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Abstract

Scalability of parallel applications run on clusters and
multi-clusters is often limited by communication perfor-
mance. Message tracing can provide data for under-
standing bottlenecks, and for performance tuning. How-
ever, it requires collecting, storing, analyzing, and trans-
ferring potentially gigabytes of data. We have designed
the EventSpace system for low overhead and high per-
formance runtime collective communication trace analy-
sis. EventSpace separates the perturbation and perfor-
mance requirements of data collection, analysis, gathering
and visualization. Data collection overhead is low since
the minimum amount of data is recorded and stored tem-
porarily in main memory. The recorded data is either dis-
carded or analyzed on demand using available cluster re-
sources. Analysis is distributed for high performance, and
coscheduled with the computation and communication sys-
tem threads for low perturbation. Gathering of analyzed
data is done using extensible collective communication op-
erations, which can be tuned to trade off between perfor-
mance and monitoring overhead. EventSpace was used to
do run-time monitoring and analysis of collective commu-
nication micro-benchmarks run on clusters, multi-clusters,
and multi-clusters with emulated WAN links. Performance
data was collected, analyzed and gathered with 0-3% mon-
itoring overhead.

1 Introduction

In Grids rapid changes will be the norm. Hence, it is nec-
essary for applications and the underlying systems to adapt,
at run-time, to changes in the availability and performance
of resources. An important part of the adaptation will be
to reconfigure the point-to-point and collective communi-
cation structures used by parallel applications.

On large clusters, a much less dynamic environment
than a Grid, communication system performance is impor-
tant. Of eight scalable scientific application studied in [30],

most would benefit from improvements to collective opera-
tions, and four would benefit from improvements in point-
to-point communication performance. Improved communi-
cation performance is essential if Grids are to be used as a
high performance computing platform.

Collective operation performance has been shown to im-
prove by using better mappings of computation and data
to the clusters in use [16, 24, 26, 27]. In earlier work, we
have shown how to tune the mapping based on a perfor-
mance analysis within the communication system [9]. We
found that a global view of the system was needed to de-
tect hotspots and simplify the hotspot analysis. Also, traces
of all messages sent in a collective operation spanning tree
were needed to understand some performance problems (as
the problems described in [21]). Thus, we need to collect,
store, analyze, gather, and visualize a large amount of per-
formance data.

Monitoring tools need to collect data with minimal per-
turbation of the monitored application. For runtime analysis
the performance data must be analyzed and often gathered
to a single front-end host for use before the data becomes
irrelevant. We have built the EventSpace system [8] for low
overhead and high performance runtime collective commu-
nication trace analysis.

EventSpace is evaluated on clusters, multi-clusters, and
multi-cluster with emulated WAN links. We demonstrate
how data gathering performance can be tuned to either pro-
vide high performance or low perturbation. Our results
show that performance data can be collected with less than
1% overhead. The data can be analyzed and gathered with
0-3% overhead, since collective communication intensive
applications have low CPU utilization, and since analysis
threads can be coscheduled with application and communi-
cation system threads.

2 Reated Work

Generally performance monitoring tools for MPI pro-
grams [19] treats the communication system as a black box



and collect data at a layer between the application and the
communication system (the MPI profiling layer). To un-
derstand why a specific collective operation spanning tree
and mapping have better performance than others it is nec-
essary to collect data for analysis inside the communication
system, as EventSpace does.

MRNet [23] is the system most similar to EventSpace.
Both use collective operations spanning trees to build scal-
able multi-cast/reduction overlay networks used by perfor-
mance monitoring tools. MRNet shares the flexible orga-
nization and extensibility of EventSpace. In MRNet, com-
munication is only between compute hosts and the front-
end host, while EventSpace allows arbitrary communication
structures resulting in more flexible and efficient analysis.
EventSpace is also more tightly integrated with the under-
lying communication system, allowing the monitor activity
to be coscheduled with the application. Our evaluation dif-
fers in that we use EventSpace for a different problem do-
main than used in [23], and we examine the performance of
more complex spanning tree topologies than the balanced
trees used in [23]. Another data aggregation tool for Grids
is Yggdrasil [4].

PHOTON [28] allows monitoring point-to-point oper-
ations used by MPI applications run on large clusters.
EventSpace is designed for collective operations, but share
the same goals as PHOTON in reducing the monitoring
overhead, perturbation and storage requirements of post-
mortem trace analysis tools. PHOTON appends informa-
tion to messages, which requires modifications to the MPI
runtime system. This information is sampled and statistics
are computed at runtime. Our experience in collective oper-
ation analysis [9] is that statistical profiling does not provide
the necessary level of detail to understand all performance
problems. Hence message tracing is necessary.

NetLogger [25] provides end-to-end application and
system level monitoring of high performance distributed
systems. It can provide similar performance data as
EventSpace does. However, our focus is on how to aggre-
gate and analyze the communication performance of collec-
tive operations. This requires monitoring more hosts than
the single path usually monitored by NetLogger.

Data stream management systems (for an overview of
DSMSs see [3]) have been used to implement network mon-
itors [12]. DSMSs provide a relational/ query interface for
the performance analyst. Such an interface could be useful
for specifying EventSpace scopes as SQL queries. How-
ever, to achieve the desired performance and perturbation,
it is still necessary to map, configure and tune the query plan
to the clusters in use; as shown in this paper.

Astrolabe [22] is a system for collecting, aggregating and
updating large scale system state. Astrolabe is targeted for
widely distributed applications and the primary design goal
was scalability. EventSpace uses some of the Astrolabe

techniques for improving scalability such as hierarchies and
aggregation. Other aggregation and filtering systems for In-
ternet are publish-subscribe systems [10], and Grid moni-
toring and discovery services such as Remos [13]. The fil-
tering and aggregation functions in EventSpace are more
specialized towards performance analysis. Also, since As-
trolabe and publish-subscribe systems are targeted at widely
distributed applications run on the Internet, low latency ag-
gregation is not important.

Cluster monitoring tools such as Ganglia [18], and Grid
monitoring tools such as the Network Weather Service [32],
does not support the high sample rate necessary for collec-
tive operation analysis.

To reduce monitoring overhead, EventSpace coschedule
execution of monitoring threads with application and com-
munication system threads. Coscheduling has traditionally
been used to schedule communicating processes [1]. Our
design is similar to [11], where coscheduling is used to
boost the priority of communication threads doing collec-
tive communication to improve application performance.
However, we do not modify kernel code since coschedul-
ing can be added to the communication system.

Many research projects have optimized MPI collective
operations. Some of the approaches used are: (i) using
knowledge about the topology hierarchy, going from multi-
cluster [16] to individual clusters of SMPs [24, 17] and uni-
processors. (ii) taking advantage of architecture specific op-
timizations [24, 26], (iii) using a lower-level network pro-
tocol [14, 26], and (iv) automatically trying different algo-
rithms and buffer sizes [27].

3 Performance Analysisand Optimization

Applications monitored by EventSpace use the PATHS
communication system [5], which is an extension to the
PastSet structured shared memory system [31]. Threads
communicate by reading and writing tuples to shared mem-
ory buffers.

The purpose of the analysis is to detect performance
problems in a spanning tree and understand how the tree
can be reconfigured to improve performance. We briefly
describe the metrics computed for the allreduce operation.
Other synchronizing collective operations will have similar
metrics. For a more detailed description see [9].

Central to the analysis are communication paths through
the communication system starting from a thread and end-
ing in a PastSet buffer. Each path consists of several wrap-
pers; each wrapper has code that is run before and after call-
ing the next wrapper in the path. Wrappers are used to im-
plement communication between hosts and for instrumen-
tation. Also, some wrappers join paths used to implement
collective operation spanning trees, and handle the neces-
sary synchronizations. The spanning tree is configured by
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Figure 1. PATHS allreduce spanning tree.

specifying properties of the wrappers and the mapping of
wrappers to cluster hosts [5, 9].

In summary, we do for the performance analysis the fol-
lowing steps: (i) detect load balance problems, (ii) find
paths with similar behavior, (iii) select representative paths
for further analysis, (iv) find hotspots by breaking down the
cost of a path into several stages, (v) reconfigure the path,
and (vi) compare the performance of the new and old con-
figuration.

Figure 1 shows an allreduce spanning tree used by
threads T1-T8 instrumented with event collectors (EC1-
EC14). These collect entry and exit timestamps for each
wrapper. The reduced value is stored is a PastSet buffer. CT
is a communication thread serving one TCP/IP connection.

For inter-host communication we calculate the two-way
TCP/IP latency by (t4 — t1) — (t3 — t2), where ¢ and ¢4
are collected by the event collector before the stub in a path
(EC12), and - and ¢35 are collected by the first event collec-
tor called by the communication thread (EC13).

Allreduce wrappers are called by multiple threads each
contributing with a value to be reduced. There is one event
collector after the allreduce wrapper, that collects times-
tamps to and t3, while the paths from each contributor 4
have an event collector collecting timestamps ¢ ; and ¢4 ;.
For each contributor three latencies are calculated: down
latency to — t1;, up latency ¢4 ; — t3, and total latency
(t4’7; - tl’i) - (t3 - t2)

Also calculated for each contributor are the arrival order
distribution and the departure order distribution; the num-
ber of times the contributor arrived, and departed, at the
allreduce wrapper as the first, second, and so on. In addi-
tion we calculate: arrival wait time ¢, ; — ¢; ;; how long
contributor 4 had to wait for the last contributor  to arrive,
and departure wait time ¢4 ; — t4,¢; elapsed time since the
first contributor f departed from the allreduce wrapper, un-
til contributor ¢ departed.

4 EventSpace

The architecture of the EventSpace system is given in
figure 2. An application is instrumented by inserting event
collectors into its communication paths. Each event collec-
tor record data about communication operations into a trace
tuple and stores it in an event space consisting of PastSet
bounded buffers. Different views of the communication be-
havior can be provided by extracting and combining trace
tuples provided by different event collectors. Consumers
use an event scope, an aggregation/gather network, to do
this.

41 Design

Runtime monitoring tools need to provide the data nec-
essary for analysis at high performance and without per-
turbing the monitored application. We describe the design
choices made in EventSpace to achieve these goals.

Configurability and extensibility. Being a research
tool, EventSpace is designed to be extensible and flexible
in order to experiment with different approaches for tuning
the trade-off between monitoring performance and pertur-
bation. It is also possible to extend EventSpace by adding
other event collectors, and event scopes.

Separation of functional concerns. The tasks of col-
lecting, storing, analyzing, gathering and presenting data
are clearly separated in order to allow each part to be im-
plemented and tuned separately. Data is collected by com-
munication system wrappers, and stored using the PastSet
structured shared memory system. EventSpace provides
mechanisms for distributed analysis and fast collective op-
erations for gathering data from compute hosts to a front-
end host, which is responsible for presentation or further
analysis of the data.

Low overhead data collection. We expect the num-
ber of trace tuple writes to be much larger than the number
of reads; hence an event collector only record the minimal
information for each communication operation and stores
it in binary format in memory using native byte ordering.
For heterogeneous environments, the tuple content can be
parsed to a common format when it is read. Due to separa-
tion of concerns all communication paths are instrumented,
and data is recorded for each operation, since event collec-
tors do not know what data monitors need and when they
need it.

Temporal trace storage. The challenge for large scale
message tracing is the amount of data produced [28].
EventSpace provides temporal storage requiring only a few
megabytes of memory (each trace tuple is 28 bytes allow-
ing about 37 450 tuples to be stored in one megabyte of
memory). The event scopes used by monitors need to have
sufficient performance to read the trace tuples before they
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Figure 2. EventSpace architecture.

are discarded. Presently, the amount of tracing can not be
dynamically be adjusted as in other monitoring systems (for
example NetLogger [25]).

Distributed data analysis. Monitors use event scopes
to analyze and gather data from compute hosts. The perfor-
mance and perturbation of an event scope can be tuned by
configuring the collective communication structures used
by the event scope, and the mapping of these to the clus-
ters. Data can be reduced or filtered close to the source, to
avoid sending all data over a shared resource such as Ether-
net, or a slow Internet link. Also some data preprocessing
can be done on the compute clusters, thereby reducing the
load on the front-end host.

Monitors using distributed analysis can be implemented
either as a process on a front-end using an event scope or as
a distributed application with several analysis threads. Each
analysis thread can read and analyze trace tuples, and stores
the result in a PastSet buffer. The results can then be gath-
ered to a front-end for presentation.

Coscheduling. During a synchronizing collective opera-
tion all threads on a host must wait for data from other hosts.
During the wait-time it is possible to run analysis threads if
they are coscheduled with computation, and PATHS/PastSet
communication threads. Coscheduling is possible since
computation threads are blocked inside the communication
system during collective operations and analysis threads
also use the communication system for reading trace tuples.
Hence, the release order of the different threads can be con-
trolled by releasing all communication threads before com-
putation threads, and finally any blocked analysis threads.
No changes to the operating system scheduler are required.

On demand data gathering. Analyzing and gathering
performance data comes at a cost. Computation is needed
for the analysis, communication for moving data between
hosts, and storage for intermediate results. Often these ac-
tivities use the same resources as the monitored application.
Pulling is used by monitors such that shared resources are
not used until the data is needed.

Separation of performance concerns. Different parts
of the monitoring system have different performance re-
quirements. Event collectors run at the rate the application
uses a collective operation. Some analysis threads must also

run at this rate, but some lag is allowed due to the trace
buffers. With distributed analysis, it is not necessary to
gather all intermediate results; hence the gather rate can be
lower than the event collecting rate. Further performance
relaxation is allowed for presentation to users. The separa-
tion of performance concerns also makes it easier to trade-
off between monitoring performance and perturbation.

4.2 Implementation

Event Space. An event space is implemented using Past-
Set buffers. Each trace buffer can have a different size and
lifetime. The oldest tuple is automatically discarded when
the number of tuples is above a specified threshold.

Event Collectors. An event collector writes a trace tu-
ple to a trace buffer using the blocking PastSet write opera-
tion. During the write, the traced communication operation
is blocked. As a result it is important to keep the intro-
duced overhead low. The write consist of a mutex lock, a
memory copy of 28 bytes, and a mutex unblock (a read is
similar). The recorded information is: event collector iden-
tifier, PastSet operation type, tuple sequence number, return
value, and the start and completion timestamps.

Event scopes. An event scope for a specific monitor is
implemented as a spanning tree with PATHS wrappers for:
(i) storage, (ii) data manipulation including aggregation, fil-
tering and conversion, (iii) data gathering and scattering,
and (iv) inter-host communication. Storage wrappers pro-
vide access to PastSet buffers, while inter-host communi-
cation wrappers allow setting properties of TCP/IP connec-
tions such as socket buffer size. Only the data manipulation
wrappers are aware of tuple format and content.

Gather wrappers read tuples from several PastSet
buffers, concatenate these and returns one large tuple. Scat-
ter divides and writes a tuple into several PastSet buffers.
The gathering and scattering is done in the context of the
calling thread. It is also possible to specify that a given
number of helper threads should be started for the wrapper.
The helper threads allow parallel reads and writes on remote
PastSet buffers.
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Figure 3. Load-balance monitor with a single event scope (top), and with distributed analysis (bottom).

4.3 Monitors

Load balance monitor. The load balance monitor is
used to find load balance problems, which can be caused
by workload imbalance, differences in point-to-point com-
munication latency, or the mapping of a spanning tree to
clusters. Two implementations are used. The first has a sin-
gle event scope (figure 3). A gather thread uses the event
scope to pull trace tuples produced by the event collectors
on each compute host. A reduce wrapper is used to find the
tuple with the largest down timestamp. All reduced tuples
are then gathered to the front-end where they are scattered
to PastSet buffers (one per allreduce wrapper). The tuples
contain the number of last arrivals for each participant, and
are read by a thread which applies updates to a weighted
tree with the number of last arrivals for each participant.
This tree is used to generate visualizations.

Distributed analysis reduces communication cost by in-
creasing computation cost, but also complicates the monitor
(figure 3). Each host has one analysis thread that counts the
last arrivals for each participant by reading and reducing
trace tuples as described above. After each read an interme-
diate result tuple is written to a PastSet buffer, containing
the number of last arrivals for each participant. The gather
thread gathers all intermediate result tuples from the com-
pute hosts and scatters these to the local PastSet buffers. In
the visualization we are only interested in the newest state
of the system. Hence, not all intermediate result tuples need
to be gathered since the arrival order state is maintained by
the analysis threads.

Statistics monitor. The statistics monitor (statsm) is
used to find paths with similar behavior and to detect
hotspots. Computation is offloaded from the front-end by
having on each compute host one or more analysis threads
computing all statistics for the spanning tree wrappers on

the host (figure 4). Our analysis assumes that all trace tu-
ples are read before being discarded.

For each PATHS wrapper, statsm computes mean, mini-
mum, maximum, standard deviation and median (using the
sliding window median implementations from NWS [32]
with window size set to 100) for the up, down and total la-
tencies. For each wrapper, the results are stored in three 24
byte result tuples and written to three PastSet buffers. In
addition, for allreduce wrappers similar results tuples are
written for each arrival and departure order wait time. Also,
for allreduce wrappers per thread arrival and departure wait
time means are computed and stored in a PastSet buffer.

Two gather threads are used. The first gathers all up and
down latencies in addition to the arrival and departure wait
times. The second gathers per thread statistics (these are
not always needed). Results are stored in two buffers at the
front-end. These are used by an updater thread that main-
tains an analysis tree structure with statistics for each wrap-
per. The analysis tree is used by visualization threads.

5 Methodology

Two micro-benchmarks are monitored. In Gsum threads
alternate between using two identical allreduce trees to
compute a global sum. Gsum is run for 20 000 itera-
tions using 8 byte messages (most scientific applications
use small messages in allreduce [29]). Compute-gsum al-
ternates between computing (integer sort) and calling allre-
duce. The benchmark can easily be perturbed since delay-
ing one thread causes all others to wait for it [21]. Compute-
gsum is run for either 10 000 or 20 000 iterations, and is
tuned to spend 50% of its execution time computing and
50% in allreduce. Both have one computation thread per
CPU. Each experiment is repeated at least three times and
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execution time averages are used to compute monitor over-
head. Standard deviation is low (less than 1% of mean).
To ensure fairness and experiment repeatability, all event
scopes were set up and analysis threads were started before
the monitored application.

Four clusters are used: Copper 18 dual-CPU Pentium
I1 300 MHz, 256 MB RAM, Lead 10 single-CPU Mobile
Pentium 111 900 MHz, 1024 MB RAM, Tin 51 single-CPU
Pentium 4 Hyper-threaded 3.2GHz, 2GB RAM, Iron 39
singe-CPU Pentium 4 Hyper-threaded 3.2 GHz, 2GB RAM
with EM64T extension.

Copper and Lead share a two-way Pentium 11 300 MHz
with 256 MB RAM which is used as a gateway and which
all communication to/from the cluster goes through. For Tin
and Iron one host similar to the compute-hosts is used as
gateway. A host outside the clusters, a Pentium 4 1.8 GHz
with 2 GB RAM, is used as monitor front-end.

The Tin and Iron clusters have Gigabit Ethernet, while
Copper, Lead, and all inter-cluster communication use
100 Mbit Ethernet. The operating system on all clusters is
Linux, with the LinuxThreads Pthread library. Iron runs 32-
bit code. Hyper-threading was enabled for Tin and Iron. On
all TCP/IP connections the Nagle algorithm was disabled
and default socket sizes were used.

We emulate WAN links between our clusters using the
Longcut WAN emulator [7]. The design of Longcut is sim-
ilar to the Panda WAN emulator [15]. Tin and Iron are each
split into three sub-clusters. For each sub-cluster we se-
lect one host to act as a gateway. All communication to the
sub-cluster is routed through its gateway, which adds de-
lays to the routed messages to simulate the higher latency
and lower bandwidth of a WAN TCP/IP connection. The
emulator is implemented using PATHS wrappers.

To calculate the delay added to a message of a given
size, we use a latency and bandwidth trace collected by run-
ning an instrumented communication intensive application
on hosts in Tromsg, Trondheim, Odense and Aalborg. The
largest latency is between Tromsg and Aalborg, and is about
36 milliseconds ([7] has additional details about the topol-
ogy). The sub-clusters are assigned to these sites with two
sub-clusters in Tromsg and Odense.

For each cluster we choose an allreduce spanning tree
with, to our knowledge, the best performance. For Tin, Iron
and Copper this is a hierarchy aware (as in [24, 17]), 8-way
spanning tree, while for Lead it is a flat tree. For the LAN
multi-clusters the cluster spanning trees are connected by
adding an inter-cluster allreduce. For WAN multi-clusters
the inter-cluster allreduce is replaced by an all-to-all for im-
proved performance (as in MagPle [16]). The average time
per allreduce for the different topologies is about 0.5 ms for
Tin with 32 hosts, 0.6 ms for Tin with 49 hosts, 1 ms for
a LAN multi-clusters and 65ms for a WAN multi-cluster
(both multi-clusters with 43 Tin hosts and 39 Iron hosts).

6 Experiments
6.1 Data Collection

The overhead added to a PastSet operation by a single
event collector is low (1.1 s on a 3.2 GHz Pentium 4), com-
pared to the hundreds of microseconds per collective op-
eration. Thus, for the gsum and gsum-noise experiments
presented below, the overhead due to event collectors range
from 0-2%.

The storage requirement for temporal traces is small. For
our 8-way allreduce, the hosts with most event collectors
(9) stores 252 bytes per call. We use one megabyte memory
for trace tuples and one megabyte for intermediate results.
Thus, trace buffer size is set to 3750 tuples, and the inter-
mediate result buffers have size set to 5000 tuples.

6.2 Event Scope

To experiment with the performance, perturbation and
tuning of an event scope, we instrumented both allreduce
trees used by gsum with event collectors, but only mon-
itored one. The allreduce tree for 49 Tin hosts has 241
event collectors, but only data from 57 are needed to com-
pute the arrival order at each allreduce wrapper. These are
on 8 hosts, and due to the reduce wrapper only 28 bytes
need to be gathered from each host. For a single cluster,




Overhead
none-1%
tuples discarded

Event Scope
Event collectors
32 Tins, sequential

32 Tins, parallel 0.4%
LAN multi-cluster, seq. | tuples discarded
LAN multi-cluster, par. none
WAN multi-cluster, seq. 1%

Table 1. Load balance monitor with single
event scope.

the event scope has only one gather wrapper which is run
on the cluster gateway. For multi-clusters the event scopes
have a gather wrapper on each cluster gateway and a gather
wrapper on the monitor front-end gathering from these.

Gsum. Adding event collectors to a 49 Tin spanning tree
does not introduce a measurable overhead (monitored mean
is within one standard deviation of un-monitored mean).
Neither does the load balance monitor. To ensure that all
trace tuples are read before being discarded, helper threads
must be added to the gather wrappers such that data is gath-
ered in parallel. LAN and WAN multi-clusters have similar
results.

Compute-gsum. The largest monitoring overhead was
for a multi-cluster with emulated WAN links with 49 Tin,
18 Copper and 10 Lead hosts (table 1). However, the over-
head is caused by the WAN emulator becoming inaccurate
when there are many emulated connections. As for gsum,
sequential gathering has often not sufficient performance.

Scalability. For the event scope achieving sufficient per-
formance is harder than keeping the overhead low. The
event scope need to be hierarchy aware and do all intra-host
reduces before inter-host gathers, and intra-cluster gathers
before inter-cluster gathers. Further reconfiguration by for
example moving gather wrappers to unused cluster hosts
does not improve performance. Also, for the cluster sizes
we had available a flat gather tree had sufficient perfor-
mance. For larger clusters additional levels may be nec-
essary.

Increasing the number of hosts by connecting clusters
with LANSs or WANSs often lowers the performance require-
ments for the monitor, since the performance of the moni-
tored operation decreases. Also, the event scopes used by
monitors such as load balance scale better than allreduce
trees, since data is not needed from all hosts.

The higher WAN latency is usually tolerated since the
monitored operation is latency bound, and the messages
sent by the event scope are small (a few hundred bytes)
making them also latency bound. We believe most WAN
links have enough bandwidth for concurrent transfers of ap-
plication and monitor data.

The monitoring scales well with number of monitored

Event Scope Overhead | Gather rate
49 Tins, sequential (gsum) 2% 51%
49 Tins, parallel (gsum) 2% 99%
49 Tins, sequential 1% 65%
49 Tins, parallel 1% 99%
LAN multi-cluster, seq. none 45%
LAN multi-cluster, par. 3% 100%
WAN multi-cluster, seq. 1% 94%
WAN multi-cluster, par. 3% 100%

Table 2. Load balance monitor with dis-
tributed analysis.

spanning trees. Monitoring both spanning trees in gsum and
gsum-compute does not increase monitoring overhead or re-
duce monitoring performance. Similarly modifying gsum
to use four spanning trees and monitoring all trees did not
increase overhead or reduce performance.

6.3 Distributed Analysis

Load balance monitor. Distributed analysis uses more
resources than the single event scope. For each host with
allreduce wrappers, 352 bytes are gathered (compared to
224). Also, there is additional computation cost for run-
ning the analysis threads, and storage must be allocated for
intermediate results. Using distributed analysis increases
monitoring overhead from none to about 2% for gsum on a
single cluster (table 2). For compute-gsum the monitoring
overhead has not changed.

Monitoring cost can be reduced since it is not necessary
to gather all intermediate results to the front-end. Hence,
the overhead on a LAN multi-cluster can be reduced from
3% to none, by removing the helper threads in all gather
wrappers (parallel vs. sequential in table 2). The perfor-
mance difference between sequential and parallel gather is
smallest for the WAN multi-cluster, and largest for the LAN
multi-cluster.

6.3.1 Statistics monitor

Gsum. The statistics monitor is a computation and commu-
nication intensive monitor; the analysis threads read data
from all trace buffers on the host. Some are also read twice;
when computing statistics for the wrapper before and after
the associated event collector. Also, to compute TCP/IP la-
tencies a trace tuple must be read from another host.
Initially we have one analysis thread per host. Running
distributed analysis on a 32 Tin host spanning tree, has 9%
monitoring overhead. We tried different approaches for re-
ducing the overhead. Removing all statistics computation
(but still reading trace tuples) did not reduce the overhead,



Event Scope Overhead | Wrapper | Thread
Event collectors none-1% - -
Analysis threads 5-9% - -
with coscheduling 1 3% - -
with coscheduling 2 1% - -
32 Tins, sequential 2% 50% 69%
32 Tins, parallel 2% 77% 99%
LAN multi, seq. see text 43% 68%
LAN multi, par. +1% 100% | 100%
WAN multi, seq. none 100% | 100%

Table 3. Statsm overhead and gather rates.

showing that the slowdown is not caused by computation.
Similarly, removing the read and computation of statistics
for allreduce wrappers did not reduce the overhead. Thus
the problem was not caused by synchronization in the many
buffer reads. Removing statistics computation for TCP/IP
connections reduced the overhead to 4%, showing that the
slowdown was caused by reads on trace buffers on other
hosts.

For TCP/IP connections we can choose whether statis-
tics should be computed at the source or destination (the
direction of a path is from the thread to a PastSet buffer).
Moving the computation from the source to destination host
reduced the overhead to 5%. However, the analysis thread
was not able to read all trace tuples before they were dis-
carded (since it reads from 8 hosts sequentially). Running
two analysis threads on each host allowed reading all tuples,
but increased the overhead to 6%.

Finally, we used two coscheduling strategies: (i) analysis
threads are blocked until all participating threads have con-
tributed and a message is sent to the next-level host, and (ii)
analysis threads are blocked until all participating threads
are unblocked. The first strategy tries to do the analysis
while the host is idle waiting for the broadcasted reduced
value. The second makes sure the broadcast is done before
unblocking analysis threads. The first strategy reduced the
overhead to 3%, while the second reduced it to 1%. For the
remaining experiments the second coscheduling strategy is
used.

Adding gathering increased the overhead to 2%. There
was no difference in overhead when gather wrappers had
helper threads, but with the latter more intermediate results
could be gathered (table 3).

The allreduce spanning trees for a LAN multi-cluster
with 43 Tin hosts and 39 Iron hosts had about 20% slower
inter-cluster communication than expected. We were not
able to reconfigure or remap the spanning tree to remove the
problem. However, when data is gathered from the cluster,
allreduce operation time decreases with up to 18%. Thus
we cannot measure the gather overhead for the multi-cluster
topology. But we can compare the performance of a gather

tree with sequential and parallel gathering. The latter im-
proved wrapper-, and per thread statistics gather rate, but
increased monitoring overhead with 1% (table 3).

The larger latency of emulated WAN links hides the per-
formance problem described above. With WAN links, anal-
ysis threads introduce a 1% overhead, but data gathering
can be done without helper threads, without increasing the
overhead, and with sufficient performance to gather all in-
termediate results.

Compute-gsum. For compute-gsum the execution time
variation is larger than for gsum (about 2% of mean), hence
we could not see any monitoring overhead. Also, the gather
rate is better. Both are probably due to less communication,
since compute-gsum has one less allreduce per iteration.

Scalability. Analysis thread performance is independent
of cluster size, since each only monitors a subtree. How-
ever, the subtree is dependent on the spanning tree shape.

Gather scalability depends on how analysis threads are
mapped to the cluster. For example in our initial configura-
tion all hosts had analysis threads which produced interme-
diate results that had to be gathered, while the final configu-
ration only had analysis threads on the hosts with allreduce
wrappers.

Data gathering for multi-cluster with WAN links has bet-
ter performance, relative to allreduce performance, than for
a single-cluster. This could be due to the small cluster sizes
used. The largest cluster had only 12 hosts, requiring only
4400 bytes to be sent over a WAN link. For larger clusters
the message size would increase, probably decreasing the
gather rate.

Monitoring both 32 Tin host allreduce spanning trees in
gsum, increased the analysis thread overhead to 5%. We
were not able to reconfigure the event scope or cosched-
ule the monitoring to reduce it. The overhead is caused by
increased communication activity in the monitor. Adding
data gathering does not increase the overhead. Neither does
increasing the number of allreduce trees to four, since the
communication frequency does not increase neither for the
benchmark nor the analysis threads. We have similar results
for LAN multi-clusters. However, with emulated WAN
links monitoring both allreduce trees does not increase the
overhead, since the time between each allreduce operation
call is larger (due to WAN latency), hence monitoring activ-
ity can be scheduled to run during the WAN communication
part of the allreduce operation.

We also modified compute-gsum to alternate between
using two and four different spanning trees. Monitoring
overhead did not increase, since the number of compu-
tations, number of allreduce calls, and allreduce call fre-
quency did not change (we reduced the size of all trace and
intermediate PastSet buffers to reflect the fewer allreduce
calls per spanning tree).



7 Discussion

The low monitoring overhead and high performance of
EventSpace suggest that runtime analysis can be incorpo-
rated into a communication system for automatically tuning
collective operation performance. In earlier work we have
shown how our performance analysis approach can be used
to improve allreduce performance up to 49% [9].

It is probably easier to reduce monitoring overhead and
improve monitoring performance for real applications than
the micro-benchmarks we used, which were designed to
stress the monitoring system. We believe the benchmarks
are representative for the type of applications interesting to
monitor with EventSpace, but real applications will have a
more complex interaction between computation, communi-
cation and 1/O providing further challenges for the analysis
and tuning of collective operations.

For the load balance monitor we achieved the same per-
formance and scalability when using an aggregation net-
work than with distributed analysis. Due to the increased
complexity of distributed analysis aggregation networks
should be used. However, for monitors such as the statis-
tics monitor aggregation networks do not have the neces-
sary performance. Event scope performance was tuned by
allocating more resources to the collective operations used
to implement them. Changing the spanning tree shape or
mapping to clusters did not improve performance.

All our clusters use Ethernet for communication. Faster
interconnects, such as Myrinet [6], will improve the per-
formance of collective operations. Thus, application with
high enough communication ratio to be interesting to moni-
tor with EventSpace will have a higher communication fre-
quency. This requires the analysis computation to be done
in a shorter time, but the event scopes will benefit from the
improved communication performance.

Even when using Ethernet, communication latency can
be improved by using a lower level protocol than TCP. But,
we believe it is easier to add distributed analysis than to
implement an event scope with a non-reliable lower level
protocol.

We have not measured, or focused, on the time to setup
and initialize the event scopes (as in [23, 4]). Currently it
can take seconds due to the implementation using Python
and XML-RPC. A significant performance improvement is
possible by using a more efficient implementation.

Coscheduling the computation threads, communication
system threads and the analysis threads did reduce pertur-
bation for one benchmark. We believe further reduction
could be achieved by priority scheduling all inter-host com-
munication such that the applications messages always had
higher priority than EventSpace messages. This would re-
quire a reimplementation of the PATHS/PastSet communi-
cation system.

8 Conclusions

We have described the EventSpace system for runtime
performance monitoring of collective operations within
the communication system. EventSpace allows high-
performance message tracing without a large perturbation
of the monitored application. By combining distributed
analysis with fast collective operations to gather and an-
alyze performance data, temporal storage for only a few
megabytes of data is required. Separation of performance
concerns allows us to tune the different parts of the sys-
tem to achieve the required monitoring overhead and perfor-
mance. Close integration with the communication system
allows to coschedule analysis activity with the computation
and communication of the monitored application.

We evaluated different monitors for collective operation
performance analysis. Our findings were as follows: (i)
monitor overhead was low, from none to maximum 3%, (ii)
for many monitors it is harder to get sufficient performance
than low perturbation, (iii) coscheduling allowed to reduce
monitoring overhead from 9% to 1% for one benchmark,
(iii) the monitoring has good scalability both with regards to
the number of cluster hosts, number of clusters, and number
of monitored spanning trees, (iv) high performance moni-
toring of a WAN multi-cluster is often easier than a single
cluster, and (v) performance tuning should be done by allo-
cating more threads to a monitor rather than reconfiguring
its communication structure.

9 FutureWork

Our long term goal is to build automatically reconfig-
urable collective operations. We will build and evaluate
such a system based on the data provided by the monitoring
tools in this paper.

Presently we are porting the NAS parallel bench-
marks [20] to PATHS/PastSet to be able to use our tools.
EventSpace may also be used to monitor other type of com-
munication systems, for example to optimize global work
scheduling in distributed work queues [2]. For data Grid
applications large data sets are accessed. For such appli-
cations communication performance is important, making
them interesting to monitor with EventSpace.

Also, important for the usability of EventSpace are
graphical tools to simplify the building and tuning of event
SCopes.
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