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Abstract—Biological data analysis is typically implemented 

using a pipeline that combines many data analysis tools and 

meta-databases. These pipelines must scale to very large datasets, 

and therefore often require parallel and distributed computing. 

There are many infrastructure systems for data-intensive 

computing. However, most biological data analysis pipelines do 

not leverage these systems. An important challenge is therefore to 

integrate biological data analysis frameworks with data-intensive 

computing infrastructure systems. In this paper, we describe how 

we have extended data-intensive computing systems to support 

unmodified biological data analysis tools. We also describe four 

approaches for integrating the extended systems with biological 

data analysis frameworks, and discuss challenges for such 

integration on production platforms. Our results demonstrate 

how biological data analysis pipelines can benefit from 

infrastructure systems for data-intensive computing. 

Keywords—biological data processing, data-intensive 

computing, integration 

I.  INTRODUCTION  

Recent advances in instrument, computation, and storage 
technologies have resulted in large amounts of biological data 
[1]. To realize the full potential for novel scientific insight in 
the data, it is necessary to transform the data to knowledge 
through data analysis and interpretation. Such biological data 
analysis is typically implemented using a data analysis pipeline 
that combines a set of tools and databases. To answer a specific 
biological question the data analysis often requires a unique 
combination of tools. There are many libraries (such as 
BioConductor [2]), and hundreds of available tools (as in 
Galaxy Toolshed [3]). These range from small, user-created 
scripts to large, complex applications. 

To use such pipelines, the analyst specifies, configures, and 
executes the pipeline using a biological data analysis 
framework [2], [4], [5]. These provide a way of specifying the 
pipeline tools and their arguments, management of pipeline 
data and meta-data, and execution of the pipeline tools. The 
data analysis framework is often implemented on top of 
infrastructure systems for data management and parallel job 
execution.  

In our experience, most biological data analysis pipelines 
are run on a high-performance computing platform that consist 
of many compute nodes, connected with a fast interconnect, 
and a centralized storage solution. The platform provides a 
network file system for storage, databases for data 

management, a parallel programming model such as MPI [6] 
and OpenMP [7], parallel data management libraries such as 
PnetCDF [8] and PHDF5 [9], and a parallel job execution 
system such as Open Grid Engine [10] or Torque [11]. This 
platform has four main advantages. First, the file system-, and 
database interfaces are stable, and the technology is reliable. 
Second, many clusters for scientific computation are designed 
to use a network file system and to run jobs on a cluster using a 
queuing system. Third, the developers and administrators are 
familiar with these systems and interfaces. Fourth, there are 
already hundreds of tools implemented for this platform. 

However, we believe this standard platform will not scale 
to the upcoming biological datasets as demonstrated for other 
large-scale data analysis projects [12], [13]. It will therefore 
become necessary to implement biological data analysis 
frameworks on infrastructure systems and hardware platforms 
designed for data-intensive computing [14], [12], [13], [15], 
[16]. Currently most biological data analysis frameworks do 
not leverage such systems and platforms. 

We believe that in order for biological data analysis 
frameworks to leverage data-intensive computing systems they 
must overcome four challenges. First, the hardware platform 
must use distributed data storage (as in [17], [12]). Second, the 
systems must be stable and reliable. Third, the systems must 
run the many existing analysis tools with no or minor 
modifications. Finally, the data-intensive infrastructure systems 
must be integrated with biological data processing frameworks. 

To address these challenges we have extended data-
intensive computing systems with services for biological data 
processing. Our approach does not require any changes to 
analysis tools. We have integrated these services with three 
biological data processing frameworks using four approaches. 
We have implemented services that only require a small 
computer clusters. Such clusters are realistic to purchase by 
individual labs. We build on the widely used Apache Hadoop 
platform [14] that is both stable and reliable. Combined our 
work demonstrates how unmodified biological data analysis 
tools can benefit from infrastructure systems for data-intensive 
computing. 

II. RELATED WORK 

We discuss the limitations and lessons learned utilizing 
data-intensive systems for biological data processing in [18]. 
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A. Data-Intensive Computing Systems 

There are several specialized infrastructure systems 
developed for data-intensive computing. Many of these were 
initially developed and deployed at web-scale companies such 
as Google, Yahoo, Facebook, and Twitter, and then later 
implemented as open source systems. There are also many new 
systems under development in academia, the open source 
community, and the industry.  

Data intensive computing systems are often built on a 
distributed file systems such as Hadoop Distributed File 
System (HDFS) [17] that provide reliable storage on 
commodity component hardware and high aggregate I/O 
performance. A HDFS cluster co-locates storage and 
computation resources to avoid the bandwidth limitation of 
storage area networks when transferring large datasets over the 
network to and from the computation nodes. For large systems, 
it reduces cost since high-volume network attached storage is 
expensive. The main advantage of HDFS for biological data 
analysis is that the architecture is demonstrated to scale to peta-
scale datasets, and it is widely used for data-intensive 
computing in other fields. The main disadvantage is that HDFS 
does not provide a traditional file system interface, so it is 
necessary to either rewrite the many data analysis tools that use 
a POSIX file system interface, to incur an overhead for moving 
data between HDFS and a local filesystem, or incur the 
overhead of third-party library such as fuse-dfs [19]. In 
addition, it is not yet a common platform in scientific 
computing, so it may be necessary to purchase and build a new 
cluster with storage distributed on the compute nodes instead 
of a centralized storage system. 

MapReduce [13][14] is a widely used programming model 
and infrastructure system for data-intensive parallel 
computation. It provides fault-tolerant computation on a 
HDFS-like file system, and makes it easy to write scalable 
applications since the system handles data partitioning, fault-
tolerance, scheduling, and communication. Biological data 
analysis applications, especially for next-generation sequencing 
data, have already been implemented using MapReduce ([20] 
provides examples). The main advantage of MapReduce is that 
it scales to peta-scale datasets. In addition, most cloud 
platforms provide a MapReduce interface. The main 
disadvantage is that the MapReduce programming model may 
not be suited for all biological data analysis applications.  

An alternative for low-latency query processing is Spark 
[16][21]. It offers a richer programming model than 
MapReduce, including iterative operations. It is well suited to 
implement machine learning algorithms, and interactive data 
analytics. However, Spark uses the Scala programming 
language, which may be unfamiliar to many developers In 
addition, compared to the systems discussed above Spark has 
just recently become a top-level Apache project, but it is 
rapidly being adopted by many other open-source and 
commercial systems. 

HBase [22], [15] is a column based storage system that 
provides in-memory caching for low latency random data 
access and efficient compression. Biological data analysis 
applications can use HBase to store data accessed interactively, 
to implement custom data structures, or to structure data for 
more efficient compression. Compared to relational databases, 
HBase does not provide an advanced query engine nor ACID 

properties, so these must be implement on top of HBase if 
needed.  

Several high-level programming models are built on top of 
MapReduce to make it easier to write data analysis programs, 
including Pig [23], Hive [24], Cascading [25], Cassandra [26], 
and the Mahout [27] library of machine learning algorithms. 
But, to our knowledge these are not widely used for biological 
data analysis.  

B. Biological Data Processing Frameworks 

There are many frameworks for specifying and running 
biological data analysis pipelines. The two most widely used 
systems are Galaxy [4] and Taverna [5]. 

Galaxy is a tool for biomedical research, and consists of a 
framework for running tools, a web server, and a web-baed 
interface for adding tools to the framework. The web interface 
allows the user to runs tools or pipelines on the cluster or 
computer connected to the Galaxy server. The administrator of 
the Galaxy server can add new tools to the Galaxy server by 
creating small XML scripts that describe how to run the tool, 
which parameters, input data and output data are required by 
the tool. CloudMan [28] is an extension to Galaxy, which 
enables the use of cloud infrastructure, such as Amazon EC2, 
for executing Galaxy workflow jobs. 

The Taverna Workbench is a general framework for 
creating, managing and running workflows of tools. The user 
can interact with Taverna through a web interface, a desktop 
tool or a command-line tool. The user specifies a workflow 
using the custom Scufl language. It is possible to export 
Taverna workflows as Galaxy tools. 

In addition there are many general purpose high-
performance systems that can be used to run biological data 
processing pipelines, such as cluster schedulers [10], Grid 
schedulers [29], cluster managers [30], and systems for 
distributed application deployment [31]. However, these are 
typically not integrated with neither Galaxy nor Taverna 
(although it can be done as described in the next section and in 
[32]). 

C. Cloud Computing Platforms 

Cloud computing platforms are an emerging platform for 
biological data processing. Commercial clouds store large-
scale biological datasets (as in Amazon AWS [33]), and 
provide the compute resources for analyzing the datasets (e.g. 
Amazon EC2). There are also cloud solutions such as the 
Embassy Cloud [34] for processing the large data repositories 
at the European Bioinformatics Institute (EBI). 

Cloud services such as EC2 and Embassy Cloud run virtual 
machines provided by the user in very large data-centers. The 
user only pays for the resources needed. There are three main 
advantages of cloud computing for large-scale biological data. 
First, the user gets access to a very large compute cluster 
designed for data-intensive computing. Second, the cloud 
provides the resources and elasticity needed to scale the job for 
very large datasets. Third, the processing can be done close to 
data. A disadvantage is the cost of resources, which is often 
higher than in supercomputing centers. In addition, cloud 
platforms are generally not as optimized for parallel programs 
as high-performance computing platforms. 

Our systems and integration approaches are well suited for 
cloud computing. 



III. DATA-INTENSIVE COMPUTING SERVICES FOR BIOLOGICAL 

DATA ANALYSIS 

We have extended several data-intensive computing 
systems to provide services for biological data analysis. In this 
section, we describe how our biological data processing 
pipelines benefit from data-intensive processing services. In the 
next sections, we describe and discuss integration with 
biological data analysis frameworks. 

We have used clusters built for data-intensive computing 
with storage distributed on the compute nodes. We use the 
Hadoop software stack. It is probably the mostly used platform 
for data-intensive computing, and it has a very active 
development community. 

A. Troilkatt 

Troilkatt is a system for batch processing of large-scale 
collections of gene expression datasets. We use Troilkatt to 
process data for the IMP integrated data analysis tool [35], 
[36]. We built Troilkatt in order to scale our gene expression 
dataset integration pipeline to process all datasets for several 
organisms in NCBI GEO [37]. The pipelines comprise tools for 
data cleaning, transformation, and signal balancing of these 
datasets. The integrated data compendium for organisms such 
as human have ten thousands of datasets. But, these can be 
processed independently. The raw data, results, and 
intermediate data in a compendium use tens of terabyte of 
storage space. 

Troilkatt provides infrastructure services for automated 
genomics compendium management. It consists of five main 
components (figure 1). First, the large genomics compendia 
maintained by Troilkatt are stored and processed on a cluster. 
Second, Troilkatt leverages the Hadoop software stack for 
reliable storage and scalable fault-tolerant data processing, 
including the Hadoop Distributed File System (HDFS), 
Hadoop MapReduce, and HBase. Third, the Troilkatt runtime 
system provides data management including versioning and a 
library of tools for downloading and processing data. Fourth, 
Troilkatt can execute a large collection of external tools and 
scripts for various data processing.  Finally, a command line 
based user interface allows the administrator to control the 
compendium content and data processing. 

An expert user specifies a Troilkatt pipeline as an XML 
file. The file specifies the tools to run, their arguments, 
datasets, and meta-databases. In addition, the user tunes 
pipeline performance and data storage requirements by 
specifying storage systems, parallel data execution framework, 
compression algorithms, and data retention time.  The user 
does not implement communication between tasks, data 
locality aware mapping of tasks to compute nodes, or fault-
tolerance. The Hadoop software stack handles these. 

TABLE I.  TROILKATT SUMMARY. 

Goal Scalable integrated data analysis pipelines 

Systems 

used 

HDFS: scalable storage 

MapReduce: I/O intensive pipeline processing 

Tools 

Unmodified binaries and scripts 

MapReduce applications 

 
Fig. 1. Troilkatt architecture. 

Troilkatt supports three types of tools: unmodified binaries 
or scripts, Troilkatt scripts, and MapReduce jobs. Troilkatt 
executes unmodified binaries in parallel using MapReduce. 
This is similar to Hadoop Streaming, but Troilkatt allows 
specifying additional command line arguments as environment 
variables. For example, many biological analysis tools require 
specifying multiple meta-database files as command line 
arguments. The disadvantage of using unmodified binaries is 
that Troilkatt must copy input and meta-database files to a local 
file system before executing the tool, and then after tool 
execution, copy the result file back to HDFS. 
 Troilkatt scripts provide classes and interfaces that make it 
easy to implement for example data retriever scripts. Troilkatt 
MapReduce jobs provide optimized access to the data stored by 
Troilkatt. It is well suited for many of the IMP data processing 
tools, since they process one row in a dataset at a time. Both 
use the HDFS interface to directly read and write data to files 
in HDFS.  

B. GeStore 

GeStore [38] is a system for adding transparent incremental 
updates to biological data processing pipelines. We use 
GeStore to periodically update large-scale compendia, such as 
the IMP compendia described in the previous section. We built 
GeStore since the processing time for a full compendium 
update can be several days even on a large computer cluster, 
making it impractical to frequently update large-scale 
compendia. We have achieved up to 82% reduction in analysis 
time for dataset updates when using GeStore with an 
unmodified biological data analysis pipeline [38]. GeStore also 
provides efficient meta-database management for large scale 
meta-databases. 

TABLE II.  GESTORE SUMMARY. 

Goals 

Incremental updates for analysis pipelines 

Meta-data management 

Systems 

HBase: data structures for generating incremental updates 

MapReduce: I/O intensive pipeline processing 

Tools Unmodified binaries 

 



GeStore provides a transparent file based approach that 
allows using unmodified biological analysis tools. Instead, we 
modify the input and meta-data files read by analysis tools such 
that these only contain the data for incremental update 
computations. Executing the tool will typically produce a 
partial result, which GeStore merges with previously produced 
results. We have chosen a file based approach since relatively 
few file formats are used by many genomics applications. It is 
therefore feasible to implement parsers that support most file 
formats and therefore most genomics pipeline tools. In 
addition, most file formats are simple and structured which 
makes it easy to implement parsers.  

GeStore provides services to pipeline managers, and is 
therefore usually transparent for the end user. The pipeline 
manager uses GeStore as a storage backend, instead of-, or in 
addition to the network file system. 

GeStore must detect changes in, and merge updates into, 
compendia that can be tens of terabytes in size. GeStore must 
also maintain and generate incremental updates or versions of 
meta-databases such as UniProt [39]. These can be hundreds of 
gigabytes in size. We use HBase for data storage and 
MapReduce for generating input files and merging output files. 
HBase provides high-throughput random data accesses 
required for efficient change detection and merging. GeStore 
stores meta-database entries as HBase rows, and updates to 
these entries by creating a new version of an HBase table cell. 
The timestamps enable efficient table scans to find entries that 
have changed in a time period and hence are part of an 
incremental update. In addition, the flexible schema of HBase 
tables is used to reduce the work required to maintain plugins 
when file structures or databases changes, allowing several 
years of database versions to be stored in the same HBase 
table. In addition, we reduce storage space requirements by 
storing multiple meta-database versions in HBase instead of 
storing all versions separately. 

GeStore provides a plugin system to support many 
biological tools and file formats (figure 2). To add incremental 
updates for a new tool the plugin maintainer implements a 
plugin. The plugin specifies how to partition input and meta- 
data files into entries, which part of an entry are required for 
the analysis done by a tool, and how to compare the entries to 
detect updates. In addition, the plugin contains code for writing 
entries to an incremental input file, and code to merge 
incremental output with previously produced results. These 
plugins are relatively small in size; less than 300 lines of code 
in our most complex plugin. Plugins can access data directly in 
HDFS or Hbase to reduce overhead. 

 

 

Fig. 2. GeStore architecture. 

TABLE III.  MARIO SUMMARY. 

Goals Interactive tuning of analysis pipeline 

Systems 

HBase: sparse data structure, low- pipelines latency reads 

and writes 

Tools 

Unmodified binaries 

Modified data-exploration tools 

C. Mario 

Mario [40] is a system for interactive iterative data 
processing (figure 3). We have designed Mario for interactive 
parameter tuning of biological data analysis pipeline tools. For 
such workloads, the pipeline output should be visible for the 
pipeline developer as soon as it is produced. Mario combines 
reservoir sampling, fine-grained caching of derived datasets, 
and a data-parallel processing model for quickly computing the 
results of changes to pipeline parameters. It adds less than 
100ms of overhead per pipeline stage, and it does not add 
significant computation, memory, or storage overhead to 
compute nodes [40]. 

Mario must efficiently produce random samples from a 
stream for reservoir sampling, implement a cache of fine-
grained pipeline tool results, and implement parallel pipeline 
stage processing. We use HBase as storage backend due to its 
low-latency random read and write capability, its ability to 
efficiently store sparse data structures, and its scalability. 
Mario stores all intermediate data records produced during 
pipeline execution in HBase, and uses the cached data to 
quickly find the data records that must be updated when 
pipeline tool parameters are changed. Mario also uses HBase 
for data provenance and single-pass reservoir sampling. The 
iterative processing in Mario is similar to Spark Streaming 
[41]. Mario splits the data to be processed randomly into many 
small parts, and distributes these on the cluster nodes. The parts 
are processed in parallel, but since there are many more parts 
than processor cores, only a small subset is processed at a time.  
The output data is therefore incrementally updated.  

To analyze a dataset using Mario, a user would first load 
the input data into HBase. She would then use a data analysis 
framework such as Galaxy [4] to define the pipeline by 
specifying, for each pipeline stage: the tool to execute, the tool 
version, and the tool parameters. The configuration can specify 
that a dataset should be sampled with a given sample size. 
Mario uses the GeStore transparent file-based approach for 
incremental processing [38], so it is not necessary to modify  

 

 

Fig. 3. Mario architecture. 



tool code. The user then starts the initial computation. As 
the computation proceeds, the user can change the parameters 
or tool used in a stage by sending an updated configuration to 
the master, which will start scheduling work with the new 
configuration. If the new configuration does not produce 
satisfactory results, Mario can restore a previous configuration 
by reading data for a previous configuration from the storage 
layer. 

A data exploration tool uses an interface provided by Mario 
to retrieve results from HBase, either periodically or when 
notified of the presence of new results by the Mario master. To 
integrate Mario with a visualization system such as Krona [42] 
or METAREP [43], an interface must be implemented that 
updates the data structures used by the exploration tool. For 
Krona, this involves generating an XML-file of the organism 
hierarchies found in the data. For METAREP, a search engine 
data structure must be updated. For integration with end-user 
statistical analysis, the interface can be implemented in for 
example R. 

IV. BIOLOGICAL DATA PROCESSING FRAMEWORK INTEGRATION 

We describe how we integrated the GeStore system with 
three pipeline managers (table V) using four approaches (table 
VI). All approaches add incremental updates to biological data 
analysis pipelines using the GeStore transparent file-based 
approach.  

Each approach requires adding a call to GeStore before 
each tool in the pipeline is executed to generate input and meta-
data files for the tool. Then, when the tool has executed, 
GeStore must be called to merge generated output files with 
previously generated files. For each approach we want to 
answer the following questions: 

 Is GeStore functionally visible to the pipeline user?  

 What is the required developer effort for the 
integration? 

 Can the framework use all features of GeStore? 

 What is the performance overhead of the approach? 

Ideally, GeStore should be hidden from the user since we 
assume that the biologists using the pipeline do not want to be 
exposed to pipeline execution and data management details. 
The developer effort should be small such that we can easily 
integrate GeStore with the biological data processing 
framework. We also want to reduce the amount of work 
required for redoing the integration each time the framework 
code is updated. In addition, the integration should expose the 
pipeline data and processing details necessary to fully utilize all 
GeStore features. Finally, to reduce GeStore overhead the 
integration approach should not introduce a large overhead to 
the pipeline execution time. The above four goals are 
conflicting, so a good trade-off between these must be found. 
Below, we describe the approaches and discuss the benefits and 
drawbacks of each approach. 

 

TABLE IV.  PIPELINE MANAGERS. 

Pipeline manager Description 

GePan High-performance computing platform scripts 

Troilkatt Data-intensive computing pipeline manager 

Galaxy Biological data analysis framework 

TABLE V.  INTERACTION APPROACHES. 

 User 
effort 

Developer 
effort 

Missing 
features 

Performance 

Key-value Low High Low High 

External tool High Low Low High 

File system Low Moderate High Medium 

A. Key-value Store 

We developed GeStore to provide incremental updates to 
the Meta-pipe (unpublished) metagenomics analysis pipeline 
developed and deployed at the University of Tromsø. Meta-
pipe implements a custom pipeline manager called GePan that 
executes the analysis tools in parallel on a compute cluster 
using the Open Grid Engine (OGE) or Torque. GePan 
generates shell scripts that choose meta-databases and file 
format conversions based on tools and biological domains 
specified by the user. GePan represents pipeline managers 
written for a specific pipeline and a traditional HPC cluster. 

GePan describes an analysis pipeline as a set of shell scripts 
generated from a set of parameters that specify the tools to run 
and their parameters. It will generate two kinds of shell scripts: 
1) a set of job scripts, 2) a job submission script. 

For each step in the pipeline, GePan will generate a script 
to run the specified tool with the correct parameters. The job 
script will read a task-ID and job-ID from the environment and 
pass it to the specified tool as appropriate. The job script will 
also create directories and delete intermediate files. 

The job submission script is a shell script that submits jobs 
to the job manager. The script consists of a series of `qsub`-
commands that submits each tool in the pipeline to the job 
manager with the appropriate dependencies. 

GePan uses the key-value store interface exported by 
GeStore. We have modified the GePan script generation to 
replace file copy operations in the job scripts with GeStore 
calls. GeStore method arguments are set at runtime. This 
includes the pipeline ID, tool to execute, tool input data, and 
the meta-databases to use. GePan can also determine if the file 
retrieved is a meta-database, input data or intermediate data. In 
addition, GePan has information about filters to use and other 
user-supplied parameters. GePan can specify for which files 
GeStore should generate incremental versions, which files need 
additional parameters for increment generation, and which files 
are regular non-incremental files. 

The integration requires very little user involvement. The 
user must set a “-g” parameter in GePan to specify that 
GeStore calls should replace file systems operations. In 
addition, the user may provide a filter to generate a subset of 
meta-database (for example for only one biological taxon). 

The development effort for the integration is high, since the 
developer needs to have extensive knowledge of how GeStore 
will be used in different parts of the pipeline. All file accesses 
are from scripts generated by GePan, hence GePan must be 
modified to replace these file accesses with GeStore calls. In 
total, we added about 300 lines of code to the 14.000 line 
GePan codebase. We did not modify any Meta-pipe tools. 

GeStore incurs an overhead for small files (a few 
megabytes), for which the time to generate incremental updates 
is larger than the reduction in execution time. To avoid this 
overhead the pipeline manager can set a file size threshold for 
files managed by GeStore.  



The main advantage of this approach is that the incremental 
updates are hidden from the user, and that GePan can directly 
use the full feature set of GeStore. However, the integration 
requires more development time and a detailed knowledge of 
the GePan pipeline manager. This integration approach is 
therefore best suited for small, specialized pipeline mangers 
that the developer knows in detail. 

B. Filesystem Interface 

The Troilkatt system (section III.A) is a system for batch 
processing pipeline tools that analyze a large-scale 
compendium. Troilkatt represents specialized pipeline 
managers designed for data-intensive computing. It manages 
the setup of tool execution including the specification of input 
and meta-files for a tool and the management of tool output 
files. A tool may read and write the files directly from HDFS. 
Alternatively, if the file requires a POSIX file system interface, 
Troilkatt automatically copies the files to and from a local file 
system before and after tool execution. We designed Troilkatt 
to manage files in several file systems. It therefore provides a 
common file system interface. The interface was implemented 
for POSIX file systems and for HDFS. To integrate GeStore 
with Troilkatt we chose to implement the file system interface 
for GeStore.  

To use GeStore, the user sets a field in the pipeline 
configuration XML file. The user does not need to have a 
detailed knowledge of GeStore nor Troilkatt. 

The required development effort is moderate. A detailed 
knowledge of the internals of Troilkatt is not required to 
implement the interface. However, the interface is complex and 
the documentation may be lacking.  

The main benefit of this approach is that it does not require 
changes to core Troilkatt code. However, there are two 
disadvantages. First, GeStore must infer the required 
information for its parameters from file-, and pathnames. These 
may not always have all required information, such as pipeline 
IDs, the type of file, or the analysis tool to execute. Second, we 
must parse file pathnames to automatically infer the file type 
and pipeline ID.  If the information is ambiguous, GeStore 
must use the non-incremental full-file format and can therefore 
not provide the execution time reduction of incremental 
updates. This integration approach is suited for file-based 
pipeline mangers. 

C. Galaxy Tool Wrapper 

Galaxy (section II.B) is probably the most popular pipeline 
manager for biological data processing. Galaxy represents a big 
and complex pipeline manager with 165.000 lines of code. We 
have integrated GeStore with Galaxy by implementing a 
Galaxy tool wrapper for GeStore. The pipeline manager will 
execute a script that calls GeStore to read incremental files and 
write partial result files. 

The user must add the GeStore tool to her pipeline, and 
specify parameters including a unique pipeline-ID, the file ID, 
incremental file retrieval, and the file type. In order to specify 
these parameters the user must know the GeStore API, and 
understand the features and limitation of GeStore. We believe 
this is too complicated for ordinary Galaxy users, but still 
useful for power users that use Galaxy to specify and tune 
pipelines for large datasets. 

The approach is easy to implement, and does not require 
any changes to the large Galaxy codebase. We implemented 
the GeStore tool using the tool API provided by Galaxy. It is 
up to the user to specify the GeStore parameters. She can 
therefore configure GeStore to introduce minimal overhead.  

The main benefit of this approach is the clear separation 
between GeStore and the pipeline manager, and hence no 
changes are required to the pipeline manager. The main 
disadvantage is manual configuration of GeStore. This 
approach is suited for complex pipeline managers where it is 
not possible, or practical, to modify the code. 

D. Galaxy Backend Integration 

To combine the benefits of pipeline specifications in the 
popular Galaxy tool, and the close integration of GeStore with 
GePan, we modified GePan to use Galaxy LWR (Light Weight 
Runner). LWR provides a way to run a Galaxy tool on a 
different computer such as a compute cluster node. The user 
can thereby configure a pipeline that uses GePan with GeStore 
without setting any GeStore arguments. The GeStore call 
arguments will be set at runtime and provide the same low 
GeStore overhead as for the key/value store integration. 

In order for GePan to be run by LWR it needs to be 
implemented as a Galaxy tool. The tool first starts GePan, and 
then waits for it to complete. When the GePan tool is run from 
Galaxy, Galaxy will notify LWR via an AMQP message 
broker and GePan will run on the cluster. 

In order to make the integration more reliable we developed 
a Python script that automates the process of inferring the 
status of a GePan job. The script verifies the existence of 
output files, `grep` log directories for errors and checks cluster 
status via DRMAA. The script also implements a method to 
wait for a GePan pipeline to complete. Our implementation of 
GePan currently supports Open Grid Scheduler and Torque.  

The shell scripts generated by GePan are brittle and prone 
to errors. In addition, GePan itself does not contain sufficient 
logic to determine if a job has failed or succeeded; there are 
numerous ways for which any of the shell scripts or the tools 
themselves could fail. After GePan has been run from the 
command line the user will manually test for failure conditions 
by querying `qstat`, use `grep` in the log directory and 
manually inspect output-files. The existing Galaxy integration 
cannot detect certain modes of failure, such as mid-run failures. 

A better solution would be to generate an intermediate 
representation of the pipeline and then either use that to 
generate a Condor workflow [29] or to submit jobs directly via 
DRMAA.  

V. DISCUSSION 

The main question addressed by this paper is why data-
intensive computing systems are typically not used for 
biological data processing. We provide three examples of the 
benefits by using such systems. Of the three systems: Troilkatt 
is in production use, we want to deploy GeStore to a 
production platform, while Mario requires more development 
before it is ready for production use. Here we discuss 
challenges for deploying such systems for production use. 

Challenge 1 – Code quality. Before deploying code on a 
production system, it should be well tested. Most biological 
data processing code is developed in research projects, where 



test suites are typically not implemented. We have 
implemented test cases for Troilkatt and GeStore, and we 
found these very useful when there are multiple developers, 
and for code run on multiple platforms. 

Challenge 2 – Interdisciplinary collaboration. We believe 
open source code is necessary but not sufficient to ensure 
adaptation. All three systems described here are open source. 
But more importantly; we have close collaboration with groups 
developing and deploying analysis pipelines. Through that 
collaboration, we can deploy the systems in production use and 
thereby demonstrate the usefulness of the systems to our 
biological end-users. 

Challenge 3- Integration. We believe it is critical that an 
infrastructure system can support the analysis tools already in 
use by the analysts. We have achieved this by integrating our 
systems with the popular Galaxy pipeline manager, and by 
ensuring that analysis tools can be used unmodified. The 
disadvantage of this approach is that the framework may limit 
the features and services that can be used. In addition, the tools 
may not fully utilize the power of a data-intensive analysis 
programming model. In our experience, integration is not 
straightforward and often requires in-depth knowledge of both 
systems. There is also a lack of standard interfaces for system 
integration in biological frameworks.  

Challenge 4 – Cluster management. In our experience, the 
lack of clusters designed for data-intensive computing is an 
important limitation for adaptation. We have been in a position 
where either our collaborators or we built such clusters. But we 
have also ensured that our systems integrate well with 
traditional HPC infrastructure systems. Lately, systems such as 
Mesos have emerged that attempt to improve the integration of 
HPC systems and data-intensive computing systems. 

Challenge 5 – GUI integration. Data-intensive computing 
systems must also be integrated with statistical analysis or 
visualization systems used by the end-users. Today these are 
often implemented as web applications that use a well-defined 
REST interface for data access (e.g. Kvik [44]) or are encoded 
as HTML documents (e.g. Krona [42]). For these it is often 
enough to update data files. But there are also systems such as 
the METAREP [43] metagenomics analysis framework that 
combine the Lucene [45] search engine, with the R statistical 
analysis framework, and a PHP based web application. 
Integration with such systems require in-depth knowledge of 
the data accesses of the visualization system. 

VI. CONCLUSIONS AND FUTURE WORK 

We have transparently extended flexible biological data 
analysis frameworks to utilize data intensive computing 
infrastructure systems. We have integrated our data-intensive 
computing systems with three pipeline managers, including 
Galaxy. The integration required localized changes to the code, 
and it often utilized existing interfaces for the integration. For 
all cases, the analysis tools were unchanged.  

We believe our work demonstrates that biological data 
processing can utilize data-intensive computing infrastructure 
systems. We focus on services that are important for biological 
data analysis that only require a small computer clusters. We 
use an approach that is transparent for biological analysis tools. 
We also believe our results can be applied on other data 

analysis fields with large-datasets and flexible analysis 
pipelines. 

As future work, we intend to deploy our developed 
infrastructure systems on production systems. We are also 
improving our Galaxy integration, including better error 
handling. We are also developing several other biological data 
processing systems for large-scale datasets in collaboration 
with our biology and medicine collaborators. 

Troilkatt, GeStore and Mario are all open source:  

 https://github.com/larsab/troilkatt 

 https://github.com/EdvardPedersen/GeStore 

 http://bdps.cs.uit.no/code/mario/ 
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