
Integrating Data-Intensive Computing Systems with

Biological Data Analysis Frameworks

Edvard Pedersen1, Inge Alexander Raknes2, Martin Ernstsen1*, Lars Ailo Bongo1

1Department of Computer Science and

Center for Bioinformatics

University of Tromsø, Norway
*Now at Kongsberg Satellite Services AS, Tromsø, Norway

edvard.pedersen@uit.no, martin.ernstsen@ksat.no,

larsab@cs.uit.no

2Norstruct,

Department of Chemistry,

University of Tromsø, Norway

inge.a.raknes@uit.no

Abstract—Biological data analysis is typically implemented

using a pipeline that combines many data analysis tools and

meta-databases. These pipelines must scale to very large datasets,

and therefore often require parallel and distributed computing.

There are many infrastructure systems for data-intensive

computing. However, most biological data analysis pipelines do

not leverage these systems. An important challenge is therefore to

integrate biological data analysis frameworks with data-intensive

computing infrastructure systems. In this paper, we describe how

we have extended data-intensive computing systems to support

unmodified biological data analysis tools. We also describe four

approaches for integrating the extended systems with biological

data analysis frameworks, and discuss challenges for such

integration on production platforms. Our results demonstrate

how biological data analysis pipelines can benefit from

infrastructure systems for data-intensive computing.

Keywords—biological data processing, data-intensive

computing, integration

I. INTRODUCTION

Recent advances in instrument, computation, and storage
technologies have resulted in large amounts of biological data
[1]. To realize the full potential for novel scientific insight in
the data, it is necessary to transform the data to knowledge
through data analysis and interpretation. Such biological data
analysis is typically implemented using a data analysis pipeline
that combines a set of tools and databases. To answer a specific
biological question the data analysis often requires a unique
combination of tools. There are many libraries (such as
BioConductor [2]), and hundreds of available tools (as in
Galaxy Toolshed [3]). These range from small, user-created
scripts to large, complex applications.

To use such pipelines, the analyst specifies, configures, and
executes the pipeline using a biological data analysis
framework [2], [4], [5]. These provide a way of specifying the
pipeline tools and their arguments, management of pipeline
data and meta-data, and execution of the pipeline tools. The
data analysis framework is often implemented on top of
infrastructure systems for data management and parallel job
execution.

In our experience, most biological data analysis pipelines
are run on a high-performance computing platform that consist
of many compute nodes, connected with a fast interconnect,
and a centralized storage solution. The platform provides a
network file system for storage, databases for data

management, a parallel programming model such as MPI [6]
and OpenMP [7], parallel data management libraries such as
PnetCDF [8] and PHDF5 [9], and a parallel job execution
system such as Open Grid Engine [10] or Torque [11]. This
platform has four main advantages. First, the file system-, and
database interfaces are stable, and the technology is reliable.
Second, many clusters for scientific computation are designed
to use a network file system and to run jobs on a cluster using a
queuing system. Third, the developers and administrators are
familiar with these systems and interfaces. Fourth, there are
already hundreds of tools implemented for this platform.

However, we believe this standard platform will not scale
to the upcoming biological datasets as demonstrated for other
large-scale data analysis projects [12], [13]. It will therefore
become necessary to implement biological data analysis
frameworks on infrastructure systems and hardware platforms
designed for data-intensive computing [14], [12], [13], [15],
[16]. Currently most biological data analysis frameworks do
not leverage such systems and platforms.

We believe that in order for biological data analysis
frameworks to leverage data-intensive computing systems they
must overcome four challenges. First, the hardware platform
must use distributed data storage (as in [17], [12]). Second, the
systems must be stable and reliable. Third, the systems must
run the many existing analysis tools with no or minor
modifications. Finally, the data-intensive infrastructure systems
must be integrated with biological data processing frameworks.

To address these challenges we have extended data-
intensive computing systems with services for biological data
processing. Our approach does not require any changes to
analysis tools. We have integrated these services with three
biological data processing frameworks using four approaches.
We have implemented services that only require a small
computer clusters. Such clusters are realistic to purchase by
individual labs. We build on the widely used Apache Hadoop
platform [14] that is both stable and reliable. Combined our
work demonstrates how unmodified biological data analysis
tools can benefit from infrastructure systems for data-intensive
computing.

II. RELATED WORK

We discuss the limitations and lessons learned utilizing
data-intensive systems for biological data processing in [18].

© © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A. Data-Intensive Computing Systems

There are several specialized infrastructure systems
developed for data-intensive computing. Many of these were
initially developed and deployed at web-scale companies such
as Google, Yahoo, Facebook, and Twitter, and then later
implemented as open source systems. There are also many new
systems under development in academia, the open source
community, and the industry.

Data intensive computing systems are often built on a
distributed file systems such as Hadoop Distributed File
System (HDFS) [17] that provide reliable storage on
commodity component hardware and high aggregate I/O
performance. A HDFS cluster co-locates storage and
computation resources to avoid the bandwidth limitation of
storage area networks when transferring large datasets over the
network to and from the computation nodes. For large systems,
it reduces cost since high-volume network attached storage is
expensive. The main advantage of HDFS for biological data
analysis is that the architecture is demonstrated to scale to peta-
scale datasets, and it is widely used for data-intensive
computing in other fields. The main disadvantage is that HDFS
does not provide a traditional file system interface, so it is
necessary to either rewrite the many data analysis tools that use
a POSIX file system interface, to incur an overhead for moving
data between HDFS and a local filesystem, or incur the
overhead of third-party library such as fuse-dfs [19]. In
addition, it is not yet a common platform in scientific
computing, so it may be necessary to purchase and build a new
cluster with storage distributed on the compute nodes instead
of a centralized storage system.

MapReduce [13][14] is a widely used programming model
and infrastructure system for data-intensive parallel
computation. It provides fault-tolerant computation on a
HDFS-like file system, and makes it easy to write scalable
applications since the system handles data partitioning, fault-
tolerance, scheduling, and communication. Biological data
analysis applications, especially for next-generation sequencing
data, have already been implemented using MapReduce ([20]
provides examples). The main advantage of MapReduce is that
it scales to peta-scale datasets. In addition, most cloud
platforms provide a MapReduce interface. The main
disadvantage is that the MapReduce programming model may
not be suited for all biological data analysis applications.

An alternative for low-latency query processing is Spark
[16][21]. It offers a richer programming model than
MapReduce, including iterative operations. It is well suited to
implement machine learning algorithms, and interactive data
analytics. However, Spark uses the Scala programming
language, which may be unfamiliar to many developers In
addition, compared to the systems discussed above Spark has
just recently become a top-level Apache project, but it is
rapidly being adopted by many other open-source and
commercial systems.

HBase [22], [15] is a column based storage system that
provides in-memory caching for low latency random data
access and efficient compression. Biological data analysis
applications can use HBase to store data accessed interactively,
to implement custom data structures, or to structure data for
more efficient compression. Compared to relational databases,
HBase does not provide an advanced query engine nor ACID

properties, so these must be implement on top of HBase if
needed.

Several high-level programming models are built on top of
MapReduce to make it easier to write data analysis programs,
including Pig [23], Hive [24], Cascading [25], Cassandra [26],
and the Mahout [27] library of machine learning algorithms.
But, to our knowledge these are not widely used for biological
data analysis.

B. Biological Data Processing Frameworks

There are many frameworks for specifying and running
biological data analysis pipelines. The two most widely used
systems are Galaxy [4] and Taverna [5].

Galaxy is a tool for biomedical research, and consists of a
framework for running tools, a web server, and a web-baed
interface for adding tools to the framework. The web interface
allows the user to runs tools or pipelines on the cluster or
computer connected to the Galaxy server. The administrator of
the Galaxy server can add new tools to the Galaxy server by
creating small XML scripts that describe how to run the tool,
which parameters, input data and output data are required by
the tool. CloudMan [28] is an extension to Galaxy, which
enables the use of cloud infrastructure, such as Amazon EC2,
for executing Galaxy workflow jobs.

The Taverna Workbench is a general framework for
creating, managing and running workflows of tools. The user
can interact with Taverna through a web interface, a desktop
tool or a command-line tool. The user specifies a workflow
using the custom Scufl language. It is possible to export
Taverna workflows as Galaxy tools.

In addition there are many general purpose high-
performance systems that can be used to run biological data
processing pipelines, such as cluster schedulers [10], Grid
schedulers [29], cluster managers [30], and systems for
distributed application deployment [31]. However, these are
typically not integrated with neither Galaxy nor Taverna
(although it can be done as described in the next section and in
[32]).

C. Cloud Computing Platforms

Cloud computing platforms are an emerging platform for
biological data processing. Commercial clouds store large-
scale biological datasets (as in Amazon AWS [33]), and
provide the compute resources for analyzing the datasets (e.g.
Amazon EC2). There are also cloud solutions such as the
Embassy Cloud [34] for processing the large data repositories
at the European Bioinformatics Institute (EBI).

Cloud services such as EC2 and Embassy Cloud run virtual
machines provided by the user in very large data-centers. The
user only pays for the resources needed. There are three main
advantages of cloud computing for large-scale biological data.
First, the user gets access to a very large compute cluster
designed for data-intensive computing. Second, the cloud
provides the resources and elasticity needed to scale the job for
very large datasets. Third, the processing can be done close to
data. A disadvantage is the cost of resources, which is often
higher than in supercomputing centers. In addition, cloud
platforms are generally not as optimized for parallel programs
as high-performance computing platforms.

Our systems and integration approaches are well suited for
cloud computing.

III. DATA-INTENSIVE COMPUTING SERVICES FOR BIOLOGICAL

DATA ANALYSIS

We have extended several data-intensive computing
systems to provide services for biological data analysis. In this
section, we describe how our biological data processing
pipelines benefit from data-intensive processing services. In the
next sections, we describe and discuss integration with
biological data analysis frameworks.

We have used clusters built for data-intensive computing
with storage distributed on the compute nodes. We use the
Hadoop software stack. It is probably the mostly used platform
for data-intensive computing, and it has a very active
development community.

A. Troilkatt

Troilkatt is a system for batch processing of large-scale
collections of gene expression datasets. We use Troilkatt to
process data for the IMP integrated data analysis tool [35],
[36]. We built Troilkatt in order to scale our gene expression
dataset integration pipeline to process all datasets for several
organisms in NCBI GEO [37]. The pipelines comprise tools for
data cleaning, transformation, and signal balancing of these
datasets. The integrated data compendium for organisms such
as human have ten thousands of datasets. But, these can be
processed independently. The raw data, results, and
intermediate data in a compendium use tens of terabyte of
storage space.

Troilkatt provides infrastructure services for automated
genomics compendium management. It consists of five main
components (figure 1). First, the large genomics compendia
maintained by Troilkatt are stored and processed on a cluster.
Second, Troilkatt leverages the Hadoop software stack for
reliable storage and scalable fault-tolerant data processing,
including the Hadoop Distributed File System (HDFS),
Hadoop MapReduce, and HBase. Third, the Troilkatt runtime
system provides data management including versioning and a
library of tools for downloading and processing data. Fourth,
Troilkatt can execute a large collection of external tools and
scripts for various data processing. Finally, a command line
based user interface allows the administrator to control the
compendium content and data processing.

An expert user specifies a Troilkatt pipeline as an XML
file. The file specifies the tools to run, their arguments,
datasets, and meta-databases. In addition, the user tunes
pipeline performance and data storage requirements by
specifying storage systems, parallel data execution framework,
compression algorithms, and data retention time. The user
does not implement communication between tasks, data
locality aware mapping of tasks to compute nodes, or fault-
tolerance. The Hadoop software stack handles these.

TABLE I. TROILKATT SUMMARY.

Goal Scalable integrated data analysis pipelines

Systems

used

HDFS: scalable storage

MapReduce: I/O intensive pipeline processing

Tools

Unmodified binaries and scripts

MapReduce applications

Fig. 1. Troilkatt architecture.

Troilkatt supports three types of tools: unmodified binaries
or scripts, Troilkatt scripts, and MapReduce jobs. Troilkatt
executes unmodified binaries in parallel using MapReduce.
This is similar to Hadoop Streaming, but Troilkatt allows
specifying additional command line arguments as environment
variables. For example, many biological analysis tools require
specifying multiple meta-database files as command line
arguments. The disadvantage of using unmodified binaries is
that Troilkatt must copy input and meta-database files to a local
file system before executing the tool, and then after tool
execution, copy the result file back to HDFS.
 Troilkatt scripts provide classes and interfaces that make it
easy to implement for example data retriever scripts. Troilkatt
MapReduce jobs provide optimized access to the data stored by
Troilkatt. It is well suited for many of the IMP data processing
tools, since they process one row in a dataset at a time. Both
use the HDFS interface to directly read and write data to files
in HDFS.

B. GeStore

GeStore [38] is a system for adding transparent incremental
updates to biological data processing pipelines. We use
GeStore to periodically update large-scale compendia, such as
the IMP compendia described in the previous section. We built
GeStore since the processing time for a full compendium
update can be several days even on a large computer cluster,
making it impractical to frequently update large-scale
compendia. We have achieved up to 82% reduction in analysis
time for dataset updates when using GeStore with an
unmodified biological data analysis pipeline [38]. GeStore also
provides efficient meta-database management for large scale
meta-databases.

TABLE II. GESTORE SUMMARY.

Goals

Incremental updates for analysis pipelines

Meta-data management

Systems

HBase: data structures for generating incremental updates

MapReduce: I/O intensive pipeline processing

Tools Unmodified binaries

GeStore provides a transparent file based approach that
allows using unmodified biological analysis tools. Instead, we
modify the input and meta-data files read by analysis tools such
that these only contain the data for incremental update
computations. Executing the tool will typically produce a
partial result, which GeStore merges with previously produced
results. We have chosen a file based approach since relatively
few file formats are used by many genomics applications. It is
therefore feasible to implement parsers that support most file
formats and therefore most genomics pipeline tools. In
addition, most file formats are simple and structured which
makes it easy to implement parsers.

GeStore provides services to pipeline managers, and is
therefore usually transparent for the end user. The pipeline
manager uses GeStore as a storage backend, instead of-, or in
addition to the network file system.

GeStore must detect changes in, and merge updates into,
compendia that can be tens of terabytes in size. GeStore must
also maintain and generate incremental updates or versions of
meta-databases such as UniProt [39]. These can be hundreds of
gigabytes in size. We use HBase for data storage and
MapReduce for generating input files and merging output files.
HBase provides high-throughput random data accesses
required for efficient change detection and merging. GeStore
stores meta-database entries as HBase rows, and updates to
these entries by creating a new version of an HBase table cell.
The timestamps enable efficient table scans to find entries that
have changed in a time period and hence are part of an
incremental update. In addition, the flexible schema of HBase
tables is used to reduce the work required to maintain plugins
when file structures or databases changes, allowing several
years of database versions to be stored in the same HBase
table. In addition, we reduce storage space requirements by
storing multiple meta-database versions in HBase instead of
storing all versions separately.

GeStore provides a plugin system to support many
biological tools and file formats (figure 2). To add incremental
updates for a new tool the plugin maintainer implements a
plugin. The plugin specifies how to partition input and meta-
data files into entries, which part of an entry are required for
the analysis done by a tool, and how to compare the entries to
detect updates. In addition, the plugin contains code for writing
entries to an incremental input file, and code to merge
incremental output with previously produced results. These
plugins are relatively small in size; less than 300 lines of code
in our most complex plugin. Plugins can access data directly in
HDFS or Hbase to reduce overhead.

Fig. 2. GeStore architecture.

TABLE III. MARIO SUMMARY.

Goals Interactive tuning of analysis pipeline

Systems

HBase: sparse data structure, low- pipelines latency reads

and writes

Tools

Unmodified binaries

Modified data-exploration tools

C. Mario

Mario [40] is a system for interactive iterative data
processing (figure 3). We have designed Mario for interactive
parameter tuning of biological data analysis pipeline tools. For
such workloads, the pipeline output should be visible for the
pipeline developer as soon as it is produced. Mario combines
reservoir sampling, fine-grained caching of derived datasets,
and a data-parallel processing model for quickly computing the
results of changes to pipeline parameters. It adds less than
100ms of overhead per pipeline stage, and it does not add
significant computation, memory, or storage overhead to
compute nodes [40].

Mario must efficiently produce random samples from a
stream for reservoir sampling, implement a cache of fine-
grained pipeline tool results, and implement parallel pipeline
stage processing. We use HBase as storage backend due to its
low-latency random read and write capability, its ability to
efficiently store sparse data structures, and its scalability.
Mario stores all intermediate data records produced during
pipeline execution in HBase, and uses the cached data to
quickly find the data records that must be updated when
pipeline tool parameters are changed. Mario also uses HBase
for data provenance and single-pass reservoir sampling. The
iterative processing in Mario is similar to Spark Streaming
[41]. Mario splits the data to be processed randomly into many
small parts, and distributes these on the cluster nodes. The parts
are processed in parallel, but since there are many more parts
than processor cores, only a small subset is processed at a time.
The output data is therefore incrementally updated.

To analyze a dataset using Mario, a user would first load
the input data into HBase. She would then use a data analysis
framework such as Galaxy [4] to define the pipeline by
specifying, for each pipeline stage: the tool to execute, the tool
version, and the tool parameters. The configuration can specify
that a dataset should be sampled with a given sample size.
Mario uses the GeStore transparent file-based approach for
incremental processing [38], so it is not necessary to modify

Fig. 3. Mario architecture.

tool code. The user then starts the initial computation. As
the computation proceeds, the user can change the parameters
or tool used in a stage by sending an updated configuration to
the master, which will start scheduling work with the new
configuration. If the new configuration does not produce
satisfactory results, Mario can restore a previous configuration
by reading data for a previous configuration from the storage
layer.

A data exploration tool uses an interface provided by Mario
to retrieve results from HBase, either periodically or when
notified of the presence of new results by the Mario master. To
integrate Mario with a visualization system such as Krona [42]
or METAREP [43], an interface must be implemented that
updates the data structures used by the exploration tool. For
Krona, this involves generating an XML-file of the organism
hierarchies found in the data. For METAREP, a search engine
data structure must be updated. For integration with end-user
statistical analysis, the interface can be implemented in for
example R.

IV. BIOLOGICAL DATA PROCESSING FRAMEWORK INTEGRATION

We describe how we integrated the GeStore system with
three pipeline managers (table V) using four approaches (table
VI). All approaches add incremental updates to biological data
analysis pipelines using the GeStore transparent file-based
approach.

Each approach requires adding a call to GeStore before
each tool in the pipeline is executed to generate input and meta-
data files for the tool. Then, when the tool has executed,
GeStore must be called to merge generated output files with
previously generated files. For each approach we want to
answer the following questions:

 Is GeStore functionally visible to the pipeline user?

 What is the required developer effort for the
integration?

 Can the framework use all features of GeStore?

 What is the performance overhead of the approach?

Ideally, GeStore should be hidden from the user since we
assume that the biologists using the pipeline do not want to be
exposed to pipeline execution and data management details.
The developer effort should be small such that we can easily
integrate GeStore with the biological data processing
framework. We also want to reduce the amount of work
required for redoing the integration each time the framework
code is updated. In addition, the integration should expose the
pipeline data and processing details necessary to fully utilize all
GeStore features. Finally, to reduce GeStore overhead the
integration approach should not introduce a large overhead to
the pipeline execution time. The above four goals are
conflicting, so a good trade-off between these must be found.
Below, we describe the approaches and discuss the benefits and
drawbacks of each approach.

TABLE IV. PIPELINE MANAGERS.

Pipeline manager Description

GePan High-performance computing platform scripts

Troilkatt Data-intensive computing pipeline manager

Galaxy Biological data analysis framework

TABLE V. INTERACTION APPROACHES.

 User
effort

Developer
effort

Missing
features

Performance

Key-value Low High Low High

External tool High Low Low High

File system Low Moderate High Medium

A. Key-value Store

We developed GeStore to provide incremental updates to
the Meta-pipe (unpublished) metagenomics analysis pipeline
developed and deployed at the University of Tromsø. Meta-
pipe implements a custom pipeline manager called GePan that
executes the analysis tools in parallel on a compute cluster
using the Open Grid Engine (OGE) or Torque. GePan
generates shell scripts that choose meta-databases and file
format conversions based on tools and biological domains
specified by the user. GePan represents pipeline managers
written for a specific pipeline and a traditional HPC cluster.

GePan describes an analysis pipeline as a set of shell scripts
generated from a set of parameters that specify the tools to run
and their parameters. It will generate two kinds of shell scripts:
1) a set of job scripts, 2) a job submission script.

For each step in the pipeline, GePan will generate a script
to run the specified tool with the correct parameters. The job
script will read a task-ID and job-ID from the environment and
pass it to the specified tool as appropriate. The job script will
also create directories and delete intermediate files.

The job submission script is a shell script that submits jobs
to the job manager. The script consists of a series of `qsub`-
commands that submits each tool in the pipeline to the job
manager with the appropriate dependencies.

GePan uses the key-value store interface exported by
GeStore. We have modified the GePan script generation to
replace file copy operations in the job scripts with GeStore
calls. GeStore method arguments are set at runtime. This
includes the pipeline ID, tool to execute, tool input data, and
the meta-databases to use. GePan can also determine if the file
retrieved is a meta-database, input data or intermediate data. In
addition, GePan has information about filters to use and other
user-supplied parameters. GePan can specify for which files
GeStore should generate incremental versions, which files need
additional parameters for increment generation, and which files
are regular non-incremental files.

The integration requires very little user involvement. The
user must set a “-g” parameter in GePan to specify that
GeStore calls should replace file systems operations. In
addition, the user may provide a filter to generate a subset of
meta-database (for example for only one biological taxon).

The development effort for the integration is high, since the
developer needs to have extensive knowledge of how GeStore
will be used in different parts of the pipeline. All file accesses
are from scripts generated by GePan, hence GePan must be
modified to replace these file accesses with GeStore calls. In
total, we added about 300 lines of code to the 14.000 line
GePan codebase. We did not modify any Meta-pipe tools.

GeStore incurs an overhead for small files (a few
megabytes), for which the time to generate incremental updates
is larger than the reduction in execution time. To avoid this
overhead the pipeline manager can set a file size threshold for
files managed by GeStore.

The main advantage of this approach is that the incremental
updates are hidden from the user, and that GePan can directly
use the full feature set of GeStore. However, the integration
requires more development time and a detailed knowledge of
the GePan pipeline manager. This integration approach is
therefore best suited for small, specialized pipeline mangers
that the developer knows in detail.

B. Filesystem Interface

The Troilkatt system (section III.A) is a system for batch
processing pipeline tools that analyze a large-scale
compendium. Troilkatt represents specialized pipeline
managers designed for data-intensive computing. It manages
the setup of tool execution including the specification of input
and meta-files for a tool and the management of tool output
files. A tool may read and write the files directly from HDFS.
Alternatively, if the file requires a POSIX file system interface,
Troilkatt automatically copies the files to and from a local file
system before and after tool execution. We designed Troilkatt
to manage files in several file systems. It therefore provides a
common file system interface. The interface was implemented
for POSIX file systems and for HDFS. To integrate GeStore
with Troilkatt we chose to implement the file system interface
for GeStore.

To use GeStore, the user sets a field in the pipeline
configuration XML file. The user does not need to have a
detailed knowledge of GeStore nor Troilkatt.

The required development effort is moderate. A detailed
knowledge of the internals of Troilkatt is not required to
implement the interface. However, the interface is complex and
the documentation may be lacking.

The main benefit of this approach is that it does not require
changes to core Troilkatt code. However, there are two
disadvantages. First, GeStore must infer the required
information for its parameters from file-, and pathnames. These
may not always have all required information, such as pipeline
IDs, the type of file, or the analysis tool to execute. Second, we
must parse file pathnames to automatically infer the file type
and pipeline ID. If the information is ambiguous, GeStore
must use the non-incremental full-file format and can therefore
not provide the execution time reduction of incremental
updates. This integration approach is suited for file-based
pipeline mangers.

C. Galaxy Tool Wrapper

Galaxy (section II.B) is probably the most popular pipeline
manager for biological data processing. Galaxy represents a big
and complex pipeline manager with 165.000 lines of code. We
have integrated GeStore with Galaxy by implementing a
Galaxy tool wrapper for GeStore. The pipeline manager will
execute a script that calls GeStore to read incremental files and
write partial result files.

The user must add the GeStore tool to her pipeline, and
specify parameters including a unique pipeline-ID, the file ID,
incremental file retrieval, and the file type. In order to specify
these parameters the user must know the GeStore API, and
understand the features and limitation of GeStore. We believe
this is too complicated for ordinary Galaxy users, but still
useful for power users that use Galaxy to specify and tune
pipelines for large datasets.

The approach is easy to implement, and does not require
any changes to the large Galaxy codebase. We implemented
the GeStore tool using the tool API provided by Galaxy. It is
up to the user to specify the GeStore parameters. She can
therefore configure GeStore to introduce minimal overhead.

The main benefit of this approach is the clear separation
between GeStore and the pipeline manager, and hence no
changes are required to the pipeline manager. The main
disadvantage is manual configuration of GeStore. This
approach is suited for complex pipeline managers where it is
not possible, or practical, to modify the code.

D. Galaxy Backend Integration

To combine the benefits of pipeline specifications in the
popular Galaxy tool, and the close integration of GeStore with
GePan, we modified GePan to use Galaxy LWR (Light Weight
Runner). LWR provides a way to run a Galaxy tool on a
different computer such as a compute cluster node. The user
can thereby configure a pipeline that uses GePan with GeStore
without setting any GeStore arguments. The GeStore call
arguments will be set at runtime and provide the same low
GeStore overhead as for the key/value store integration.

In order for GePan to be run by LWR it needs to be
implemented as a Galaxy tool. The tool first starts GePan, and
then waits for it to complete. When the GePan tool is run from
Galaxy, Galaxy will notify LWR via an AMQP message
broker and GePan will run on the cluster.

In order to make the integration more reliable we developed
a Python script that automates the process of inferring the
status of a GePan job. The script verifies the existence of
output files, `grep` log directories for errors and checks cluster
status via DRMAA. The script also implements a method to
wait for a GePan pipeline to complete. Our implementation of
GePan currently supports Open Grid Scheduler and Torque.

The shell scripts generated by GePan are brittle and prone
to errors. In addition, GePan itself does not contain sufficient
logic to determine if a job has failed or succeeded; there are
numerous ways for which any of the shell scripts or the tools
themselves could fail. After GePan has been run from the
command line the user will manually test for failure conditions
by querying `qstat`, use `grep` in the log directory and
manually inspect output-files. The existing Galaxy integration
cannot detect certain modes of failure, such as mid-run failures.

A better solution would be to generate an intermediate
representation of the pipeline and then either use that to
generate a Condor workflow [29] or to submit jobs directly via
DRMAA.

V. DISCUSSION

The main question addressed by this paper is why data-
intensive computing systems are typically not used for
biological data processing. We provide three examples of the
benefits by using such systems. Of the three systems: Troilkatt
is in production use, we want to deploy GeStore to a
production platform, while Mario requires more development
before it is ready for production use. Here we discuss
challenges for deploying such systems for production use.

Challenge 1 – Code quality. Before deploying code on a
production system, it should be well tested. Most biological
data processing code is developed in research projects, where

test suites are typically not implemented. We have
implemented test cases for Troilkatt and GeStore, and we
found these very useful when there are multiple developers,
and for code run on multiple platforms.

Challenge 2 – Interdisciplinary collaboration. We believe
open source code is necessary but not sufficient to ensure
adaptation. All three systems described here are open source.
But more importantly; we have close collaboration with groups
developing and deploying analysis pipelines. Through that
collaboration, we can deploy the systems in production use and
thereby demonstrate the usefulness of the systems to our
biological end-users.

Challenge 3- Integration. We believe it is critical that an
infrastructure system can support the analysis tools already in
use by the analysts. We have achieved this by integrating our
systems with the popular Galaxy pipeline manager, and by
ensuring that analysis tools can be used unmodified. The
disadvantage of this approach is that the framework may limit
the features and services that can be used. In addition, the tools
may not fully utilize the power of a data-intensive analysis
programming model. In our experience, integration is not
straightforward and often requires in-depth knowledge of both
systems. There is also a lack of standard interfaces for system
integration in biological frameworks.

Challenge 4 – Cluster management. In our experience, the
lack of clusters designed for data-intensive computing is an
important limitation for adaptation. We have been in a position
where either our collaborators or we built such clusters. But we
have also ensured that our systems integrate well with
traditional HPC infrastructure systems. Lately, systems such as
Mesos have emerged that attempt to improve the integration of
HPC systems and data-intensive computing systems.

Challenge 5 – GUI integration. Data-intensive computing
systems must also be integrated with statistical analysis or
visualization systems used by the end-users. Today these are
often implemented as web applications that use a well-defined
REST interface for data access (e.g. Kvik [44]) or are encoded
as HTML documents (e.g. Krona [42]). For these it is often
enough to update data files. But there are also systems such as
the METAREP [43] metagenomics analysis framework that
combine the Lucene [45] search engine, with the R statistical
analysis framework, and a PHP based web application.
Integration with such systems require in-depth knowledge of
the data accesses of the visualization system.

VI. CONCLUSIONS AND FUTURE WORK

We have transparently extended flexible biological data
analysis frameworks to utilize data intensive computing
infrastructure systems. We have integrated our data-intensive
computing systems with three pipeline managers, including
Galaxy. The integration required localized changes to the code,
and it often utilized existing interfaces for the integration. For
all cases, the analysis tools were unchanged.

We believe our work demonstrates that biological data
processing can utilize data-intensive computing infrastructure
systems. We focus on services that are important for biological
data analysis that only require a small computer clusters. We
use an approach that is transparent for biological analysis tools.
We also believe our results can be applied on other data

analysis fields with large-datasets and flexible analysis
pipelines.

As future work, we intend to deploy our developed
infrastructure systems on production systems. We are also
improving our Galaxy integration, including better error
handling. We are also developing several other biological data
processing systems for large-scale datasets in collaboration
with our biology and medicine collaborators.

Troilkatt, GeStore and Mario are all open source:

 https://github.com/larsab/troilkatt

 https://github.com/EdvardPedersen/GeStore

 http://bdps.cs.uit.no/code/mario/

ACKNOWLEDGMENTS

Thanks to Tim Kahlke who developed GePan. Thanks to
Kai Li, Olga Troyanskaya, and Alicja Tadych for their help
developing and deploying Troilkatt. Thanks to our colleagues
at the Tromsø Elixir node for their expertise in developing and
deploying biological data processing systems.

REFERENCES

[1] S. D. Kahn, “On the Future of Genomic Data,” Science (80-.)., vol. 331,

no. 6018, pp. 728–729, Feb. 2011.
[2] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S.

Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W.

Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini,
G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. H. Yang, and J.

Zhang, “Bioconductor: open software development for computational

biology and bioinformatics.,” Genome Biol., vol. 5, no. 10, p. R80, Jan.
2004.

[3] D. Blankenberg, G. Von Kuster, E. Bouvier, D. Baker, E. Afgan, N.

Stoler, J. Taylor, and A. Nekrutenko, “Dissemination of scientific
software with Galaxy ToolShed.,” Genome Biol., vol. 15, no. 2, p. 403,

Jan. 2014.

[4] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent

computational research in the life sciences.,” Genome Biol., vol. 11, no.

8, p. R86, Jan. 2010.
[5] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T.

Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a tool

for the composition and enactment of bioinformatics workflows.,”
Bioinformatics, vol. 20, no. 17, pp. 3045–54, Nov. 2004.

[6] "Message Passing Interface Forum, “MPI: A Message-Passing Interface

Standard. Version 3.0,” 2012.
[7] “OpenMP Application Program Interface version 4.0,” 2013.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[8] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R.
Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A

High-Performance Scientific I/O Interface,” Proceedings of the 2003

ACM/IEEE conference on Supercomputing, 2003.
[9] “Parallel HDF5.”, 2014, http://www.hdfgroup.org/HDF5/PHDF5/

[10] “Open Grid Scheduler.” http://gridscheduler.sourceforge.net/.

[11] “TORQUE Resource Manager - Adaptive Computing.”
http://www.adaptivecomputing.com/products/open-source/torque/.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”

in ACM SIGOPS Operating Systems Review, 2003, vol. 37, no. 5, p. 29.
[13] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing

tool,” Commun. ACM, vol. 53, no. 1, p. 72, Jan. 2010.

[14] “Hadoop homepage,” 2014. http://hadoop.apache.org/.
[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “BigTable: A

Distributed Storage System for Structured Data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, pp. 1–26, Jun. 2008.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.

J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing,” in NSDI’12

Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation, 2012.
[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” in 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), 2010, pp. 1–10.
[18] L. A. Bongo, E. Pedersen, and M. Ernstsen, “Data-intensive computing

infrastructure systems for unmodified biological data analysis

pipelines,” in Eleventh International Meeting on Computational
Intelligence Methods for Bioinformatics and Biostatistics (accepted for

publication), 2014.

[19] “MountableHDFS.” http://wiki.apache.org/hadoop/MountableHDFS.
[20] R. C. Taylor, “An overview of the Hadoop/MapReduce/HBase

framework and its current applications in bioinformatics.,” BMC

Bioinformatics, vol. 11 Suppl 1, p. S1, Jan. 2010.
[21] “Apache Spark.” https://spark.apache.org/.

[22] “Apache HBase.” http://hbase.apache.org/.

[23] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.
Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava,

“Building a high-level dataflow system on top of Map-Reduce: the Pig

experience,” in Proc. of the VLDB Endowment, 2009, vol. 2, no. 2, pp.
1414–1425.

[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” in Proceedings of the VLDB Endowment, 2009, vol.

2, no. 2, pp. 1626–1629.

[25] “Cascading.” http://www.cascading.org/.
[26] A. Lakshman and P. Malik, “Cassandra,” ACM SIGOPS Oper. Syst.

Rev., vol. 44, no. 2, p. 35, Apr. 2010.
[27] “Mahout homepage,” 2014. https://mahout.apache.org/.

[28] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and J.

Taylor, “Galaxy CloudMan: delivering cloud compute clusters.,” BMC
Bioinformatics, vol. 11 Suppl 1, no. Suppl 12, p. S4, Jan. 2010.

[29] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle

workstations,” in Proceedings. The 8th International Conference on
Distributed, pp. 104–111. 1988

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R.

Katz, S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained
resource sharing in the data center,” in NSDI’11 Proceedings of the 8th

USENIX conference on Networked systems design and implementation,

2011.
[31] “Docker.” https://www.docker.com/.

[32] M. Abouelhoda, S. A. Issa, and M. Ghanem, “Tavaxy: integrating

Taverna and Galaxy workflows with cloud computing support.,” BMC
Bioinformatics, vol. 13, no. 1, p. 77, Jan. 2012.

[33] “Public Data Sets on AWS.” http://aws.amazon.com/public-data-sets/.

[34] “Services at EMBL-EBI; Embassy Cloud.”
http://www.ebi.ac.uk/services.

[35] C. Y. Park, A. K. Wong, C. S. Greene, J. Rowland, Y. Guan, L. A.

Bongo, and O. G. Troyanskaya, “Functional Knowledge Transfer for
High-accuracy Prediction of Under-studied Biological Processes,” PLoS

Comput. Biol., vol. 9, no. 3, p. e1002957, Mar. 2013.

[36] A. K. Wong, C. Y. Park, C. S. Greene, L. A. Bongo, Y. Guan, and O. G.
Troyanskaya, “IMP: a multi-species functional genomics portal for

integration, visualization and prediction of protein functions and

networks.,” Nucleic Acids Res., vol. 40, no. Web Server issue, pp.
W484–90, Jul. 2012.

[37] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F.

Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman,
R. N. Muertter, M. Holko, O. Ayanbule, A. Yefanov, and A. Soboleva,

“NCBI GEO: archive for functional genomics data sets--10 years on.,”

Nucleic Acids Res., vol. 39, no. Database issue, pp. D1005–10, Nov.
2010.

[38] E. Pedersen, N. P. Willassen, and L. A. Bongo, “Transparent

incremental updates for Genomics Data Analysis Pipelines,” in HiBB
2013 – 4th Workshop on High Performance Bioinformatics and

Biomedicine. LNCS, vol. 8374, 2014.

[39] M. Magrane and U. Consortium, “UniProt Knowledgebase: a hub of
integrated protein data.,” Database (Oxford)., vol. 2011, p. bar009, Jan.

2011.

[40] M. Ernstsen, E. Kjærner-Semb, N. P. Willassen, and L. A. Bongo,
“Mario: interactive tuning of biological analysis pipelines using iterative

processing,” in in Proc. of 5th International Workshop on High
Performance Bioinformatics and Biomedicine. LNCS, vol. 8805, 2014.

[41] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,

“Discretized streams,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles - SOSP ’13, 2013, pp. 423–

438.

[42] B. D. Ondov, N. H. Bergman, and A. M. Phillippy, “Interactive
metagenomic visualization in a Web browser.,” BMC Bioinformatics,

vol. 12, no. 1, p. 385, Jan. 2011.

[43] J. Goll, D. Rusch, D. M. Tanenbaum, M. Thiagarajan, K. Li, B. A.
Methé, and S. Yooseph, “METAREP: JCVI Metagenomics Reports - an

open source tool for high-performance comparative metagenomics.,”

Bioinformatics, vol. 26, no. 20, pp. 2631–2, Aug. 2010.
[44] B. Fjukstad, K. S. Olsen, M. Jareid, E. Lund, and L. A. Bongo, “Kvik:

Interactive exploration of genomic data from the NOWAC postgenome

biobank,” in Proc. of NIK 2014, 2014.
[45] “Apache Lucene.” http://lucene.apache.org/.

