
*Now at Kongsberg Satellite Services AS, Tromsø, Norway
†Now at Institute of Marine Research, Bergen, Norway
In Proc. of 5th International Workshop on High Performance Bioinformatics and Biomedicine (HiBB’14)
© Springer-Verlag Berlin Heidelberg 2014

Mario: Interactive Tuning of Biological Analysis
Pipelines Using Iterative Processing

Martin Ernstsen1*, Erik Kjærner-Semb2†, Nils Peder Willassen2, Lars Ailo Bongo1

1Dept. of Computer Science and Center for Bioinformatics, University of Tromsø, Norway
2Dept. of Chemistry and Center for Bioinformatics, University of Tromsø, Norway

martin.ernstsen@ksat.no, erikkj@imr.no,
nils-peder.willassen@uit.no, larsab@cs.uit.no

Abstract. Biological data analysis relies on complex pipelines for cleaning, in-
tegrating, and summarizing data before presenting the results to a user. Specifi-
cally, biological data analysis is usually implemented as a pipeline that combines
many independent tools. During development, it is necessary to tune the pipeline
to find the tools and parameters that work well with a particular dataset. However,
as the dataset size increases, the pipeline execution time also increases and pa-
rameter tuning becomes impractical. No current biological data analysis frame-
works enable analysts to interactively tune the parameters of a biological analysis
pipelines for large-scale datasets. We present Mario, a system that quickly up-
dates pipeline output data when pipeline parameters are changed. It combines
reservoir sampling, fine-grained caching of derived datasets, and an iterative
data-parallel processing model. We demonstrate the usability of our approach
through a biological use case, and experimentally evaluate the latency, through-
put, and resource usage of the Mario system. Mario is open-sourced at
bdps.cs.uit.no/code/mario

Keywords: Iterative processing; interactive processing; biological data analy-
sis; parameter tuning; provenance.

1 Introduction

Recent technological advances in instrument, computation and storage technologies
have resulted in large amounts of biological data [1]. To realize the full potential for
novel scientific insight in the data, it is necessary to transform it to knowledge through
analysis. A computer system for analyzing biological data typically consist of three
main components: the input data, a set of tools in a pipeline, and finally a data explora-
tion tool (Fig. 1). Biotechnology instruments such as short-read sequencing machines
produce the input data. The datasets can range in size from megabytes to many tera-
bytes. A series of tools process the data in a pipeline where the output of one tool is the
input to the next tool (Fig. 1). A specific biological data analysis project often requires
a unique combination of tools. There are hundreds of available tools, ranging from
small mall, user-created scripts to large, complex applications. Finally, the pipeline res-

Fig. 1. A biological data analysis pipeline.

ults are exported to a data exploration tool for interpretation by biomedical researchers.
An important and time-consuming part of bioinformatics analysis is pipeline setup and
configuration. This includes selecting tools, and the best parameters for each tool. The
parameters used may have a big impact on the quality and hence usability of the pipe-
line output, but the long processing time of existing biological analysis pipelines makes
such parameter tuning impractical and time consuming.

We believe a system for interactive parameter tuning of biological data analysis
pipelines should satisfy the following requirements: (i) the data processing should scale
to the upcoming peta-scale datasets; (ii) when pipeline parameters are changed, the
pipeline data processing should provide low end-to-end latency to enable quick updates
of the pipeline output; (iii) the system should support unmodified pipelines and tools,
since it is not practical to make and maintain changes to the source code of the many
tools used in pipelines. The system should also handle input and output from each stage
regardless of the tool data format; and (iv) the systems should manage provenance in-
formation [2] to ease parameter tuning and ensure result reproducibility.

To our knowledge, no existing system fulfills all these requirements. Pipeline man-
agers such as Galaxy [3] do not scale to peta-scale datasets. Data-intensive computing
systems such as MapReduce [4], [5] scale to peta-scale datasets, but are not suited for
low-latency processing. Systems for iterative and interactive processing of large-scale
data, such as Spark [6], Dremel [7], HaLoop [8], Naiad [9], and Nectar [10] require
changes to the pipeline tool’s source code.

We propose the Mario system. It fulfills all four requirements. Mario has a parallel
shared-nothing architecture for computations and scalable storage. It combines reser-
voir sampling, fine-grained caching of derived datasets [10], and an iterative data-par-
allel processing model with low end-to-end latency. Mario provides transparent itera-
tive processing and a storage model that is agnostic to the data types used by the tools
[11]. It enables data provenance by storing detailed pipeline configurations associated
with pipeline input-, intermediate-, and output data.

We contribute by providing a requirements analysis for biological analysis pipeline
parameter tuning, and describing the design and implementation of Mario. We also
contribute with an experimental evaluation of the performance and resource usage of
Mario. In addition, we describe how we used HBase as storage backend for biological
data, and we demonstrate the usability of Mario through a metagenomics case study.

Application
1

Application
2

Application
3

Input Output

ParametersParameters Parameters

Visualization

Statistical
analysis

Data Computation Exploration

2 Architecture and Design

We make the following assumptions that form the basis for the architecture and design
of Mario: (i) input data can be split into parts with fine granularity; (ii) no intermediate
pipeline stage requires access to the complete input data; and (iii) there is enough stor-
age to hold all intermediate data.

The first two assumptions allow iterative processing of the dataset with inspection
of output as the computation proceeds. This is our approach for achieving low end-to-
end latency during pipeline tuning. The third assumption allows caching of intermedi-
ate data to avoid recomputing the full dataset after configuration changes.

The first assumption usually holds, since many genomic analysis tools either base
the analysis on fine-grained parts such as sequences of nucleotides or gene expression
values, or they use a summarization or machine learning algorithms on fine-grained
parts. The second assumption is true for most algorithms that scale to large datasets.
These typically split the data to independent parts, and distribute and process these in-
dependently on many nodes. In addition, tools that aggregate data from the full dataset
can often easily be replaced by incremental versions that maintains a summary of the
full dataset between iterations. The third assumption usually holds for clusters designed
for data-intensive computing.

Fig. 2. Mario architecture. Greyed out parts are not implemented in current prototype.

The Mario architecture (Fig. 2) consists of four tiers: storage, logic/computation, the
web server and the client/UI. The system runs on a cluster of computers, with the master
process at the cluster frontend, and the workers at the compute nodes of the cluster.
These are co-located with an HBase [12], [13] installation that has the HBase master at
the frontend and the HBase region servers at the compute nodes. The web server and
the MySQL server can be located on the cluster frontend, or on separate computers.
The user runs the Mario controller and the data exploration tools on her computer.

Visualization/AnalysisMario Control Interface

Client
browser

Web
server

HTML &
Javascript

HBase

Worker
2

Worker
...

Worker
n

Worker
1

MasterMySQL
Interface to
Krona or R

Krona or R

C
lu

st
er

B
ac

ke
nd

C
lu

st
er

F
ro

nt
en

d

To analyze a dataset using Mario, a user would first load the input data into HBase. She
would then use a web interface such as Galaxy [3] to define the pipeline by specifying,
for each pipeline stage: the tool to execute, the tool version, and the tool parameters.
The configuration can specify that a dataset should be sampled with a given sample
size. Mario uses a file-based approach for incremental processing [11], so it is not nec-
essary to modify tool code. The user then starts the initial computation. As the compu-
tation proceeds, the user can change the parameters or tool used in a stage by sending
an updated configuration to the master, which will start scheduling work with the new
configuration. If the new configuration does not produce satisfactory results, Mario can
restore a previous configuration by reading data for a previous configuration from the
storage layer.

2.1 Storage Layer

The primary component of the storage layer is HBase, where Mario stores input-, in-
termediate-, and output data. Intermediate and output data can be stored in multiple
versions resulting from the use of different parameters to pipeline stages. The HBase
storage architecture is demonstrated to scale to peta-scale datasets [13]. We chose
HBase since it is widely used for interactive computing systems, and because it is well
suited for storing and accessing the data needed by Mario since it provides low-latency
random reads and writes, and efficient storage and compression of sparse data struc-
tures. To reduce long-time storage requirements, Mario can delete intermediate data
and perform an HBase major compaction when an analysis project is completed.

Mario also uses a MySQL database to store the different pipeline configurations,
including parameters to each stage, used for computing the intermediate and output data
stored in HBase. These represent a history of configurations, so that Mario users can
find cached data computed in a previous configuration. In addition, Mario stores
metadata about HBase tables, and tool specifications in the database. The latter includes
tool versions and allowed parameters.

2.2 Logic and Computation Layer

This layer contains a single master server, and multiple worker processes. The user
would interact with the master through a web client. When starting a job, the master
will distribute work to the workers. All workers operate independent of another, pro-
cessing separate parts of the dataset in parallel. The master provides each worker with
the current configuration of the pipeline and the HBase row key of the data to be pro-
cessed. The master can also query HBase for the location of the HBase region server
responsible for a row, and assign the row to a Mario worker located on the same server.
This will improve data locality and therefore reduce network traffic.

The master retrieves the row keys from HBase, but does not retrieve the data stored
under each key or perform any processing. The reservoir sample is stored in memory
as a list of row keys. This sample is the main source of memory usage in the master.
However, assuming 20-byte key length, a large sample of four million keys will only
consume 80MB of memory.

The worker processes wait for messages from the master server. When receiving a mes-
sage, the worker reads the data associated with the keys in the message from HBase.
The pipeline stages process the data, and write intermediate and final output into
HBase. When a worker has completed its work, it sends a message to the master. This
enables the master to adjust work distribution to the capacity of the workers, and to
notify visualization tools that new results are available. The worker processes may be
CPU and memory intensive depending on the computation done in each tool.

2.3 Web Server, and the Visualization and Analysis Interface

The web server hosts the Mario control application and forwards requests from this
application to the master server. The web server also forwards data generated by a vis-
ualization and analysis (VA) interface to data exploration tools.

A data exploration tool uses Mario’s VA interface to retrieve results from HBase,
either periodically or when notified of the presence of new results by the Mario master.
To integrate Mario with a visualization system such as Krona [14] or METAREP [15],
an interface must be implemented that updates the data structures used by the explora-
tion tool. For Krona, this involves generating an XML-file of the organism hierarchies
found in the data. For METAREP, a search engine data structure must be updated (refer
to [16] for details). For integration with end-user statistical analysis, the interface can
be implemented in for example R.

3 Implementation

In this section, we describe the implementation of data storage in HBase, and the res-
ervoir sampling algorithm. Additional implementation details are in [16].

3.1 HBase Tables

Mario stores data in HBase tables. A table consists of rows that are identified by row
keys. Each row contains cells that store data. The cells are uniquely identified by a key
consisting of column family, column, and timestamp. The key is stored, together with
each cell, in a byte array within an immutable file that is lexicographically ordered by
row key. HBase allows adding columns dynamically. Mario uses column names gen-
erated at runtime to provide a mapping between the data in the column and the pipeline
configuration used to generate that data.

The HBase table for an analysis pipeline has two column families: in and out. The
unique row key is dataset dependent, and can for example be the line number in the
input file that contains the data value, or a sequence ID in a FASTA file. The input data
is stored in the in column family before the pipeline is executed. Output from pipeline
stages are stored in the out column family. HBase column names are pipeline execution
version numbers that combine a unique ID for each tool, the version of the stage tool
configuration, and the version of the tool that produced the input data. Since only a

small subset of rows are processed to test each configuration, most columns will be
empty for most of the rows. HBase is ideally suited for storage of such sparse data.

Fig. 3 shows a version tree for an example three-tool pipeline where the user has
modified tool parameters three times. The top row shows the column names for the
initial versions of each stage of the pipeline. The second branch is the result of changing
the parameters of the first tool of the pipeline, but leaving the other two tools un-
changed. Even if only the first stage is changed, the version numbers of the downstream
stages are incremented to create columns for storing the data based on the output from
the new first stage. In the same way, the lower branch in Fig. 3 is the result of changing
the second stage of the pipeline. The resulting HBase table will have eight columns in
the out family.

Fig. 3. Data version with HBase column names

3.2 Reservoir Sampling

The Mario master server uses the reservoir sampling algorithm described in [17] to
produce a random sample of elements from an HBase table. The algorithm does one
pass through the table keys, and requires the generation of one random number per key.
It guarantees that each element in the table has equal probability of being in the sample.
The single-pass property of reservoir sampling make this technique well suited for sam-
pling large datasets where performance is I/O limited. If weighted sampling is required
other single pass algorithms such as [18] could be implemented without a significant
I/O performance overhead.

4 Evaluation

The goal of the experimental evaluation is to: (i) demonstrate the usefulness of Mario
for biological analysis pipeline tuning; (ii) validate the suitability of HBase as a storage
backend for an iterative, interactive system; and (iii) validate the architecture and the
design choices made for the Mario prototype.

4.1 Methodology

We used a nine-node cluster, where each compute node has an 8 core Intel Xeon
3.6GHz CPU, 32GB DRAM, and 2 x 2TB disks. The network was 1Gbps Ethernet

input out_1_0_1 out_2_1_1 out_3_1_1

out_1_0_2 out_2_2_2 out_3_2_2

out_2_2_3 out_3_3_3

v1

v2

v1 v1

v2

v3

v2

v3

using a single switch. The operating system was CentOS 6.31. We used the Cloudera
Hadoop CDH4.3.0, with HBase v0.94.6 and Hadoop v2.0.0. We used ZeroMQ v3.2.4
for communication. The HBase master server had a JVM with 4GB of memory. HBase
regionservers allocated 12GB of memory. Unless otherwise noted, we measured the
elapsed wall time. We repeated all experiment five times, and report average time and
sample standard deviation.

4.2 Use Case: Taxonomic Classification of Metagenomics Samples

To demonstrate the usefulness of Mario for biological analysis pipeline tuning, we an-
alyze the results of a taxonomic classification in metagenomics samples (details are in
[19]). The rarefaction curve in Fig. 4 shows that most of the phyla are identified with
only 6-8 million reads and that most of the classes and orders are found with 10-12
million reads. However, even with 2 million reads 75% of the orders are discovered.
This shows that processing a small subset of the data provides initial biological insight.

Fig. 4. Rarefaction curves for analyzing species richness and sample completeness of different
taxonomic ranks. Figure is from [19], which provides additional experiment details.

4.3 HBase as Storage Backend for Biological Data.

We first evaluate HBase read and write performance for biological datasets. Since
Mario relies on HBase for storage, these results provide a lower bound for the end-to-
end latency and throughput of Mario data processing.

Mario will execute jobs that access both large and small amounts of data. Earlier
evaluations of the Google BigTable/ HBase design [13] have demonstrated its scalabil-
ity for datasets with millions of rows. We therefore focus on the latencies of reading
and writing small amounts of data to and from HBase. We generated a synthetic dataset
representative of FASTA files, and BLAST [20] tabular output. The FASTA files have

random nucleotide sequences, ranging in length between 100 and 5000 bases. IDs were
random 15 character strings. The BLAST output is similar to the output generated using
the –m 8 option.

To evaluate the performance of tables stored on a single region server, versus regions
on multiple servers, we use a table with only 200KB of data, and a table with approxi-
mately 500GB of data. The latter is large enough to fill the aggregated DRAM on the
cluster (288GB). It is generally recommended to compress HBase tables [13]. We use
the Snappy compression algorithm since it offers the highest encoding and decoding
rate of the HBase compression algorithms. HBase also uses Bloom filters to avoid hav-
ing to scan files for keys that are not in the file [13]. For all experiments, we enable the
client scanner cache to reduce the number of RPC requests to HBase region servers.
Disabling it significantly decreases performance. In addition, we use deferred log flush-
ing. Mario accepts data loss since the data can easily be recomputed. The default write
ahead logger gives orders of magnitude worse performance. We flush the HBase cache
between each measurement to get the worst-case performance results. Informal exper-
iments show that a warm cache improves performance by an order of magnitude. We
spent a considerable amount of time tuning these and other parameters [16]. Others
have reported similar efforts required even by experts to performance tune HBase in-
stallations [21].

Reading 200 000 rows of data (22MB) from an almost empty table, and a table larger
than the DRAM size on the cluster takes respectively 11 and 13 seconds, regardless of
compression and Bloom filter settings ([16] has additional details). Since we flush the
HBase caches between each experiment, these represents worst-case results, but still
we consider the read performance sufficient for Mario.

Writing 200 000 rows (22MB) into respectively an empty and populated HBase
takes 10 and 7 seconds, regardless of compression setting ([16] has additional details).
Writing to a populated table is faster since writes are distributed on multiple region
servers. We consider the write performance sufficient for Mario.

4.4 Mario Overhead and Throughput

We measure the overhead added to the end-to-end latency of Mario. We define end-to-
end latency as the time from a computation is started, until the first results are ready to
be visualized. In addition, we measure the throughput of Mario, which we define as the
amount of data that can be processed per time unit. We use a dummy four-stage pipeline
using the Linux cat tool in each stage. Since cat has no computation, it represents an
I/O intensive application. For more computation intensive applications, Mario overhead
will contribute less to the wall clock execution time, and the throughput will be reduced.

To emulate a user tuning pipeline parameters, each experiment consists of three ex-
ecutions of the dummy pipeline with the same input data (FASTA-type generated as
described above). Before the second execution, the last two stages are marked as mod-
ified. Before the third execution, the modifications are reverted.

Table 1. Time top process one row (one nucleiotode sequence).

 Avg (ms) SD
Execution 1 68 6.4
Execution 2 7 1.4
Execution 3 6 1.1

Table 2. Time to process 200 000 rows (500MB).

 2 Workers 4 Workers 8 Workers
 Avg (ms) SD Avg (ms) SD Avg (ms) SD
Execution 1 11699 766 11784 1871 10817 1224
Execution 2 7432 288 8279 2497 8302 1377
Execution 3 7689 483 8406 2334 8563 2096

Table 3. Time to process 10 000 row sample of 200 000 rows using eight workers.

 Avg (ms) SD

Execution 1 10777 242
Execution 2 55 6
Execution 3 38 13

The Mario overhead is 68ms for the first stage, and 7 and 6 ms for the second and
third execution (Table 1). The reduced latencies in executions 2 and 3 are due to the
data being cached in HBase after the first execution. In the second execution, the worker
detect that data exists for the first two stages, and only executes cat for the last two
pipeline stages. In the third execution, the pipeline result are read directly from the
cache without executing any pipeline tools. However, there is no significant perfor-
mance difference between these executions. The results demonstrate that the end-to-
end latency added by Mario is very small.

To measure the throughput of Mario, we use a 200 000 row (500MB) dataset, which
is approximately the size of a two million short read dataset, and which is large enough
to provide initial biological insight (section 4.2). The throughput is limited by task dis-
tribution, and does not improve with more workers (Table 2). The 500MB dataset will
fit in the cache of a single HBase region server. The Mario master will therefore read
row keys from an in-memory cache, but still be limited by the time it takes to iterate
over the sequence of keys and transmit task messages to workers. For a pipeline with
more computationally intensive jobs, additional workers will improve throughput. The
results demonstrate that Mario provides high throughput data processing.

4.5 Sampling

To measure the overhead of sampling, we use the experiment setup described in the
previous section. The Mario master creates a sample size of 10 000 keys from the 200
000 row dataset, and distributes the samples to eight workers. Our results show that the
execution time with sampling (Table 3) is similar to the time without sampling (Table
2). This shows that the sampling algorithm has very low overhead, since it in addition

to executing the sampling algorithm must put the samples in a local in-memory array,
and transmit the keys in the array to the workers. The results for executions 2 and 3
(Table 3), demonstrate that transmitting the samples to the workers is also cheap. To
conclude, Mario provides efficient reservoir sampling of datasets.

4.6 Mario Resource Usage

Mario servers are co-located on cluster work nodes with the bioinformatics applications
doing the analysis. It is therefore important that Mario does not perturb these by using
excessive CPU, memory, or network bandwidth. We use Ganglia to measure the aggre-
gated resource usage of the Mario, HBase and HDFS servers. We initialized an HBase
table with one million FASTA rows (2.5GB), and executed the dummy pipeline de-
scribed in section 4.4 on eight Mario workers.

Our results show a peak load of 1.3 (of 8.0) for CPU load. This CPU usage is for
processing I/O, and may be overlapped with tool I/O waiting time. The peak network
usage is 30MB/s and aggregated usage of 900Mbps, both well within the capacity of
our Gigabit Ethernet. In addition, most bioinformatics analysis tools are not communi-
cation intensive. The Mario servers have a small memory footprint. However, Mario
relies on HBase region servers for which we had to allocate 12GB JVM heap space to
get good performance. We believe the memory usage is acceptable since current com-
pute cluster nodes typically have at least 32GB of DRAM.

5 Related Work

Frameworks such as Hadoop MapReduce [4], [5] have widely been adopted for large-
scale data-intensive computing, including genomics data processing [22]. However,
these frameworks are not well suited for low-latency data processing.

Our approach for tuning a data analysis pipeline was inspired by the Pig Pen debug-
ging environment for Pig programs [23]. Pig Pen provides developers with a small da-
taset created by sampling from the real dataset, and by generating data that is similar to
the real data. However, Pig is typically not used for biological data analysis.

The Galaxy [3] pipeline managers is similar to Mario in that the user can compose a
pipeline from existing applications, but Galaxy supports the creation of more general
execution graphs, as opposed to Mario's linear pipeline model. A linear model makes it
easier to implement iterative data processing. In addition, Mario provides automatic
parallelization.

Distributed systems for iterative, incremental, and interactive processing of large-
scale datasets include systems designed for a specific application domain (such as Ma-
hout [24] for machine learning), or programming model (such as HaLoop [8] for Ha-
doop MapReduce, and Dremel [7] for SQL queries). These are not suitable for Mario’s
data processing model. Instead general approaches and systems such as Spark [6], or
Naiad [9] could be used to implement Mario processing. We also believe Mario should
be integrated with a cluster resource management systems such as Mesos [25] to facili-
tate sharing of a cluster with other interactive and batch processing jobs.

6 Conclusion and Future Work

We have presented Mario, a system for iterative and interactive processing of large-
scale biological data. Our approach allows users to interactively tune biological analy-
sis pipelines, which is vital to find the tools and parameters that give insight to a par-
ticular biological dataset and problem. By quickly computing a result for a subset of
the data that still gives meaningful biological insight, the user can overcome the limi-
tation of the long-processing time of existing large-scale data analysis pipelines. Low-
latency updates to pipeline results allows pipeline developers to make more parameter
changes in order to improve the quality of the analysis results.

Our approach uses reservoir sampling to reduce the amount of data processed to
achieve biological meaningful results. We enable interactive tuning by combining fine-
grained caching of derived datasets, and an iterative, data-parallel processing model.
This allows low-latency calculation of the first results, and in addition high-throughput
incremental computation of the remaining results. Mario also offers integrated data
provenance by storing detailed pipeline configurations associated with pipeline input,
intermediate, and output data.

Although we applied Mario for a dummy pipeline, we believe it can be integrated
with pipeline managers such as Galaxy [3], and visualization systems such as Krona
[14] or METAREP [15]. Mario has an interface that allows writing a module that can
aggregate and present data in the format required by visualization tools. Mario uses the
GeStore [11] approach for adding transparent updates to pipelines implemented in for
example Galaxy. We plan to improve the performance of Mario by implementing lo-
cality-aware scheduling by handling stragglers. We believe the Spark system [6] is well
suited to solve these problems. We also plan to implement the Mario controller inter-
face, and to add support for management of datasets for multiple pipelines.

Interactive tuning of biological analysis pipelines is vital for the development of so-
lutions to future large-scale data analysis problems in the biological community. We
have demonstrated the usability of our approach for pipeline parameter tuning, and we
have experimentally evaluated the latency, throughput, and resource usage of the Mario
system. We believe the Mario approach and system are useful not only for biological
analyses, but potentially also for other data analysis disciplines.

Acknowledgements. Thanks to Jon Ivar Kristiansen for help setting up HBase, and to
Bjørn Fjukstad, Giacomo Tartari, and Einar Holsbø for comments to the paper.

References

1. S. D. Kahn, “On the Future of Genomic Data,” Science (80-.)., vol. 331, no. 6018, pp. 728–
729, Feb. 2011.

2. R. Bose and J. Frew, “Lineage retrieval for scientific data processing: a survey,” ACM Com-
put. Surv., vol. 37, no. 1, pp. 1–28, Mar. 2005.

3. J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences.,” Ge-
nome Biol., vol. 11, no. 8, Jan. 2010.

4. “Hadoop homepage,” 2014. Available: http://hadoop.apache.org/.
5. J. Dean and S. Ghemawat, “MapReduce: a flexible data processing tool,” Commun. ACM,

vol. 53, no. 1, Jan. 2010.
6. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shen-

ker, and I. Stoica, “Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing,” in Proc. of NSDI’12, Usenix, 2012.

7. S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis,
“Dremel: interactive analysis of web-scale datasets,” in Proc. VLDB Endow. 2010, vol. 3,
no. 1–2, 2013.

8. Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “The HaLoop approach to large-scale
iterative data analysis,” VLDB J., vol. 21, no. 2, pp. 169–190, Mar. 2012.

9. D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad: a timely
dataflow system,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles - SOSP ’13, 2013, pp. 439–455.

10. P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang, “Nectar: automatic
management of data and computation in datacenters,” in Proc. of OSDI'10, Useinx, 2010.

11. E. Pedersen, N. P. Willassen, and L. A. Bongo, “Transparent incremental updates for Ge-
nomics Data Analysis Pipelines,” in Proc. of HiBB 2013, LNCS, vol 8374, 2014.

12. Apache HBase.. Available: http://hbase.apache.org/.
13. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber, “BigTable: A Distributed Storage System for Structured Data,”
ACM TOCS, vol. 26, no. 2, pp. 1–26, Jun. 2008.

14. B. D. Ondov, N. H. Bergman, and A. M. Phillippy, “Interactive metagenomic visualization
in a Web browser.,” BMC Bioinformatics, vol. 12, no. 1, p. 385, Jan. 2011.

15. J. Goll, D. Rusch, D. M. Tanenbaum, M. Thiagarajan, K. Li, B. A. Methé, and S. Yooseph,
“METAREP: JCVI Metagenomics Reports - an open source tool for high-performance com-
parative metagenomics.,” Bioinformatics, vol. 26, no. 20, pp. 2631–2, Aug. 2010.

16. M. Ernstsen, “Mario - A system for iterative and interactive processing of biological data,”
Master's thesis, University of Tromsø, 2013.

17. L. Sidirourgos, M. Kersten, and P. Boncz, “Scientific discovery through weighted sam-
pling,” in 2013 IEEE International Conference on Big Data, 2013, pp. 300–306.

18. P. S. Efraimidis and P. G. Spirakis, “Weighted random sampling with a reservoir,” Inf. Pro-
cess. Lett., vol. 97, no. 5, pp. 181–185, Mar. 2006.

19. E. Kjærner-Semb, “Exploring Bioinformatic Software for Taxonomic Classification of Met-
agenomes,”. Master thesis, University of Tromsø, 2013.

20. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment
search tool.,” J. Mol. Biol., vol. 215, no. 3, pp. 403–10, Oct. 1990.

21. M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin,
“MapReduce and parallel DBMSs: friends or foes?,” CACM, vol. 53, no. 1, p. 64, Jan. 2010.

22. R. C. Taylor, “An overview of the Hadoop/MapReduce/HBase framework and its current
applications in bioinformatics.,” BMC Bioinformatics, vol. 11 Suppl 1, p. S1, Jan. 2010.

23. A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy, C. Olston, B.
Reed, S. Srinivasan, and U. Srivastava, “Building a high-level dataflow system on top of
Map-Reduce: the Pig experience,” in Proc. of VLDB Endowment, vol. 2, no. 2, 2009.

24. Mahout homepage, 2014. Available: https://mahout.apache.org/.
25. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and

I. Stoica, “Mesos: a platform for fine-grained resource sharing in the data center,” in Proc.
of NSDI’11, Usenix, 2011.

