IBM @serverp5 and AIX 5L simultaneous multithread-
ing, October 2004. www-1.ibm.com/servers/eserver/
pseries/hardware/whitepapers/p5 db2.pdf.

[9] R. N. Kalla, B. Sinharoy, and J. M. Tendler. Ibm power5
chip: A dual-core multithreaded processor. IEEE Micro,
24(2):40–47, 2004.

[10] G. A. Koenig and L. V. Kalé. Using message-driven objects
to mask latency in grid computing applications. In In Proc.
of 19th International Parallel and Distributed Processing
Symposium. IEEE Computer Society, 2005.

[11] LAM-MPI homepage. http://www.lam-mpi.org/.
[12] X. Leroy. LinuxThreads.

http://pauillac.inria.fr/x̃leroy/linuxthreads/.
[13] LLCbench. http://icl.cs.utk.edu/projects/llcbench/.
[14] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M.

Tullsen. Tuning compiler optimizations for simultaneous
multithreading. International Journal of Parallel Program-
ming, 27(6):477–503, 1999.

[15] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen,
and S. J. Eggers. Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithread-
ing. ACM Trans. Comput. Syst., 15(3):322–354, 1997.

[16] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-threading technology architecture and
microarchitecture. Intel Technology Journal, February 2002.

[17] MPI: A Message-Passing Interface Standard. Message Pass-
ing Interface Forum, Mar. 1994.

[18] NASA. NAS parallel benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[19] Oprofile system-wide profiler for linux.
http://oprofile.sourceforge.net.

[20] J. A. Redstone, S. J. Eggers, and H. M. Levy. An analysis of
operating system behavior on a simultaneous multithreaded
architecture. In ASPLOS-IX: Proceedings of the ninth inter-
national conference on Architectural support for program-
ming languages and operating systems. ACM Press, 2000.

[21] Y. Ruan, V. S. Pai, E. Nahum, and J. M. Tracey. Evaluat-
ing the impact of simultaneous multithreading on network
servers using real hardware. In SIGMETRICS ’05: Proceed-
ings of the 2005 ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems.
ACM Press, 2005.

[22] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling
for a simultaneous multithreaded processor. In ASPLOS-IX:
Proceedings of the ninth international conference on Archi-
tectural support for programming languages and operating
systems. ACM Press, 2000.

[23] N. Tuck and D. M. Tullsen. Initial observations of the si-
multaneous multithreading pentium 4 processor. In 12th In-
ternational Conference on Parallel Architectures and Com-
pilation Techniques. IEEE Computer Society, 2003.

[24] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Sup-
porting fine-grained synchronization on a simultaneous mul-
tithreading processor. In Proc. of the Fifth International
Symposium on High-Performance Computer Architecture,
1999.

[25] B. Vinter. PastSet a Structured Distributed Shared Memory
System. PhD thesis, Department of Computer Science, Uni-
versity of Tromsø, 1999.

Appendix A – Published papers In Proc. of ICCP Workshops 2006

127

7.5 Systems Support for Remote Visualization of Genomics Applications over Wide Area
Networks

 129

7.5 Systems Support for Remote Visualization of Genomics
Applications over Wide Area Networks

This paper was published in Proceedings of GCCB 2006 [49].

Systems Support for Remote Visualization of Genomics
Applications over Wide Area Networks

Lars Ailo Bongo1, Grant Wallace2, Tore Larsen1,
Kai Li2, Olga Troyanskaya2,3

1 Department of Computer Science, University of Tromsø, N-9037 Tromsø, Norway.
2 Department of Computer Science, Princeton University, Princeton NJ 08544, USA.

3 Lewis-Sigler Institute for Integrative Genomics, Princeton University,

Princeton NJ 08544, USA.

{larsab, tore}@cs.uit.no

{gwallace, li, ogt}@cs.princeton.edu

Abstract. Microarray experiments can provide molecular-level insight into a
variety of biological processes, from yeast cell cycle to tumorogenesis.
However, analysis of both genomic and protein microarray data requires
interactive collaborative investigation by biology and bioinformatics
researchers. To assist collaborative analysis, remote collaboration tools for
integrative analysis and visualization of microarray data are necessary. Such
tools should: (i) provide fast response times when used with visualization-
intensive genomics applications over a low-bandwidth wide area network, (ii)
eliminate transfer of large and often sensitive datasets, (iii) work with any
analysis software, and (iv) be platform-independent. Existing visualization
systems do not satisfy all requirements. We have developed a remote
visualization system called Varg that extends the platform-independent remote
desktop system VNC with a novel global compression method. Our evaluations
show that the Varg system can support interactive visualization-intensive
genomic applications in a remote environment by reducing bandwidth
requirements from 30:1 to 289:1.

Keywords: Remote visualization, genomics collaboration, Rabin fingerprints,
compression.

1. Introduction

Interactive analysis by biology and bio1informatics researchers is critical in extracting
biological information from both genomic [1], [2] and proteomic [3], [4], [5], [6], [7]
microarrays. Many supervised and unsupervised microarray analysis techniques have

1 To be published in Springer-Verlag LNBI 4360.

Appendix A – Published papers In Proc. of GCCB 2006

131

been developed [8], [9], [10], [11], and the majority of these techniques share a
common need for visual, interactive evaluation of results to examine important
patterns, explore interesting genes, or consider key predictions and their biological
context.

Such data analysis in genomics is a collaborative process. Most genomics studies
include multiple researchers, often from different institutions, regions, and countries.
Of the 20 most relevant papers returned by BioMed Central with the query
“microarray,” 14 had authors located at more than one institution, and 7 had authors
located on either different continents or cross continents. Such collaboration requires
interactive discussion of the data and its analysis, which is difficult to do without
sharing a visualization of the results. To make such discussions truly effective, one in
fact needs not just static images of expression patterns, but an opportunity to explore
the data interactively with collaborators in a seamless manner, independent of the
choice of data analysis software, platforms, and of researchers’ geographical
locations.

We believe that an ideal collaborative, remote visualization system for genomic
research should satisfy three requirements. First, synchronized remote visualization
should have a fast response time to allow collaborating parties to interact smoothly,
even when using visualization-intensive software across a relatively low-bandwidth
wide area network (WAN). Second, collaborating parties should not be required to
replicate data since microarray datasets can be large, sensitive, proprietary, and
potentially protected by patient privacy laws. Third, the system should allow
collaborators to use any visualization and data analysis software running on any
platform.

Existing visualization systems do not satisfy all three requirements above.
Applications with remote visualization capabilities may satisfy the first and the
second requirements, but typically not the third as require universal adoption among
participating collaborators. Thin-client remote visualization systems, such as VNC
[12], Sun Ray [13], THINC [14], Microsoft Remote Desktop [15] and Apple Remote
Desktop [16] satisfy only the second requirement because they do not perform
intelligent data compression and all except VNC are platform-dependent. Web
browser-based remote visualization software can satisfy the third requirement, but not
the first two because these systems are not interactive and do not optimize the
network bandwidth requirement.

This paper describes the design and implementation of a remote visualization
system called Varg that satisfies all three requirements proposed above. To satisfy
the first requirement, the Varg system implements a novel method to compress
redundant two-dimensional pixel segments over a long visualization session. To
satisfy the second and the third requirements, the Varg system is based on a platform-
independent remote desktop system VNC, whose implementation allows remote
visualization of multiple applications in a network environment.

The main contribution of the Varg system is the novel method for compressing 2-D
pixel segments for remote genomic data visualization. Genomic data visualization
has two important properties that create opportunities for compression. The first is

Appendix A – Published papers In Proc. of GCCB 2006

132

that datasets tends to be very large. A microarray dataset typically consists of a
matrix of expression values for thousands or tens of thousands of genes (rows). The
second is that due to the limitation of display scale and resolution, researchers
typically view only tens of genes at a time by frequently scrolling visualization frames
up and down. As a result, the same set of pixels will be moved across the display
screen many times during a data analysis and visualization session. We propose a
novel method to identify, compress and cache 2-D pixels segments. Not sending
redundant segments across the WAN greatly improves the effective compression ratio
reducing network bandwidth requirements for remote visualization.

Our initial evaluation shows that the prototype Varg system can compress display
information of multiple genomic visualization applications effectively, typically
reducing the network bandwidth requirement by two orders of magnitude. We also
demonstrate that this novel method is highly efficient and introduces a minimal
overhead to the networking protocol; and that the Varg system can indeed support
multiple visualization-intensive genomic applications in a remote environment
interactively with minimal network bandwidth requirement.

2. System Overview

Figure 1: Remote visualization overview. The VNC server sends screen updates to the
VNC client. The Varg system caches updates and provides compression by replacing updates
already in the client cache with the cache index.

Varg is a network bandwidth optimized, platform-independent system that allows
users to interactively visualize multiple remote genomic applications across a WAN.
The architecture of Varg is based on a client-server model as shown in Figure 1. Varg
leverages the basic VNC protocol (called RFB) to implement platform-independent

Appendix A – Published papers In Proc. of GCCB 2006

133

remote visualization and extends it with a high-speed 2-D pixel segment compression
module with a cache in the server and a decompression module with a cache in the
client. The Varg server runs multiple visualization applications, compresses their
two-dimensional pixel segments, and communicates with the remote Varg client. The
client decompresses the data utilizing a large cache and performs remote
visualization.

The caches of the Varg server and client cooperate to minimize the required
network bandwidth by avoiding redundant data transfers over the network. Unlike
other global compression methods for byte data streams [17, 18], Varg is designed to
optimize network bandwidth for remote data transfers of 2-D pixels segments
generated by genomic visualization applications on the VNC server.

Since Varg is built on the VNC protocol, it allows multiple users to conveniently
visualize and control a number of applications in a desktop across a network. When
an owner of some sensitive or very large data set wants to collaborate with a remote
collaborator, she can run one or more analysis programs that access her sensitive data
on her Varg server, which connects with a Varg client on her collaborator’s site. The
researchers can then use these programs in a synchronized fashion across the network.
Although the collaborator can visualize and control the application programs in the
same way as the owner, the Varg client receives only visualization pixels from the
Varg server; no sensitive data is ever transferred across the network. We expect that
this feature may be especially useful to researchers working with clinical data due to
privacy and confidentiality concerns.

3. Compressing 2-D Pixel Segments

The main idea in the Varg system is to compress visualization pixel data at a fine-
grained 2-D pixel segment level. The system compresses 2-D pixel segments by
using a global compression algorithm to avoid sending previously transferred
segments and by applying a slow, but efficient, local compression [19] on the unique
segments. This section describes Varg’s basic compression algorithm, explains our
novel content-based anchoring algorithm for 2-D pixel segments, and outlines an
optimization of the compression algorithm using a two-level fingerprinting scheme
that we developed.

3.1. Basic Compression Algorithm

The basic compression algorithm uses fingerprints together with cooperative caches
on the Varg server and client to identify previously transferred pixel segments, as
shown in Figure 2.

Appendix A – Published papers In Proc. of GCCB 2006

134

Figure 2: Compression scheme. The screen is divided into regions which are cached at both
ends of the low-bandwidth network. Fingerprints are sent in place of previously sent regions.

The algorithm on the Varg server is:

• Process an updated region of pixels from the VNC server

• Segment the region into 2-D pixel segments

• For each segment, compute its fingerprint and use the fingerprint as the
segment’s identifier to lookup in the server cache. If the segment has not been
sent to the Varg client previously, compress the segment with a local
compression method and send the segment to the client. Otherwise, send the
fingerprint instead.

The algorithm on the Varg client is:

• If the received data is a 2-D pixel segment, decompress it with a
corresponding algorithm, write the fingerprint and segment to the cache, and
then pass the segment to the VNC client

• If the received data is a fingerprint, retrieve the segment of the fingerprint
from its cache and then pass the segment to the VNC client.

The basic algorithm is straightforward and its high-level idea is similar to previous
studies on using fingerprints (or secure hashes) as identifiers to avoid transfer of
redundant data segments [20, 21], [22], [17], [18]. The key difference is that previous
studies are limited to deal with one-dimensional byte streams and have not addressed
the issue of how to anchor 2-D pixel segments. In a later section, we will also present
an algorithm to use short fingerprints to compress repeated 2-D pixel segments.

3.2. Content-Based Anchoring of 2-D Pixel Segments

One basis of our approach is content-based anchoring where the 2-D region of
display-pixels is divided into segments based on segment content. A simpler
approach would be to anchor segments statically (such as an 8×8 pixel grid, used in
MPEG compression algorithms). The problem with a static approach is that the
anchoring is sensitive to screen scrolls. When a user scrolls her visualization by one
pixel, the segmentation of 2-D pixels will be shifted by one pixel relative to the
displayed image. Even if the entire scrolled screen has been transferred previously,

Appendix A – Published papers In Proc. of GCCB 2006

135

the content of segments will typically have changed, giving a new fingerprint and
requiring a new transfer across the WAN.

Our approach is to perform content-based anchoring instead of static anchoring.
The anchoring algorithm takes its input from the frame-buffer, and returns a set of
rectangular segments which subdivide the screen. The goal of the algorithm is to
consistently anchor the same groups of pixels no matter where they are located on the
screen. The main difficulty in designing a content-based anchoring algorithm for a
screen of pixels is that the data is two dimensional.

Manber introduced a content-based technique to anchor one-dimensional data
segments for finding similar files [22]. His method applies a Rabin fingerprint filter
[23] over a byte data stream and identifies anchor points wherever the k least
significant bits of the filter output are zeros. With a uniform distribution, an anchor
point should be selected every 2k bytes.

Our algorithm combines the statically divided screen approach with Manber’s
technique. The algorithm is based on the observation that content motion in
microarray analysis is often due to vertical or horizontal scrolling. However, it is not
practical to do redundancy detection both horizontally and vertically due to the
computational cost and reduced compression ratio caused by overlapping regions.
Therefore, we estimate whether the screen has moved mostly horizontally or mostly
vertically using Manber’s technique. We generate representative fingerprints for
every 32nd row, and every 32nd column for the screenshot, and compare how many
fingerprints are similar to the row and column fingerprints of the previous screenshot.
Assuming that horizontal scrolling or moving will change most row fingerprints, but
only a few column fingerprints, we can compare the percentage of similar row and
column fingerprints to estimate which movement is dominant.

Figure 3: A portion of the screen that is divided into segments that move with the content.

For predominately vertical motion we statically divide the screen into m columns
(m times screen height) and divide each column into regions by selecting anchoring
rows. The anchoring rows are selected based on their fingerprint calculated using a

Appendix A – Published papers In Proc. of GCCB 2006

136

four byte at a time Rabin fingerprint implementation. The column segmentation is
ideal for scrolling because the regions move vertically with the content. If we detect
predominately horizontal motion instead, we run the same algorithm but divide the
screen into rows first and then divide each row into regions by selecting anchoring
columns.

Screen data can include pathological cases when large regions of the screen have
the same color. For such regions, the fingerprints will be identical. Thus, either all or
no fingerprints will be selected. To avoid such cases, our algorithm does fingerprint
selection in three steps. First all fingerprints are calculated. Second, we scan the
fingerprints and mark fingerprints as similar if at least s subsequent fingerprints are
identical. Third, we select fingerprints using the k most significant bits, while
imposing a minimum distance m between selected fingerprints. Also, the first and last
rows are always selected.

Empirically we have found that the best results are achieved for s = 8, m = 16 or
32, and k such that each 64th row on the average is selected. Also, such similar
regions compress well using a local compression algorithm such as zlib [24] due to
their repeated content. We have found empirically that imposing a maximum distance
does not improve the compression ratio or compression time.

3.3. An Optimization with Two-Level Fingerprinting

An important design issue in using fingerprints as identifiers to detect previously
transferred data segments is the size of a fingerprint. Previous systems typically chose
a secure hash, such as 160-bit SHA-1 [25], as a fingerprint so that the probability of a
fingerprint collision can be lower than a hardware bit error rate. However, since the
global compression ratio is limited to the ratio of the average pixel segment size to the
fingerprint size, increasing the fingerprint size reduces this limit on the compression
ratio.

To maximize the global compression ratio and maintain a low probability of
fingerprint collision, we use a two-level fingerprinting strategy. The low-level
fingerprinting uses 32-bit Rabin fingerprint of fingerprints, one for each 2-D pixel
segments. Although using such short fingerprints will have a higher probability of a
fingerprint collision, they can be computed quickly using the fingerprints already
computed for the anchoring, thereby maintaining a high global compression ratio.

The high-level fingerprinting uses SHA-1 hashes as fingerprints. It computes a
160-bit fingerprint for each of the transferred pixel segments. The server computes
such a long fingerprint as a strong checksum to detect low-level fingerprint collisions.
When a low-level fingerprint collision is detected, the server resends the pixel
segment covered by the long fingerprint.

Another way to look at this method is that the server may send two sets of updates,
the first based on short fingerprints that can have collisions, and the second set of
updates consisting of corrections in case of short fingerprint collisions. This method
reduces the user perceived end-to-end latency.

Appendix A – Published papers In Proc. of GCCB 2006

137

4. Implementation

We have implemented a prototype system (called Varg) consisting of a sequential
server and a client, as described in Section 2. The Varg server implements the 2-D
pixel segment compression algorithm and Varg client implements the corresponding
decompression algorithm described in the previous section.

The integration of Varg compression, decompression, and cache modules with the
VNC client and server are simple. VNC has only one graphics primitive: “Put
rectangle of pixels at position (x, y)” [12]. This allows separating the processing of
the application display commands from the generation of display updates to be sent to
the client. Consequently the server only needs to detect updates in the frame-buffer,
and can keep the client completely stateless.

Varg employs a synchronized client and server cache architecture that implements
an eventual consistency model using the two-level fingerprinting mechanism. The
client and server caches are initialized at Varg system start time. The client cache is
then synchronized by the updates sent from the server. The compression algorithm
requires the client cache to maintain the invariant that whenever the client receives a
fingerprint, its cache must have the fingerprint’s segment. Since short fingerprints
may have collisions, our prototype allows the client cache to contain any segment of
the same short fingerprint at a given time. The long fingerprint will eventually
trigger an update to replace it with a recently visualized segment.

5. Evaluation

We have conducted an initial evaluation of the Varg prototype system. The goal of
the evaluation is to answer the following two questions:

• What are the network communication requirements for remote visualization
of genomic applications?

• How much compression of network communication data can the Varg
prototype system achieve for remote visualization of genomic applications?

To answer the first question, we have measured the difference between available
bandwidth on current WANs and the required bandwidth for remote visualization of
Genomic applications. To answer the second question, we used a trace-driven VNC
emulator to find how much the Varg system can reduce the communication time for
three genomic applications. In the rest of this section, we will present our
experimental testbed and then our evaluation results to answer each question.

Appendix A – Published papers In Proc. of GCCB 2006

138

5.1. Experimental Testbed

Figure 4: Experimental testbed for the bandwidth requirements and compression ratio
evaluation.

In order to compare compression ratios of various compression algorithms, our
experimental testbed (Figure 4) employs two identical Dell Dimension 9150, each
with one dual-core 2.8 GHz Pentium D processor and 2 GB of main memory. Both
computers run Fedora Core 4, with Linux kernel 2.6.17SMP.

The server runs with a screen resolution of 1280x1024 pixels and with a color
depth of 32 bits per pixel. We also run an experiment on a display wall with a
resolution of 3328x1536 pixels.

To compare different systems, an important requirement is to drive each system
with the same remote visualization workloads. To accomplish this goal, we have used
a trace-driven approach. To collect realistic traces, we used the Java
AWTEventListener interface to instrument three genomic microarray analysis
applications. We used these to record a 10-minute trace containing all user input
events for each case. Later the traces were used to create a set of screenshots, each
taken after playing back a recorded mouse or keyboard event that changes the screen
content. The screenshots are used by a VNC simulator that copies a screenshot to a
shadow framebuffer, and invokes the Varg server, which does change detection and
compression before sending the updates to the client.

5.2. Network Communication Requirements

In order to answer the question about the network communication requirements for
remote visualization of genomic applications, we need to answer several related
questions including the composition of communication overhead, the characteristics
of available networks, the behavior of remote visualization of genomic applications,
and the required compression ratio to meet certain interactive requirements. Our
finding is that genomic applications require high compression ratio to compress the
pixel data to use existing WAN connections.

The network communication overhead can be expressed with a simple formula:

Appendix A – Published papers In Proc. of GCCB 2006

139

C
RB

S
L +

!
+2 (1)

where L is the network latency, S is the data to be transferred, B is the
network bandwidth, R is compression ratio, and C is compression time. The formula
considers compression a part of the network communication mechanism, thus the
total communication overhead includes the round-trip network latency plus the time
to compress and transfer the data. This formula ignores the overheads of several
software components such as the VNC client and server. Also, we usually ignore
decompression time since it is low compared to the compression time (less than
1msec).

Based on this formula, it is easy to see that different network environments have
different implications for remote visualization. Conventional wisdom assumes that
WANs have low bandwidth. To validate this assumption we used Iperf [26] to
measure the TCP/IP throughput between a server and a client connected using various
local and wide area networks. The following table shows that the WAN throughput
ranges from 0.2 to 2.13 Mbytes/sec (Table 1). This is up to 400 times lower than for
Gigabit Ethernet. Also, the two-way latency is high, ranging from 11—120 ms.

Table 1: TCP/IP bandwidth and latency for client-server applications run on local area and
wide area networks.

Network Bandwidth (Mbytes/sec) Latency (msec)

Gigabit Ethernet 80.00 0.2

100 Mbps Ethernet 8.00 0.2

Princeton – Boston 2.13 11

Princeton – San Diego 0.38 72

Princeton (USA(– Tromsø (Norway) 0.20 120

Appendix A – Published papers In Proc. of GCCB 2006

140

Figure 5: For regions larger than 80×80 pixels, the transmission time dominates the total
communication overhead.

Based on the characteristics of the available networks, an interesting question is
what size of network transfers contribute significantly to the total communication
overhead. Figure 5 shows how much transmission contributes to the communication
time depending on the amount of pixel data sent over the network connection. For all
WAN networks, the ratio of transmission time to communication time is more than
50% for regions more than about 80×80 pixels or 25 Kbytes.

Two natural questions are, how frequent are screen updates larger than 80×80
pixels for genomics applications, and are the update sizes different compared to
Office applications usually used in remote collaboration. To answer these questions,
we measured the average VNC update size for three sessions using three applications
on Windows XP:

1. Writing this paper in Microsoft Word.

2. Preparing the figures for this paper in Microsoft PowerPoint.

3. Microarray analysis using the popular Java Treeview software [27].

For each application, we recorded a session lasting about 10 minutes. We
instrumented the VNC client to record the time and size of all screen updates
received. We correlated these to when the update requests were sent, to get an
estimate for the size of each screen update.

Appendix A – Published papers In Proc. of GCCB 2006

141

Figure 6: The screen regions update sizes for the Java Treeview application are much larger
than for the Office applications. About 50% of the messages are more than 80x80 pixels.

Figure 7: Compression ratio required to keep transmission overhead below a given
threshold for the Princeton-San Diego network connection. The x-axis shows the percentiles for
the Treeview message sizes in Figure 6. Compression time is not taken into account.

The results show that updated regions are much larger for the genomic application
than for the two office applications (Figure 6). About 50% of the messages are larger

Appendix A – Published papers In Proc. of GCCB 2006

142

than 80×80 pixels, and hence for these the transmission time will be longer than the
network latency for the WANs. Another observation is that the genomic application
has a higher update frequency than office applications. Combined these increase the
required bandwidth.

To see the impact of compressing pixel data for remote visualization, we have
calculated the compression ratio necessary to maintain the transmission time below a
given threshold for a cross-continent WAN (Figure 7). We have several observations
from the results. First, it requires a compression ratio of about 25:1 to keep the
transmission time below 10 msec for most of the network traffic. Second, the
compression ratio required to maintain the same transmission time increases rapidly
for the top two percentiles. Third, as the message size increases, the compression ratio
required for the different transmission times increases.

The following section examines which compression ratio and compression time gives
the best transmission time.

5.3. Compression results

To answer the question about what compression ratios the Varg system can achieve
for remote visualization of genomic applications, we have measured compression
ratios, compression cost and the reduction of transmission time.

Table 2: Compression ratio for four genomic data analysis applications.

Differencing

2D pixel
segment

compression

Ziv-Lempel
(zlib)

Total
compression

TreeView 1.89 5.74 19.98 216.76

TreeView-Cube 2.87 4.05 24.88 289.19

TMeV 1.52 2.46 7.90 29.54

GeneVaND 3.15 2.72 10.85 92.96

To measure the compression ratios the Varg system can achieve, we have used four
15-minute traces recorded using: Java Treeview [27], Java Treeview on the display
wall [28], TMeV [29], and GeneVaND [30]. For Treeview, the visualizations mostly
are scrolling and selecting regions from a single bitmap. GeneVaND has relatively
small visualization windows and the trace includes 3D visualizations as well as some
2D visualizations. TMeV trace includes different short visualizations.

The total compression ratios by our method are 217, 289, 30 and 93 for the four
traces respectively (Table 2). These high compression ratios are due to a combination
of three compression methods: Region differencing, 2D pixel segment compression,
and zlib local compression. We have several observations based on these data. First,
the combined compression results are excellent. Second, zlib contributes the most in
all cases, but zlib alone is not enough to achieve high compression ratios. Third, the
2D pixel segment compression using fingerprinting contributes fairly significantly to

Appendix A – Published papers In Proc. of GCCB 2006

143

the compression ratio ranging from 2.5 to 5.7. This is due to the fact that the
differencing phase has already removed a large amount of redundant segments.

Table 3: Average compression time per screen update. The total compression time depends
on the application window size, and how well the differencing and 2D pixel segment
compression modules compress the data before zlib is run.

 Differencing 2D pixel
segment

compression

Ziv-Lempel
(zlib)

SHA-1

TreeView 0.9 ms 3.8 ms 11.1 ms 3.5 ms

TreeView-Cube 2 ms 7.9 ms 30.2 ms 7 ms

TMeV 1.3 ms 6.6 ms 83.4 ms 7.7 ms

GeneVaND 1 ms 2.7 ms 10.1 ms 1.5 ms

To understand the contribution of different compression phases to the compression
time, we measured the time spent in each module (Table 2). The most significant
contributor is zlib, which consumes more than 10 ms in all cases. In TMeV it
consumes more than 83ms, since more data is sent through this module due to the low
compression ratios for the differencing and 2D pixel segment compression modules.
The second most significant contributor is anchoring, but it is below 8 ms even for the
display wall case. Although SHA-1 calculation contributes up to 8ms in the worst
case, its computation overlaps with network communication.

Figure 8: Communication time distribution for update messages over the Princeton—
Boston network. For Treeview and GeneVaND more than 90% of the communication
overheads are less than 100ms. The update size distribution differs from Figure 5, since a more
accurate tracing tool was used to capture the trace.

Appendix A – Published papers In Proc. of GCCB 2006

144

Figure 9: Communication time distribution for the Princeton—Tromsø network. For
Treeview and GeneVaND more than 80% of the communication overheads are less than
200ms.

Figure 10: Communication time distribution with VNC compression for the Princeton—
Boston network. Compared to Varg the communication time shown in Figure 9 significantly
increases for large messages.

Appendix A – Published papers In Proc. of GCCB 2006

145

To understand the reduction in communication time, we recorded for each update
the number of compressed bytes returned by each module, and the compression time
for each module. This allows us to use Formula 1 to estimate the communication time
for each of the WANs in Table 1. The cumulative distribution of communication times
for the highest and lowest bandwidth networks are shown in Figure 8 and Figure 9.
Without compression the communication overhead for the largest updates is several
seconds. For the Princeton—Boston network the communication overhead with Varg
is less than 100ms for over 90% of the messages (except for TMeV). On the
Princeton—Tromsø network, for 80% of the update operations the communication
overhead is less than 200ms, of which the latency contributes to 112 ms.

To compare our compression against the zlib compression used in many VNC
implementations for low-bandwidth networks, we disabled the 2D pixel segment
compression module in Varg, and did a similar calculation as above (Figure 10). The
results show a significant increase in communication time, especially for Treeview
where the communication overhead is more than 300ms for about 50% of the
messages.

6. Related Work

Compression algorithms used by VNC [12] implementations either take advantage
of neighboring region color similarities, use general purpose image compression [31]
such as JPEG [32], or general purpose compression such as zlib [19]. Neighboring
region redundancy compression is fast but has low compression ratio. Therefore zlib
is usually used for WANs. Our results show that the compression time for zlib is high.
JPEG is lossy, and is not suited for Microarray analysis, since it may introduce visual
artifacts that may influence the biologist’s interpretation of the data.

Remote visualization systems that use high level graphics primitives for
communication, such as Microsoft Remote Desktop [15], are able to cache bitmaps
used for buttons and other GUI components. However, the high-level graphics
primitives do not compress well leading to performance problems in WANs [13, 33].

Encoders used for streaming video, such as MPEG [34], compress data by
combining redundancy detection and JPEG type compression. Usually a static pixel
grid is used, which we have shown gives worse performance than our approach. In
addition the MPEG compression is lossy and there are no real time encoders
available. TCC-M [35] is a block movement algorithm designed for thin-client
visualization that use unique pixels in an image (feature sets) to detect 2D region
movement. However, redundancy is only detected between the two latest screen
updates thus reducing the compression ratio.

Earlier one-dimensional fingerprinting approaches [17, 18] require the two-
dimensional screen to be converted to some one-dimensional representation. This will
split up two-dimensional regions on the screen causing the size of the redundant
regions to decrease, hence reducing the compression ratio.

Appendix A – Published papers In Proc. of GCCB 2006

146

Access Grid [36] provides multiple collaborators with multimedia services by
multicasting audio, video and remote desktop displays such as VNC. However,
Access Grid does not provide compression to reduce the network bandwidth
requirement for specific data visualization such as genomic data exploration. Since
Varg extends the VNC protocols to compress 2D segments for genomic data
visualization, it can effectively work together with Access Grid systems to support
multi-party collaborations.

7. Conclusion

This paper presents the design and implementation of the Varg system: a network
bandwidth optimized, platform-independent system that allows users to interactively
visualize multiple remote genomic applications across a WAN. The paper has
proposed a novel method to compress 2-D pixel segments by using fingerprinting and
proposed a two-level fingerprinting method to improve global compression, and to
reduce compression time.

We also found that genomic applications have much higher network bandwidth
requirements than office applications. They require substantial compression of
network data to achieve interactive remote data visualization on some examples of
existing WAN.

An initial evaluation of our prototype system shows that the proposed 2-D pixel
segment compression method works well and imposes only modest overheads. By
combining with zlib and differencing compression methods, the prototype system
achieved compression ratios ranging from 30:1 to 289:1 for four genomic
visualization applications that we have experimented with. Such compression ratios
allow the Varg system to run remote visualization of genomic data analysis
applications interactively across WANs with relatively low available network
bandwidths.

8. Acknowledgments

This work was done while LAB and TL were visiting Princeton University and
was supported in parts by Princeton University, The University of Tromsø, The
Research Council of Norway Project No. 164825 159936/V30, 155550/420, NSF
grants CNS-0406415, EIA-0101247, CNS-0509447, CCR-0205594, and CCR-
0237113, and NIH grant R01 GM071966. OGT is an Alfred P. Sloan Research
Fellow

9. References

1. Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ: High density synthetic
oligonucleotide arrays. Nature Genetics 1999, 21:20-24.

Appendix A – Published papers In Proc. of GCCB 2006

147

2. Schena M, Shalon D, Davis RW, Brown PO: Quantitative Monitoring of
Gene-Expression Patterns with a Complementary-DNA Microarray.
Science 1995, 270(5235):467-470.

3. Cahill DJ, Nordhoff E: Protein arrays and their role in proteomics. Adv
Biochem Eng Biotechnol 2003, 83:177-187.

4. Sydor JR, Nock S: Protein expression profiling arrays: tools for the
multiplexed high-throughput analysis of proteins. Proteome Sci 2003,
1(1):3.

5. Oleinikov AV, Gray MD, Zhao J, Montgomery DD, Ghindilis AL, Dill K:
Self-assembling protein arrays using electronic semiconductor
microchips and in vitro translation. J Proteome Res 2003, 2(3):313-319.

6. Huang RP: Protein arrays, an excellent tool in biomedical research. Front
Biosci 2003, 8:d559-576.

7. Cutler P: Protein arrays: the current state-of-the-art. Proteomics 2003,
3(1):3-18.

8. Kerr MK, Churchill GA: Bootstrapping cluster analysis: assessing the
reliability of conclusions from microarray experiments. Proc Natl Acad
Sci U S A 2001, 98(16):8961-8965.

9. Yeung KY, Haynor DR, Ruzzo WL: Validating clustering for gene
expression data. Bioinformatics 2001, 17(4):309-318.

10. Mendez MA, Hodar C, Vulpe C, Gonzalez M, Cambiazo V: Discriminant
analysis to evaluate clustering of gene expression data. FEBS Lett 2002,
522(1-3):24-28.

11. Datta S, Datta S: Comparisons and validation of statistical clustering
techniques for microarray gene expression data. Bioinformatics 2003,
19(4):459-466.

12. Richardson T, Stafford-Fraser Q, Wood KR, Hopper A: Virtual network
computing. Ieee Internet Computing 1998, 2(1):33-38.

13. Schmidt BK, Lam MS, Northcutt JD: The interactive performance of
SLIM: a stateless, thin-client architecture. In: Proceedings of the
seventeenth ACM symposium on Operating systems principles. Charleston,
South Carolina, United States: ACM Press; 1999.

14. Baratto RA, Kim LN, Nieh J: THINC: a virtual display architecture for
thin-client computing. In: Proceedings of the twentieth ACM symposium on
Operating systems principles. Brighton, United Kingdom: ACM Press; 2005.

15. Cumberland BC, Carius G, Muir A: Microsoft Windows NT Server 4.0,
Terminal Server Edition: Technical Reference. In. Edited by Press M.
Redmond, WA; 1999.

16. Apple Remote Desktop [http://www.apple.com/remotedesktop/]
17. Spring NT, Wetherall D: A protocol-independent technique for

eliminating redundant network traffic. In: Proceedings of the conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communication. Stockholm, Sweden: ACM Press; 2000.

18. Muthitacharoen A, Chen B, Mazières D: A low-bandwidth network file
system. In: Proceedings of the eighteenth ACM symposium on Operating
systems principles. Banff, Alberta, Canada: ACM Press; 2001.

Appendix A – Published papers In Proc. of GCCB 2006

148

19. Ziv J, Lempel A: A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory 1977 23(3):337 - 343.

20. Broder A: Some applications of Rabin's fingerprinting method. In:
Sequences II: Methods in Communications, Security, and Computer Science:
1993; 1993.

21. Broder A: On the Resemblance and Containment of Documents. In:
Proceedings of the Compression and Complexity of Sequences 1997. IEEE
Computer Society; 1997.

22. Manber U: Finding similar files in a large file system. In: Proceedings of
the Winter 1994 USENIX Technical Conference. San Francisco, CA; 1994.

23. Rabin MO: Fingerprinting by random polynomials. In: Technical Report
TR-15-81. Center for Research in Computing Technology, Harvard
University; 1981.

24. DEFLATE Compressed Data Format Specification version 1.3. In: RFC
1951. The Internet Engineering Task Force; 1996.

25. Secure Hash Standard. In: FIPS PUB 180-1. National Institute of
Standards and Technology; 1995.

26. Iperf webpage [http://dast.nlanr.net/Projects/Iperf/]
27. Saldanha AJ: Java Treeview--extensible visualization of microarray data.

Bioinformatics 2004, 20(17):3246-3248.
28. Wallace G, Anshus OJ, Bi P, Chen HQ, Clark D, Cook P, Finkelstein A,

Funkhouser T, Gupta A, Hibbs M et al: Tools and applications for large-
scale display walls. Ieee Computer Graphics and Applications 2005,
25(4):24-33.

29. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa
M, Currier T, Thiagarajan M et al: TM4: a free, open-source system for
microarray data management and analysis. Biotechniques 2003,
34(2):374-378.

30. Hibbs MA, Dirksen NC, Li K, Troyanskaya OG: Visualization methods for
statistical analysis of microarray clusters. BMC Bioinformatics 2005,
6:115.

31. Richardson T: The RFB Protocol version 3.8. In.: RealVNC Ltd; 2005.
32. Gregory KW: The JPEG still picture compression standard. Commun

ACM 1991, 34(4):30-44.
33. Lai AM, Nieh J: On the performance of wide-area thin-client computing.

ACM Trans Comput Syst 2006, 24(2):175-209.
34. Gall DL: MPEG: a video compression standard for multimedia

applications. Commun ACM 1991, 34(4):46-58.
35. Christiansen BO, Schauser KE: Fast Motion Detection for Thin Client

Compression. In: Proceedings of the Data Compression Conference (DCC
'02). IEEE Computer Society; 2002.

36. Access Grid [http://www.accessgrid.org/]

Appendix A – Published papers In Proc. of GCCB 2006

149

151

Chapter 8

Appendix B - Unpublished papers

8.1 The Longcut Wide Area Network Emulator: Design and
Evaluation

This paper has been published as a technical report [42].

The Longcut Wide Area Network Emulator: Design
and Evaluation

Lars Ailo Bongo
Department of Computer Science

University of Tromsø
Norway

Email: larsab@cs.uit.no

Abstract— Experiments run on a Grid, consisting of clusters
administered by multiple organizations connected by shared wide
area networks (WANs), may not be reproducible. First, traffic
on the WAN cannot be controlled. Second, allocating the same
resources for subsequent experiments can be difficult. Longcut
solves both problems by splitting a single cluster into several
parts, and for each part having one node emulating a WAN link
by delaying messages sent through it. The delay is calculated
using latency and bandwidth measurements collected using the
Network Weather Service and a parallel application monitor. We
evaluate the precision, usability for WAN collective operation
research, and scalability of Longcut.

I. INTRODUCTION

A Grid consists of clusters administered by multiple organi-
zations connected by shared wide area networks. Two factors
make system research difficult in such an environment. First,
experiments may not be reproducible since the traffic on shared
WANs cannot be controlled [8]. Second, allocating exclusive
access, at the same time, to several clusters is usually not
supported by Grid middleware. To avoid these problems a large
cluster (or several small cluster) at a single site can be used
with emulated WAN links.

As input to the emulator we use latency and bandwidth
traces of real WAN links collected using the Network Weather
Service (NWS) [16] and the EventSpace parallel application
monitor [2].

The reaming of this paper proceeds as follows. Section II
describes related work. Section III describes the design and
implementation of the Longcut WAN emulator. The trace col-
lection tools are described, and the collected traces evaluated,
in section IV. Longcut is evaluated in section V, by doing
experiments measuring the precision, scalability, and usability
for WAN collective operation research of the collected traces.
Finally section VI concludes.

II. RELATED WORK

The design of Longcut is inspired by the Panda WAN
emulator [8]. Both use sub-cluster gateway nodes to run
WAN emulation code. Also, both are closely integrated with
the communication system. Our experiments differ from the
distributed work queue experiments in [8], in that we use
applications with higher communication frequency.

Other emulators are Netbed [15]. Dummynet [13], nse [7],
Trace Modulation [10] and ModelNet [14]. Most use low-level

rerouting which requires adding a module to the operating
system. Longcut runs unmodified applications on unmodified
operating systems.

Alternatives to emulation are simulation [5], [17] and live-
network experimentation. Simulation provides a controlled,
easy to change, and repeatable environment. However, higher
level abstraction must be used due to the scale of the system;
thus accuracy is lost. Live-network experimentation using
environments such as PlanetLab [11] is most realistic, but
often these are not designed for performance experiments. For
example PlanetLab uses virtualization to share resources and
protect services from each other, which makes it difficult to
control the load on resources.

There are several network monitoring tools [6], [9], [16] that
can be used to collect the traces used by Longcut. However,
most of the existing traces do not have the high sample rate
required for our experiments.

III. DESIGN AND IMPLEMENTATION

In many clusters a gateway node provides the single entry
point to the compute nodes, to the benefit of cluster users and
administrators.

The design of Longcut is similar to the Panda WAN
emulator [8]. A cluster is split into several sub-clusters. For
each sub-cluster we select one node to act as a gateway.
All communication to the sub-cluster is routed through its
gateway, which delays messages to emulate the higher latency
of WAN connections.

To implement Longcut, we need to change the communica-
tion paths used by applications, such that messages are routed
through the gateway where the emulation code is run. Being a
research tool, Longcut should be extensible such that users can
add their own emulation code, and configurable such that the
emulated topology can be easily changed. Our communication
system, PATHS [1], supports all this.

PATHS provide configurable paths though the communi-
cation system. A path consists of several wrappers that can
run arbitrary code. Figure 1 shows how we reconfigure a path
between two nodes to include a gateway node which runs the
emulation code in form of a wrapper. Extending Longcut with
other emulation approaches requires writing a new wrapper
(consisting of 3 functions).

Appendix B - Unpublished papers Technical report 2005-53

153

Fig. 1. Communication path with WAN emulation wrapper.

All communication paths used by an application are spec-
ified in a pathmap [2], which is created using three data
structures: cluster topology, application communication infor-
mation, and a mapping of application threads and communi-
cation buffers to the clusters. To re-route messages the cluster
topology is changed. To add emulation wrappers, scripts are
run that reconfigure the pathmap.

We have implemented two types of WAN emulation where
the delay is calculated using: (i) constant WAN latency-, and
bandwidth, and (ii) latency and bandwidth time series read
from trace files. The first type is useful for simple experiments
where different topologies are evaluated. The tools used to
collect the traces are described in the following section.

On the gateway there is one thread per TCP/IP connection.
In our initial implementation the threads waited either by
blocking (by calling usleep) or spinning. Spinning had to be
used since it was not possible to sleep for less than 30 ms.
This approach does not scale well, since gateways emulating
many WAN links can have many threads spinning at the same
time causing loss of accuracy (as reported in [4]).

To make sure only one thread spins at a time, we reimple-
mented the delay code as shown in figure 2. Threads block if
there is already one thread spinning. Threads are unblocked
when the currently spinning thread exists, or when they are
done waiting. The scalability of Longcut is evaluated in section
V.

IV. TRACE COLLECTION

Five cluster gateways were monitored:

vvgw.cs.uit.no : Pentium 4 3.2 GHz in Tromsø,
Norway.

psgw.cs.uit.no : dual Pentium II 300 MHz in
Tromsø, Norway.

clustis.idi.ntnu.no : dual Athlon MP 1.6 GHz in
Trondheim, Norway.

roadrunner.imada.sdu.dk : Pentium III 1.4 GHz in Odense,
Denmark.

benedict.aau.dk : dual-CPU Pentium III 733 MHz
in Aalborg, Denmark.

The topology, ping latency and link bandwidth of the WANs
between the monitored nodes are shown in figure 3.

A. Monitoring Tools

1) Network Weather Service: A widely used network mon-
itoring tools is the Network Weather Service (NWS) [16].

done_time = current_time() + wait_time;

if (somebody spinning)
// signaled by spinning thread
condition_wait();

while (1) {
current_time = timestamp();
if (current_time() > done_time) {

if (thread blocked)
// unblocked thread will do the
// spinning
condition_signal();

break;
}

for (each blocked thread)
if (current_time() > thread done_time)

// unblocked thread will exit
condition_signal();

// allow others to run
yield();

}

Fig. 2. Pseudo code for the delay function.

Fig. 3. The monitored topology (all intermediate routers are not shown).

Appendix B - Unpublished papers Technical report 2005-53

154

TABLE I

NWS TWO-WAY LATENCY IN MILLISECONDS.

benedict clustis psgw roadrunner vvgw
benedict 22.43 36.70 7.11 36.52
clustis 22.14 17.88 18.81 14.88
psgw 36.71 15.03 34.84 0.31
roadrunner 7.03 18.83 34.00 32.95
vvgw 36.29 14.52 0.54 32.82

TABLE II

NWS MEAN BANDWIDTH IN MBITS/SEC.

benedict clustis psgw roadrunner vvgw
benedict 3.15 2.58 8.60 2.32
clustis 3.50 5.57 3.96 5.63
psgw 2.28 4.85 2.58 81.73
roadrunner 6.27 2.70 1.67 1.87
vvgw 2.28 4.78 79.64 2.56

NWS has low monitoring overhead, and has been shows
to provide measurements accurate enough to predict future
TCP/IP latencies and bandwidth [16]. It is easy to install and
use, but three ports need to be opened on firewalls.

Latency is measured by sending a four byte message.
Bandwidth is measured by sending four 16 Kbytes messages
using a socket buffer size of 32 Kbytes each 60th second. We
tried using a shorter sample period (1 second), but the rate
was too high for the monitored WAN connections.

2) EventSpace: Using the EventSpace monitoring tool [2]
we can trace the latencies of TCP/IP connections as used
by a communication system for WANs. EventSpace allows
low-overhead monitoring of the actual communication rate
of the applications we are interested in. However, installing
EventSpace can be difficult due to a large number of libraries
used (e.g. Python). Also, firewalls need to be opened for the
PATHS server ports.

We collected traces for two benchmarks. The first was
collected for a collective operation micro-benchmark run on
a multi-cluster (the experiment is described in [3]). As only
small message were used, we do not report bandwidth results.
In the second experiment, we used a benchmark designed
for latency and bandwidth measurements. For each iteration
it sends an eight byte message, followed by two 32 Kbytes
messages. Sends were blocking, hence one must complete
before a new one can be initiated.

We did one experiment were the Nagle algorithm was
disabled on all TCP/IP connections, to ensure that even small
messages are sent immediately, but it did not significantly
reduce the latency.

B. Collected Traces

Tables I, III and IV shows the mean two-way TCP/IP latency
measured for the different links (in both directions). The NWS
trace has smaller mean latencies for small latency links than
the EventSpace traces. Tables II and V shows the TCP/IP
throughput. The EventSpace trace has higher bandwidth than
the NWS trace.

TABLE III

EVENTSPACE COLLECTIVE OPERATION TRACE TWO-WAY LATENCY

(MILLISECONDS).

benedict psgw roadrunner
benedict 35.76 9.16
psgw 32.49
roadrunner 32.35

Increasing the sample rate lowers the observed variation
both in bandwidth and latency. Also, the bandwidth differs in
two directions, while the latency usually does not. Conclusions
should not be drawn from the above results since we have only
collected one trace for each link.

V. EXPERIMENTS

For the experiments we use a cluster with 44 nodes, each
with a single-CPU Pentium 4 3.2 GHz with Hyper-threading
(2-way SMT) enabled. The nodes are connected using Gigabit
Ethernet, and all run Linux with kernel version 2.4.21. We use
NPTL threads for the experiments. On all TCP/IP connections
the Nagle algorithm was disabled and default socket sizes
were used. The delay is implemented with the single-thread-
spinning approach described above.

A. Precision

To investigate the precision of Longcut, we measured ap-
plication level ping-pong latency and bandwidth between a
cluster in Tromsø and Trondheim using PingPong from the
Pallas Microbenchmark suite (PMB) [12] (ported to PATHS).
We also traced the link by using EventSpace to monitor the
latency-bandwidth micro-benchmark, and used the captured
trace to emulate the link on our cluster. Each experiment was
repeated twice. For most message sizes the real and emulated
links have similar latency and bandwidth (figure 4).

We also measured how different traces influence the la-
tency and bandwidth of PingPong. Two traces were used;
the NWS and EventSpace latency-bandwidth microbenchmark
traces presented in section IV. Also we did one experiment
with constant latency and bandwidth values (means from the
EventSpace trace).

Figure 5 shows the difference in latency and bandwidth for
the WAN link between Odense and Aalborg. The PingPong
results differ for the NWS and EventSpace traces since the
NWS trace has lower latency and lower latency than the
EventSpace trace. However, using constant values does not
differ significantly from using the EventSpace trace, even if it
has smaller variation. We have similar results for other links.

We also measured how the different traces influence the
performance of collective communication using Allreduce
from PMB. The cluster was split into four parts with 10 nodes
in each part in addition to the node selected as gateway. The
four clusters were emulated to be in Tromsø (behind vvgw),
Trondheim, Odense and Aalborg. The difference between the
constant value trace and the EventSpace trace is smaller than
for PingPong (figure 6). However, the difference in NWS

Appendix B - Unpublished papers Technical report 2005-53

155

TABLE IV

EVENTSPACE LATENCY-BANDWIDTH MICROBENCHMARK TRACE LATENCY (MILLISECONDS). STANDARD DEVIATION IN PARENTHESIS.

benedict clustis psgw roadrunner vvgw
benedict 23.18 (3.31) 37.19 (1.66) 12.70 (27.03) 36.98 (1.48)
clustis 22.82 (3.41) 14.80 (2.47) 23.87 (30.67) 14.91 (3.84)
psgw 37.13 (1.57) 15.00 (1.17) 36.90 (28.51) 1.81 (1.52)
roadrunner 9.85 (4.02) 20.43 (3.12) 33.93 (3.75) 34.02 (4.38)
vvgw 36.95 (1.46) 15.00 (1.19) 1.84 (1.34) 36.49 (26.84)

TABLE V

EVENTSPACE LATENCY-BANDWIDTH MICROBENCHMARK TRACE BANDWIDTH (MBITS/SEC). STANDARD DEVIATION IN PARENTHESIS.

benedict clustis psgw roadrunner vvgw
benedict 8.80 (0.45) 5.75 (0.66) 10.60 (3.22) 3.19 (0.08)
clustis 4.97 (0.50) 9.74 (3.01) 6.76 (2.35) 7.78 (0.69)
psgw 3.18 (0.10) 12.73 (0.75) 4.86 (1.64) 44.49 (10.99)
roadrunner 10.08 (1.28) 8.18 (2.30) 5.49 (1.48) 3.46 (0.26)
vvgw 3.19 (0.09) 12.79 (0.76) 51.50 (9.68) 4.75 (1.63)

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

t[u
se

c]

bytes

WAN 1
WAN 2

Emulated 1
Emulated 2

(a) Latency

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1e+06 1e+07

M
by

te
s/

se
c

bytes

WAN 1
WAN 2

Emulated 1
Emulated 2

(b) Bandwidth

Fig. 4. Measured and emulated PingPong latency and bandwidth between nodes in Tromsø and Trondheim.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07

t[u
se

c]

bytes

Constant
NWS

EventSpace

(a) Latency

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1e+06 1e+07

M
by

te
s/

se
c

bytes

Constant
NWS

EventSpace

(b) Bandwidth

Fig. 5. Emulated PingPong latency and performance using different traces for Odense and Aalborg link.

Appendix B - Unpublished papers Technical report 2005-53

156

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07

t[u
se

c]

bytes

Constant
NWS

EventSpace

Fig. 6. Emulated Allreduce latency using different traces.

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

t[u
se

c]

bytes

2 links
4 links
8 links

16 links
32 links
40 links

Fig. 7. Longcut scalability measured using PingPong with increasing number
of emulated connections per gateway.

and EventSpace latency and bandwidth do influence Allreduce
performance.

B. Scalability

To evaluate the scalability of Longcut, we measured the
number of TCP/IP connections each gateway can emulate
without loss in precision. The cluster was divided into two
parts with 20 nodes in each part, and we run several instances
of PingPong, all communicating over emulated WAN links
(Aalborg–Odense). For each instance of PingPong each gate-
way handles two TCP/IP connections. Figure 7 shows the
maximum latency observed for each experiment. PingPong
latency does not differ when emulating 2 and 40 connections.

C. Usability

In our final experiment, we measure the execution time of an
application kernel. The kernel is Successive Over-Relaxation
(SOR). We use a Red-Black checker pointing version of SOR,
with a matrix size of 48000× 48000. The cluster was divided
into four parts as described above. Each worker-process is
assigned 1200 rows, and each updates all its red points and

TABLE VI

SOR PERFORMANCE WITH DIFFERENT TRACES.

Trace Exec. time Slowdown
Constant 383.8 sec.
EventSpace 390.3 sec. 2%
NWS 461.9 sec. 17%

then exchanges red border point values by sending a 19800
bytes message to each neighbor. Then black points are updated
and the communication is repeated. At the end of each iteration
the global change in the system is calculated using allreduce
(with and 8 byte message). For the problem size chosen about
70% of the execution time is spent communicating when using
the NWS trace. Table VI shows the execution time, and the
slowdown compared to the constant value trace.

VI. CONCLUSION

We have described the design and implementation of the
Longcut WAN emulator, shown the emulation precision using
traces collected by different tools, and evaluated the scalability
of Longcut.

We learned the following lessons:

• For most traces, bandwidth differs in two directions,
while latency does not.

• Traces with finer granularity have higher latency.
• The difference for point-to-point communication perfor-

mance does not significantly differ when using constant
and traced latency and bandwidth values.

• For synchronizing collective communication, such as
allreduce, there are small differences between using
latency-bandwidth traces and constant values.

The collected traces are available at
http://www.cs.uit.no/∼larsab/longcut/.

ACKNOWLEDGMENTS

Thanks to Brian Vinter for providing us access to the
clusters in Denmark. Also thanks to Josva Kleist and Gerd
Behrmann for allowing us to use the cluster in Aalborg, and
Anne C. Elster for allowing us to use the cluster in Trondheim.
Thanks to Otto J. Anshus, John Markus Bjørndalen and Espen
S. Johnsen for discussions, and to the MNF-8000 students who
were referees for this paper.

REFERENCES

[1] BJØRNDALEN, J. M. Improving the Speedup of Parallel and Distributed
Applications on Clusters and Multi-Clusters. PhD thesis, Department
of Computer Science, University of Tromsø, 2003.

[2] BONGO, L. A., ANSHUS, O., AND BJØRNDALEN, J. M. EventSpace
- Exposing and observing communication behavior of parallel cluster
applications. In Euro-Par (2003), vol. 2790 of Lecture Notes in
Computer Science, Springer, pp. 47–56.

[3] BONGO, L. A., ANSHUS, O., BJØRNDALEN, J. M., AND LARSEN,
T. Extending collective operations with application semantics for
improving multi-cluster performance. In ISPDC/HeteroPar (July 2004),
IEEE Computer Society, pp. 320–327.

[4] BONGO, L. A., ANSHUS, O. J., AND BJØRNDALEN, J. M. Low over-
head high performance runtime monitoring of collective communication,
2005. To appear in Proc. of ICPP’05.

Appendix B - Unpublished papers Technical report 2005-53

157

[5] BRAKMO, L. S., AND PETERSON, L. L. Experiences with network
simulation. In SIGMETRICS ’96: Proceedings of the 1996 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems (1996), ACM Press, pp. 80–90.

[6] DINDA, P., GROSS, T., KARRER, R., LOWEKAMP, B., MILLER, N.,
STEENKISTE, P., AND SUTHERLAND, D. The architecture of the Remos
system. In Proc. 10th IEEE Symp. on High Performance Distributed
Computing (2001).

[7] FALL, K. Network emulation in the vint/ns simulator. In In Proc. IEEE
ISCC ’99 (1999).

[8] KIELMANN, T., BAL, H. E., MAASSEN, J., VAN NIEUWPOORT, R.,
EYRAUD, L., HOFMAN, R., AND VERSTOEP, K. Programming envi-
ronments for high-performance grid computing: the Albatross project.
Future Generation Computer Systems 18, 8 (2002), 1113–1125.

[9] Network performance tools. http://www.caida.org/tools/taxonomy/.
[10] NOBLE, B. D., SATYANARAYANAN, M., NGUYEN, G. T., AND KATZ,

R. H. Trace-based mobile network emulation. In SIGCOMM ’97:
Proceedings of the ACM SIGCOMM ’97 conference on Applications,
technologies, architectures, and protocols for computer communication
(1997), ACM Press, pp. 51–61.

[11] PETERSON, L., CULLER, D., ANDERSON, T., AND ROSCOE, T. A
blueprint for introducing disruptive technology into the internet, 2002.

[12] PMB - Pallas MPI Benchmarks, http://www.pallas.com/e/products/pmb/.
[13] RIZZO, L. Dummynet and forward error correction. In In Proc. of the

1998 USENIX Annual Technical Conf (June 1998).
[14] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P., KOSTIC, D.,

CHASE, J., AND BECKER, D. Scalability and accuracy in a large-scale
network emulator. In In Proc. 5th OSDI (Dec 2002).

[15] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD,
S., NEWBOLD, M., HIBLER, M., BARB, C., AND JOGLEKAR, A.
An integrated experimental environment for distributed systems and
networks. In Proc. of the Fifth Symposium on Operating Systems Design
and Implementation (December 2002), pp. 255–270.

[16] WOLSKI, R., SPRING, N. T., AND HAYES, J. The network weather
service: a distributed resource performance forecasting service for meta-
computing. Future Generation Computer Systems 15, 5–6 (1999).

[17] ZENG, X., BAGRODIA, R., AND GERLA, M. Glomosim: a library
for parallel simulation of large-scale wireless networks. In PADS
’98: Proceedings of the twelfth workshop on Parallel and distributed
simulation (1998), IEEE Computer Society, pp. 154–161.

Appendix B - Unpublished papers Technical report 2005-53

158

159

8.2 Impact of Operating System Interference on Ethernet
Clusters

This section summarizes the results of an unpublished paper.
The work was done primarily in collaboration with Otto J. Anshus.

Abstract. Operating system interference has been identified as an important reason for
parallel application scalability problems on large-scale clusters with fast interconnects. In
this paper we measure and characterize operating system interference in an Ethernet
cluster. Our results shows that operating system interference is not a significant factor for
Ethernet clusters.

8.2.1 Introduction
Operating system interference has been identified as an important reason scalability
problems for applications with globally synchronizing operations on large clusters with
fast interconnects [118, 166, 226]. The problem was caused by lack of coordination
between the operating systems on the different nodes. Thus, when one operating system
scheduler decides to run daemon code instead of application code, all other nodes must
wait at the globally synchronizing operation for data from this node. When the number of
nodes increases the probability for one node running daemon code between
synchronization points increases. A solution to this problem is removing unnecessary
daemons and modifying the operating system scheduler such that scheduling is globally
controlled.

Previous work [118, 166, 226] has mostly been done on clusters with SMPs and high
speed interconnect such as QsNet [165]. Our environment differs in that we have:

1. Nodes with only one CPU
2. Nodes with simultaneous multi-threading (SMT)

3. GigaBit Ethernet
4. Fewer nodes

We believe many clusters have similar characteristics. We are interested in answering the
question: will operating system interference increase the execution time of parallel
applications run on medium size Ethernet clusters?

8.2.2 Methodology
Two clusters are used:

• Tin: 51 single-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM
• Iron: 39 single-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2 GB RAM with

EM64T extension.
The processors in the Tin and Iron clusters support SMT, which was enabled during the
experiments. The interconnect on both clusters is Gigabit Ethernet, while inter-cluster
communication uses the departments 100 Mbps Ethernet. The parallel communication
system used is LAM/MPI [3, 52].

Appendix B - Unpublished papers

 160

We assume the combined size of the Tin and Iron clusters is above the critical mass for
when noise becomes a problem. For example, in [166] the difference before and after
removing noise for 128 CPUs is about 50%.
To measure the noise introduced by system activities we use a similar micro-benchmarks
as in [166], but with a different configuration in order to adapt to the higher network
latency in our cluster. The benchmark consists of a matrix multiplication that can be
tuned to take n milliseconds. The computation is repeated m times such that the
computation takes 1000 seconds. To also measure the communication system noise we
add an allreduce call after the computation.
We use three different computation times per iteration: (a) 1 ms (used in [166]), (b) 10
ms which is the classical operating system time slice length [212, 226], and (c) the
latency of the allreduce operation on the cluster.

8.2.3 Results
Experiment Mean Stdev +1.35ms +2ms +5ms +10ms
Computation 1.08 ms 0.01 ms 14 0 0 0
Communication 1.37 ms 0.27 ms 1196 812 322 0
Iteration 2.46 ms 0.27 ms 1198 813 322 0

Table 14: Number of iterations where at least one of 50 threads is delayed for 1.35
ms, 2 ms or 5 ms.
In the first experiment we run the benchmark on 50 Tin hosts for 450.000 iterations. The
time per computation has a very low variation, but the variation for allreduce latency is
larger.

To estimate the delay caused by system interference, we calculated for each thread the
median time per computation, allreduce and per iteration. Then for each thread we
counted the number of iterations where the thread was delayed for more than x ms, where
x was the mean time per allreduce operation (1.35 ms), 2 ms, 5 ms and 10 ms. The results
are shown in Table 14.
For only 0.3% of all iterations was at least one thread more than 1.35 ms delayed. The
delay is usually caused by variation in the time per allreduce operation. The time per
computation is only delayed with more than 1.35 ms in 14 iterations. Together these
delay the benchmark with about 7.4 seconds, which is insignificant compared to an
execution time of 1106 seconds. With a larger computation time the impact of noise was
even smaller. Running the benchmarks on both clusters gives similar results.
Per thread delay counts shows an even distribution of iterations with delay, hence there
are no particular nodes causing the nodes. Which is not surprising since the nodes are
homogenous both in hardware and software. Also, the workload is evenly distributed
with the exception of the allreduce mapping to the cluster. The allreduce introduces some
work to some nodes, but it is not shown in the delay distribution.

8.2.4 Conclusion
Operating system interference does not have significant effect on parallel application
performance on Ethernet clusters with about 100 nodes. These results suggest that

Additional experiment results

 161

Ethernet clusters have different performance issues than the high performance
interconnect clusters used in previous work.

163

8.3 Additional overdecomposition experiments
This section summarizes unpublished experiment results.
The work was done in collaboration with Brian Vinter, Otto J. Anshus, and John Markus
Bjørndalen.

8.3.1 Introduction
This section presents additional experiment results for overdecomposing parallel
applications run on a WAN multi-cluster. Also three user-level schedulers are evaluated.

The paper in section 7.4 evaluated how overdecomposition can improve single parallel
application performance on Ethernet clusters. The network latency we attempt to overlap
with computation is larger on a WAN multi-cluster than on an Ethernet cluster. Larger
overheads are easier to overlap for two reasons. First, a larger overhead increase is
tolerated. Second, the time spent computing has increased relatively to the system call
and context switch overheads.

User-level scheduling can easily be added to the communication system, since we are
scheduling the threads (or the processes) of a single application. In the paper in section
7.4 we found that user-level schedulers could not significantly improve benchmark
performance due to TLP limitations. But we also found that using a different
synchronization variable implementation improved TLP. The improved TLP allows
measuring performance improvements due to three-user level scheduling approaches
designed for overdecomposed parallel applications.
The remaining of this section proceeds as follows. The experiment setup is presented in
section 8.3.2. WAN results are presented in section 8.3.3. The design, implementation,
and performance measurements of three user-level schedulers are presented in section
8.3.4. Section 8.3.5 concludes.

8.3.2 Methodology
For the experiments we used a cluster with 3.2 GHz Hyper-threaded Pentium 4 nodes,
connected using Gigabit Ethernet. The Linux kernel version used was 2.4.26SMP with
LinuxThreads. Version 3.3.3 of the gcc compiler was used. Hyper-threading (SMT) was
enabled for all experiments. Additional details are provided in section 7.4.
To experiment with different WAN latencies and bandwidths we emulate WAN links
between our clusters using the Longcut WAN emulator [42] (or section 8.1). The cluster
is split into three sub-clusters. For each sub-cluster we select one host to act as a gateway.
All communication to the sub-cluster is routed through its gateway, which adds delays to
the routed messages to simulate the higher latency and lower bandwidth of a WAN
TCP/IP connection. The delay for a given message size is calculated based on a latency
and bandwidth trace collected by running an instrumented communication intensive
application on hosts in Tromsø, Odense and Aalborg [42]. Table 15 and Table 16 show
respectively the average latency and bandwidth between the nodes. For the experiments
we emulated a topology with 14 nodes in Odense, 13 in Aalborg, and 17 in Tromsø.

The SOR kernel is used in the experiments. The problem size is scaled such that 50% of
the execution time is spent communicating. The improvements reported in this section

Appendix B - Unpublished papers

 164

are calculated using the mean execution time of ten experiments. The largest standard
deviation was 6.1% of mean. However, for most experiments the standard deviation was
less than 2% of mean.

 Aalborg Odense Tromsø
Aalborg 12.70 ms 36.98 ms
Odense 9.85 ms 34.02 ms
Tromsø 36.95 ms 26.49 ms

Table 15: Average round trip latency in milliseconds between cluster sites in the
emulated WAN multi-cluster topology.

 Aalborg Odense Tromsø
Aalborg 10.60 Mbit/s 3.19 Mbit/s
Odense 10.08 Mbit/s 3.46 Mbit/s
Tromsø 3.19 Mbit/s 4.75 Mbit/s

Table 16: Average bandwidth between cluster sites in the emulated WAN multi-
cluster topology.

8.3.3 WAN multi-cluster experiments and discussion
The execution time improvements are about 45% better on the WAN multi-cluster than
on a single cluster, due to better computation-communication overlap.

The overheads are larger for the WAN experiment than for the LAN experiment, since
the problem size increased to maintain a 50% communication-execution time ratio. But
the overhead increase is smaller relative to the one thread per processor mapping (Figure
35).

Additional experiment results

 165

a. LAN experiments

b. WAN experiments

Figure 35: SOR execution time and estimated overheads for the Ethernet and WAN
multi-cluster experiments.

8.3.4 User-level scheduler design and evaluation
User-level scheduling for overdecomposition can be implemented in a layer that
intercepts communication operations calls using a similar approach as parallel application
profiling layers (Figure 36). The interception can block a thread, or implement different
scheduling decisions by controlling the release order of blocked threads. Compared to
general-purpose schedulers, the implemented schedulers can take advantage of
application knowledge, and ignore fairness since high priority threads will eventually
block waiting for data from lower priority threads. Below we describe the design and
implementation of three schedulers.

Appendix B - Unpublished papers

 166

Figure 36: A user-level scheduler layer is added above the communication system
layers and the operating system scheduler. Application threads and helper threads
in the communication system can be blocked and unblocked at this layer.

8.3.4.1 Serialization
Cache pollution and the number of context switches may be reduced if threads are not
interrupted during computation. The scheduling layer can serialize threads by only
releasing one thread at a time. The simplest implementation for a multi-threaded
application is to have a global user-level lock that must be acquired when returning from
a communication operation call.

8.3.4.2 Priority Scheduling
The communication structure of some parallel applications may have dependencies
dictating which messages must be received before a thread can proceed with its
computation. For some benchmarks computation-communication overlap may improve if
the threads sending messages over a high latency connection are scheduled to arrive first
at the communication operations. This information can be used to set the priority of
threads, and hence specify the computation order.

Threads are assigned a fixed priority at load time based on the applications
communication pattern, and the mapping of threads to processors. Threads doing inter-
node communication have the highest priority, while threads only doing intra-node
communication have the lowest priority. A more advanced implementation could assign
priorities based on measurements of communication time for all threads (using
techniques described in Chapter 2). For each priority class the scheduling layer has a
condition variable. Similarly to the serialization approach, the scheduling layer blocks
threads upon return from communication operation calls, but the highest priority thread is
released first to user-level.

8.3.4.3 Computation and communication coscheduling
Parallel application performance can be improved by coscheduling application threads
and communication activity threads [59]. For example, if the operating system scheduler
chooses to do computation before communication the latency of the communication
operation may increase with tens of milliseconds.

Additional experiment results

 167

Our coscheduling is similar to hybrid coscheduling [59], where the priority of
communication threads is boosted when doing collective communication. However, our
implementation is simpler since we use a communication system (PastSet [233]) with
separate threads for collective communication activity. The scheduling layer prioritizes
these by ensuring that application threads cannot return to user-level if there are
collective operation threads to be unblocked.

Point-to-point communication activity is served immediately, since it is run in the context
of an application thread. These are only blocked after returning from a communication
operation call.

8.3.4.4 Experiment results and discussion

Figure 37: User-level scheduling performance improvements for SOR with
allreduce run on an Ethernet cluster. All numbers are relative to the one thread per
processor mapping.
Overdecomposition improves SOR performance up to 1.25 without user-level scheduling
(Figure 37). Coscheduling computation and communication threads reduces
communication wait time and improves TLP, resulting in a 6% speedup improvement.
Serialization and priority scheduling of application threads does not significantly
influence performance.
TLP is higher on the WAN multi-cluster, with at least two runnable threads in 42% of the
execution time. Thus the priority scheduler can change the computation order, such that
threads sending messages to other nodes arrive mostly first to communication operations.
Performance improves with 6%. Further performance improvements were limited by the
inability to overlap the allreduce operation with computation. Hence, coscheduling
communication and computation threads does not improve performance. Using the
conditional allreduce operation described in section 7.3, may improve the overlap.

Appendix B - Unpublished papers

 168

Figure 38: User-level scheduling performance improvement for SOR without
allreduce run on an Ethernet cluster. The improvement is relative to the one thread
per processor mapping.
The globally synchronizing allreduce operation used in SOR limits the potential for
communication-computation overlap (as described in section 7.4). Removing the
allreduce operation increases improvements due to overdecomposition up to 1.55,
without user-level scheduling. Serializing computation did not improve performance. But
priority scheduling application threads improved performance when more than eight
threads were mapped to a processor. With fewer threads the scheduler was not able to
change thread execution order, since most of the time few threads were runnable.

8.3.5 Conclusions
The achieved performance improvements on the WAN multi-cluster demonstrate that
overdecomposition can be a useful technique for tolerating the high network latency of
the WANs.
Three user-level schedulers were described, and performance measurements were done
on an Ethernet cluster and a WAN multi-cluster. The impact on parallel application
execution time is often limited by the lack of TLP, but a small improvement was
achieved. Hence, we believe such scheduling is of limited use unless other changes are
able to improve TLP.

169

8.4 Compression of Network Data Using 2-level Fingerprinting
This section presents an extended abstract that has not been submitted for publication.
The work was done in collaboration with Kai Li and Olga Troyanskaya.

Abstract. Previously proposed techniques for eliminating redundant network traffic are
based on integrated anchoring and analysis of fine-grained one-dimensional data
segments in data streams. The main limitation of such methods is that they require large
segments in order to provide high compression ratio, and they do not work well with
transferring multi-dimensional data such as 2D pixels in remote data visualization. This
paper presents a method to identify and eliminate redundant data transfers of complex
data types over a network. Our method is different from the previous approaches in four
ways. First, the method separates data segmentation from redundancy elimination such
that specific content-based segmentation methods can apply to complex data types.
Second, we propose a 2-dimensional segmentation approach that works well with remote
data visualization data transfers. Third, we employ a two-level fingerprinting method to
optimize the encoding of unique data segments. Fourth, we propose a large segment
cache on disk that improves redundancy detection by examining a larger scope.

8.4.1 Introduction
Current scientific instruments and simulations are creating peta-scale data volumes, and
the amount of data produced is roughly doubled each year [94]. Examples include the
Sloan Digital Sky Survey (SDSS) astronomical survey [201], the BaBar high energy
physics experiment [21], the Entrez federated health sciences database [158], and the
CERN Large Hadron Collider [56].
The amount of data stored, and the computation necessary for analyzing the data requires
building a data storage and analysis infrastructure. The infrastructure may be used to
access the data by thousands of scientists participating in a project working at hundreds
of institutions. A distributed infrastructure has several advantages including no single
point of failure, and load balancing of data, computation, and user support [57]. In
addition the different parts of the infrastructure can be individually funded by the
participating organizations.

A main challenge for such a distributed infrastructure is providing the necessary
bandwidth between the resources. In particular gigabytes of scientific data must be
reliably moved over wide area networks, and scientist must remotely interact with
applications used to analyze the data at a remote site. Compressing the network data can
reduce the bandwidth requirements for such data movement and remote visualization.
Network data is typically compressed using a local compression algorithm [9, 188, 202]
which decouples compression from decompression.. A popular local compression
algorithm is DEFLATE [73], used in the zlib/gzip library[9]. DEFLATE combines the
Lempel-Ziv (LZ77) duplicate string elimination algorithm [244], with Huffman encoding
for bit reduction [103]. LZ77 detects duplicate strings and replaces these with a back-
reference to the previous location of the string. Huffman encoding replaces symbols with
weighted symbols based on frequency of use. The problem with existing local
compression algorithms is that they only detect redundancy within a local scope, such

Appendix B - Unpublished papers

 170

that the ratio achieved for scientific data is low, while compression time is to high for
remote visualization.

Figure 39: Global compression used to compress screen content. Previously sent
segments are stored in cooperating caches at the sender and receiver side. The data
to be sent is segmented, and in place of replicated segments only the cache index is
sent over the WAN.
During the past few years, global compression has been proposed to eliminate redundant
network traffic data [156, 209]. The sender and receiver cooperate to maintain a shared
cache of previously sent data. To eliminate transfer of redundant bytes, the sender divides
the data to be sent into segments, and sends fingerprints instead of replicated segments
over the network. The receiver uses the fingerprints to retrieve the data from its cache
(Figure 39).

Global compression ratio is limited by data redundancy and the segment size to
fingerprint size ratio. Using smaller segments improves the redundancy found, but
requires using smaller fingerprints to maintain a high compression ratio. However, to
ensure data consistency the fingerprint size must be large enough to uniquely identify a
segment. Previous global compression systems [39, 69, 72, 100, 153, 156, 171, 172, 222]
typically chose a secure hash, such as 160-bit SHA-1 [7], as a fingerprint so that the
probability of a fingerprint collision can be lower than a hardware bit error rate. But this
also required using segments of several kilobytes in size.

Our approach to this problem is to propose a new framework that allows application users
to build content-aware anchoring mechanisms to significantly improve the network data
compression. We propose a two-level fingerprinting method to further improve encoding
for fine-grained data segments, and a prototype system to show the proposed methods are
effective.
This paper makes three contributions:

• A novel two-level fingerprinting protocol that improves redundancy detection by
using smaller segments, while maintaining data consistency. Past work used large
fingerprints, and hence required large segments to maintain a good compression
ratio.

• The design and implementation of a very large cache on disk for storing
previously sent segments that improves compression ratio. Most previous systems
stored segments in memory only.

The requirements for a 100 GB data set were modeled. Our results shows that two-level
fingerprinting is most useful for segment sizes ranging from 16 to 256 bytes. In order to

Extended abstract

 171

get the best trade-off between fingerprint bytes, and collision bytes the optimistic
fingerprint size should be 40 bits, and a conservative fingerprint should cover about 20—
25 segments. In addition we demonstrate the need for a large segment cache.

8.4.2 Proposed approach
We propose a network data compression framework that solves the problem of
compression ratio being limited by having to use a long fingerprint to represent a data
segment in the compression protocol. This section first describes the architecture of the
proposed approach and then a two-level fingerprinting method to compress fine-grained
data segments.

Figure 40: Architecture of proposed compression approach, consisting of
components for context-aware segmentations, redundant segment elimination with
two-level fingerprinting, and segment directory cache. Applications can choose their
appropriate content-based segmentation method according to their data type.

8.4.2.1 Architecture
The architecture of the proposed framework for network data compression engine, as
shown in Figure 40, includes multiple, data-specific segmentation methods and a shared
segment compression engine.

The key idea of the architecture is to make segmentation methods data specific. The
segmentation methods can be configured to one or more ports of the system and to
support a variable number of data streams of different data types. Each content-based
segmentation component is responsible for the segmentation of a specific class of data.
For example, text documents, emails, binary executables, and other one-dimensional data
can use a content-based segmentation component using the Manber/ LBFS segmentation
method [145, 156], whereas a remote terminal application or a remote collaborative data
visualization application can use a specific content-based segmentation component that
can anchor 2D segments based on screen pixel contents [49].
The content-based segmentation component implements the segmentation mechanisms
for both send and receive data. For send data, it anchors its input data stream into
segments and passes them to the segment compress component. For receive data, it
assembles segments into a data stream.

Appendix B - Unpublished papers

 172

The segment compression engine is responsible for fingerprinting and caching data
segments from the segmentation modules. It maintains a segment directory cache to
eliminate redundant segments. The basic algorithm is:

• The sender computes a fingerprint for each incoming data segment, and sends the
fingerprint to the receiver.

• The receiver uses the fingerprint as the segment’s identifier to look in the segment
cache to see if it has received this segment previously.

• If there is an entry in the segment cache for the given fingerprint, it retrieves the
segment of the fingerprint from the cache and passes it to the segmentation
component to assemble into a data stream.

• If the fingerprint is not in the cache a segment request is sent to the sender.
• When the sender receives a segment request, it compresses the segment with a

local compression method, and sends the segment to the receiver.
• The receiver decompress the segment with a corresponding local decompression

algorithm, inserts the data segment to the segment cache, and pass the segment to
the segmentation component to assemble into a data stream.

This basic algorithm is straightforward and its high-level idea is similar to previous
studies on using fingerprints (or secure hashes) as identifiers to avoid transfer of
redundant data segments. The key difference is that in the previous studies detected
redundancy is limited by the large fingerprints necessary to uniquely represent data
segments, which require large segments to achieve a good compression ratio. We address
the issue of how to represent fine-grained data segments. Below, we present a 2-level
fingerprinting method to compress fine-grained segments to optimize the basic algorithm.

8.4.2.2 Application specific segmentation
The segmentation modules main goal is to divide the application data into segment that
are likely to be repeated throughout the data. Since such the segmentation methods are
very data and application specific, we have separated the segmentation module from the
Canidae subsystem to allow applications to use their own specialized segmentation
algorithms. A segmentation module implements three tasks: segmentation, reassembly,
and protocol handling. How these tasks are implemented depends on the data type and
which segmentation algorithm is used, but in general the following is done:

• The input data stream is copied to a local buffer. This may include parsing the
input data stream to extract the application data from the meta-data such as
protocol headers.

• A segmentation algorithm is run when the buffer is full or the application protocol
requires data to be sent. This algorithm divides the data into segments. The
segmentation can either be static or based on the buffer content.

• The segments and the meta-data necessary to reassemble the segments is sent to
the compression engine.

Extended abstract

 173

• On the receiver side, the segments are received from the compression engine, and
the meta-data is used to reassemble the segments. The segment data is then copied
to the output stream.

For multi-dimensional data the buffer is a multi-dimensional data structure, and the
resulting segments may be multi-dimensional. Not all messages types have to be parsed,
since the data is typically sent using a few message types. The remaining non-data
carrying messages can be forwarded unparsed.

8.4.2.3 Two-level fingerprinting
An important design issue in using fingerprints as identifiers to detect previously
transferred data segments is the size of a fingerprint. Therefore previous global
compression systems typically use a 160-bit such as SHA-1 [7], or even longer secure
hash, as a fingerprint so that the probability of a fingerprint collision is far lower than a
hardware bit error rate. But, since the global compression ratio is limited to the ratio of
the average pixel segment size to the fingerprint size, the larger the fingerprint size, the
smaller the compression ratio.
To maximize the global compression ratio and maintain a low probability of fingerprint
collision, we propose a two-level fingerprinting strategy. The two-level fingerprinting
views data as groups of segments. For each group of segments, a 160 bit SHA-1 hash is
computed as the conservative fingerprint of the whole group. For each segment in the
group, we compute a 40-bit FNV hash [86] as the optimistic fingerprint.

The two-level fingerprinting protocol extends the basic protocol described above. To
send a group of data segments, the sender sends short optimistic fingerprints for all data
segments, and the conservative fingerprint for the group. The segments are also added to
the senders segment cache. Upon arrival, the receiver buffers the whole group of
segments, re-computes a conservative fingerprint using the same hash function as the
sender, and compares it with the received conservative fingerprint. If the two
conservative fingerprints are identical, the receiver sends an ACK message back to the
sender. If they are different, it requests all segments read form the cache from the sender,
and only sends the ACK once all requested segments have been received. When the ACK
message have been sent, the receiver updates its segment cache with the group of
segments and send all segments over to a segmentation component such that the
segments can be assembled and sent to the receiving application.

An important design decision is to choose the sizes of the conservative and optimistic
fingerprints, and the number of optimistic fingerprints per conservative fingerprint. The
conservative fingerprint should be long enough so that the probability of a collision is far
smaller than a hardware error. The optimistic fingerprint should be short enough to
maximize the compression ratio of network data, but long enough to minimize the events
of resending groups of segments. Also, the number of optimistic fingerprints should be
high enough to maximize the number of fingerprints and low enough to keep the
probability of collision low.

Appendix B - Unpublished papers

 174

8.4.2.4 Segment cache
The basic operation of the segment cache is to read and write segments based on their
optimistic fingerprint. The two main design goals for the segment cache are to make it
large enough to hold all previously sent segments in a session, and fast enough not to
limit the throughput of the compression pipeline. For a hundred gigabyte dataset, the total
size of cached segments exceeds main memory size, such that segments must be stored
on disk. In addition, an index is required to map optimistic fingerprints to the segments
location on disk (or in a memory cache).
The naïve approach of using a large hash table in memory as the index, and storing all
segments on disk has two problems. First, the memory size limits the maximum number
of segments that can be indexed by a single hash table resident in memory. Second, most
segment accesses requires reading segments from disk since all available memory is used
for the hash table. Therefore, the index should be split into multiple parts that can be
stored in disk, and a large portion of the memory should be used to cache segments.
We propose using multiple small hash tables; each indexed using the first l bits of the
fingerprint. Hash table entries are 64 bits, and contains the remaining fingerprint bits, the
memory or disk offset of the segment, and the size of the segment. The hash table, and
the segments indexed by it are stored in a container. Each container is stored in a separate
file on disk, but can also be cached in memory.
Segment accesses have no spatial locality with respect to fingerprint values, since the
hashing function generates random fingerprints for segments. Segments can therefore not
be efficiently cached if they are distributed to containers based on their fingerprint values.
Instead we exploit the observation that segments written to the cache at the same time
tend to be read together. Therefore, all new segments are written to the same container by
inserting the fingerprint to the hash table and appending the segment to the end of the
segment buffer. In case of a hash table collision the segment is written to the next
container in memory. This clustering of segments allows read-ahead of segments from
disk. The disadvantage of this approach is that a linear search is required to find the
container containing a specific segment. Therefore, we propose multiple optimizations to
reduce the number of containers on disk that has to be checked.

Segments accesses have temporal locality, hence recently accessed containers are cached
in memory. When a container is accessed, the entire hash table is always read to memory,
but the segment buffer is divided into several chunks, which are read on-demand from
disk (similar to demand paging [127]). Writes are buffered such that modified segment
chunks are only written to disk when the memory becomes full. To evict segment chunks
or containers, we use a least recently accessed algorithm.

To further reduce disk accesses we use a Bloom filter [37]. A Bloom filter is a space
efficient probabilistic data structure that we use to test whether an optimistic fingerprint
is a member of the set of optimistic fingerprints stored in the segment cache. The test
may return a false positive; hence an optimistic fingerprint in the Bloom filter may not be
in the segment cache requiring all hash tables to be checked. But false positives are not
possible. Therefore in case of a miss, it is not necessary to check the containers before
requesting a segment from the sender, or writing a segment to the cache.

Extended abstract

 175

Figure 41: Timeline for an update operation, were the network latency and segment
transmission times are both assumed to be 10ms. The disk lookup time is
overlapped with the time to send and receive segments not in the segment cache.
In addition to reducing the number of disk accesses, the Bloom filter can also be used to
overlap network transmission time with disk accesses (Figure 41). For a group of
segments the receiver checks the Bloom filter, and sends request messages for the
segments not in the Bloom filter. Disk lookups for other segments in the group can then
be overlapped with the time to send and receive the non-cached segments.

8.4.3 Protocol and system implementation
We have implemented the 2-level fingerprinting protocol proposed in section 8.4.1 in a
system called Canidae, which is designed to support multiple simultaneous hardware and
software clients from each Canidae installation. It consists of multiple segmentation
components and a generic compression sub-system that handles the fingerprinting,
transmission and caching of segments.

The compression engine and segment cache are implemented as a server and run on a
dedicated machine. The server is designed to use all available memory, and hundreds of
gigabytes of disk storage. To avoid dynamic memory and storage resource management
all share the same compression component. Using multiple compression components, and
dynamic resource management will complicate the system but probably neither improve
compression ratio, nor improve the performance of the system.

To establish a connection over Canidae the application server connects to a segmentation
component instance on a predefined port. Applications then communicate with Canidae
using their usual communication protocol. On the receiver side, the application clients
connect to their Canidae server, which creates and initializes a connection to the
application server site.
The main goal of Canidae is to improve bi-directional network transfer time between
sites where Canidae servers are installed. This is achieved by using the 2-level
fingerprints protocol that saves bandwidth, but provides in-order strict-consistency
message delivery for applications. However, the server is implemented to utilize out-of-

Appendix B - Unpublished papers

 176

order messages, eventual consistency, and to allow parallel compression and
decompression of segments.

In this section we describe the protocol and address implementation implications.
Although Canidae supports bi-directional compression and multi-cast, we will below for
clarity usually assume that communication is uni-directional and point-to-point.

8.4.3.1 Segmentation components and segment protocol
The segmentation components are either integrated with the Canidae server, run as a
separate process on another machine, or integrated with the application. The segment
protocol is used for encoding segments sent by the segment component to the
compression engine. If both are run in the context of the same process, the segment
component can send segments by calling functions in the compression component.

Space efficient encoding of segment protocol messages is not necessary, since these are
only sent over a high bandwidth local area network. However, efficient encoding is
necessary for the meta-data used by the receiving segmentation component to assemble
the segments. The meta-data is sent uncompressed during the two-level fingerprinting
protocol and its size will therefore limit the achieved compression ratio. For 1-D
bytestreams only the meta-data may only specify the segment size, but for a multi-
dimensional data sets the position in the data-structure may also have to be specified. But
with careful design, only 1—4 bytes are required.

8.4.3.2 Two-level fingerprinting parameters
The main challenges in implementing the compression sub-system is choosing
appropriate fingerprint sizes for the 2-level fingerprint algorithm, and choosing the
number of optimistic fingerprints covered by conservative fingerprints, and implementing
an efficient caching mechanism.
The optimistic fingerprint should be small enough to provide good compression ratio, but
still large enough to have few collisions even for large data sets. The factors influencing
the optimistic fingerprint size are:

• The data set size. The number of unique segments, and hence the fingerprint
collision probability increases with data set size.

• Data redundancy. With higher redundancy, fewer segments are stored in the
cache, and hence the collision probability is reduced.

• Segment size. Reducing the segment size increases the number of segments sent
and stored in the cache. Thus, the collision probability increases.

• Optimistic fingerprints covered by a conservative fingerprint. A single optimistic
fingerprint collision requires sending all segments read from cache, thus
increasing the collision penalty.

In this section we answer the following questions:
1. For which segment sizes is compression ratio limited by the fingerprint size?

2. Where is the crossing point for when the number of bytes sent due to collisions is
larger than the fingerprint bytes?

Extended abstract

 177

3. How many segments per conservative fingerprint give the best compression ratio?

Parameter Value Parameter explanation

S 100GB Data set size

R 75GB (75%) Data redundancy found
K 40 bits Optimistic fingerprint size

L 160 bits Conservative fingerprint size
P 20 Segments per conservative fingerprint

S 32 bytes Segment size

Table 17: Default parameters used to model two-level fingerprint compression ratio.
Canidae is designed to compress very large datasets, so for the analysis we set the data
set size to 100GB. Segment size is conservatively set to 32 bytes for which 20-byte
fingerprints gives some compression. The optimistic to conservative fingerprint ratio is
set to 20, since it usually gives high compression ratio (as shown below). Finally, the
redundancy is set to 75%, such that the maximum compression ratio is 4.0. The
parameters are summarized in Table 17.

!

compression _ ratio =
S

(S " R) + (
k

8
+

l

8p
)
S

s
+ ps

i

2
k

i=1

i= (
S"R

s
)

#

Equation 2: Formula for modeling compression ratio achieved using two-level
fingerprinting.
To find the best parameters for the two-level fingerprinting protocol giving the best
compression ratio, we model the number of segment bytes sent, the number of fingerprint
bytes sent, and the number of collision bytes sent. We assume that the dataset is
segmented into S/s segments, where S is the data set size, and s is the average segment
size. To find the number of fingerprints bytes sent we multiply the number of segments

with

!

(
k

8
+

l

8p
), where k is the number optimistic fingerprint bits, l is the number of

conservative fingerprint bits, and p is the number of segments per conservative
fingerprints. The optimistic fingerprints should be random, and hence the probability of a
new fingerprint having the same value as an existing fingerprint in the segment cache is

given by

!

n

2
k

, where n is the number of segments in the segment cache, and k is the

number of bits in the fingerprint. To estimate the number of bytes sent due to collisions,
we find the number of collisions for all cache writes. Then, we assume that each collision
causes one group of segments to be resent. Putting it all together gives the formula in
Equation 2. Below we compare the achieved compression ratio to one-level
fingerprinting using 20 byte fingerprints.

Appendix B - Unpublished papers

 178

Figure 42: Compression ratio for different fingerprint and segment sizes. Data
redundancy is 75% and collision bytes are ignored.
To find the segment sizes that are limited by the fingerprint size, we plot the compression
ratio achieved for different segment size (Figure 42). We find that the fingerprint size
significantly limits compression ratio for segments less than 1 Kbytes if the data has 75%
redundancy, but even for smaller segments if the detected redundancy is lower.

Figure 43: Miss penalty bytes sent for different optimistic fingerprint sizes.
Choosing the conservative fingerprint size is relatively straightforward; it should be large
enough to guarantee a collision rate smaller than the hardware error rate. Since 2160 is
considered sufficient for data sets up to an exabyte in size [172], we use 160 bit SHA-1
hash values as conservative fingerprints.

The optimistic-fingerprint size is more challenging to choose because it affects two
competing trends. Reducing the optimistic-fingerprint size will increase the maximum
achievable compression ratio, but simultaneously increase the number of cache collisions

Extended abstract

 179

that require entire segments to be resent. So we want to choose an optimistic-fingerprint
size that is near the inflection point of the competing trends and that works across the
many data types being transmitted.
If a 4-byte optimistic fingerprint size is chosen, then 50 GB of segment data will be sent
due to collisions when transferring a 100 GB data set (Figure 43). Increasing the
optimistic fingerprint size to 5 bytes reduces the total number of bytes sent since the data
sent due to collisions is reduced to 0.2 GB, while the increase in fingerprint bytes is only
6.1 GB. Only when the data set size is less than about 35 GB, does 4 byte fingerprints
give the best compression ratio. Further increasing the fingerprint size to 6 bytes does not
improve compression ratio since the reduction in collision bytes (about 0.2 GB) is much
smaller than the increase in fingerprint bytes (6.1 GB).
For a smaller data set, the compression ratio will improve if 4 byte fingerprints are used.
The optimistic fingerprint size could be dynamically set at server startup time. But it is
not possible to increase the optimistic fingerprint size without flushing the segment
cache, or re-computing the optimistic fingerprint for all cached segments.
The number of segments covered by a conservative fingerprints should be chosen such
that the fingerprint bytes sent remains low, while keeping the bytes sent due to collisions
low. With the default parameters in Table 17, the minimum number of bytes sent is for 22
segments per conservative fingerprint (Figure 44). Typically a ratio of 20—25 gives a
good compression ratio, even if the segment size, redundancy ratio, or data set size is
changed.

Figure 44: Bytes sent for fingerprint and collisions, when the number of segments
per conservative fingerprint is changed.

Appendix B - Unpublished papers

 180

Figure 45: Compression ratio for different redundancy levels when using 4 byte, 5
byte and 20 byte fingerprints. The 5 byte fingerprint compression ratios with and
without collisions are almost identical, and identical for 20 byte fingerprints that
have no collisions.
Above we have assumed that the redundancy level is 75%. Figure 45 shows that using 5-
byte optimistic fingerprints with 20 segments per conservative fingerprint, gives the best
compression ratio for most redundancy levels. Only if redundancy detection is lower than
15%, or higher than 95%, is the best compression ratio achieved using other optimistic
fingerprint sizes.

8.4.3.3 Two-level fingerprint protocol messages

Figure 46: Two-level fingerprinting messages (FPi is an optimistic fingerprint
message, and CFPi is a conservative fingerprint message).

Extended abstract

 181

Message type Size
(bytes)

Comment

Optimistic fingerprint 6 + M M is implicitly set by the message type
Segment request 5 A 4 byte sequence number identifies the segment
Segment 7 + S Includes the segments sequence number and size

(2 bytes)
Conservative
fingerprint

21

Conservative
fingerprint ACK

1 No sequence number since the ACKs are sent in
the same order as conservative fingerprints

No-fingerprint segment 3 + S Includes the segment size (2 bytes)
Multiplexing message 3 2 byte are used to identify the segmentation

component that should receive the next batch of
segments

Table 18: Two-level fingerprint messages. M is meta data size, and S is segment data
size. Optimistic and conservative fingerprint sizes are respectively 5 and 20 bytes.
The two-level fingerprinting messages have been designed to use as few bytes as
possible, since additional bytes sent reduce compression ratio (Table 18). For each
message, the first byte is used to identify the message type.

The most frequently sent message is the optimistic fingerprint message. For these
messages, the message type implicitly specifies the meta-data size (it can be from 0—12
bytes).
Each segment is assigned a sequence number that is set by the sender when the optimistic
fingerprint messages have been sent, and by the receiver when the message is received.
Segment request, and segment messages must include the sequence number, since it is
used respectively to identify the requested segment, and to match the segment data to
meta-data sent with the optimistic fingerprint message.
The conservative fingerprint message is always sent immediately after the last optimistic
fingerprint message in a group. It is therefore not necessary to add any information to the
message about which segments are covered, and thus the message only contains the
message type and conservative fingerprint. Conservative fingerprint ACK messages are
always sent in the same order as the conservative fingerprints were received, and
therefore adding a sequence number is not necessary.
Segments are addressed to segmentation components by inserting a multiplex message
between the fingerprint and segment messages. A multiplex message specifies the
segmentation component that should receive the next batch of segments. Multiplex
messages are used since adding addressing information to optimistic fingerprint messages
would reduce the compression ratio. We assume the overhead of multiplex messages is
small since segmentation components typically sends large burst of data.
The remaining messages types are the no-fingerprint message used to send data that
should not be stored in the segment cache, and messages sent during connection
initialization and closing.

Appendix B - Unpublished papers

 182

8.4.3.4 Data consistency
Computing and comparing conservative fingerprints gives a very strong guarantee that all
segments read from the cache are identical to the segments that were not sent over the
network. However, in order for the fingerprints to match, the secure hash function on
both sides must be run over the segments in the same order. The segments are ordered
using the sequence numbers added to optimistic fingerprint messages as described above.
For simplicity the conservative fingerprint is calculated for all segments even when the
segment is sent to the receiver.
The two-level fingerprinting protocol allows disk cache reads, and segment requests to be
issued out of order, while maintaining consistency and in order delivery of segments. To
further overlap network latency and transfer time with computation, Canidae implements
additional optimizations. First, optimistic fingerprints for the next group can be sent
before the conservative fingerprint ACK message for the previous group has been
received. Second, the receiver streams the conservative fingerprint computation, such that
the fingerprint is continuously updated when requested segments are received, or
segments have been read from the segment cache. Third, multiple segment cache reads
can be issued in parallel.

8.4.3.5 Bidirectional communication and multiple clients
To support bidirectional communication, a separate instance of the protocol is run for
each direction with one side acting as sender and the other as receiver. The sender writes
all sent segments to its segment cache, allowing redundancy to be detected for both
directions, since the same segment cache is used. Any inconsistencies in the segment
cache are detected during conservative fingerprint comparison.

To send the same data to multiple clients, Canidae use multi-cast. The two-level
fingerprinting protocol is not modified, but the segment protocol needs to be changed
such that recipients for each segment are specified. Since the receiver specification is
only sent to the local Canidae server, an efficient address encoding is not necessary. In
the current implementation we use a bitmap with bits set for the receivers of a segment.
The advantage of multi-cast over multiple point-to-point messages is that optimistic
fingerprint computation, and local compression is only done once. Conservative
fingerprints must still be computed for each receiver, since all may not receive the same
set of segments. The advantage over broadcast is that the amount of data sent to each
client can be different, and hence the total amount of data sent is not limited by network
with the lowest throughput.
Canidae servers can be connected to multiple other Canidae servers, but many-to-one
communication operations are not supported. All connections are handled by the same
compression component, and all share the same segment cache. It is therefore possible
for a server to have received data to be sent from another server. The conservative
fingerprints takes care of all consistency issues.

8.4.3.6 Compression pipeline
The server is implemented using a multi-threaded event based model. The protocol
handling is divided into several stages. The stages are connected using queues that are

Extended abstract

 183

used to store segment objects to be processed by the next stage. In addition some stages
are either read from, or write to a socket. To support multicast, some stages produce
output destined to several stages.

Figure 47: Stages and data structures used in the fingerprint components send path.
The compression pipeline consist of a send path and a receive path. For clarity we
describe these separately.

There are multiple independent send paths (Figure 47). The path for sending optimistic
fingerprints consists of: (i) a data read stage that reads segments from the segment
component socket, (ii) a FNV hash stage that calculates the optimistic fingerprint for the
segment, (iv) a SHA-1 hash stage for each client that computes the conservative
fingerprint for a group of segments, and (v) a send fingerprint stage for each client that
write optimistic fingerprint message to the clients socket.

The path for handling segment requests consist of a request read stage that reads segment
request message from multiple receiver sockets. The zlib compress stage that does local
compression, and the send segment stage that writes compressed segment to the receiver
socket. In addition for bidirectional communication the send path is extended with a stage
for writing segments to its segment cache.
There is one segment object for each segment, even if it is going to be sent to multiple
receivers. The memory allocated for the segment object is reused to avoid allocating and
freeing memory for each sent segment. Also, to simplify (memory) resource management
the number of segment objects is statically set, by allocating memory for the segment
objects and adding all to the free queue, to which segment objects are also added when
the reference count becomes zero. In addition there is a buffer for storing a group of
segments until the receiver has acknowledged the group’s conservative fingerprint.

The two-level fingerprinting protocol does not implement rate limitation. But, only a
limited number of segments are buffered while waiting for a conservative ACK. If the
buffer is full no more segments are inserted into the compression pipeline. Additional rate
limitation must be implemented either by segmentation components or the application.

Appendix B - Unpublished papers

 184

Figure 48: Stages and data structures used in the fingerprint components receive
path.
The receive path uses the same data structures as the send path (Figure 48). The socket
reader stage reads messages from the sender socket. Depending on the message type,
either the SHA-1 hash stage updates a conservative fingerprint, the cache read stage reads
a segment from the cache, or the zlib un-compress stage uncompress a received segment.
Then the request/ ACK write stage either sends a segment request if the segment was not
in the cache, or a conservative fingerprint ACK message. Finally, when all segments have
been read from the cache, or received from the sender, and the conservative fingerprints
match, the segment write stage writes the group of to a socket read by the segmentation
component.

Both the send and receive path are implemented to exploit parallelism for respectively
reducing compression time and overlapping disk accesses with computation. Send path
parallelism is most useful for scaling the number of receivers, since message ordering and
conservative fingerprint computation require all stages except FNV hash and zlib
compress to be run sequentially. But, the stage instances for multiple receivers can be run
in parallel.

8.4.4 Segment cache
A hash table and the buffer storing the segments indexed by the hash table form a
container. We assume that segments are accessed with temporal and spatial locality with
respect to segment creation time. Each container is stored in a separate file on disk. The
entire hash table is always read to memory, but only parts of the segment buffer may be
in memory as explained below.
A hash table entry is 64 bits and contains the segments optimistic fingerprint, the segment
buffer offset, and the segment size (Figure 49). The first i bits of an optimistic fingerprint
are used to index the hash table. The remaining fingerprint bits are compared with the ID
bits stored in the hash table entry. If they match the segment can be located in the
segment buffer using the segment offset and size stored in the hash table entry. The offset
may be multiplied with a constant to allow a larger segment buffer to be used.

Extended abstract

 185

Figure 49: A container consists of a hash table used to map fingerprints to segments
in the containers segment buffer.

Figure 50: Container data structures.
Container meta-information is always stored in memory. This data structure consists of a
handle for the file where the container is stored, a pointer to the hash table (if in
memory), a small bitmap of which hash table entries are in use, a table of segment chunks
currently in memory, and the timestamps required by the container replacement algorithm
(Figure 50). The size of the hash table depends on the number of entries. We have set it to
512KB. Segment chunks are always 1MB.
Hash tables and segment chunks are stored in two large arrays with a static size. If one of
the arrays becomes full, a container is evicted (even when only a single segment chunk is
required). To select a container a simple working set replacement algorithm is used that
selects the least recently accessed container for eviction. The algorithm is implemented
by maintaining a timestamp for each container that is updated each time a segment is read
from, or written to the container. Since the time to write a container to disk is large, and
the number of containers in memory is relatively small, all containers are scanned
linearly to find the container with the smallest timestamp.

8.4.4.1 Operations
The segment cache supports three operations: read, write, and update.

The most important design goal for read operations is to reduce disk accesses. Therefore,
the Bloom filter is first checked. In case of a miss, the segment is not in the cache and the
operation can return. Otherwise the hash tables are linearly checked starting with the hash
tables already in memory, and then the hash tables on disk. The search terminates when
the segment is found and returned, or all hash tables have been checked.

Appendix B - Unpublished papers

 186

Figure 51: For segment writes the last accessed (current) container is first checked.
If there is a hash table collision, writes are attempted to the N subsequent
containers, and then the N previous containers. If all collide, writes to the remaining
containers in memory are attempted, before the containers on disk.
Write operations are implemented to cluster segments such that spatial locality can later
be utilized. First, the segment write is attempted to the container last accessed. If the
fingerprint maps to an entry in use, the write is attempted to hash tables in memory, and
then to hash tables on disk as illustrated in Figure 51. Finally, if an unused entry is still
not found a new container is created. The segment data is always appended to the end of
the containers segment buffer.

The write operation does not check the Bloom filter, or check whether the hash tables
already contain a segment with the same optimistic fingerprint. This may create duplicate
segments with the fingerprint value, and thereby increase the storage used for segments.
But, the conservative fingerprints calculated during the two-level fingerprinting protocol
ensure data consistency. Avoiding duplicates would increase the number of disk accesses
due to searches necessary for each Bloom filter positive, and would require serializing
write operations (to avoid a race condition where two segments with the same optimistic
fingerprint are written simultaneously).

The update operation is only called when a conservative fingerprint collision is detected.
First the Bloom filter is checked as described for the read operation. When the segment
has been found it is updated. If the new segment is larger than the old segment, a new
segment is appended to the end of the segment chunk array, and the memory for the old
segment is left unused.

8.4.4.2 Bloom filter parameters
The most important goal when setting the Bloom filter parameters is to minimize the
probability of false positives. A Bloom filter is a bitmap. To add an optimistic fingerprint
k different combinations of the optimistic fingerprint bits are used to set m bits in the
bitmap. For lookup the same k combinations are used to check whether the m bits have
been set in the Bloom filter. If one of the bits is not set, the fingerprint is guaranteed not
to be in the disk cache. If all are set, any of the n segments in the cache could have set the
bits.
A formula for calculating the false positive probability is given by the formula in
Equation 3. The probability can be minimized with respect to the number of lookups

Extended abstract

 187

independent of the number of entries. If there are 8 bits per entry, then using 6 lookups
gives the minimum false positive ratio of 1.56%.

!

f = (1" e

"nk

m)
k

!

k = (
m

n
)ln2" f = (

1

2
)
k

Equation 3: Formula for calculating the false positive ratio for Bloom filters (left),
and the same formula reduced with respect to k (right). n is the maximum number
of entries, k is the number of lookups, m is the number of bits per entry.

Bitmap size (MB) Required redundancy
64 98%
128 96%
256 92%
512 84%
1024 68%
2048 36%

Table 19: Required redundancy for a cache of a given size used to store a 100GB
data set filled with 32 byte segments. If the segment size is doubled, or the data set
size is reduced by two, 92% of redundancy is required for a 128 MB Bloom filter,
84% for a 256 MB Bloom filter, and so on.
Allocating memory for a Bloom filter with 8 bits for each of the 240 optimistic
fingerprints would require 1 TB of memory. But since only a small portion of the
fingerprints are in use, we can set the size based on the data set size and expected
redundancy as shown in Table 19.

8.4.4.3 Memory allocation
 1 GB DS

2 GB RAM
10 GB DS
2 GB RAM

100 GB DS
2 GB RAM

100 GBDS
4 GB RAM

100 GB DS
8 GB RAM

Bloom filter 128 MB 256 MB 1024 MB 1024 MB 1024 MB
Compression
pipeline

200
MB

200
MB

200
MB

200 MB 200 MB

Hash tables 650 MB 600 MB 290 MB 1110 MB 2750 MB
Cache segments 970 MB 900 MB 430 MB 1660 MB 4120 MB

Table 20: Memory allocation for largest data structures (in addition 100 MB of
memory is allocated for other data structures, executables, OS, etc).
The memory on the computer allocated for the Canidae server is shared between the
Bloom filter, hash tables, segments, and the compression pipeline (Table 20). Memory is
statically allocated for the Bloom filter and the compression pipeline. The container data
structures dynamically manage memory such that about 40% is used for hash tables, and
60% for segments (a similar distribution is used in [209]).

8.4.4.4 Discussion
Most existing and new content based segmentation methods can be implemented to use
the segment cache provided by Canidae. But, the Spring and Wetherall [209] method had

Appendix B - Unpublished papers

 188

to be modified since the redundancy detection requires a cache that stores the last N sent
bytes. We believe segmentation methods for multi-dimensional data sets require a cache
that stores a set of segments, since implementing a data structure that support incremental
appending of data, and that supports efficient comparison of multi-dimensional regions is
an unsolved problem.

8.4.5 Segmentation methods
Several segmentation methods implemented by Canidae are described in section 8.5.3.

Table 21 summarizes the meta-data size required for each method. The meta-data is sent
with the optimistic fingerprints and will therefore limit the achieved compression ratio.

Method Meta-data size Maximum segment size
1-D Overlapping static 1 byte Fixed (but about 256 bytes)
1-D Spring and Wetherall [209] 2 bytes 558 bytes
1-DLBFS [156] 2 bytes 64 KB
2-D static 4 bytes Fixed
2-D Varg [49] 6 bytes 216 x fixed width

Table 21: Meta-data size for different segmentation methods implemented in
Canidae.

8.4.6 Initial evaluation
To evaluate whether a large segment cache will improve compression ratio, we use the
traces collected for three microarray analysis genomic applications: Java Treeview [193],
TMeV [192], and GeneVaND [98]. The applications were instrumented using the Java
AWTEventListener interface. The screen resolution was 1280x1024 pixels and the color
depth was 32 bits per pixel. We used these to record a 15-minute trace containing all user
input events for each case. Later the traces were used to create a set of screenshots, each
taken after playing back a recorded mouse or keyboard event that changed the screen
content.

The screenshots are read by a VNC emulator that sends these to a Canidae component
that updates a local buffer, and uses the Varg method to segment the data. The segments
are then sent using the two-level fingerprinting protocol. On the receiver side we have
instrumented the cache such that each segment has been given a sequence number when
written to the cache. The sequence number is then used to calculate the age of segments
read from the cache (we define age as the number of segments that have been written
since this segment was written to the segment cache).

Extended abstract

 189

Figure 52: Cache size increase for remote visualization of three genomic
applications.
Our first observation is that the number of segments cached, and hence the size of the
segment cache, depends on the redundancy detected. Redundancy detection stabilizes
after a while, and can be up to 80%. But since the hit ratio never reaches 100% the cache
size has a steady growth (Figure 52). Even for the short 10—15 minute traces the
segment cache becomes too large to be stored in memory.

Figure 53: Cache hit entry age. Most cache hits are for recently inserted segments,
but when execution time increases the number of hits for older entries increase.
Note that the bucket size is 6021 for Treeview and 2445 for the other two.
A larger cache improves redundancy detection, as shown in Figure 32 where the age of
the cache segments read is plotted. Most hits are for recently added segments, but as the
visualization session proceeds more hits are for older segments. Therefore we believe

Appendix B - Unpublished papers

 190

compression ratio will improve with a large cache for longer traces. However, the
advantage needs to be evaluated using larger data sets with different segmentation
methods.

8.4.7 Future work

Figure 54: The minimum increase in redundancy detection for which reducing the
segment size increases compression ratio (bytes sent due to collisions are ignored).
A full evaluation of the advantage of two-level fingerprinting is needed to answer the
following questions:

1. Does two-level fingerprinting improve the compression ratio of previous 1-D
content-based segmentation algorithms?

2. Does redundancy detection improve with smaller segments (the required increase
is shown in Figure 54)?

3. Is the model used to select two-level fingerprinting parameters realistic?

The segment cache should be evaluated by answering the following:
4. Are the assumptions that segment accesses have temporal and spatial locality

true?
5. How to set the parameters to achieve the best performance, in particular: the

number of hash table entries, segment buffer chunk size, and the memory
allocated for hash tables versus segment chunks?

6. Does the choice of container replacement algorithm significantly improve cache
hit ratio?

7. Would using binary search for container tables instead of hashing improve cache
hit ratio?

In addition the system performance should evaluated by measuring:
8. The throughput of Canidae compression.

Extended abstract

 191

9. The scalability of the Canidae compression pipeline on CMP and SMT
processors.

To answer the first two questions the implemented 1-D segmentation algorithms should
be used to segment a large data set consisting of uncompressed flat files. The
compression ratio should then be measured when using respectively one level
fingerprinting, and two levels fingerprinting for redundancy elimination. The last two
questions can be answered by measuring the throughput of the system on machines with
processors supporting CMT and SMT.

8.4.8 Related work
Related work was presented in section 4.4.

8.4.9 Conclusions
This chapter has presented the design and implementation of the Canidae system.
Canidae is a network data compression framework that allows multiple, data-specific
segmentation methods to share a segment compression engine. A two-level fingerprinting
protocol has been proposed to improve redundancy elimination, and hence compression
ratio by using smaller segments than previous global compression systems. In addition
we propose storing a large segment cache on disk that is optimized to reduce disk
accesses by using a Bloom filter.
The requirements for a 100 GB data set were modeled. Our results shows that two-level
fingerprinting is most useful for segment sizes ranging from 16 to 256 bytes. In order to
get the best trade-off between fingerprint bytes, and collision bytes the optimistic
fingerprint size should be 40 bits, and a conservative fingerprint should cover about 20—
25 segments. In addition, we demonstrated the need for a large segment cache, and how it
can improve the achieved compression ratio.

193

8.5 Multi-level Content-Aware Segmentation for Compression of
Network Data

This section presents an extended abstract that has not been submitted for publication.
The work was done in collaboration with Kai Li and Olga Troyanskaya.

Abstract. Previously proposed techniques for eliminating redundant network traffic are
based on integrated anchoring and analysis of one-dimensional fine-grained data
segments in data streams. The main limitation of such methods is that they are effective
only for simple data types such as web contents, documents, email and binaries. They do
not work well with transferring multi-dimensional data such as 2D pixels in remote data
visualization and high-dimensional scientific datasets. This paper presents a method to
identify and eliminate redundant data transfers of complex data types over a network.
Our method is different from the previous approaches in two ways. First, the method
separates data segmentation from redundancy elimination such that specific content-
based segmentation methods can apply to complex data types. Second, we use a 2-
dimensional segmentation approach that allows using smaller segments.

8.5.1 Introduction
Transferring multi-gigabyte datasets over a wide area network is necessary for many
scientific and commercial applications. Since wide area network bandwidth is limited,
compressing the transferred data is necessary to get acceptable performance for the
applications.

During the past few years, global compression [156, 171, 209] has been proposed to
eliminate redundant network traffic data. We will outline how such an algorithm works
and then explains why previously proposed approaches work well only with 1D data
types, whereas many important applications use complex data types (such as remote
terminals, remote data visualization, and multidimensional datasets).
Our approach to this problem is to propose a new framework that allows application users
to build content-aware anchoring mechanisms to significantly improve the network data
compression. We propose a content-based anchoring method for 2D pixel segments, and
a prototype system to show the proposed methods are effective. The prototype is used to
compare our method to several existing 1D and 2D segmentation algorithms.

The primary contribution of this paper is:
• Application specific segmentation method for multi-dimensional data that

improves the redundancy detection for complex data types. Previous general-
purpose 1-D segmentation algorithms does not take into account the structure and
dimensionality of the transferred network data.

8.5.2 Proposed approach
The architecture of the proposed framework for network data compression was described
in section 8.4.2.

Appendix B - Unpublished papers

 194

8.5.3 Segmentation methods
Canidae implements several 1-D and 2-D segmentation algorithms that are described in
this section. The 1-D algorithms are all general purpose and can therefore be used on any
1-D datastream. However, the algorithms work better if protocol headers or file meta data
is removed [145, 209]. The segmentation components can therefore be implemented to
parse the protocol messages in order to remove protocol headers. Such parsing is
necessary for multi-dimensional segmentation algorithms as described in the next section.

8.5.3.1 Manber’s approach used for global compression
The basic method for segmenting 1D data streams was proposed by Manber [145]. The
method computes a Rabin fingerprint [50, 175] for a window of a fixed number of bytes
in a rolling fashion over a byte data stream and selects fingerprints wherever the k least
significant bits of the fingerprint are zeros. With a uniform distribution, a fingerprint will
be selected every 2k bytes.

Manber used the fingerprints to compare the similarity of files. But the fingerprints can
also be used for global compression. The disadvantage of this method is that it needs to
divide data into tiny segments in order to find redundancy, segments partially overlap,
and the segments may not cover all bytes. Therefore, this type of segmentation is usually
combined with static segmentation (as in rsync [224] that is described in Related Work).
The algorithm produces segments with fixed size equal to the Rabin window size.
Increasing the window size increases the average compression ratio per region, but
reduces the detected redundancy. Reducing k will increase the redundancy found, but will
also increases segment overlap, and hence reduce the segment bytes to fingerprint bytes
ratio.

8.5.3.2 Spring and Wetherall’s 1-D content based segmentation
Spring and Wetherall [209] adapted Manber’s approach to find redundant segments in a
1-D stream of network packets. A cache is used to store previously sent data. To segment
a packet, Rabin fingerprints are calculated, selected, and checked against fingerprints
calculated for the data stored in the cache. For each match, the bytes covered by the
fingerprint window have the same content in the cache and in the packet to be sent. The
segment can then be expanded, to the left and to the right, by matching bytes in the
packet and in the cache. Finally, the fingerprint and a description of the covered region
are sent to the receiver.
The Canidae segment cache differs from the FIFO buffer used by Spring and Wetherall.
In order to use the Canidae segment cache, the approach must be slightly modified such
that a segment can be used to store the data contained in a fingerprint window, and the
data to the right and left. We allocate one segment per fingerprint. All segments are fixed
in size; s bytes. The w bytes covered by the fingerprint are stored in the middle of the
segment, and the (s-w)/2 bytes to the left contains the bytes preceding the fingerprint
window in the last update, and the (s-w)/2 bytes to the right contains the bytes following
the fingerprint window.

Extended abstract

 195

In the modified algorithm the sender does the following:
1. Select fingerprints in the data to be transferred as described above.

2. Read the segments indexed by the fingerprints from the local segment cache.
3. Search for redundant region as described, but limit the segment size to s bytes.

4. Send redundant segments using S&W optimistic fingerprint messages (described
below), and non-covered bytes using no-fingerprint messages.

5. Update the segment cache with the transferred data.
The receiver does the following:

1. Assemble received segment data, and calculate fingerprints for the data as
described above.

2. Use the assembled data to update the segments indexed by the selected
fingerprints.

The Canidae two-level fingerprinting protocol described in section 8.4.3 is extended with
two new messages. In the S&W optimistic fingerprint message the segment size is
defined as bytes before and after the fingerprint bytes. The segment cache is extended
such that only the specified range is read (or written) to the cache for segment data
indexed by such messages. In addition the S&W segment message only includes the data
covered by the fingerprint, but the segment size in the cache is set to the predefined fixed
segment size.
The main drawback of the modification is that segments may overlap. Therefore the
segment size must be limited to reduce the number of bytes stored in multiple segments
(but overlapping bits are not sent over the network). We use 256 byte fixed segments.
This size is larger than the 128 byte average segment size found in [209] (the maximum
segment size was limited by the number of bits allocated for storing the segment size in
the protocol messages and was about 4Kbyte). The smaller maximum segment size can
reduce the compression ratio. However, the Canidae cache allows storing a larger trace,
which may improve compression ratio. Also, compression throughput may decreases,
since the cached segments must be updated each time they are accessed.

8.5.3.3 Anchorpoint content-based segmentation
In the Low Bandwidth File System (LBFS) [156] Manber’s approach is also used to
select a fraction of Rabin fingerprints. But, instead of using the selected fingerprints as a
starting point for growing a segment, these are used as anchorpoints in a 1-D bytestream.
The anchorpoints divide the bytestream into segments, such that segment consists of all
bytes in the Rabin fingerprint window, and all following bytes until the beginning of the
next anchorpoint.
The median size of the segments found by the algorithm can be set to 2k, where k is the
number of fingerprint selection bits. In addition, it is necessary to specify minimum and
maximum segment size to avoid regions that are either too small to get a good
compression ratio, or too large to find redundancy. In [156], these were set such that the
average segment size was 8KB, the minimum 2KB, and the maximum 64KB.

Appendix B - Unpublished papers

 196

8.5.3.4 2-D Static Segmentation
A naïve way to anchor 2-D segments is to divide 2-D data into fixed-size grids statically.
This approach is used by the VNC desktop systems [184] and by MPEG [88] encoders
typically use a static 2-D grid to segment screen buffer content or movie frames (typically
with 8x8 or 16x16 pixel regions). The problem with a static approach is that the
anchoring is sensitive to data movement. For example if the 2-D data set is a screenshot
sent by a remote desktop system then scrolling the visualization by one pixel, then
segmentation of 2-D pixels will be shifted by one pixel relative to the displayed image.
Even if the entire scrolled screen has been transferred previously, the content of segments
will typically have changed, giving new fingerprints and hence reducing redundancy.

8.5.3.5 2-D static and content-based segmentation
Our approach [49] is to perform content-based anchoring instead of static anchoring.
Since it is not practical to anchor both dimensions simultaneously due to the high
computational cost, our algorithm uses Manber’s technique to detect data shift first and
then use the result to anchor 2D segments. Using screen pixel data as an example, we
estimate whether the screen has moved mostly horizontally or vertically using Manber’s
technique. We generate representative fingerprints for every k-th row, and every k-th
column for the screen (k is a small integer), and compare how many fingerprints are
similar to the row and column fingerprints of the previous screen. Assuming that
horizontal scrolling or moving will change most row fingerprints, but only a few column
fingerprints, we can compare the percentage of similar row and column fingerprints to
estimate which movement is dominant.

Figure 55: A 2-D array is first divided into fixed size columns. Then for each
column, content-based anchor rows divide the column into segments.
For predominately vertical shift we statically divide the data into m columns and divide
each column into regions by selecting anchoring rows (Figure 56). The anchoring rows
are selected based on their fingerprint calculated using a four byte at a time Rabin
fingerprint implementation. The column segmentation is ideal for scrolling because the
regions move vertically with the content. If we detect predominately horizontal shift
instead, we transpose the 2-D array before running the algorithm.
2-D data can include cases when large regions of the data have the same value (e.g.
portions of a screen have the same color). For such regions, the row fingerprints will be
identical. Thus, either all or no fingerprints will be selected. To avoid such cases, our

Extended abstract

 197

algorithm does fingerprint selection in three steps. First all fingerprints are calculated.
Second, we scan the fingerprints and mark fingerprints as similar if at least s subsequent
fingerprints are identical. Third, we select fingerprints using the x most significant bits,
while imposing a minimum distance m between selected fingerprints. Also, the first and
last rows are always selected.

8.5.3.6 2-D content based anchoring
This method extends the algorithm in the previous section, such that both column and
row boundaries are selected based on their content. First, the he 2-D array statically into
large m x m pixel tiles. Each tile is then divided into horizontal strips by using Manber’s
method to select anchor-columns based on fingerprints calculated for each column.
Finally, the columns are divided into regions by selecting anchor-rows as described in the
previous section (Figure 56).

Figure 56 The 2-D array is divided into large tiles (4 tiles in this case). Each tile is
segmented by first selecting anchor-columns, and then within each column selecting
anchor-rows.

8.5.3.7 Rabin and Karp probabilistic 2-D segmentation
To detect all data movement in a 2-D data structure, we use an algorithm similar to the
probabilistic 2-D pattern matching suggested by Karp and Rabin [122]. A short
fingerprint is calculated for all m x m regions including all overlaps. Then regions are
selected based on the fingerprint value using Manber’s approach. The resulting segments
divide the 2-D data structure into fixed sized segments that can overlap, and that may not
cover all data.

8.5.4 Segment component implementation
The segmentation component is usually implemented as a standalone server, but can also
be integrated with the fingerprint component, or application server for improved
performance. In this section we describe how Canidae implements segmentation for the
VNC remote desktop protocol.

Appendix B - Unpublished papers

 198

8.5.4.1 VNC

Figure 57: VNC updates segmented using Canidae. The VNC protocol is used for
communication between the VNC components and the segmentation components.
Virtual Network Computing (VNC) [183, 184] is a pixel based remote visualization
protocol, where the screen content on the VNC server is sent to VNC clients in the form
of rectangles of pixels to be updated. Typically the framebuffer that is replicated is
relatively small but is frequently updated; about 5MB for a 1280x1024 screen, but for
large scale display walls [135, 234] the framebuffer can be hundreds of megabytes. Since
it is an interactive application, low response time is important. Visualization intensive
applications typically have large bandwidth requirements than can be provided by
existing wide area networks [49].
The VNC server detects changes to the framebuffer and encodes the changes using the
Remote Frame Buffer (RFB) protocol [183]. RFB is based on a single graphics primitive:
“put rectangle of pixels at position (x, y)”. Also, RFB defines several compression
algorithms such as: copy a region of pixels, run-length encoding, JPEG encoding, and
zlib compression (as discussed above these local compression algorithms either do not
provide the necessary compression ratio, are slow, or are lossy). In addition RFB
provides messages for forwarding mouse and keyboard input, authentication, and server
and client capability negotiation.
The segmentation components must intercept update request messages sent by the VNC
client, and screen update messages sent by the VNC server (Figure 57). In Canidae the
VNC server and VNC client are decoupled. The sender side segmentation component
sends its own update request message to the VNC server. The received update messages
are then parsed, and applied to a local 2-D array. The 2-D array is then segmented and the
segments are sent using the two-level fingerprinting protocol. Simultaneously, the
receiver side segmentation component intercepts update requests, and responds by
encoding the received segments in RFB and sending these to the VNC client.
During initialization the VNC client connects to the VNC server, authenticates itself, and
negotiates about the screen size, pixel depth, and protocol to be used. The segmentation

Extended abstract

 199

components must parse the screen size and pixel depth messages to initialize their local
2-D array.

The implementation of protocol handling is simplified since the message parsing code
can be copied from open source VNC implementations. In addition all RFB messages not
described above, can be forwarded unparsed. Also, it is not necessary to support all
compression protocols, since the basic Raw, Copy and Hextile provide sufficient
performance on a LAN network.

8.5.5 Initial Evaluation
We evaluate different algorithms for content-based segmentation of 2-D data sets. The
following questions about the advantages of multi-dimensional segmentation, and the
tuning of 2-D content-based algorithms are answered:

1. Does 2-D content-based segmentation improve the compression ratio compared to
static 2-D segmentation?

2. Does 2-D application specific segmentation improve the compression ratio and
time compared to general purpose 2-D segmentation?

3. What region size should be used to get the best redundancy detection?
4. Does 2-D segmentation scale with respect to data set size?

8.5.5.1 Methodology
We use four VNC data sets, which are 2-D datasets with a high degree of redundancy.
Each update consists of a screenshot with 1280x1024 or 3328x1536 pixels (display wall),
and 24 bits per pixel:

• TMeV: 3786 updates resulting in 14 198 MB of uncompressed data.
• GeneVaND: 1756 updates resulting in 5910 MB of uncompressed data.

• Treeview: 7693 screen updates resulting in 28 848 MB of uncompressed data.
• Treeview-display wall: 994 updates resulting in 14 537 MB of uncompressed

data.

8.5.5.2 2-D segmentation
Compression method GeneVaND TreeView TIGR MeV
Hextile + Zlib 13.6 19.2 14.8
Static segmentation 15.9 24.3 16.1
Probabilistic 2-D segmentation 9.5
Static + 2-D content based 18.3
Varg (Static + 1-D content based) 24.0 90.9 29.7
Varg without movement estimation 23.8 89.6 17.3
Varg without similar region detection 22.9 82.9 17.1

Table 22: Compression ratio for different segmentation methods for 2-D screenshot
data.

Appendix B - Unpublished papers

 200

The achieved compression ratios using the different methods are summarized in Table
22. This section details the results. First, we compare the Varg compression method
against other widely used methods, and then find the parameters giving the best
compression. Finally, the scalability of the Varg method is demonstrated.

Compared to static segmentation, content-based segmentation improves the compression
ratio up to 3.0 (Table 20). The improvement is due to content-based segmentation
achieving higher redundancy detection when using larger segment that compress better
with local compression algorithms, and hence the total compression ratio improves.

However, content-based segmentation in both dimensions does not improve redundancy
detection compared to static segmentation. The problem is that if one of the pixels in an
anchor-column changes, the fingerprint for the column also changes. The changed
fingerprint may not be selected as an anchor-column, and when the column boundaries
are changed, all segment boundaries also change.

Figure 58: Probabilistic 2D pattern algorithm tuned to reduce the pixels in
overlapping segments, or to reduce the number of pixels not covered by segments.
Ideally both overlap and coverage should be 100%.
Probabilistic 2-D segmentation also does not provide better compression ratio than static
segmentation, since pixels are either not covered or are in overlapping regions. Tuning
the algorithm parameters either reduces both coverage and overlap, or increases both
coverage and overlap (Figure 58). In addition, calculating Rabin fingerprints for all 2-D
regions is computationally costly since a sliding window Rabin implementation cannot be
used.

Extended abstract

 201

8.5.5.3 Algorithm parameters

Figure 59: Compression ratio with fingerprinting and static segmentation.
With static segmentation the best total compression ratio when segments are not
compressed with zlib is for 4x4 pixel regions (48 bytes), and 32x32 pixels (3072 bytes) if
zlib is used (Figure 59). Similarly for Varg content-based segmentation, smaller segments
improve redundancy detection, while larger segments improve zlib ratio and hence the
total compression ratio.

The small segment sizes giving the best fingerprint redundancy detection are about 48—
192 bytes. In section 8.4 we found that for such small segments compression ratio is
limited by the fingerprint size, and that two-level fingerprinting will improve the
compression ratio.

There are four parameters in the Varg 2-D segmentation method that can be changed to
adjust the average region size. Our results for the genomic application traces shows that
these should be set as follows to achieve the best compression ratio:

• The static column width should be small. On our experiment platform 16 pixels
worked well since horizontal scrolling often moved content 16 pixels at a time.
But a width of 4 pixels gives the best redundancy detection. Small static columns
increase horizontal redundancy detection, since multiple pixels are typically
scrolled at a time. In addition redundancy detection may decrease if a column is
wide enough to include content both inside and outside a scroll-pane.

• The number of bits used for fingerprint selection, depends on the visualization.
For the Treeview and TMeV trace the best ratio is when every 8th row is selected
on the average. For GeneVaND selecting on the average every 32nd row gives the
best ratio.

• Minimum region height should be about 8-16 rows if zlib is used, and 4 pixels if
not. A smaller minimum decreases the total compression ratio due to reduced zlib
compression ratio. A larger minimum also decreases redundancy detection since
a change to an anchor row may cause subsequent anchor rows not to be selected
since they are within the minimum height.

Appendix B - Unpublished papers

 202

• Specifying a maximum region height does not improve compression ratio, but
may be necessary due to the fingerprint protocol messages having restrictions on
the number of bits that can be used to store the segment size.

8.5.5.4 Application specific segmentation
Setting the parameters as discussed above gives a region size distribution as shown in
Figure 60. About 10% of the segments have height less than the minimum distance.
There are three classes of such regions: (i) the segments at the bottom of each column,
(ii) segments just above a similar region, and (iii) segments below a similar region. Each
trace has a few segments where the height is above 512 rows. But these often have
similar content, which compresses well with zlib.
The last two cases can be avoided by disabling similar detection of column rows with
identical content (Figure 61). But the total compression ratio is reduced by 1—8% since
zlib compression ratio decreases.

Figure 60: Segment height distribution for the Treeview trace. Minimum height is
16, and the median is 19.

Extended abstract

 203

Figure 61: Segment height distribution for the GeneVaND trace with and without
similar region detection (the other traces are similar).
Movement estimation improves the compression ratio for TMeV with 72%, since about
30% of the updates have predominantly horizontal movement. The compression ratio
improvement is smaller for the other traces, since few updates had horizontal movement.

8.5.5.5 Scalability

Figure 62. Cumulative distribution of segment heights shows that these do not
change when the screen size increases.
The Varg segmentation method scales with screen size. With a larger screen the same
algorithm parameters give the best compression ratio, and the distribution of segment
sizes do not change (Figure 62). However, the total compression ratio improves, due to

Appendix B - Unpublished papers

 204

improved fingerprinting and zlib compression ratio. It is therefore not necessary to tune
the segmentation method for different screen sizes.

8.5.6 Future Work
A full evaluation is required to answer the following questions:

1. Does 2-D based segmentation methods improve the compression ratio and time
compared to 1-D segmentation methods for 2-D data?

2. Does the 2-D based segmentation methods also work well with scientific 2-D
data?

3. Does our modified Spring and Wetherall segmentation algorithm achieve similar
compression ratio as the original algorithm?

To answer these questions it is necessary to experiment with the 1-D and the 2-D
segmentation methods described above. The data sets to use in the evaluation could be
from different scientific domains, such as geometric data, scientific simulation output,
and satellite images.

8.5.7 Conclusions
This paper has evaluated different segmentation methods for 2-D data. The segmentation
methods are implemented in a network data compression framework called Canidae. It
allows multiple, data-specific segmentation methods to share a segment compression
engine. A two-level fingerprinting protocol is used to provide high compression ratio
with smaller segments than previous global compression systems. Also proposed is a
novel method to compress 2-D pixel segments by using fingerprinting.

We found that 2-D content-based segmentation algorithms improve compression ratio up
to 3.0, compared to static compression methods. In addition we found that applying
screenshot specific optimizations to the segmentation algorithm, improves screenshot
compression up to 1.7. In addition we demonstrate that the algorithm parameters can be
set independent of the visualization and the screen size.

205

References

1. HPC Challenge Benchmark. 2007. http://icl.cs.utk.edu/hpcc/index.html.
2. Iperf webpage. 2007. http://dast.nlanr.net/Projects/Iperf/.
3. LAM-MPI homepage. http://www.lam-mpi.org/.
4. LINPACK Benchmark. http://www.netlib.org/linpack/.
5. MPICH home page. http://www.mcs.anl.gov/mpi/mpich/.
6. PMB - Pallas MPI Benchmarks. http://www.pallas.com/e/products/pmb/.
7. Secure Hash Standard. FIPS PUB 180-1 National Institute of Standards and

Technology. 1995.
8. SETI@home - The Search for Extraterrestrial Intelligence.

http://setiathome.ssl.berkeley.edu/.
9. Zlib/ gzlib library home page. http://www.zlib.net/.
10. Aas, J. Understanding the Linux 2.6.8.1 CPU Scheduler. Silicon Graphics, Inc.

(SGI). 2005.
11. Adiga, N.R., Almasi, G., Almasi, G.S., Aridor, Y., Barik, R., Beece, D., Bellofatto,

R., Bhanot, G., Bickford, R., Blumrich, M., et al., An overview of the BlueGene/L
Supercomputer. in Proc. of the 2002 ACM/IEEE conference on Supercomputing,
(Baltimore, Maryland, 2002), IEEE Computer Society Press, pages 1-22.

12. Alexandrov, A., Ionescu, M.F., Schauser, K.E. and Scheiman, C., LogGP:
incorporating long messages into the LogP model—one step closer towards a
realistic model for parallel computation. in Proc. of the seventh annual ACM
symposium on Parallel algorithms and architectures, (Santa Barbara, California,
United States, 1995), ACM Press, pages 95-105.

13. Amdahl, G.M., Validity of the single processor approach to achieving large-scale
computing capabilities. in Proc. of the AFIPS Spring Joint Computer Conference,
(Atlantic City, New Jersey, USA, 1967), AFIPS Press, pages 483-485.

14. Anderson, D.P., Tzou, S.-Y., Wahbe, R., Govindan, R. and Andrews, M., Support
for continuous media in the DASH system. in Proc. of 10th International
Conference on Distributed Computing Systems (ICDCS), (Paris, France, 1990),
IEEE Computer Society, pages 54-61.

15. Anderson, J.M., Berc, L.M., Dean, J., Ghemawat, S., Henzinger, M.R., Leung, S.-
T.A., Sites, R.L., Vandevoorde, M.T., Waldspurger, C.A. and Weihl, W.E.
Continuous profiling: where have all the cycles gone? ACM Trans. Comput.
Syst., 15 (4): 357-390. 1997.

16. Anderson, T.E. and Lazowska, E.D., Quartz: a tool for tuning parallel program
performance. in Proc. of the 1990 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, (Boulder, Colorado, USA,
1990), ACM Press, pages 115-125.

17. Annapureddy, S., Freedman, M.J. and Mazieres, D., Shark: scaling file servers
via cooperative caching. in Proc. of the 2nd conference on Symposium on
Networked Systems Design Implementation, (2005), USENIX Association.

18. Anshus, O.J., Bjørndalen, J.M. and Bongo, L.A., Parallelizing, Configuring, and
Monitoring of Parallel Applications on Clusters. in Proc. of ParCo 2003

References

 206

(Dresden, Germany, 2003), Elsevier, Advances in Parallel Computing 13, pages
879-886.

19. Apple. Apple Remote Desktop. http://www.apple.com/remotedesktop/.
20. Arpaci-Dusseau, A.C. Implicit coscheduling: coordinated scheduling with implicit

information in distributed systems. ACM Transactions on Computer Systems, 19
(3): 283-331. 2001.

21. BABAR Collaboration. BaBar high energy physics experiment. 2006. http://www-
public.slac.stanford.edu/babar/.

22. Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J., Models and issues
in data stream systems. in Proc. of the twenty-first Symposium on Principles of
database systems, (Madison, Wisconsin, 2002), ACM Press, pages 1-16.

23. Bala, V., Bruck, J., Cypher, R., Elustando, P., Ho, A., Ho, C.-T., Kipnis, S. and
Snir, M. CCL: a portable and tunable collective communication library for
scalable parallel computers. IEEE Trans. Parallel Distrib. Syst., 6 (2): 154-164.
1995.

24. Balle, S.M., Bishop, J., LaFrance-Linden, D. and Rifkin, H., Ygdrasil: aggregator
network toolkit for the Grid. in Proc. of PARA'04 - Workshop on State-of-the-Art in
Scientific Computing, (Lyngby, Denmark, 2004), Springer.

25. Baratto, R.A., Kim, L.N. and Nieh, J., THINC: a virtual display architecture for
thin-client computing. in Proc. of SOSP '05: the twentieth ACM symposium on
Operating systems principles, (Brighton, United Kingdom, 2005), ACM Press,
pages 277-290.

26. Barnett, M., Gupta, S., Payne, D., Shuler, L., van de Geijn, R.A. and Watts, J.,
Interprocessor collective communication library (Intercom). in Proc. of Scalable
High Performance Computing Conference 1994, (1994).

27. Barnett, M., Gupta, S., Payne, D.G., Shuler, L., Geijn, R.v.d. and Watts, J.,
Building a high-performance collective communication library. in Proc. of the
1994 ACM/IEEE conference on Supercomputing, (Washington, D.C., 1994),
ACM Press, pages 107-116.

28. Begole, J., Rosson, M.B. and Shaffer, C.A. Flexible collaboration transparency:
supporting worker independence in replicated application-sharing systems. ACM
Trans. Comput.-Hum. Interact., 6 (2): 95-132. 1999.

29. Bell, C., Bonachea, D., Nishtala, R. and Yelick, K., Optimizing bandwidth limited
problems using one-sided communication and overlap

. in Proc. of 20th International Parallel and Distributed Processing Symposium (IPDPS),
(2006), IEEE.

30. Berliner, B., CVS II: Parellizing software development. in Proc. of the Winter
1990 USENIX Technical Conference, (Colorado Springs, CO, USA, 1990).

31. Bernaschi, M. and Iannello, G. Collective Communication Operations:
Experimental Results vs.Theory. Concurrency: Practice and Experience, 10 (5).
1998.

32. Bjørndalen, J.M. Improving the Speedup of Parallel and Distributed Applications
on Clusters and Multi-Clusters. Ph.D. dissertation. Department of Computer
Science. University of Tromsø. 2003.

33. Bjørndalen, J.M., Anshus, O., Larsen, T., Bongo, L.A. and Vinter, B., Scalable
processing and communication performance in a multi-media related context. in
Proc. of 28th EUROMICRO Conference 2002, (Dortmund, Germany, 2002),
IEEE Computer Society, pages 200-206.

34. Bjørndalen, J.M., Anshus, O., Larsen, T. and Vinter, B., PATHS - Integrating the
principles of method-combination and remote procedure calls for run-time

References

 207

configuration and tuning of high-performance distributed applications. in Proc. of
Norsk Informatikk Konferanse (NIK 2001), (Tromsø, Norway, 2001).

35. Bjørndalen, J.M., Anshus, O., Vinter, B. and Larsen, T., Configurable collective
communication in LAM-MPI. in Proc. of Communicating Process Architectures
2002, (Reading, UK, 2002).

36. Bjørndalen, J.M., Anshus, O., Vinter, B. and Larsen, T., The performance of
configurable collective communication for LAM-MPI in clusters and multi-clusters.
in Proc. of NIK 2002, Norsk Informatikk Konferanse, (Kongsberg, Norway,
2002).

37. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13 (7): 422-426. 1970.

38. Blue Coat Systems. Caching and compression – key complementary
technologies for application acceleration. White paper 2007.
39. Bobbarjung, D.R., Jagannathan, S. and Dubnicki, C. Improving duplicate

elimination in storage systems. ACM Trans. on Storage, 2 (4): 424-448. 2006.
40. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic,

J.N. and Su, W.-K. Myrinet: A Gigabit-per-Second Local Area Network. IEEE
Micro, 15 (1): 29-36. 1995.

41. Bonachea, D. and Duell, J. Problems with using MPI 1.1 and 2.0 as compilation
targets for parallel language

implementations. Int. J. High Performance Computing and Networking, 1 (1/2/3): 91-99.
2004.

42. Bongo, L.A. The Longcut wide area network emulator: design and evaluation.
Technical report 2005-53. Dep. of Computer Science, University of Tromsø.
2005.

43. Bongo, L.A., Anshus, O. and Bjørndalen, J.M., Collective communication
performance analysis within the communication system. in Proc. of Euro-Par
2004, (Pisa, Italy, 2004), Springer, Lecture Notes in Computer Science 3149,
pages 163-172.

44. Bongo, L.A., Anshus, O. and Bjørndalen, J.M. Evaluating the performance of the
allreduce collective operation on clusters: approach and results. Technical
Report 2004-48. Dep.of Computer Science, University of Tromsø. 2004.

45. Bongo, L.A., Anshus, O. and Bjørndalen, J.M., EventSpace - exposing and
observing communication behavior of parallel cluster applications. in Proc. of
Euro-Par 2003, (Klagenfurt, Austria, 2003), Springer, Lecture Notes in Computer
Science 2790, pages 47-56.

46. Bongo, L.A., Anshus, O., Bjørndalen, J.M. and Larsen, T., Extending collective
operations with application semantics for improving multi-cluster performance. in
Proc. of ISPDC/HeteroPar, (Cork, Ireland, 2004), IEEE Computer Society, pages
320-327.

47. Bongo, L.A., Anshus, O.J. and Bjørndalen, J.M., Low overhead high performance
runtime monitoring of collective communication. in Proc. of the 2005 International
Conference on Parallel Processing, (Oslo, Norway, 2005), IEEE Computer
Society, pages 455-464.

48. Bongo, L.A., Vinter, B., Anshus, O.J., Larsen, T. and Bjørndalen, J.M., Using
overdecomposition to overlap communication latencies with computation and
take advantage of SMT processors. in Proc. of International Conference on
Parallel Processing Workshops (ICPP Workshops 2006), (Columbus, Ohio, USA,
2006), IEEE Computer Society, pages 239-247.

49. Bongo, L.A., Wallace, G., Larsen, T., Li, K. and Troyanskaya, O., Systems
support for remote visualization of genomics applications over wide area

References

 208

networks. in Proc. of GCCB 2006, (Eilat, Israel, 2007), Springer, Lecture Notes
in Bioinformatics 4360, pages 157-174.

50. Broder, A., Some applications of Rabin's fingerprinting method. in Proc. of
Sequences II: Methods in Communications, Security, and Computer Science,
(1993), Springer-Verlag.

51. Brunst, H., Hoppe, H.-C., Nagel, W.E. and Winkler, M., Performance optimization
for large scale computing - The scalable VAMPIR approach. in Proc. of
International Conference on Computational Science (2), (San Francisco, CA,
USA, 2001), Springer, Lecture Notes in Computer Science 2074, pages 751-760.

52. Burns, G., Daoud, R. and Vaigl, a.J., LAM: An Open Cluster Environment for
MPI. in Proc. of Supercomputing Symposium 1994, (Toronto, Canada, 1994).

53. Cahill, D.J. and Nordhoff, E. Protein arrays and their role in proteomics. Adv
Biochem Eng Biotechnol, 83177-187. 2003.

54. Cai, X., Improving the performance of large-scale unstructured PDE applications.
in Proc. of PARA'04 Workshop, (Lyngby, Denmark, 2006), Springer, Lecture
Notes in Computer Science, pages 699–708.

55. Caubet, J., Gimenez, J., Labarta, J., Rose, L.D. and Vetter, J.S., A dynamic
tracing mechanism for performance analysis of OpenMP applications. in Proc. of
the International Workshop on OpenMP Applications and Tools: OpenMP Shared
Memory Parallel Programming, (2001), Springer-Verlag, pages 53-67.

56. CERN. Large Hadron Collider (LHC) 2006. http://lhc.web.cern.ch/lhc/.
57. CERN. The LCG infrastructure built for LHC. http://lcg.web.cern.ch/LCG/.
58. Chen, P.M. and Patterson, D.A. A new approach to I/O performance evaluation:

self-scaling I/O benchmarks, predicted I/O performance. ACM Transactions on
Computer Systems (TOCS), 12 (4): 308-339. 1994.

59. Choi, G.S., Kim, J.-H., Ersoz, D., Yoo, A.B. and Das, C.R., Coscheduling in
clusters: is it a viable alternative? in Proc. of the 2004 ACM/IEEE conference on
Supercomputing, (Pittsburgh, PA, 2004), IEEE Computer Society Press.

60. Christiansen, B.O. and Schauser, K.E., Fast Motion Detection for Thin Client
Compression. in Proc. of the Data Compression Conference (DCC '02), (2002),
IEEE Computer Society.

61. Chung, I.H., Walkup, R.E., Wen, H.-F. and Yu, H., MPI performance analysis
tools on Blue Gene/L. in Proc. of the 2006 ACM/IEEE conference on
Supercomputing, (Tampa, Florida, 2006), ACM Press.

62. Cisco Systems. Cisco wide area application services (WAAS) V4.0 technical
overview. Whitepaper 2006.

63. Cisco Systems Inc. WebEx homepage. http://www.webex.com/.
64. Cox, L.P., Murray, C.D. and Noble, B.D., Pastiche: making backup cheap and

easy. in Proc. of the 5th symposium on Operating systems design and
implementation, (Boston, Massachusetts, 2002), ACM Press, pages 285-298.

65. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E.,
Subramonian, R. and Eicken, T.v., LogP: towards a realistic model of parallel
computation. in Proc. of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming, (San Diego, California, United States, 1993),
ACM Press, pages 1-12.

66. Culler, D.E. and Singh, J.P. Parallel Computer Architecture: A Hardware /
Software Approach. Morgan Kaufmann, 1999.

67. Cumberland, B.C., Carius, G. and Muir, A. Microsoft Windows NT Server 4.0,
Terminal server edition: technical reference. Microsoft Press 1999.

68. Cutler, P. Protein arrays: the current state-of-the-art. Proteomics, 3 (1): 3-18.
Jan, 2003.

References

 209

69. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R. and Stoica, I., Wide-area
cooperative storage with CFS. in Proc. of the eighteenth ACM symposium on
Operating systems principles, (Banff, Alberta, Canada, 2001), ACM Press, pages
202-215.

70. Danalis, A., Kim, K.-Y., Pollock, L. and Swany, M., Transformations to parallel
codes for communication-computation overlap. in Proc. of the 2005 ACM/IEEE
conference on Supercomputing, (2005), IEEE Computer Society.

71. Dean, J. and Ghemawat, S., MapReduce: simplified data processing on large
clusters. in Proc. of OSDI 2004, (2004), Usenix, pages 137-150.

72. Denehy, T.E. and Hsu, W.W. Reliable and efficient storage of reference data.
Technical Report RJ10305. IBM Research. October, 2003.

73. Deutsch, P. DEFLATE Compressed Data Format Specification version 1.3.
Network Working Group Request for Comments 1951. The Internet Engineering
Task Force. May, 1996.

74. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L. and White,
A. (eds.). Sourcebook of parallel computing. Morgan Kaufmann Publishers Inc.,
2003.

75. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D. and Theimer, M., Reclaiming
space from duplicate files in a serverless distributed file system. in Proc. of the
22 nd International Conference on Distributed Computing Systems (ICDCS'02),
(2002), IEEE Computer Society.

76. Douglis, F. and Iyengar, A., Application-specific delta-encoding via resemblance
detection. in Proc. of 2003 USENIX Technical Conference, (2003).

77. Eggert, L. and Touch, J.D., Idletime scheduling with preemption intervals. in
Proc. of the twentieth ACM symposium on Operating systems principles,
(Brighton, United Kingdom, 2005), ACM Press, pages 249-262.

78. Evensky, D.A., Gentile, A.C., Camp, L.J. and Armstrong, R.C., Lilith: scalable
execution of user code for distributed computing. in Proc. of Sixth IEEE
International Symposium on High Performance Distributed Computing, (Portland,
Oregon, 1997), pages 306-314.

79. F5 Networks. The BIG-IP system with intelligent compression: cutting application
delivery time and optimizing bandwidth. White Paper 2007.
80. Faraj, A. and Yuan, X., Automatic generation and tuning of MPI collective

communication routines. in Proc. of the 19th annual international conference on
Supercomputing, (Cambridge, Massachusetts, 2005), ACM Press, pages 393-
402.

81. Faraj, A., Yuan, X. and Lowenthal, D., STAR-MPI: self tuned adaptive routines
for MPI collective operations. in Proc. of the 20th annual international
conference on Supercomputing, (Cairns, Queensland, Australia, 2006), ACM
Press, pages 199-208.

82. Feibush, E. ElVis homepage. http://w3.pppl.gov/elvis.
83. Figueiredo, R.J.O. and Fortes, J.A.B., Impact of Heterogeneity on DSM

Performance. in Proc. of Sixth International Symposium on High-Performance
Computer Architecture, (2000).

84. Foster, I. and Kesselman, C. (eds.). The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., 2003.

85. Foster, I. and Kesselman, C. (eds.). The grid: Blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers Inc., 1999.

86. Fowler, G., Vo, P. and Noll, L.C. Fowler / Noll / Vo (FNV) Hash webpage.
http://www.isthe.com/chongo/tech/comp/fnv/.

References

 210

87. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al., Open MPI: goals,
concept, and design of a next generation MPI implementation. in Proc. of 11th
European PVM/MPI Users' Group Meeting, (Budapest, Hungary, 2004).

88. Gall, D.L. MPEG: a video compression standard for multimedia applications.
Commun. ACM, 34 (4): 46-58. 1991.

89. Geppert, L. Sun's Big Splash. IEEE Spectrum, 42 (1): 56-60. January, 2005.
90. Gigabit Ethernet Alliance. Gigabit Ethernet: Accelerating the Standard for Speed.

White paper May, 1999.
91. Goldberg, A.J. and Hennessy, J.L. Mtool: an integrated system for performance

debugging shared memory multiprocessor applications. IEEE Trans. Parallel
Distrib. Syst., 4 (1): 28-40. 1993.

92. Gordon, B. and Jim, G. What's next in high-performance computing? Commun.
ACM, 45 (2): 91-95. 2002.

93. Graham, S.L., Kessler, P.B. and Mckusick, M.K., Gprof: A call graph execution
profiler. in Proc. of 1982 SIGPLAN symposium on Compiler construction,
(Boston, Massachusetts, United States, 1982), ACM Press, pages 120-126.

94. Gray, J., Liu, D.T., Nieto-Santisteban, M., Szalay, A., DeWitt, D.J. and Heber, G.
Scientific data management in the coming decade. SIGMOD Rec., 34 (4): 34-41.
2005.

95. Habata, S., Umezawa, K., Yokokawa, M. and Kitawaki, S. Hardware system of
the Earth Simulator. Parallel Comput., 30 (12): 1287-1313. 2004.

96. Hagen, T.-M.S. The PATHS Visualizer. Master thesis. Department of Computer
Science. University of Tromsø. 2006.

97. Hayes, E.F. and al, e. Report of the Task Force of the Future of the NSF
Supercomputer Centers Program. National Science Foundation Report 9646.
September, 1995.

98. Hibbs, M.A., Dirksen, N.C., Li, K. and Troyanskaya, O.G. Visualization methods
for statistical analysis of microarray clusters. BMC Bioinformatics, 6. 2005.

99. Hoeflinger, J., Kuhn, B., Nagel, W.E., Petersen, P., Rajic, H., Shah, S., Vetter,
J.S., Voss, M. and Woo, R., An integrated performance cisualizer for
MPI/OpenMP programs. in Proc. of the International Workshop on OpenMP
Applications and Tools: OpenMP Shared Memory Parallel Programming, (2001),
Springer-Verlag, pages 40-52.

100. Hong, B., Plantenberg, D., Long, D.D.E. and Sivan-Zimet, M., Duplicate data
elimination in a san file system. in Proc. of the 21st IEEE/12th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), (2004), pages
301-314.

101. Housel, B.C. and Lindquist, D.B., WebExpress: a system for optimizing Web
browsing in a wireless environment. in Proc. of Proceedings of the 2nd annual
international conference on Mobile computing and networking, (Rye, New York,
United States, 1996), ACM Press, pages 108-116.

102. Huang, R.P. Protein arrays, an excellent tool in biomedical research. Front
Biosci, 8d559-576. May 1, 2003.

103. Huffman, D.A. A method for the construction of minimum-redundancy codes.
Proc. of the Institute of Radio Engineers, 40 (9): 1098-1101. September, 1952.

104. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D. and
Klosowski, J.T., Chromium: a stream-processing framework for interactive
rendering on clusters. in Proc. of the 29th annual conference on Computer
graphics and interactive techniques, (San Antonio, Texas, USA, 2002), ACM
Press, pages 693-702.

References

 211

105. Husbands, P. and Hoe, J.C., MPI-StarT: delivering network performance to
numerical applications. in Proc. of the 1998 ACM/IEEE conference on
Supercomputing, (San Jose, CA, 1998), IEEE Computer Society, pages 1-15.

106. Iancu, C.C. and Strohmaier, E., Optimizing communication overlap for high-
speed networks. in Proc. of the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, (San Jose, California, USA, 2007), ACM
Press, pages 35-45.

107. IBM Advanced Computing Technology Center. MPI Tracer/Profiler.
http://domino.research.ibm.com/comm/research_projects.nsf/pages/actc.mpitrac
er.html.

108. IBM Systems & Technology Group. How DB2 exploits IBM @serverp5 and AIX
5L Simultaneous Multithreading. IBM Whitepaper October, 2004.

109. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.0.
October, 2000.

110. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 1: Basic Architecture. 2006.

111. Intel Corporation. Intel Trace Analyzer and Collector 7.0.
http://www3.intel.com/cd/software/products/asmo-na/eng/306321.htm.

112. Intel Corporation. Intel VTune Performance Analyzer. 2007.
http://www.intel.com/cd/software/products/asmo-na/eng/239144.htm.

113. International Standard. Information Technology - Generic Coding of Moving
Pictures and Associated Audio Information - Part 3: Audio. ISO/IEC 13818-3
1994.

114. Irmak, U. and Suel, T., Hierarchical substring caching for efficient content
distribution to low-bandwidth clients. in Proc. of the 14th international conference
on World Wide Web, (Chiba, Japan, 2005), ACM Press, pages 43-53.

115. Jeffrey, V., Performance analysis of distributed applications using automatic
classification of communication inefficiencies. in Proc. of the 14th international
conference on Supercomputing, (Santa Fe, New Mexico, United States, 2000),
ACM Press, pages 245-254.

116. Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A. and
Leigh, J., High-performance dynamic graphics streaming for scalable adaptive
graphics environment. in Proc. of the 2006 ACM/IEEE conference on
Supercomputing, (Tampa, Florida, 2006), ACM Press.

117. Johnsen, E.S., Bjørndalen, J.M. and Anshus, O., CoMPI - Configurable collective
operations in LAM/MPI using the scheme programming language. in Proc. of
PARA 2006, (Umeaa, Sweden, 2006), Springer, LNCS (in publication).

118. Jones, T., Tuel, W., Brenner, L., Fier, J., Caffrey, P., Dawson, S., Neely, R.,
Blackmore, R., Maskell, B., Tomlinson, P., et al., Improving the scalability of
parallel jobs by adding parallel awareness to the operating system. in Proc. of the
2003 ACM/IEEE conference on Supercomputing, (Phoenix, Arizona, 2003).

119. Jost, G., Jin, H., Labarta, J., Gimenez, J. and Caubet, J., Performance analysis
of multilevel parallel applications on shared memory architectures. in Proc. of the
17th International Symposium on Parallel and Distributed Processing, (2003),
IEEE Computer Society.

120. Juniper Networks. Juniper Networks WAN acceleration platforms. 2007.
http://www.juniper.net/products_and_services/application_acceleration/wan_acce
leration/index.html.

121. Kalla, R.N., Sinharoy, B. and Tendler, J.M. IBM Power5 chip: a dual-core
multithreaded processor. IEEE Micro, 24 (2): 40-47. 2004.

References

 212

122. Karp, R.M. and Rabin, M.O. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31 (2): 249-260. 1987.

123. Karwande, A., Yuan, X. and Lowenthal, D.K., CC-MPI: a compiled
communication capable MPI prototype for Ethernet switched clusters. in Proc. of
the ninth ACM SIGPLAN symposium on Principles and practice of parallel
programming, (San Diego, California, USA, 2003), ACM Press, pages 95-106.

124. Keller, R., Bosilca, G., Fagg, G.E., Resch, M.M. and Dongarra, J.,
Implementation and Usage of the PERUSE-Interface in Open MPI. in Proc. of
PVM/MPI, (Bonn, Germany, 2006), Springer, Lecture Notes in Computer Science
4192, pages 347-355.

125. Keller, R., Gabriel, E., Krammer, B., Müller, M.S. and Resch, M.M. Towards
efficient execution of MPI applications on the Grid: porting and optimization
issues. Grid Computing, 1 (2): 133-149. 2003.

126. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A. and Bhoedjang, R.A.F.,
MagPIe: MPI's collective communication operations for clustered wide area
systems. in Proc. of the seventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, (Atlanta, Georgia, United States, 1999), pages
131-140.

127. Kilburn, T., Edwards, D.B.G., Lanigan, M.J. and Sumner, F.H. One-level storage
system. IRE Trans. Electronic Computers. April, 1962.

128. Kohn, J. and Williams, W. ATExpert. Parallel and Distributed Computing, 18 (2):
205-222. June, 1993.

129. Kumar, S., Jiang, D., Chandra, R. and Singh, J.P., Evaluating synchronization on
shared address space multiprocessors: methodology and performance. in Proc.
of the 1999 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, (Atlanta, Georgia, United States, 1999), ACM
Press, pages 23-34.

130. Kvalnes, A., Johansen, D., Arnesen, A. and Renesse, R.v. Vortex: an event-
driven multiprocessor operating system supporting performance isolation.
Technical report 2003-45. Dep.of Computer Science, University of Tromsø. 2003.

131. Lai, A.M. and Nieh, J. On the performance of wide-area thin-client computing.
ACM Trans. Comput. Syst., 24 (2): 175-209. 2006.

132. Lawrence Livermore National Laboratory. ASCI Purple.
http://www.llnl.gov/asc/computing_resources/purple/purple_index.html.

133. Lawrence Livermore National Laboratory. ASCI Purple Benchmark.
http://www.llnl.gov/asci/platforms.

134. Leu, J.S., Agrawal, D.P. and Mauney, J., Modeling of parallel software for
efficient computation communication overlap. in Proc. of the 1987 Fall Joint
Computer Conference on Exploring technology: today and tomorrow, (Dallas,
Texas, United States, 1987), IEEE Computer Society Press, pages 569-575.

135. Li, K., Chen, H., Chen, Y., Clark, D.W., Cook, P., Damianakis, S., Essl, G.,
Finkelstein, A., Funkhouser, T., Timoth, H., et al. Building and using a scalable
display wall system. IEEE Comput. Graph. Appl., 20 (4): 29-37. 2000.

136. Lin, B. and Dinda, P.A., VSched: mixing batch and interactive virtual machines
using periodic real-time scheduling. in Proc. of the 2005 ACM/IEEE conference
on Supercomputing, (2005), IEEE Computer Society.

137. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R. and Lockhart, D.J. High density
synthetic oligonucleotide arrays. Nature Genetics, 2120-24. Jan, 1999.

138. Litzkow, M., Livny, M. and Mutka, M., Condor - A hunter of idle workstations. in
Proc. of the 8th International Conference of Distributed Computing Systems,
(1988).

References

 213

139. Liu, G. and Abdelrahman, T.S., Computation-communication overlap on network-
of-workstation multiprocessors. in Proc. of International Conference on Parallel
and Distributed Processing Techniques and Applications, (Las Vegas, Nevada,
USA, 1998), CSREA Press, pages 1635-1642.

140. Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W., Buntinas, D.,
Wyckoff, P. and Panda, D.K., Performance comparison of MPI implementations
over InfiniBand, Myrinet and Quadrics. in Proc. of the 2003 ACM/IEEE
conference on Supercomputing, (Phoenix, Arizona, 2003).

141. Lo, J.L., Eggers, S.J., Levy, H.M., Parekh, S.S. and Tullsen, D.M. Tuning
compiler optimizations for simultaneous multithreading. International Journal of
Parallel Programming, 27 (6): 477-503. 1999.

142. Lo, J.L., Emer, J.S., Levy, H.M., Stamm, R.L., Tullsen, D.M. and Eggers, S.J.
Converting thread-level parallelism to instruction-level parallelism via
simultaneous multithreading. ACM Trans. Comput. Syst., 15 (3): 322-354. 1997.

143. Lowekamp, B. and Beguelin, A., ECO: efficient collective operations for
communication on heterogeneous networks. in Proc. of International Parallel
Processing Symposium, (Honolulu, HI, 1996), pages 399-405.

144. Malony, A.D. and Reed, D.A. Visualizing parallel computer system performance.
in Instrumentation for future parallel computing systems, ACM Press, 1989, 59-
90.

145. Manber, U., Finding similar files in a large file system. in Proc. of the Winter
1994 USENIX Technical Conference, (San Francisco, CA, 1994).

146. Marr, D., Binns, F., Hill, D., Hinton, G., Koufaty, D., Miller, J. and Upton, M.
Hyper-threading technology architecture and microarchitecture. Intel Technology
Journal. February, 2002.

147. Massie, M.L., Chun, B.N. and Culler, D.E. The Ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, 30. 2004.

148. Message Passing Interface Forum MPI-2: A Message-Passing Interface
Standard. International Journal of Supercomputer Applications and High
Performance Computing 12 (1/2). 1998.

149. Message Passing Interface Forum MPI: A Message-Passing Interface Standard.
International Journal of Supercomputing Applications, 8 (3/4). Fall/Winter, 1994.

150. Microsoft Corporation. Microsoft Office Live Meeting homepage. 2007.
http://office.microsoft.com/en-us/livemeeting/default.aspx.

151. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B.,
Karavanic, K.L., Kunchithapadam, K. and Newhall, T. The Paradyn parallel
performance measurement tool. IEEE Computer, 28 (11): pp. 37-46. 1995.

152. Mitra, P., Payne, D., Shuler, L., Geijn, R.v.d. and Watts, J., Fast collective
communication libraries, please. in Proc. of Intel Supercomputing Users' Group
Meeting 1995, (1995).

153. Mogul, J.C., Chan, Y.M. and Kelly, T., Design, implementation, and evaluation of
duplicate transfer detection in HTTP. in Proc. of the 1st conference on
Symposium on Networked Systems Design and Implementation - Volume 1,
(San Francisco, California, 2004), USENIX Association.

154. Mogul, J.C., Douglis, F., Feldmann, A. and Krishnamurthy, B. Potential benefits
of delta encoding and data compression for HTTP. Technical Report 97/4.
Compaq Computer Corporation. July, 1997.

155. Mohr, B. and Wolf, F., KOJAK: a tool set for automatic performance analysis of
parallel applications. in Proc. of Euro-Par 2003, (Klagenfurt, Austria, 2003),
Springer-Verlag, Lecture Notes in Computer Science 2790.

References

 214

156. Muthitacharoen, A., Chen, B. and Mazieres, D., A low-bandwidth network file
system. in Proc. of the eighteenth ACM symposium on Operating systems
principles, (Banff, Alberta, Canada, 2001), ACM Press, pages 174-187.

157. NASA. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/.
158. NCBI. Entrez federated health sciences database 2006.

http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi.
159. Nieh, J., Yang, S.J. and Novik, N. Measuring thin-client performance using slow-

motion benchmarking. ACM Trans. Comput. Syst., 21 (1): 87-115. 2003.
160. Noeth, M., Mueller, F., Schulz, M. and Supinski, B.R.d., Scalable compression

and replay of communication traces in massively parallel environments. in Proc.
of International Parallel and Distributed Processing Symposium (IPDPS), (Long
Beach, CA, 2007).

161. Oleinikov, A.V., Gray, M.D., Zhao, J., Montgomery, D.D., Ghindilis, A.L. and Dill,
K. Self-assembling protein arrays using electronic semiconductor microchips and
in vitro translation. J Proteome Res, 2 (3): 313-319. May-Jun, 2003.

162. Pallas GmbH. The Vampirtrace/ Vampir tool.
http://www.pallas.com/e/products/vampir/.

163. Patarasuk, P. and Yuan, X., Bandwidth efficient all-reduce operation on tree
topologies. in Proc. of IEEE IPDPS Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS 2007), (Long Beach,
CA, 2007).

164. Patterson, D.A. Latency lags bandwith. Commun. ACM, 47 (10): 71-75. 2004.
165. Petrini, F., Feng, W.-c., Hoisie, A., Coll, S. and Frachtenberg, E. The Quadrics

network: high-performance clustering technology. IEEE Micro, 22 (1): 46-57.
2002.

166. Petrini, F., Kerbyson, D.J. and Pakin, S., The case of the missing supercomputer
performance: achieving optimal performance on the 8,192 processors of ASCI Q.
in Proc. of the 2003 ACM/IEEE conference on Supercomputing, (Phoenix,
Arizona, 2003).

167. Pike, R., Dorward, S., Griesemer, R. and Quinlan, S. Interpreting the data:
Parallel analysis with Sawzall. Sci. Program., 13 (4): 277-298. 2005.

168. Plaat, A., Bal, H.E., Hofman, R.F.H. and Kielmann, T. Sensitivity of parallel
applications to large differences in bandwidth and latency in two-layer
interconnects. Future Generation Computer Systems, 17 (6): 769-782. 2001.

169. Policroniades, C. and Pratt, I., Alternatives for detecting redundancy in storage
systems data. in Proc. of the USENIX Annual Technical Conference 2004 on
USENIX Annual Technical Conference, (Boston, MA, 2004), USENIX.

170. Prieto, M., Llorente, I.M. and Tirado, F. Data locality exploitation in the
decomposition of regular domain problems. IEEE Trans. Parallel Distrib. Syst.,
11 (11): 1141-1150. 2000.

171. Pucha, H., Andersen, D.G. and Kaminsky, M., Exploiting similarity for multi-
source downloads using file handprints. in Proc. of 4th USENIX Symposium on
Networked Systems Design & Implementation, (Cambridge, MA, USA, 2007),
USENIX, pages 15–28.

172. Quinlan, S. and Dorward, S., Venti: A new approach to archival data storage. in
Proc. of the 1st USENIX Conference on File and Storage Technologies,
(Monterey, CA, 2002), USENIX Association, pages 7.

173. Quinn, M.J. and Hatcher, P.J. On the utility of communication-computation
overlap in data-parallel programs. J. Parallel Distrib. Comput., 33 (2): 197-204.
1996.

References

 215

174. Rabenseinfner, R., Automatic MPI counter profiling of all users: First results on
CRAY T3E900-512. in Proc. of the Message Passing Interface Developer's and
User's Conference 1999 (MPIDC'99), (Atlanta, USA, 1999), pages 77-85.

175. Rabin, M.O. Fingerprinting by random polynomials. Technical Report TR-15-81
Center for Research in Computing Technology, Harvard University. 1981.

176. Ratanaworabhan, P., Ke, J. and Burtscher, M., Fast Lossless Compression of
Scientific Floating-Point Data. in Proc. of Data Compression Conference
(DCC'06), (2006), IEEE Computer Society, pages 133-142.

177. Redstone, J.A., Eggers, S.J. and Levy, H.M., An analysis of operating system
behavior on a simultaneous multithreaded architecture. in Proc. of ASPLOS-IX:
the ninth international conference on Architectural support for programming
languages and operating systems, (2000), ACM Press.

178. Reed, D.A., Aydt, R.A., Noe, R.J., Roth, P.C., Shields, K.A., Schwartz, B.W. and
Tavera, L.F., Scalable performance analysis: The Pablo performance analysis
environment. in Proc. of Scalable Parallel Libraries, (1993), IEEE.

179. Renambot, L., Rao, A., Singh, R., Jeong, B., Krishnaprasad, N., Vishwanath, V.,
Chandrasekhar, V., Schwarz, N., Spale, A., Zhang, C., et al., SAGE: the scalable
adaptive graphics environment. in Proc. of the Workshop on Advanced
Collaborative Environments 2004, (Nice, France, 2004).

180. Rhea, S.C., Liang, K. and Brewer, E., Value-based web caching. in Proc. of the
12th international conference on World Wide Web, (Budapest, Hungary, 2003),
ACM Press, pages 619-628.

181. Ribler, R.L., Simitci, H. and Reed, D.A. The Autopilot performance-directed
adaptive control system. Future Generation Comp. Syst., 18 (1): 175-187. 2001.

182. Ribler, R.L., Vetter, J.S., Simitci, H. and Reed, D.A., Autopilot: Adaptive Control
of Distributed Applications. in Proc. of the 7th IEEE International Symposium on
High Performance Distributed Computing, (1998), pages 172-179.

183. Richardson, T. The RFB Protocol - Version 3.8. RealVNC Ltd. 5 October, 2006.
184. Richardson, T., Stafford-Fraser, Q., Wood, K.R. and Hopper, A. Virtual Network

Computing. IEEE Internet Computing, 2 (1): 33-38. 1998.
185. Riesen, R., Brightwell, R., Fisk, L.A., Hudson, T., Otto, J. and Maccabe, A.B.,

Cplant. in Proc. of Second Extreme Linux workshop at the 1999 USENIX Annual
Technical Conference, (Monterey, California, 1999).

186. Riverbed Technology Inc. The Riverbed Optimization System (RiOS) - A
Technical Overview of Version 4.0. A Riverbed Technology White Paper 2007.

187. Rivest, R. The MD4 message-digest algorithm. Request for Comments 1320.
Network Working Group. April, 1992.

188. Roshal, A. RAR homepage. 2007. http://www.rarlab.com/.
189. Roth, P.C., Arnold, D.C. and Miller, B.P., MRNet: A software-based

multicast/reduction network for scalable tools. in Proc. of the 2003 ACM/IEEE
conference on Supercomputing, (Phoenix, Arizona, 2003), IEEE Computer
Society Press.

190. Roth, P.C. and Miller, B.P., On-line automated performance diagnosis on
thousands of processes. in Proc. of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, (New York, New York, USA,
2006), ACM Press, pages 69-80.

191. Ruan, Y., Pai, V.S., Nahum, E. and Tracey, J.M., Evaluating the impact of
simultaneous multithreading on network servers using real hardware. in Proc. of
the 2005 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, (Banff, Alberta, Canada, 2005), ACM Press.

References

 216

192. Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J.,
Klapa, M., Currier, T., Thiagarajan, M., et al. TM4: a free, open-source system for
microarray data management and analysis. Biotechniques, 34 (2): 374-378. Feb,
2003.

193. Saldanha, A.J. Java Treeview- extensible visualization of microarray data.
Bioinformatics, 20 (17): 3246-3248. Nov 22, 2004.

194. Sameer, S., Allen, D.M., Janice, C., Peter, B., Steve, K. and Kathleen, L.,
Portable profiling and tracing for parallel, scientific applications using C++. in
Proc. of the SIGMETRICS symposium on Parallel and distributed tools,
(Welches, Oregon, United States, 1998), ACM Press, pages 134-145.

195. Sancho, J.C., Barker, K.J., Kerbyson, D.J. and Davis, K., Quantifying the
potential benefit of overlapping communication and computation in large-scale
scientific applications. in Proc. of the 2006 ACM/IEEE conference on
Supercomputing, (Tampa, Florida, USA, 2006), ACM Press.

196. Santos, J. and Wetherall, D., Increasing effective link bandwidth by suppressing
replicated data. in Proc. of USENIX Annual Technical Conference, (1998).

197. Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S. and Rosenblum,
M., Optimizing the migration of virtual computers. in Proc. of the 5th symposium
on Operating systems design and implementation, (Boston, Massachusetts,
2002), ACM Press, pages 377-390.

198. Scheifler, R.W. and Gettys, J. The X window system. ACM Trans. Graph., 5 (2):
79-109. 1986.

199. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. Quantitative monitoring of
gene-expression patterns with a complementary-DNA microarray. Science, 270
(5235): 467-470. Oct 20, 1995.

200. Schmidt, B.K., Lam, M.S. and Northcutt, J.D., The interactive performance of
SLIM: a stateless, thin-client architecture. in Proc. of the seventeenth ACM
symposium on Operating systems principles, (Charleston, South Carolina, United
States, 1999), ACM Press, pages 32-47.

201. SDSS. Sloan Digital Sky Survey (SDSS). 2006.
http://sdssdp47.fnal.gov/sdsssn/sdsssn.html.

202. Seward, J. bzip2 homepage. 2007. http://www.bzip.org/.
203. SGI. OpenGL Vizserver. 2006. http://www.sgi.com/products/software/vizserver/.
204. Shneiderman, B. Designing the User Interface. Addison Wesley, 1997.
205. Sistare, S., vandeVaart, R. and Loh, E., Optimization of MPI collectives on

clusters of large-scale SMP's. in Proc. of the 1999 ACM/IEEE conference on
Supercomputing, (Portland, Oregon, United States, 1999).

206. Snavely, A. and Tullsen, D.M., Symbiotic jobscheduling for a simultaneous
multithreaded processor. in Proc. of ASPLOS-IX: the ninth international
conference on Architectural support for programming languages and operating
systems, (Cambridge, Massachusetts, United States, 2000), ACM Press.

207. Sohn, A., Ku, J., Kodama, Y., Sato, M., Sakane, H., Yamana, H., Sakai, S. and
Yamaguchi, Y., Identifying the capability of overlapping computation with
communication. in Proc. of the 1996 Conference on Parallel Architectures and
Compilation Techniques, (1996), IEEE Computer Society.

208. Sottile, M.J. and Minnich, R., Supermon: A high-speed cluster monitoring system.
in Proc. of IEEE Cluster, (2002), pages 39-46.

209. Spring, N.T. and Wetherall, D., A protocol-independent technique for eliminating
redundant network traffic. in Proc. of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM'00), (Stockholm, Sweden, 2000), ACM Press, pages 87-95.

References

 217

210. Sydor, J.R. and Nock, S. Protein expression profiling arrays: tools for the
multiplexed high-throughput analysis of proteins. Proteome Sci, 1 (1): 3. Jun 10,
2003.

211. T. Jones et. al. MPI PERUSE: An MPI extension for revealing unexposed
implementation information (Version 2.0). www.mpi-peruse.org

212. Tanenbaum, A. Modern Operating Systems (2nd Edition). Prentice Hall, 2001.
213. Tang, H. and Yang, T., Optimizing threaded MPI execution on SMP clusters. in

Proc. of the 15th international conference on Supercomputing, (Sorrento, Italy,
2001).

214. The Wikipedia community. Athlon 64 X2. 2007.
http://en.wikipedia.org/wiki/Athlon_64_X2.

215. Theimer, M.M., Lantz, K.A. and Cheriton, D.R., Preemptable remote execution
facilities for the V-system. in Proc. of the tenth ACM symposium on Operating
systems principles, (Orcas Island, Washington, United States, 1985), ACM
Press, pages 2-12.

216. Thomas, L.S., John, S., Donald, J.B. and Daniel, F.S. How to build a Beowulf: a
guide to the implementation and application of PC clusters. MIT Press, 1999.

217. Tierney, B., Johnston, W.E., Crowley, B., Hoo, G., Brooks, C. and Gunter, D.,
The NetLogger methodology for high performance distributed systems
performance analysis. in Proc. of the 7th IEEE Symp. On High Performance
Distributed Computing, (1998), pages 260-267.

218. Tipparaju, V., Nieplocha, J. and Panda, D., Fast collective operations using
shared and remote memory access protocols on clusters. in Proc. of 17th Intl.
Parallel and Distributed Processing Symp., (2003).

219. Tolia, N., Andersen, D.G. and Satyanarayanan, M. Quantifying interactive user
experience on thin clients. Computer, 39 (3): 46-52. 2006.

220. Tolia, N., Kaminsky, M., Andersen, D.G. and Patil, S., An architecture for internet
data transfer. in Proc. of the 3rd conference on 3rd Symposium on Networked
Systems Design Implementation, (San Jose, CA, 2006), USENIX Association, 3.

221. Tolia, N., Kozuch, M., Satyanarayanan, M., Karp, B., Perrig, A. and Bressoud, T.,
Opportunistic use of content addressable storage for distributed file systems. in
Proc. of 2003 USENIX Annual Technical Conference, (San Antonio, TX, USA,
2003), pages 127-140.

222. Tolia, N. and Satyanarayanan, M., Consistency-preserving caching of dynamic
database content. in Proc. of Proceedings of the 16th international conference
on World Wide Web, (Banff, Alberta, Canada, 2007), ACM Press, pages 311-
320.

223. Top500.org. TOP500 Supercomputer Sites. 2007. http://www.top500.org/.
224. Tridgell, A. Efficient Algorithms for Sorting and Synchronization. PhD thesis.

Australian National University. 2000.
225. Truong, H.L. and Fahringer, T. SCALEA: a performance analysis tool for parallel

programs. Concurrency and Computation: Practice and Experience, 15 (11-12):
1001-1025. 2003.

226. Tsafrir, D., Etsion, Y., Feitelson, D.G. and Kirkpatrick, S., System noise, OS clock
ticks, and fine-grained parallel applications. in Proc. of the 19th annual
international conference on Supercomputing, (Cambridge, Massachusetts,
2005), ACM Press, pages 303-312.

227. Tuck, N. and Tullsen, D.M., Initial observations of the simultaneous
multithreading Pentium 4 processor. in Proc. of 12th International Conference on
Parallel Architectures and Compilation Techniques, (2003), IEEE Computer
Society.

References

 218

228. Tullsen, D.M., Lo, J.L., Eggers, S.J. and Levy, H.M., Supporting fine-grained
synchronization on a simultaneous multithreading processor. in Proc. of the Fifth
International Symposium on High-Performance Computer Architecture, (1999).

229. Vadhiyar, S.S., Fagg, G.E. and Dongarra, J., Automatically tuned collective
communications. in Proc. of the 2000 ACM/IEEE conference on Supercomputing,
(Dallas, Texas, United States, 2000).

230. Vetter, J., Dynamic statistical profiling of communication activity in distributed
applications. in Proc. of the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, (2002), ACM Press, pages
240-250.

231. Vetter, J.S. and Mueller, F. Communication characteristics of large-scale
scientific applications for contemporary cluster architectures. Journal of Parallel
and Distributed Computing, 63853-865. September, 2003.

232. Vetter, J.S. and Yoo, A., An empirical performance evaluation of scalable
scientific applications. in Proc. of the 2002 ACM/IEEE conference on
Supercomputing, (Baltimore, Maryland, 2002), IEEE Computer Society Press.

233. Vinter, B., Anshus, O.J. and Larsen, T., PastSet - a distributed structured shared
memory system. in Proc. of High Performance Computers and Networking,
(Amsterdam, 1999).

234. Wallace, G., Anshus, O.J., Bi, P., Chen, H., Chen, Y., Clark, D., Cook, P.,
Finkelstein, A., Funkhouser, T., Gupta, A., et al. Tools and applications for large-
scale display walls. IEEE Computer Graphics and Applications, 25 (4): 24-33.
July/August, 2005.

235. Wallace, G.K. The JPEG still picture compression standard. Commun. ACM, 34
(4): 30-44. 1991.

236. Werthimer, D., Cobb, J., Lebofsky, M., Anderson, D. and Korpela, E.
SETI@HOME - massively distributed computing for SETI. Comput. Sci. Eng., 3
(1): 78-83. 2001.

237. White III, J. and Bova, S., Where's the Overlap? An analysis of popular MPI
implementations. in Proc. of MPI Developer's and User's Conference
(MPIDC'99), (1999).

238. Wolfgang, B., Michael, K. and Martin, S., Visualizing structural properties of
irregular parallel computations. in Proc. of the 2005 ACM symposium on
Software visualization, (St. Louis, Missouri, 2005), ACM Press, pages 125-134.

239. Wong, F.C., Martin, R.P., Arpaci-Dusseau, R.H. and Culler, D.E., Architectural
requirements and scalability of the NAS parallel benchmarks. in Proc. of
Supercomputing '99: the 1999 ACM/IEEE conference on Supercomputing,
(Portland, Oregon, United States, 1999), ACM Press.

240. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P. and Gupta, A., The SPLASH-2
programs: characterization and methodological considerations. in Proc. of the
22nd annual international symposium on Computer architecture, (S. Margherita
Ligure, Italy, 1995).

241. Wu, C.E., Bolmarcich, A., Snir, M., Wootton, D., Parpia, F., Chan, A., Lusk, E.
and Gropp, W., From trace generation to visualization: a performance framework
for distributed parallel systems. in Proc. of the 2000 ACM/IEEE conference on
Supercomputing, (Dallas, Texas, United States, 2000), IEEE Computer Society.

242. Wu, M.-S., Kendall, R.A., Wright, K. and Zhang, Z., Performance modeling and
tuning strategies of mixed mode collective communications. in Proc. of the 2005
ACM/IEEE conference on Supercomputing, (2005), IEEE Computer Society.

243. Zhou, C., Summers, K.L. and Caudell, T.P., Graph visualization for the analysis
of the structure and dynamics of extreme-scale supercomputers. in Proc. of the

References

 219

2003 ACM symposium on Software visualization, (San Diego, California, 2003),
ACM Press, pages 143-149.

244. Ziv, J. and Lempel, A. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23 (3): 337 - 343. May 1977

	frontpage
	final-part1
	final-part2
	europar04
	final-part3
	icpp05
	final-part4
	hetereopar04
	final-part5
	icpp06
	final-part6
	gccb06
	final-part7
	tr2005-53
	final-part8

