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Abstract. A large up-to-date compendium of integrated genomic data is often 
required for biological data analysis. The compendium can be tens of terabytes in 
size, and must often be frequently updated with new experimental or meta-data. 
Manual compendium update is cumbersome, requires a lot of unnecessary 
computation, and it may result in errors or inconsistencies in the compendium. We 
propose a transparent file based approach for adding incremental update 
capabilities to unmodified genomics data analysis tools and pipeline workflow 
managers. This approach is implemented in the GeStore system. We evaluate 
GeStore using a real world genomics compendium. Our results show that it is easy 
to add incremental updates to genomics data processing pipelines, and that 
incremental updates can reduce the computation time such that it becomes practical 
to maintain large-scale up-to-date genomics compendia on small clusters. 

1 Introduction 

Recent advances in scientific instruments, such as next-generation sequencing 
machines, has the potential of producing data that provide views of biological 
processes at different resolutions and conditions, opening a new era in molecular 
biology and molecular medicine [1]. Many of the data analysis techniques developed 
for analyzing such genomic data integrate data from many experiments with metadata 
from multiple knowledge bases. The information in the knowledge bases [2] is 
essential for understanding the biological content of the experiment data. For 
example, the results of DNA sequencing may not become truly useful before the 
UniProt [3] knowledge base is used to map sequence bases to genes, the per gene 
results are compared to results from other experiments, and the significant differences 
have been  mapped to biological functions using the Go [4] knowledge base. 

Genomic data integration and analysis is typically implemented as a pipeline with 
several tools, where the output files of one tool acts as the input files for the next tool. 
The specific set of tools to use depends on the biological problem that is being 
investigated. Often large amounts of data must be analyzed, since new sequencing 
machines produce multiple terabytes of data per experiment [5]. The cost of the 
analysis can therefore be orders of magnitude larger than the cost of creating the data 
to be analyzed [6]. Cost efficient data analysis is therefore a key challenge for 
genomics data analysis. 
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Integrating new experimental data or updating meta-data may provide novel 
biological insights. It is therefore important to update a biological compendium when 
new data becomes available. Meta-data updates are especially important since it 
represents the state of knowledge in the field [7]. However, current biological analysis 
tools typically require recalculating the entire compendium for meta-data updates. 
Such full updates increase the computational time and cost; often to the point where 
reanalysis is not done. 

The cost of reanalysis can be greatly reduced by using incremental updates [8] that 
limit recomputation to new and updated data. We believe such an approach for 
incremental updates of genomic data must satisfy the following four requirements. 
First, most existing analysis tools should be supported without any modifications 
since it is not practical to maintain modified versions of the many analysis tools used 
in genomic data analysis pipelines. Transparent incremental updates are therefore 
needed. Second, the incremental updates should be independent of the job and 
resource management systems used to run the pipeline tools since genomic analysis 
pipelines are run on many different platforms. Third, it should be easy to add 
incremental update support to an existing pipeline. The system should therefore 
handle update detection, processing of incremental updates, and integration of the 
incremental update with a previous full update. Fourth, it should scale to large-scale 
compendium. 

To our knowledge, no previous incremental update systems for large-scale data  
[9–15] satisfy all four requirements. These provide the required functionality and 
scalability, but do not provide the easy to use transparent incremental updates that are 
necessary to add incremental updates to existing pipelines. Instead they require either 
porting applications to a specific framework such as Dryad [16] or MapReduce [17], 
or writing ad-hoc scripts for input generation and output merging.  

We present the GeStore system for incremental update management. GeStore uses 
a transparent file based approach that satisfies all four requirements. Most pipeline 
tools take as input one or more files with input and meta-data, and produce output 
consisting of one or more files. Incremental updates can therefore be implemented by 
modifying the input or meta-data files such that these only contain the data for an 
incremental update, and then merging the incremental output with the previous 
results. Tool code is unmodified, and the only modifications to the pipeline are two 
GeStore calls for generating input files and merging output files. GeStore provides a 
plugin framework for implementing parsers, tool-specific incremental file generators, 
and tool-specific output file mergers. GeStore uses the Hadoop software stack for 
scalable data processing. 

Our contributions are threefold: (i) we propose a promising approach for adding 
incremental updates to unmodified genomic data analysis pipelines, leading to 
substantial reduction in time and resources needed to update large biological 
compendium, (ii) we present the design and implementation of our system, including 
a framework for implementing plugins that enable transparent incremental updates, 
and (iii) we present the feasibility of our approach and initial experimental evaluation 
of our system using a real metagenomics analysis pipeline and real data.  
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We have chosen a file based approach since there are relatively few file formats 
that are used by many genomics applications. It is therefore feasible to implement 
parsers that support most file formats and therefore most genomics pipeline tools. In 
addition, most file formats are simple and structured which makes it easy to write 
parsers for each format. However, update file generation and output merging is not 
trivial to implement. It may be necessary to understand the biological content of the 
data and how the tools read and write the data. For example, for the widely used 
BLAST [20] tool most changes to the UniProt [3] input data records are for fields that 
are not used in the computation, and the output data records contains a field (e-value 
[15]) that is incorrect for incremental updates. Both of these issues can be fixed by 
writing relatively simple code for ignoring the insignificant fields during change 
detection and by fixing the e-values in the output data. In addition, the system must 
provide, low overhead storage for incremental update data, and efficient generation of 
incremental update files.  

GeStore provides an interface that the pipeline system uses to request one or more 
incremental update input files, and to merge the partial results with previously 
produced results. These upcalls can be added by adding stages to the pipeline 
configuration before and after the execute tool step. Alternatively, the GeStore calls 
can be added by modifying the code in the pipeline manger that manages the lists of 
input, meta-data, and output files used to setup a tool for execution and to store the 
results. 

2.2 Plugin Framework 

GeStore provides a plugin framework to support many different file formats and 
pipeline tools. To add incremental updates to a pipeline the administrator must first 
write a plugin for each tool in the pipeline. These are then used by GeStore for each 
incremental update. A plugin comprise three parts: (i) a parser for each file type used 
by the pipeline tool, (ii) tool-specific incremental file generator, and (iii) tool-specific 
incremental output file merger. Each plugin has typically a few tens of lines of code. 
Many plugins also share parsers and file mergers, and GeStore provides many library 
functions for parsing, change detection, and merging of files. The plugins are 
managed by a framework that provides efficient data storage, and low overhead file 
parsing, generation, and merging.  

The file parser must define schemas for the input files and meta files used by a 
tool, and implement six methods that: (i) provide regular expressions that define the 
start and end of an entry in the file, (ii) split an entry into columns, (iii) compare two 
versions of an entry, (iv) check if an entry is well-formed, (v) put the entry into 
HBase, and (vi) generate output in other formats. The file generator requires 
implementing one method that specifies the parsers to use for each file format, and the 
fields to write to the input file. The output merger requires implementing a method to 
merge the output data with previously produced output data stored in GeStore. This 
may include minor fixes to output data fields as discussed above. 
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2.3 Data Storage and Management 

GeStore uses the Hadoop software stack for scalable data storage and processing. 
GeStore maintains: (i) HBase tables and HDFS files with pipeline tool input, output 
and meta-data file data, (ii) a cache of previously generated incremental update files 
stored in HDFS, and (iii) HBase tables with per plugin instance state that is used to 
generate file, merge output files, and provide provenance information.  

For file types that have a parser implemented, the data is split into entries and entry 
fields. These are stored as rows and columns in HBase using a file-format specific 
schema. The only required column in the schema is a unique ID for each row. The 
HBase schema can be modified by adding new columns to the table if for example the 
file format changes or the parser is modified. GeStore use the versioning mechanism 
in HBase to store only updated fields (i.e. delta compression), and to return the data 
for a given time period. The timestamp for a version corresponds to either the file 
generation date, release date, or version.  

3 Incremental METApipe 

METApipe is used by our biology collaborators to find novel enzymes by analyzing 
sequence data from marine microbial communities. METApipe is currently run using 
the GePan pipeline management system (developed by Tim Kahlke at the University 
of Tromsø). It includes the following tools: 

1. Multiple Genome Aligner (MGA): [21] does alignment of closely related DNA 
sequences. It does not require meta-data from knowledge bases. 

2. MGA-exporter: converts the MGA output to the format used by the next stage. 
3. FileScheduler: partitions and distributes the input data to the compute nodes. 
4. Protein BLAST (BLASTP) [20]: maps sequences to information from the UniProt 

Swiss-Prot and TrEMBL [3] knowledge bases. 
5. HMMer [22]: maps sequences to information from the Pfam-A and Pfam-B [23] 

protein family databases. 
6. Annotator: gathers the results from the preceding tools, and converts the data to a 

custom format. 
7. Annotator-exporter: converts the annotator output to a format that can be used by 

data visualization and exploration tools. 

To add incremental updates to METApipe we had to write parsers for the six file 
formats used by the pipeline: FASTA, UniprotKB meta-data, Pfam meta-data, 
BLAST output, HMMer output, and MGA output. We also had to write plugins for 
the BLAST and HMMer tools. The BLAST plugin corrects incremental e-values as 
discussed in [15] during merge. The HMMer plugin only generates input files. 

The file format plugins were a total of 844 lines of Java code, and the tool plugins 
were 283 lines of Java code. The results show that file based incremental could be 
used for all tools in METApipe, and there are relatively few lines of tool specific 
code.  
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To integrate GeStore with METApipe, we modified the code that generates the 
Grid Engine [24] scripts that run the pipeline tool code. GeStore calls were added by 
changing the file initialization commands to GeStore calls. In total, about 120 lines of 
code were changed in METApipe. We expect the changes required to other pipeline 
management systems to be similarly small. 

4 Evaluation 

Our initial experimental evaluation compares the benefits and overheads of using 
incremental updates for the METApipe metagenomics analysis pipeline. Our 
experiments were run on a small cluster with one frontend and eight compute nodes. 
Each node is equipped with two Intel Xeon E5-1620 CPUs running at 3.6 GHz and 32 
gigabytes of RAM. They have a total of 4.5 TB of local HDD. They also have 2.6 TB 
of NFS storage shared between them. The machines are connected using gigabit 
Ethernet. We believe such a cluster configuration is realistic for research labs that 
maintain genomic compendia. 

We use a 15 mega base pairs metagenomics dataset from the Yellowstone Park 
[25] as input data. Processing this small dataset takes 2.5 hours on our small cluster. 
We incrementally update the dataset on the last day of the month from January 2011 
to July 2011. There were 6 updates to Uniprot Swiss-Prot and TrEMBL, and one 
update to Pfam A and B in that period. 

4.1 Update Relationships 

To analyze relationships between meta-data changes and input file changes, we 
averaged all changes in UniProt TrEMBL, UniProt Swiss-Prot, and Pfam-A meta-data 
collections between January and July in 2011(Table 1). In Swiss-Prot and TrEMBL 
most changes are to annotation that does not require BLAST recomputation, and 
hence a significant difference in incremental update execution time. Pfam has a naïve 
plugin that marks all changes as significant, and has therefore a high rate of 
significant changes (100%). The Pfam plugin could be improved by doing more 
precise classifications of non-significant updates. These results demonstrate the 
benefits of tool specific plugins. 

Table 1. Monthly meta-data collection updates between January-July 2011. Averages reported. 

 Total entries Total updates Significant New entries 
Swiss-Prot 527590 38.76% 0.44% 0.40% 
TrEMBL 14738346 32.11% 4.89% 4.88% 
Pfam-A 1076 100.00% 100.00% 3.25% 
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4.2  GeStore Improvements and Overhead 

We measured METApipe execution time for full updates and incremental updates 
with 1, 3, and 6 month periods (Table 2). The analysis time is dominated by BLASTp. 
Since  

BLAST execution time scales linearly with the input size, the smaller incremental 
input data generated by GeStore significantly reduce BLAST analysis time, and hence 
total execution time. 

Table 2. METApipe execution time split into analysis time and GeStore overhead (all in 
seconds) 

 Analysis Overhead Total 
Full update (Jan 2011) 9141 0 9141 
  with GeStore 10718 2562 13280 
Incremental (Jan – Feb) 893 755 1647 
Incremental (Jan – April) 1736 3497 5233 
Incremental (Jan – Juli) 2850 3736 6586 

 
GeStore has an overhead for HMMer of 800 seconds when generating a complete 

database, and 300 seconds when retrieving a cached database. Generating an 
incremental update database takes 2800 seconds, this is because the PFam plugin 
marks all updates as important. BLASTp has an overhead of 1700 seconds for 
generating a full database. The incremental update time is 300 to 800 seconds 
depending on the size of the update. 

Although GeStore overhead is significant for these experiments it will be much 
smaller for bigger, more realistic, input dataset sizes since the analysis time depends 
on input data size, while GeStore overhead depends on meta-data size. In addition, we 
expect to reduce the Pfam change detection overhead by implementing data aware 
change detection (as discussed above). 

The storage overhead increases sub linearly for UniProt since there are relatively 
few updates per month (as shown above), the January UniProt database file size is 33 
Gb. When stored in HBase it requires 48 Gb of space. However, the total size of the 
UniProt databases is 252 Gb, but only requires 77 Gb of space in GeStore. For Pfam 
the storage requirements increase linearly, from to 3.3 Gb to 7.1 Gb and 2.9 Gb and 
6.3 Gb respectively for GeStore and total file size. The storage requirements can be 
significantly reduced by improving the plugin for HMMer.  

GeStore achieves similar analysis runtime improvements (90%, for 5% meta-data 
updates) to incremental BLAST as reported in [15]. Execution time improvements 
ranging from 20% to 99% are reported in [9–14], but for applications from the data 
center domain. We have not experimentally compared the execution time 
improvements and overheads to other large scale incremental update tools since these 
require modifications to the pipeline tools. 
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5 Related Work 

Systems and frameworks for incremental updates on large scale datasets include Incoop 
[10], Percolator [11], Nectar [9], DryadInc [12], CBP [13], and HaLoop [14]. In 
Percolator and CBP the programmer implements a system specific incremental program 
using respectively event-driven mini transactions and stateful primitives. Incoop, 
Nectar, DyradInc, and HaLoop use data dependency graphs of Dryad [16] or 
MapReduce programs to automatically replace the input data for a computation with 
previously calculated results. GeStore combines these two main approaches; a 
programmer implements file generators and mergers for unmodified programs. GeStore 
is independent of the programming model and job management system, so the 
applications can be executed using Dryad, MapReduce [11], or the  Grid Engine [24]. 

GeStore extends the work in [15] by providing a framework and libraries to 
implement the necessary pre and post processing of data moved between a data 
warehouse and genomic analysis tools. This makes it easier to add additional support 
for additional genomic analysis tools as we have demonstrated by implementing 
incremental updates for a complete metagenomics analysis pipeline. 

Simple change detection is supported by tools such as Unix diff, delta encoding 
compression systems [26], and version management systems such as CVS [27]. 
However, the change detection in these do not take into account the complex inter-file 
relationships found in genomic datasets.  

The file tables maintained by GeStore are similar to declarative views maintained 
by data warehouses [28]. Incremental updates have also been used for non-distributed 
computation result caching (memoization) as in [8].  

Popular approaches for genomics pipeline management are Galaxy [29] and 
BioConductor [30]. These do not provide incremental computation. 

We evaluated GeStore using the locally developed METApipe pipeline. An 
alternative is the JCVI metagenomics analysis pipeline [31]. 

6 Conclusions and Future Work 

We proposed an approach for adding incremental updates to unmodified genomic data 
analysis pipelines, leading to substantial reduction in time and resources needed to 
update large biological compendiums. We presented the design and implementation 
of the GeStore system, including a framework for implementing plugins that enable 
transparent incremental updates. We demonstrated the feasibility of our approach and 
provided an initial experimental evaluation of our system using a real metagenomics 
analysis pipeline and real data. The cost effective transparent incremental updates 
provided by GeStore makes it practical to frequently update large genomic 
compendium with new experimental and meta-data, and thereby enabling novel 
biological discoveries. 

We plan to further evaluate the benefits and overhead of incremental updates for 
genomics data analysis by applying GeStore to the pipeline producing data for the 
IMP [32] tool, and to a Galaxy [29] pipeline. Galaxy can also be used to provide a 
GUI for GeStore configuration and data management. 



 Transparent Incremental Updates for Genomics Data Analysis Pipelines 319 

 

Acknowledgements. Thanks to Espen Robertsen and Tim Kahlke for help with the 
GePan pipeline, Jon Ivar Kristiansen for maintaining our cluster, and Martin Erntsen 
for his comments. 

References 

[1] Schuster, S.C.: Next-generation sequencing transforms today’s biology. Nature 
Methods 5(1), 16–18 (2008) 

[2] Galperin, M.Y., Fernández-Suárez, X.M.: The 2012 Nucleic Acids Research Database 
Issue and the online Molecular Biology Database Collection. Nucleic Acids 
Research 40(Database issue), D1–D8 (2012) 

[3] Magrane, M., UniProt Consortium: UniProt Knowledgebase: a hub of integrated protein 
data. Database the Journal of Biological Databases and Curation 2011 (2011) 

[4] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, 
A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., 
Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., 
Sherlock, G.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 
25–29 (2000) 

[5] Kahn, S.D.: On the Future of Genomic Data. Science 331(6018), 728–729 (2011) 
[6] Wilkening, J., Wilke, A., Desai, N., Meyer, F.: Using clouds for metagenomics: A case 

study. In: 2009 IEEE International Conference on Cluster Computing and Workshops, 
pp. 1–6 (2009) 

[7] Sandberg, R., Larsson, O.: Improved precision and accuracy for microarrays using 
updated probe set definitions. BMC Bioinformatics 8(1), 48 (2007) 

[8] Liu, Y.A., Stoller, S.D., Teitelbaum, T.: Static caching for incremental computation. 
ACM Transactions on Programming Languages and Systems 20(3), 546–585 (1998) 

[9] Gunda, P.K., Ravindranath, L., Thekkath, C.A., Yu, Y., Zhuang, L.: Nectar: automatic 
management of data and computation in datacenters. In: Proceedings of the 9th USENIX 
Conference on Operating Systems Design and Implementation, pp. 1–8 (2010) 

[10] Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquini, R.: Incoop: MapReduce 
for Incremental Computations. In: Proceedings of the 2nd ACM Symposium on Cloud 
Computing, p. 7 (2011) 

[11] Peng, D., Dabek, F.: Large-scale Incremental Processing Using Distributed Transactions 
and Notifications. In: Proceedings of the 9th USENIX Conference on Operating Systems 
Design and Implementation, vol. 2006, pp. 1–15 (2010) 

[12] Popa, L., Budiu, M., Yu, Y., Isard, M.: DryadInc: reusing work in large-scale 
computations. In: Proceedings of the 2009 Conference on Hot Topics in Cloud 
Computing, p. 21 (June 2009) 

[13] Logothetis, D., Olston, C., Reed, B., Webb, K.C., Yocum, K.: Stateful bulk processing 
for incremental analytics. In: Proceedings of the 1st ACM Symposium on Cloud 
Computing, SoCC 2010, p. 51 (2010) 

[14] Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The HaLoop approach to large-scale 
iterative data analysis. The VLDB Journal 21(2), 169–190 (2012) 

[15] Turcu, G., Nestorov, S., Foster, I.: Efficient Incremental Maintenance of Derived 
Relations and BLAST Computations in Bioinformatics Data Warehouses. In: Song, I.-Y., 
Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 135–145. Springer, 
Heidelberg (2008) 

[16] Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel 
programs from sequential building blocks. ACM SIGOPS Operating Systems 
Review 41(3), 59 (2007) 



320 E. Pedersen, N.P. Willassen, and L.A. Bongo 

 

[17] Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Communications of 
the ACM 53(1), 72 (2010) 

[18] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. 
In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST, 
vol. (5), pp. 1–10 (2010) 

[19] Apache, “Apache HBase” (2012), http://hbase.apache.org/ (accessed: April 
24, 2012) 

[20] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment 
search tool. Journal of Molecular Biology 215(3), 403–410 (1990) 

[21] Höhl, M., Kurtz, S., Ohlebusch, E.: Efficient multiple genome alignment. 
Bioinformatics 18(Suppl. 1), S312–S320 (2002) 

[22] Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence 
similarity searching. Nucleic Acids Research 39(Web Server issue), W29–W37 (2011) 

[23] Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., 
Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E.L.L., Eddy, S.R., 
Bateman, A.: The Pfam protein families database. Nucleic Acids Research 38(Database 
issue), D211–D222 (2010) 

[24] Oracle Grid Engine, http://www.oracle.com/us/products/tools/oracle-grid-engine-
075549.html (accessed: May 02, 2012) 

[25] Bhaya, D., Grossman, A.R., Steunou, A.-S., Khuri, N., Cohan, F.M., Hamamura, N., 
Melendrez, M.C., Bateson, M.M., Ward, D.M., Heidelberg, J.F.: Population level 
functional diversity in a microbial community revealed by comparative genomic and 
metagenomic analyses. The ISME Journal 1(8), 703–713 (2007) 

[26] Douglis, F., Iyengar, A.: Application-specific Delta-encoding via Resemblance 
Detection. In: Proceedings of the USENIX Annual Technical Conference, pp. 113–126 
(2003) 

[27] Grune, D.: Concurrent Versions System, A Method for Independent Cooperation, 
Working paper. IR 113, Vrije Universiteit (1986) 

[28] Ceri, S., Widom, J.: Deriving Production Rules for Incremental View Maintenance. In: 
Proceedings of the 17th International Conference on Very Large Data Bases, pp. 577–
589 (September 1991) 

[29] Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting 
accessible, reproducible, and transparent computational research in the life sciences. 
Genome Biology 11(8), R86 (2010) 

[30] Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, 
B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, 
R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., 
Tierney, L., Yang, J.Y.H., Zhang, J.: Bioconductor: open software development for 
computational biology and bioinformatics. Genome Biology 5(10), R80 (2004) 

[31] Tanenbaum, D.M., Goll, J., Murphy, S., Kumar, P., Zafar, N., Thiagarajan, M., Madupu, 
R., Davidsen, T., Kagan, L., Kravitz, S., Rusch, D.B., Yooseph, S.: The JCVI standard 
operating procedure for annotating prokaryotic metagenomic shotgun sequencing data. 
Standards in Genomic Sciences 2(2), 229–237 (2010) 

[32] Wong, A.K., Park, C.Y., Greene, C.S., Bongo, L.A., Guan, Y., Troyanskaya, O.G.: IMP: 
a multi-species functional genomics portal for integration, visualization and prediction of 
protein functions and networks. Nucleic Acids Research 40(Web Server issue), 1–7 
(2012) 


