

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 311–320, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Transparent Incremental Updates for Genomics Data
Analysis Pipelines

Edvard Pedersen1,3, Nils Peder Willassen2,3, and Lars Ailo Bongo1,3

1 Department of Computer Science, University of Tromsø, Norway
2 Department of Chemistry, University of Tromsø, Norway
3 Centre for Bioinformatics, University of Tromsø, Norway

{edvard.pedersen,nils-peder.willassen}@uit.no,
larsab@cs.uit.no

Abstract. A large up-to-date compendium of integrated genomic data is often
required for biological data analysis. The compendium can be tens of terabytes in
size, and must often be frequently updated with new experimental or meta-data.
Manual compendium update is cumbersome, requires a lot of unnecessary
computation, and it may result in errors or inconsistencies in the compendium. We
propose a transparent file based approach for adding incremental update
capabilities to unmodified genomics data analysis tools and pipeline workflow
managers. This approach is implemented in the GeStore system. We evaluate
GeStore using a real world genomics compendium. Our results show that it is easy
to add incremental updates to genomics data processing pipelines, and that
incremental updates can reduce the computation time such that it becomes practical
to maintain large-scale up-to-date genomics compendia on small clusters.

1 Introduction

Recent advances in scientific instruments, such as next-generation sequencing
machines, has the potential of producing data that provide views of biological
processes at different resolutions and conditions, opening a new era in molecular
biology and molecular medicine [1]. Many of the data analysis techniques developed
for analyzing such genomic data integrate data from many experiments with metadata
from multiple knowledge bases. The information in the knowledge bases [2] is
essential for understanding the biological content of the experiment data. For
example, the results of DNA sequencing may not become truly useful before the
UniProt [3] knowledge base is used to map sequence bases to genes, the per gene
results are compared to results from other experiments, and the significant differences
have been mapped to biological functions using the Go [4] knowledge base.

Genomic data integration and analysis is typically implemented as a pipeline with
several tools, where the output files of one tool acts as the input files for the next tool.
The specific set of tools to use depends on the biological problem that is being
investigated. Often large amounts of data must be analyzed, since new sequencing
machines produce multiple terabytes of data per experiment [5]. The cost of the
analysis can therefore be orders of magnitude larger than the cost of creating the data
to be analyzed [6]. Cost efficient data analysis is therefore a key challenge for
genomics data analysis.

312 E. Pedersen, N.P. Willassen, and L.A. Bongo

Integrating new experimental data or updating meta-data may provide novel
biological insights. It is therefore important to update a biological compendium when
new data becomes available. Meta-data updates are especially important since it
represents the state of knowledge in the field [7]. However, current biological analysis
tools typically require recalculating the entire compendium for meta-data updates.
Such full updates increase the computational time and cost; often to the point where
reanalysis is not done.

The cost of reanalysis can be greatly reduced by using incremental updates [8] that
limit recomputation to new and updated data. We believe such an approach for
incremental updates of genomic data must satisfy the following four requirements.
First, most existing analysis tools should be supported without any modifications
since it is not practical to maintain modified versions of the many analysis tools used
in genomic data analysis pipelines. Transparent incremental updates are therefore
needed. Second, the incremental updates should be independent of the job and
resource management systems used to run the pipeline tools since genomic analysis
pipelines are run on many different platforms. Third, it should be easy to add
incremental update support to an existing pipeline. The system should therefore
handle update detection, processing of incremental updates, and integration of the
incremental update with a previous full update. Fourth, it should scale to large-scale
compendium.

To our knowledge, no previous incremental update systems for large-scale data
[9–15] satisfy all four requirements. These provide the required functionality and
scalability, but do not provide the easy to use transparent incremental updates that are
necessary to add incremental updates to existing pipelines. Instead they require either
porting applications to a specific framework such as Dryad [16] or MapReduce [17],
or writing ad-hoc scripts for input generation and output merging.

We present the GeStore system for incremental update management. GeStore uses
a transparent file based approach that satisfies all four requirements. Most pipeline
tools take as input one or more files with input and meta-data, and produce output
consisting of one or more files. Incremental updates can therefore be implemented by
modifying the input or meta-data files such that these only contain the data for an
incremental update, and then merging the incremental output with the previous
results. Tool code is unmodified, and the only modifications to the pipeline are two
GeStore calls for generating input files and merging output files. GeStore provides a
plugin framework for implementing parsers, tool-specific incremental file generators,
and tool-specific output file mergers. GeStore uses the Hadoop software stack for
scalable data processing.

Our contributions are threefold: (i) we propose a promising approach for adding
incremental updates to unmodified genomic data analysis pipelines, leading to
substantial reduction in time and resources needed to update large biological
compendium, (ii) we present the design and implementation of our system, including
a framework for implementing plugins that enable transparent incremental updates,
and (iii) we present the feasibility of our approach and initial experimental evaluation
of our system using a real metagenomics analysis pipeline and real data.

 Transparent Incr

2 GeStore

GeStore is a system fo
unmodified file-based data
that provides a plugin fram
merging, a toolset for pars
management (Fig. 1, left)
interface for workflow man
download new input data
storage systems. All down
pipeline configurations) are
pipeline in order to generate
the resulting files (Fig. 1
efficiently store incrementa
[17] to run scalable chang
functions and tools to a
applications to access data s

Fig. 1. Incremental

2.1 File Based Increme

GeStore uses a transparen
implemented by modifyin
analysis tools such that
computations. The tool wi
partial result. The partial re
in GeStore.

remental Updates for Genomics Data Analysis Pipelines

or enabling transparent incremental computations
a analysis pipelines. GeStore consists of a runtime syst

mework for incremental input file generation and output
sing and detecting changes in files, and data storage
. GeStore exports an interface for data feeders, and
nagers. Data feeders are typically scripts that periodic
or updated meta-data from remote repositories or lo

loaded files are stored in GeStore. Pipeline managers
e modified to call GeStore before running each tool in
e the incremental input files used by the tools and to me
1, right). GeStore uses HDFS [18] and Hbase [19]
al files and GeStore meta-data, and Hadoop MapRed
ge detection jobs. In addition GeStore comprise libr
add incremental updates to pipeline tools, and cli
stored within GeStore.

l pipeline execution (left). GeStore architecture (right).

ental Updates

nt file based approach where incremental updates
g the input and meta-data files read by genomics d
these only contain the data for incremental upd

ill then be run as normal, but it will typically produc
esult is merged with previously produced results and sto

313

for
tem
file
and

d an
ally
ocal

(or
the

erge
] to
duce
rary
ient

are
data
date
ce a
ored

314 E. Pedersen, N.P. Willassen, and L.A. Bongo

We have chosen a file based approach since there are relatively few file formats
that are used by many genomics applications. It is therefore feasible to implement
parsers that support most file formats and therefore most genomics pipeline tools. In
addition, most file formats are simple and structured which makes it easy to write
parsers for each format. However, update file generation and output merging is not
trivial to implement. It may be necessary to understand the biological content of the
data and how the tools read and write the data. For example, for the widely used
BLAST [20] tool most changes to the UniProt [3] input data records are for fields that
are not used in the computation, and the output data records contains a field (e-value
[15]) that is incorrect for incremental updates. Both of these issues can be fixed by
writing relatively simple code for ignoring the insignificant fields during change
detection and by fixing the e-values in the output data. In addition, the system must
provide, low overhead storage for incremental update data, and efficient generation of
incremental update files.

GeStore provides an interface that the pipeline system uses to request one or more
incremental update input files, and to merge the partial results with previously
produced results. These upcalls can be added by adding stages to the pipeline
configuration before and after the execute tool step. Alternatively, the GeStore calls
can be added by modifying the code in the pipeline manger that manages the lists of
input, meta-data, and output files used to setup a tool for execution and to store the
results.

2.2 Plugin Framework

GeStore provides a plugin framework to support many different file formats and
pipeline tools. To add incremental updates to a pipeline the administrator must first
write a plugin for each tool in the pipeline. These are then used by GeStore for each
incremental update. A plugin comprise three parts: (i) a parser for each file type used
by the pipeline tool, (ii) tool-specific incremental file generator, and (iii) tool-specific
incremental output file merger. Each plugin has typically a few tens of lines of code.
Many plugins also share parsers and file mergers, and GeStore provides many library
functions for parsing, change detection, and merging of files. The plugins are
managed by a framework that provides efficient data storage, and low overhead file
parsing, generation, and merging.

The file parser must define schemas for the input files and meta files used by a
tool, and implement six methods that: (i) provide regular expressions that define the
start and end of an entry in the file, (ii) split an entry into columns, (iii) compare two
versions of an entry, (iv) check if an entry is well-formed, (v) put the entry into
HBase, and (vi) generate output in other formats. The file generator requires
implementing one method that specifies the parsers to use for each file format, and the
fields to write to the input file. The output merger requires implementing a method to
merge the output data with previously produced output data stored in GeStore. This
may include minor fixes to output data fields as discussed above.

 Transparent Incremental Updates for Genomics Data Analysis Pipelines 315

2.3 Data Storage and Management

GeStore uses the Hadoop software stack for scalable data storage and processing.
GeStore maintains: (i) HBase tables and HDFS files with pipeline tool input, output
and meta-data file data, (ii) a cache of previously generated incremental update files
stored in HDFS, and (iii) HBase tables with per plugin instance state that is used to
generate file, merge output files, and provide provenance information.

For file types that have a parser implemented, the data is split into entries and entry
fields. These are stored as rows and columns in HBase using a file-format specific
schema. The only required column in the schema is a unique ID for each row. The
HBase schema can be modified by adding new columns to the table if for example the
file format changes or the parser is modified. GeStore use the versioning mechanism
in HBase to store only updated fields (i.e. delta compression), and to return the data
for a given time period. The timestamp for a version corresponds to either the file
generation date, release date, or version.

3 Incremental METApipe

METApipe is used by our biology collaborators to find novel enzymes by analyzing
sequence data from marine microbial communities. METApipe is currently run using
the GePan pipeline management system (developed by Tim Kahlke at the University
of Tromsø). It includes the following tools:

1. Multiple Genome Aligner (MGA): [21] does alignment of closely related DNA
sequences. It does not require meta-data from knowledge bases.

2. MGA-exporter: converts the MGA output to the format used by the next stage.
3. FileScheduler: partitions and distributes the input data to the compute nodes.
4. Protein BLAST (BLASTP) [20]: maps sequences to information from the UniProt

Swiss-Prot and TrEMBL [3] knowledge bases.
5. HMMer [22]: maps sequences to information from the Pfam-A and Pfam-B [23]

protein family databases.
6. Annotator: gathers the results from the preceding tools, and converts the data to a

custom format.
7. Annotator-exporter: converts the annotator output to a format that can be used by

data visualization and exploration tools.

To add incremental updates to METApipe we had to write parsers for the six file
formats used by the pipeline: FASTA, UniprotKB meta-data, Pfam meta-data,
BLAST output, HMMer output, and MGA output. We also had to write plugins for
the BLAST and HMMer tools. The BLAST plugin corrects incremental e-values as
discussed in [15] during merge. The HMMer plugin only generates input files.

The file format plugins were a total of 844 lines of Java code, and the tool plugins
were 283 lines of Java code. The results show that file based incremental could be
used for all tools in METApipe, and there are relatively few lines of tool specific
code.

316 E. Pedersen, N.P. Willassen, and L.A. Bongo

To integrate GeStore with METApipe, we modified the code that generates the
Grid Engine [24] scripts that run the pipeline tool code. GeStore calls were added by
changing the file initialization commands to GeStore calls. In total, about 120 lines of
code were changed in METApipe. We expect the changes required to other pipeline
management systems to be similarly small.

4 Evaluation

Our initial experimental evaluation compares the benefits and overheads of using
incremental updates for the METApipe metagenomics analysis pipeline. Our
experiments were run on a small cluster with one frontend and eight compute nodes.
Each node is equipped with two Intel Xeon E5-1620 CPUs running at 3.6 GHz and 32
gigabytes of RAM. They have a total of 4.5 TB of local HDD. They also have 2.6 TB
of NFS storage shared between them. The machines are connected using gigabit
Ethernet. We believe such a cluster configuration is realistic for research labs that
maintain genomic compendia.

We use a 15 mega base pairs metagenomics dataset from the Yellowstone Park
[25] as input data. Processing this small dataset takes 2.5 hours on our small cluster.
We incrementally update the dataset on the last day of the month from January 2011
to July 2011. There were 6 updates to Uniprot Swiss-Prot and TrEMBL, and one
update to Pfam A and B in that period.

4.1 Update Relationships

To analyze relationships between meta-data changes and input file changes, we
averaged all changes in UniProt TrEMBL, UniProt Swiss-Prot, and Pfam-A meta-data
collections between January and July in 2011(Table 1). In Swiss-Prot and TrEMBL
most changes are to annotation that does not require BLAST recomputation, and
hence a significant difference in incremental update execution time. Pfam has a naïve
plugin that marks all changes as significant, and has therefore a high rate of
significant changes (100%). The Pfam plugin could be improved by doing more
precise classifications of non-significant updates. These results demonstrate the
benefits of tool specific plugins.

Table 1. Monthly meta-data collection updates between January-July 2011. Averages reported.

 Total entries Total updates Significant New entries
Swiss-Prot 527590 38.76% 0.44% 0.40%
TrEMBL 14738346 32.11% 4.89% 4.88%
Pfam-A 1076 100.00% 100.00% 3.25%

 Transparent Incremental Updates for Genomics Data Analysis Pipelines 317

4.2 GeStore Improvements and Overhead

We measured METApipe execution time for full updates and incremental updates
with 1, 3, and 6 month periods (Table 2). The analysis time is dominated by BLASTp.
Since

BLAST execution time scales linearly with the input size, the smaller incremental
input data generated by GeStore significantly reduce BLAST analysis time, and hence
total execution time.

Table 2. METApipe execution time split into analysis time and GeStore overhead (all in
seconds)

 Analysis Overhead Total
Full update (Jan 2011) 9141 0 9141
 with GeStore 10718 2562 13280
Incremental (Jan – Feb) 893 755 1647
Incremental (Jan – April) 1736 3497 5233
Incremental (Jan – Juli) 2850 3736 6586

GeStore has an overhead for HMMer of 800 seconds when generating a complete

database, and 300 seconds when retrieving a cached database. Generating an
incremental update database takes 2800 seconds, this is because the PFam plugin
marks all updates as important. BLASTp has an overhead of 1700 seconds for
generating a full database. The incremental update time is 300 to 800 seconds
depending on the size of the update.

Although GeStore overhead is significant for these experiments it will be much
smaller for bigger, more realistic, input dataset sizes since the analysis time depends
on input data size, while GeStore overhead depends on meta-data size. In addition, we
expect to reduce the Pfam change detection overhead by implementing data aware
change detection (as discussed above).

The storage overhead increases sub linearly for UniProt since there are relatively
few updates per month (as shown above), the January UniProt database file size is 33
Gb. When stored in HBase it requires 48 Gb of space. However, the total size of the
UniProt databases is 252 Gb, but only requires 77 Gb of space in GeStore. For Pfam
the storage requirements increase linearly, from to 3.3 Gb to 7.1 Gb and 2.9 Gb and
6.3 Gb respectively for GeStore and total file size. The storage requirements can be
significantly reduced by improving the plugin for HMMer.

GeStore achieves similar analysis runtime improvements (90%, for 5% meta-data
updates) to incremental BLAST as reported in [15]. Execution time improvements
ranging from 20% to 99% are reported in [9–14], but for applications from the data
center domain. We have not experimentally compared the execution time
improvements and overheads to other large scale incremental update tools since these
require modifications to the pipeline tools.

318 E. Pedersen, N.P. Willassen, and L.A. Bongo

5 Related Work

Systems and frameworks for incremental updates on large scale datasets include Incoop
[10], Percolator [11], Nectar [9], DryadInc [12], CBP [13], and HaLoop [14]. In
Percolator and CBP the programmer implements a system specific incremental program
using respectively event-driven mini transactions and stateful primitives. Incoop,
Nectar, DyradInc, and HaLoop use data dependency graphs of Dryad [16] or
MapReduce programs to automatically replace the input data for a computation with
previously calculated results. GeStore combines these two main approaches; a
programmer implements file generators and mergers for unmodified programs. GeStore
is independent of the programming model and job management system, so the
applications can be executed using Dryad, MapReduce [11], or the Grid Engine [24].

GeStore extends the work in [15] by providing a framework and libraries to
implement the necessary pre and post processing of data moved between a data
warehouse and genomic analysis tools. This makes it easier to add additional support
for additional genomic analysis tools as we have demonstrated by implementing
incremental updates for a complete metagenomics analysis pipeline.

Simple change detection is supported by tools such as Unix diff, delta encoding
compression systems [26], and version management systems such as CVS [27].
However, the change detection in these do not take into account the complex inter-file
relationships found in genomic datasets.

The file tables maintained by GeStore are similar to declarative views maintained
by data warehouses [28]. Incremental updates have also been used for non-distributed
computation result caching (memoization) as in [8].

Popular approaches for genomics pipeline management are Galaxy [29] and
BioConductor [30]. These do not provide incremental computation.

We evaluated GeStore using the locally developed METApipe pipeline. An
alternative is the JCVI metagenomics analysis pipeline [31].

6 Conclusions and Future Work

We proposed an approach for adding incremental updates to unmodified genomic data
analysis pipelines, leading to substantial reduction in time and resources needed to
update large biological compendiums. We presented the design and implementation
of the GeStore system, including a framework for implementing plugins that enable
transparent incremental updates. We demonstrated the feasibility of our approach and
provided an initial experimental evaluation of our system using a real metagenomics
analysis pipeline and real data. The cost effective transparent incremental updates
provided by GeStore makes it practical to frequently update large genomic
compendium with new experimental and meta-data, and thereby enabling novel
biological discoveries.

We plan to further evaluate the benefits and overhead of incremental updates for
genomics data analysis by applying GeStore to the pipeline producing data for the
IMP [32] tool, and to a Galaxy [29] pipeline. Galaxy can also be used to provide a
GUI for GeStore configuration and data management.

 Transparent Incremental Updates for Genomics Data Analysis Pipelines 319

Acknowledgements. Thanks to Espen Robertsen and Tim Kahlke for help with the
GePan pipeline, Jon Ivar Kristiansen for maintaining our cluster, and Martin Erntsen
for his comments.

References

[1] Schuster, S.C.: Next-generation sequencing transforms today’s biology. Nature
Methods 5(1), 16–18 (2008)

[2] Galperin, M.Y., Fernández-Suárez, X.M.: The 2012 Nucleic Acids Research Database
Issue and the online Molecular Biology Database Collection. Nucleic Acids
Research 40(Database issue), D1–D8 (2012)

[3] Magrane, M., UniProt Consortium: UniProt Knowledgebase: a hub of integrated protein
data. Database the Journal of Biological Databases and Curation 2011 (2011)

[4] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis,
A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L.,
Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M.,
Sherlock, G.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1),
25–29 (2000)

[5] Kahn, S.D.: On the Future of Genomic Data. Science 331(6018), 728–729 (2011)
[6] Wilkening, J., Wilke, A., Desai, N., Meyer, F.: Using clouds for metagenomics: A case

study. In: 2009 IEEE International Conference on Cluster Computing and Workshops,
pp. 1–6 (2009)

[7] Sandberg, R., Larsson, O.: Improved precision and accuracy for microarrays using
updated probe set definitions. BMC Bioinformatics 8(1), 48 (2007)

[8] Liu, Y.A., Stoller, S.D., Teitelbaum, T.: Static caching for incremental computation.
ACM Transactions on Programming Languages and Systems 20(3), 546–585 (1998)

[9] Gunda, P.K., Ravindranath, L., Thekkath, C.A., Yu, Y., Zhuang, L.: Nectar: automatic
management of data and computation in datacenters. In: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, pp. 1–8 (2010)

[10] Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquini, R.: Incoop: MapReduce
for Incremental Computations. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing, p. 7 (2011)

[11] Peng, D., Dabek, F.: Large-scale Incremental Processing Using Distributed Transactions
and Notifications. In: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, vol. 2006, pp. 1–15 (2010)

[12] Popa, L., Budiu, M., Yu, Y., Isard, M.: DryadInc: reusing work in large-scale
computations. In: Proceedings of the 2009 Conference on Hot Topics in Cloud
Computing, p. 21 (June 2009)

[13] Logothetis, D., Olston, C., Reed, B., Webb, K.C., Yocum, K.: Stateful bulk processing
for incremental analytics. In: Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 2010, p. 51 (2010)

[14] Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The HaLoop approach to large-scale
iterative data analysis. The VLDB Journal 21(2), 169–190 (2012)

[15] Turcu, G., Nestorov, S., Foster, I.: Efficient Incremental Maintenance of Derived
Relations and BLAST Computations in Bioinformatics Data Warehouses. In: Song, I.-Y.,
Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 135–145. Springer,
Heidelberg (2008)

[16] Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel
programs from sequential building blocks. ACM SIGOPS Operating Systems
Review 41(3), 59 (2007)

320 E. Pedersen, N.P. Willassen, and L.A. Bongo

[17] Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Communications of
the ACM 53(1), 72 (2010)

[18] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System.
In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST,
vol. (5), pp. 1–10 (2010)

[19] Apache, “Apache HBase” (2012), http://hbase.apache.org/ (accessed: April
24, 2012)

[20] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment
search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

[21] Höhl, M., Kurtz, S., Ohlebusch, E.: Efficient multiple genome alignment.
Bioinformatics 18(Suppl. 1), S312–S320 (2002)

[22] Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence
similarity searching. Nucleic Acids Research 39(Web Server issue), W29–W37 (2011)

[23] Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L.,
Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E.L.L., Eddy, S.R.,
Bateman, A.: The Pfam protein families database. Nucleic Acids Research 38(Database
issue), D211–D222 (2010)

[24] Oracle Grid Engine, http://www.oracle.com/us/products/tools/oracle-grid-engine-
075549.html (accessed: May 02, 2012)

[25] Bhaya, D., Grossman, A.R., Steunou, A.-S., Khuri, N., Cohan, F.M., Hamamura, N.,
Melendrez, M.C., Bateson, M.M., Ward, D.M., Heidelberg, J.F.: Population level
functional diversity in a microbial community revealed by comparative genomic and
metagenomic analyses. The ISME Journal 1(8), 703–713 (2007)

[26] Douglis, F., Iyengar, A.: Application-specific Delta-encoding via Resemblance
Detection. In: Proceedings of the USENIX Annual Technical Conference, pp. 113–126
(2003)

[27] Grune, D.: Concurrent Versions System, A Method for Independent Cooperation,
Working paper. IR 113, Vrije Universiteit (1986)

[28] Ceri, S., Widom, J.: Deriving Production Rules for Incremental View Maintenance. In:
Proceedings of the 17th International Conference on Very Large Data Bases, pp. 577–
589 (September 1991)

[29] Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences.
Genome Biology 11(8), R86 (2010)

[30] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis,
B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry,
R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.,
Tierney, L., Yang, J.Y.H., Zhang, J.: Bioconductor: open software development for
computational biology and bioinformatics. Genome Biology 5(10), R80 (2004)

[31] Tanenbaum, D.M., Goll, J., Murphy, S., Kumar, P., Zafar, N., Thiagarajan, M., Madupu,
R., Davidsen, T., Kagan, L., Kravitz, S., Rusch, D.B., Yooseph, S.: The JCVI standard
operating procedure for annotating prokaryotic metagenomic shotgun sequencing data.
Standards in Genomic Sciences 2(2), 229–237 (2010)

[32] Wong, A.K., Park, C.Y., Greene, C.S., Bongo, L.A., Guan, Y., Troyanskaya, O.G.: IMP:
a multi-species functional genomics portal for integration, visualization and prediction of
protein functions and networks. Nucleic Acids Research 40(Web Server issue), 1–7
(2012)

