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Abstract— We identify two ways of increasing the performance
of allreduce-style of collective operations in a multi-cluster with
large WAN latencies: (i) hiding latency in system noise, and (ii)
conditional-allreduce where knowledge about the application is
used to reduce the number of WAN messages. In our multi-
cluster, system noise was not large enough to hide the WAN
latency. But, the latency could be hidden using conditional-
allreduce, since on many iterations only cluster-local values were
needed, and many of the values needed from other clusters were
prefetched. A speedup of 2.4 was achieved for a microbenchmark.
Prefetching introduced a small overhead in the cluster with the
slowest hosts.

I. INTRODUCTION

Computational Grids is an emerging platform for computa-
tional science [1]. In a grid, multiple computers and clusters
are connected using wide-area networks (WAN). Ideally, ap-
plications developed for more tightly connected platforms (e.g.
SMPs, clusters) should run effectively without modifications
on grids. However, for many applications, modifications are
required to tolerate the higher latencies and lower bandwidths
of WAN links [2].

Many applications are written using a communication li-
brary, such as MPI [3], which provides operations for point-
to-point and collective communication. Examples of collective
operations are broadcast, reduce, and allreduce. In allreduce,
the reduced value is broadcasted to all threads that contributed
with a value.

For clusters, the performance of collective operations is
an important factor in determining application performance
[4]. For grids, we expect collective operation performance to
be even more critical. Sensitivity to WAN latency has been
shown to be the primary cause for poor collective operation
performance on grids [5].

If the provided operations can be made to tolerate WAN
latencies and bandwidths, many applications can run on Grids
with only minor modifications. In this paper we evaluate two
approaches for improving the performance of the allreduce
collective operation on Grids: (i) latency hiding, and (ii)
extending collective operations with application semantics.

We propose a novel algorithm, conditional-allreduce, where
we apply application knowledge to reduce the number of WAN
messages exchanged. Many algorithms, such as converging
iterative algorithms for linear algebra, use the reduced value
only to test whether a particular condition is true. In many
cases where multiple clusters communicate over a WAN link,
each of the clusters may have enough information locally

to determine that the condition is true. In these cases, time-
consuming WAN communication can be avoided by returning
the result of the cluster-local operation.

Another performance problem is caused by system activities
causing ’noise’ that takes resources (e.g. CPU) from individual
threads and, by implication, delays both the thread itself
as well as all other threads participating in a synchronous
operation [6], [7]. We evaluate whether some of the WAN
latencies can be hidden in the noise.

We describe a micro-benchmark for analyzing noise on
clusters, as well as systems for configuring and monitoring
the performance of different allreduce algorithms. The per-
formance analysis is based on traces from actual runs on an
available multi-cluster.

Our results show that the system noise in our multi-
cluster is too low to allow us to hide the WAN latency.
Using conditional-allreduce, the WAN latency was avoided
for most operations, since these only required values from
one cluster. For the remaining operations the required values
were often already prefetched. Conditional-allreduce only in-
troduced overhead on the cluster with the slowest hosts. Thus
applications using conditional-allreduce can be run on a grid
with good performance.

The rest of this paper proceeds as follows. Related work
is discussed in section II. Our parallel programming and
monitoring systems are described in section III. The design
and implementation of conditional-allreduce is described in
section IV. Section V describes the clusters and benchmarks
used in section VI to compare the performance of conditional-
allreduce with other algorithms. Section VII concludes and
outlines future work.

II. RELATED WORK

Improving the performance of collective operations is the
focus of this paper. However, three additional techniques were
applied in [2] to enable applications to tolerate the high
latency and low bandwidth associated with WANs. These
techniques were (i) distributed work queue implementation,
(ii) message combination, and (iii) exploiting asynchronicity
in applications.

Typically, collective operations are implemented using a
spanning tree. [5] identifies two requirements for collective
operations to be wide area optimal: (1) ‘every sender-receiver
path used by an algorithm contains at most one wide area
link’, and (2) ‘no data item travel multiple times to the same



cluster’. Our work is complementary in that we evaluate how
we can avoid sending messages over a WAN, or hide the WAN
latency.

For clusters, many implementations apply SMP aware
spanning trees [8]–[11]. Many implementations also use fast
interconnects [12] or applies special features of the selected
interconnect, such as native broadcast in Ethernet [13] or
fast remote memory operations [14]. Our implementation is
SMP-aware but uses TCP/IP for intra-cluster communication.
With faster local interconnects; WAN latencies become even
more important. Also, the overhead introduced by the different
WAN algorithms measured by us are valid even with faster
interconnects.

In [15] it was shown that for barrier operations on an SMP,
most of the time was spent waiting for the last thread to arrive.
Even for highly balanced applications, noise caused by e.g.
system daemons may cause random processes to be delayed
[6], [7]. Noise can be reduced by leaving one processor on
each SMP idle, by eliminating unnecessary system daemons
[7], or by modifying the scheduler to implement co-scheduling
[6]. In a Grid, many clusters have either single or dual CPU
hosts, and eliminating daemons and modifying the scheduler
may be difficult due to administrative issues. Hence, we be-
lieve the noise cannot be avoided, and algorithms and systems
should be designed to take the noise into account. Conditional-
allreduce does so, as fewer threads need to be synchronized,
thereby reducing the impact of a delayed thread.

Relaxing the restrictions on a collective operation, as in
conditional-allreduce and MagPIe [5], can be regarded as
the same approach as using a weaker consistency models to
improve the scalability of distributed shared memory systems
[16]. Weaker consistency models generally introduce a more
complex programming model. However, we believe the relax-
ation is necessary to get efficient collective communication
performance in Grids.

Astrolabe [17] is a recent system for collective (or group)
communication in WANs. The primary design goal in Astro-
labe was scalability. For collective communication in scientific
computing applications, the focus is often on the latencies of
operations.

III. SYSTEMS

A. PATHS

Usually, MPI implementations only allow the communica-
tion structure to be implicitly changed either by using the MPI
topology mechanism or by setting attributes of communicators.
The PATHS system [18] allows inspecting, configuring and
mapping the collective communication structure to the re-
sources in use. PATHS is an extension to the PastSet structured
shared memory system [19], where threads communicate by
reading and writing tuples to named elements.

Using PATHS, we create a sequential spanning tree with
all threads participating in the allreduce as leafs (figure 1).
For each thread we specify a path through the communication
system to the root of the tree (the same path is used for reduce
and broadcast). On each path, several wrappers can be added.
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Fig. 1. An application with six computational threads (CT) and two TCP/IP
service threads (ST) using a collective operation tree implemented using
allreduce wrappers (small ovals). Results are stored in a PastSet element.

Each wrapper has code that is applied as data is moved down
the path (reduce) and up the path (broadcast). Wrappers are
used to store data in PastSet and to implement communication
between cluster hosts. Also, some wrappers, such as allreduce
wrappers, join paths and handle the necessary synchronization.

Figure 1 shows the PATHS/PastSet runtime system. It is
implemented as a library that is linked with the application.
The application is usually multi-threaded. The PATHS server
consists of several threads that service remote clients. The
service threads are run in the context of the application. Also,
PastSet elements are hosted by the PATHS server. Each path
has its own TCP/IP connection (thus there are several TCP/IP
connections between PATHS servers). Wrappers are run in the
context of the calling threads, until a wrapper on another host
is called. These wrappers are run in the context of the threads
serving the connection.

The allreduce wrappers block all but the latest arriving
thread, which is the only thread continuing down the path.
The final reduced tuple is stored in the PastSet element before
it is broadcasted by awakening blocked threads that return with
a copy of the tuple.

B. EventSpace

To collect performance data we use the EventSpace system
[20]. The paths in a spanning tree are instrumented by inserting
event collectors, implemented as PATHS wrappers, before and
after each wrapper. For each allreduce operation, each event
collector records a timestamp when moving down and up the
path. The timestamps are stored in memory and written to
trace files when the paths are released. In this paper, analysis
is done post-mortem.

Depending on the number of threads and the shape of the
tree, there can be many event collectors. For example, for a
30 host, dual CPU cluster, a tree has 148 event collectors
collecting 5328 bytes of data for each call (36 bytes per event
collector). The overhead of each event collector is low (0.5µs

on a 1.4 GHz Pentium 4) compared to the hundreds of mi-
croseconds per collective operation. Most event collectors are
not on the slowest path, thus most data collecting is done
outside the critical path. Hence, even for the noise-allreduce



Fig. 2. Conditional-allreduce implementation for two clusters.

microbenchmark the overhead due to data collection is less
than 1%.

IV. CONDITIONAL-ALLREDUCE

Many parallel applications, such as iterative algorithms, use
the result of an allreduce operation to check for convergence
(one such application is described in section V-A). Hence, the
result value is only needed in the last iteration of the algorithm.
For all others it is only necessary to reduce enough values until
it can be determined whether the convergence condition is true
or not. To determine if the condition is true, only values from
a subset of the threads may be required. If these threads are
on the same cluster, no WAN communication is necessary.

There are some limitations to how the allreduce can be
used: (a) the value should only be used for the convergence
test and perhaps debugging, (b) the allreduce should not be
used as a barrier, and (c) only positive (or only negative)
values should be contributed. We believe many applications
meet these requirements.

The implementation of conditional-allreduce is based on a
wide-area optimal algorithm used in MagPIe [5], but with
some differences. As shown in figure 2, we have a sequential
allreduce tree on each cluster (as described in section III-A).
Between the clusters an all-to-all is implemented using a fully
connected graph. An allreduce is done on each cluster and the
result is stored in a PastSet element. On each root node there
are prefetch threads that pull1 tuples from the result elements
on other clusters, and store these tuples in caches implemented
using PastSet elements. The pulled tuples and the local result
are reduced, and broadcasted to all threads on the cluster.

To use conditional-allreduce, the application programmer
specifies that an allreduce should be conditional, the type of
evaluation to use (greater than, less than or equal), and the
constant to evaluate against. The operation type (sum, max
or min) is already specified for the allreduce. As the PATHS

1We can easily implement pushing also (as in MagPIe).

system allows us to set properties of individual nodes in the
allreduce tree at initialization time, we have set the condition
and constant as properties of the allreduce tree nodes.

The condition check is done after storing the result for the
cluster in the local PastSet element. After that, a new check is
made every time a tuple is read from a cache. If the condition
is found to be true, a broadcast is initiated for the local cluster,
and no more caches are accessed.

Since the allreduce operation no longer synchronizes all
participants, some clusters (or allreduce trees) may get ahead
of others. To reduce the amount of buffering needed for the
result values, a sequence number is stored with the result. If
allreduce tree A pulls a tuple from allreduce tree B, and the
tuple has a larger sequence number than A’s result tuple, then
B must have found the condition to be true for the iteration A
is at (otherwise B would have needed A’s result tuple). Hence,
the condition must also be true for A. The sequence number
allows the memory for the caches on a host to be limited to
only one tuple for each remote cluster.

As described in section III-A, there are multiple threads that
are synchronized by the allreduce root wrapper. To reduce the
introduced overhead, and simplify the implementation, only
the thread arriving latest reads tuples from the caches. The
read operation is non-blocking, since a tuple from any of the
remote clusters can be enough to make the condition true, and
we do not know which tuple will arrive first. Between each
pull there is a yield call to allow other threads to run.

On each root host there is one prefetch thread per remote
cluster. Each thread only fetches the newest tuple from the
remote cluster. Hence some tuples are not fetched if the
difference between the WAN latency and the time per local
allreduce on the remote cluster is large. The read operation
blocks on the remote cluster if there are no new result tuples.

V. METHDOLOGY

A. Noise-allreduce Microbenchmark

To measure the performance of the different allreduce
algorithms, and the system noise in our clusters, we use
a benchmark that imitates the behavior of medium grained
parallel applications (which are realistic to run on a Grid [2]).
Each thread independently sorts a list of integers, a task that
is automatically tuned to take 30ms (about the same as the
largest WAN latency). The benchmark is run for about 15.000
iterations. It has been shown that system noise resonating
with the computation granularity of a synchronous application
will cause a substantial performance loss [7]. Thus, for our
benchmark the worst kind of noise delays the computation for
about 30 ms [7].

We only use 8 byte messages. Most scientific applications
have message sizes of less than 256 bytes for most collective
operations [21]. Also, we are mostly interested in avoiding the
WAN latency.

B. Input Data

The performance of conditional-allreduce depends on the
values used in the operation, which depend on the input data.



Each noise-allreduce thread reads the values it contributes
with from a file. We use five sets of input files. Two sets
are the unrealistic best-case and worst-case allreduce values
for conditional-allreduce. The three others are traces of actual
values used in Successive Over-Relaxation (SOR), when using
different data sets. The data sets have different convergence
rates.

SOR is a well known iterative converging linear algebra
algorithm that approximates each element in a matrix to
its neighbors until the sum of all changes in an iteration
converges below a given value. We have traced a Red-Black
implementation of SOR. Each worker-process updates all its
red points and then exchanges red border point values with its
neighbors using point-to-point communication. Then the black
points are updated and exchanged. Each process calculates a
delta, by summing, for all its matrix elements, the absolute
value of the new value subtracted from the old value. At the
end of each iteration there is a check for convergence. First,
the sum of all deltas is calculated using MPI Allreduce. Then
the resulting global delta is compared to a constant epsilon.
The algorithm terminates if the global delta is smaller than
epsilon.

A 1380×1380 matrix was divided among 138 processes.
Epsilon is 0.01904. The first data set, frosty, is from a heat dis-
tribution simulation where the top row is set to 27760 degrees
Celsius2, while the remaining elements are set to −273.15

degrees Celsius3. SOR converges after 5403 iterations.
The second data set, tridiagonal, uses a tridiagonal matrix

where all dialog elements, and all elements on the three
sub-diagonals and super-diagonals are set to a random value
between 0 and 10000. The remaining values are zero. Conver-
gence is after 1737 iterations.

For the third data set, random, the matrix elements are
initialized with random values between zero and 10.000. The
computation converges after 273 iterations.

C. Clusters

The hardware platform comprises six clusters:

RoadRunner: 48 single-CPU Celeron 1700 MHz, 256 MB
RAM. Odense, Denmark.

Dominic: 7 dual-CPU Pentium III 733 MHz, 2 GB RAM.
Aalborg, Denmark.

Blade 10 single-CPU Mobile Pentium III 900 MHz,
1024 MB RAM. Tromsø, Norway.

2W 18 dual-CPU Pentium II 300 MHz, 256 MB RAM.
Tromsø, Norway.

4W Eight four-CPU Pentium Pro 166 MHz, 128 MB
RAM. Tromsø, Norway.

8W Four eight-CPU Pentium Pro 200 MHz, 2 GB RAM.
Tromsø, Norway.

The clusters are not directly accessible from the Internet.
Communication through and from the Tromsø clusters goes
through a two-way Pentium II 300 MHz with 256 MB RAM.

2The surface temperature of a blue star.
3Zero Kelvin, or absolute zero.

Fig. 3. Clusters, gateway hosts and WAN link emulator hosts of the multi-
cluster used in the experiments. For each WAN link the average and standard
deviation of the two-way TCP/IP latency is given.

For Roadrunner, a Pentium III 1400 MHz with 1 GB RAM
is used as a gateway host. The gateway host for Dominic is
a dual-CPU Pentium III 733 MHz with 640 MB RAM. The
clusters use TCP/IP over a 100 Mbps Ethernet for intra-cluster
communication. Inter-cluster communication uses the Nordic
interconnection of national research networks (NORDUnet).

There was no background workload on the cluster hosts.
However, there was other traffic on the department networks,
and on the Internet. On all TCP/IP connections the Nagel
algorithm is disabled to ensure that even small data packets
are sent immediately. The operating system on all clusters is
Linux.

D. Wide-area Network Emulator

To increase the number of WAN links we emulate WAN
links between the Tromsø clusters. The emulator is inspired
by the Panda WAN emulator [22]. We use two of the 8W hosts
as gateways for Blade and 2W. Thus, a message from a 2W
host to a Blade host is first sent to the 2W’s gateway, which
forwards it to Blade’s gateway, which finally forwards it to the
Blade host. Figure 3 shows the topology of the multi-cluster.

The emulator is implemented using PATHS wrappers that
emulate a WAN link. These wrappers are run on the gateway
hosts. For all messages a delay time is calculated by using
the latency and bandwidth of the emulated WAN link, and the
message length. The latency and bandwidth are read from a
file. For each WAN connection we have one trace file for each
direction consisting of latency and bandwidth traces.

We have collected the WAN traces using the Unix ping
tool. The ping latency is similar to the TCP latency due to the
small message size used in the experiments (8 bytes). Also,
bandwidth is not measured; instead the maximum bandwidth
of the link is used. Bandwidth is not important for the small
messages used.

The measured WAN connections were between the Uni-
versity of Tromsø and: (i) Norwegian University of Science
and Technology in Trondheim, Norway, and (ii) Finnmark
University College in Alta, Norway. The average two-way
latencies are given in figure 3.



VI. EXPERIMENTS

In this section we analyze the performance of different
allreduce implementations using the benchmark and clusters
described in section V. Also, for each allreduce implementa-
tion we measure the noise in the system.

A. Sequential Allreduce

To identify a baseline, we analyze the performance of a se-
quential multi-cluster allreduce tree implemented as described
in section III-A. The algorithm is similar to the algorithms
used in LAM-MPI [11] and MPICH [23]. However, our
spanning tree is SMP and WAN aware. The noise-allreduce
benchmark was run on the five clusters described in section
V-C, with the root of the spanning tree on a 4W host. Two of
the WAN links were emulated, as described in section V-D.
For each sender-receiver path there is one WAN link, but two
messages are sent over the link (one for reduce, and one for
broadcast). For 15.000 iterations the execution time was 1412
seconds.

As the sequential spanning three synchronizes all threads,
one slow cluster may delay all others. By analyzing the
message arrival order at the spanning tree root, we find that the
two slowest clusters are 2W and Dominic, arriving last 69%
and 23% of the times respectively. The many last arrivals for
Dominic were expected since the WAN link between Dominic
and 4W has the highest latency.

The 2W cluster has a performance problem caused by
the interaction between the allreduce spanning tree and the
workload. As described in section III-A, the broadcast of a
reduced value is implemented by unblocking a set of server
threads that return the value to their clients. The broadcast
may unblock a worker thread that uses the CPU, causing
server threads to wait. Hence, the last message may be sent
up to 30 ms later than the first. The spanning tree on the
other cluster with 2-way SMPs (Dominic) has a similar, but
smaller, problem. For the 2W send-receive paths, 58% of the
time spent in an allreduce was as a result of the WAN link,
compared to 87–89% for the paths on the other clusters (expect
for 4W where the paths do not have a WAN link). This shows
that the spanning tree on a cluster may have a significant
effect of the multi-cluster allreduce performance. Possibly, a
re-mapping or re-implementation may improve the spanning
tree performance.

For some RoadRunner hosts we had unexpected perfor-
mance irregularities, increasing the computation time from
30 ms to 36 ms for most iterations. A similar increase in
computation time was observed on other RoadRunner hosts
in other experiments. We do not believe the problem is
caused by other background workload, nor the spanning tree
implementation. Also, the disturbances occur too frequently
to be caused by system daemons. However, the increase is
overlapped by the larger WAN latencies and the performance
problems on 2W, demonstrating that the sequential spanning
tree tolerates noisy hosts as long as the noise doesn’t occur in
a cluster with the largest WAN latency to the root.

For the 15.000 iterations, only in 41 iterations at least one
of the threads was delayed for more than 30 ms compared to
the average computation time4. In 223 iterations at least one
thread was more than 10 ms delayed, in 359 iterations some
thread was more than 5 ms delayed, and in all iterations at
least one thread was 1 ms delayed. Thus the potential benefit
of hiding the WAN latency in the system noise is limited.

Earlier we have documented that there are large variations
in execution time per allreduce, and where within the commu-
nication system time is spent [24]. The multi-cluster spanning
tree exhibits even larger variations. However, the standard
deviation for the WAN links is low (figure 3). Thus, for our
system, variations in the communication systems have larger
impacts than variations in computation time.

To conclude, for a sequential spanning tree the WAN latency
is the primary cause of poor performance. However, the
implementation of the spanning tree on a cluster may also
cause performance problems. The potential for latency hiding
is small.

B. MagPIe Allreduce

When using the worst-case data set for conditional-
allreduce, the condition is never true and hence every iteration
requires an all-to-all exchange. This behavior is similar to the
MagPIe allreduce algorithm [5]. However, due to differences
in the underlying systems, the implementation differs5. The
MagPIe algorithm should improve performance as each allre-
duce operation introduces just a single one-way latency. As
we do not have global clock synchronization, we assume the
one-way latency to be half of the measured two-way latency.

For 15 000 iterations, the execution time was 1474 seconds,
which is slower than for the sequential configuration. The
potential speedup of MagPIe is dependent on the multi-cluster
topology, in particular the difference between the largest two-
way and one-way WAN latency. For our case, the expected
speedup was 1.16. However, when running the benchmark on a
multi-cluster with an emulated topology where the largest two-
way latency was twice the largest one-way latency and there
was 50% communication, we achieved speedups of around
2.0.

In our implementation a potential bottleneck are the pre-
fetch threads, as we assume the time to send the read request is
overlapped with computation. The performance data confirms
this assumption as the largest two-way WAN latency is around
60 ms indicating that the send request latency (30 ms) is
overlapped with computation.

To analyze the performance of conditional allreduce, we
compare for each cluster-root host, the order, and wait time
until tuples where read from the pre-fetch thread caches.
Wait times longer than the one-way latency indicate that the

4By comparing with the average value, we can ignore the performance
faults on RoadRunner.

5MagPIe is implemented on top of MPICH.
6The largest one-way WAN latency is in the all-to-all graph is 30 ms, and

the largest two-way latency for the sequential tree is 36 ms giving a speedup
of 1.2. However, only 63% is spent communicating reducing the potential
speedup to 1.1.



cluster must wait for another cluster to complete its sequential
allreduce. Smaller wait times indicate that tuples where either
in the cache or already sent (but not yet arrived).

For all cluster-roots, most last arrivals are either from
RoadRunner or from 2W, indicating that these are the slowest
clusters. Also, the wait times on 4W, Blade and Dominic are
larger than the one-way latency for these two clusters. On 2W
and RoadRunner all wait times are smaller than the one-way
latency, except for 2W waiting for Roadrunner and vice versa.
Hence no single cluster is especially slow.

As for the sequential experiment, the 2W cluster has perfor-
mance problems caused by the spanning tree. The difference
between the first and last send in broadcast is larger, probably
due to the increased load due to the pre-fetch threads on the
root host. On RoadRunner, some hosts still compute for 36 ms
in most iterations.

The MagPIe algorithm allows some of the WAN latency
to be hidden in the noise since the allreduce time for the
slowest cluster may not include WAN latencies as messages
can be exchanged while waiting for the slowest thread. If
the probability of two cluster being slowest are equal, the
clusters will alternate being slowest. However, due to the
performance problems on 2W and RoadRunner, these were
slowest for most iterations. Due to the large variations within
the communication system, it is difficult to determine whether
these actually allowed some of the WAN latency to be hidden.

In conclusion: The potential for speedup was limited due to
the multi-cluster topology used, and we were unable to demon-
strate significant speedups due to problems with the workload-
balancing on RoadRunner and the sequential spanning tree
implementation on the 2W cluster.

C. Conditional-allreduce

1) Best-case: For the best-case data set, inter-cluster com-
munication is only necessary in the last of the 15 000 itera-
tions. Compared to the sequential spanning tree, the speedup
is 2.4. Average time per iteration is 38.6 ms, which is close to
the computation time for the slowest thread. The performance
improvement is due to all but the latest iterations not needing
any results from the other clusters.

There is no problem with the broadcast on the 2W cluster,
but some RoadRunner threads still have a computation time
of 36 ms for most iterations. Also, the computation time for
the 4W root host threads has increased to 34 ms. The other
cluster roots are unaffected (these hosts are much faster than
the 4W hosts). Due to the performance problems on 4W and
RoadRunner, the three other clusters wait 53 and 102 seconds
for results from these clusters in the last iteration.

The amount of computation noise is about the same as for
the worst-case data set. But the variation of the measured
performance within the communication system is lower, since
fewer threads are synchronized on each iteration, and there is
no broadcast problem on 2W.

To conclude, the best-case data set for conditional-allreduce
allows the WAN latency to be completely hidden. Also, the

overhead introduced by the prefetch threads is low on fast
hosts.

2) Frosty: The frosty heat distribution was simulated three
times; hence all threads had to contribute in at least 3 of the
16210 allreduce operations. The average time per operation
is comparable to best-case (39.6 ms) even if the data set has
more operations requiring results from other clusters. As for
the best-case experiment, some RoadRunner threads compute
for 36 ms, while the 4W root host threads compute for 34 ms.

For 4W and Dominic, only four operations required values
from other clusters (the spikes at each 5403rd iteration in
figure 4). Both clusters waited longest for the results from
RoadRunner due to the difference in the computation time
between RoadRunner and the other clusters (13 and 26 seconds
respectively). For the other clusters, 4W waited between 1 ms
(for Dominic) and 21 ms (for 2W), and Dominic waited
between 99 ms (for Blade) and 14 seconds (for 4W).

RoadRunner has more threads than 4W, which provides it
with more local results to check the condition for. However,
14 operations need remote results due to the input data
dependency7. For nine of these operations, only one remote
result was required to determine the condition to be true. All
required values were prefetched, so the wait time was only a
few microseconds (figure 4).

2W required values from other clusters for 165 operations.
For 161 of these, only prefetched values from Blade were
needed, thus the wait time for these operations were only a
few microseconds.

On Blade there were 5291 operations that required values
from other clusters, due to the cluster having only 10 threads.
The number of operations requiring remote cluster values
increase as the computation is close to convergence (figure
4). The average wait time ranges from 2.5 ms (for Dominic)
to 133 ms (for 4W). However, the median wait times were only
a few µs indicating that for most iterations prefetched values
could be used.

The results show that, even if there are more operations
that require values from other clusters, performance is not
degraded compared to the best-case experiment as most values
are prefetched, resulting in a median wait time of a few
microseconds. Furthermore, only values from one or a few
clusters are required for most operations that require values
from remote clusters.

3) Tridiagonal: Using the tridiagonal data set, the average
time for the 15635 iterations was 38.6 ms. For 4W and
Dominic, only the 9 convergence iterations required values
from other clusters. For the other clusters, more remote values
where required: 55 for RoadRunner, 254 for 2W, and 6013 for
Blade. The wait times are as in the frosty data set.

4) Random: For the random data set, the average time per
iteration was 38.3 ms. The computation converges after 273 it-
erations and is repeated 55 times. As for the other conditional-
allreduce experiments, some threads on RoadRunner compute
for 36 ms, and the 4W root threads compute for 34 ms. Figure

74W has the top row that initially has different values than the other rows.
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Fig. 5. For each cluster root, the time to determine whether the condition is true using the random data set. For clarity the graph for Dominic is not shown.

5 shows the time to determine if the condition is true for all
clusters.

Dominic and 4W has fewest (55) operations that require
values from other clusters. The average wait times ranged
from 0.5 ms (4W from Blade) to 1.8 seconds (Dominic from
RoadRunner).

On RoadRunner, 235 operations required remote cluster
results. The wait time was low with most operations waiting
only a few microseconds. For the 759 cache reads on 4W,
the medians were 4–64 µs. But the means were larger for
RoadRunner (64 ms) and 2W (21 ms).

2W has 3267 operations that require results from other
clusters, of which 112 required values from 4W. The mean
wait time for values from 4W was 411 ms (median 205 ms).

The median values for the other clusters were lower since
prefetched values could be used for most operations.

As for the other data-sets, Blade has many operations
requiring results from other clusters (4388). However, for most
operations prefetched values could be used.

To conclude, even with a data set that converges after 273
iterations we get similar performance results as for a data
set with converge after 5403 iterations. Hence, we believe
conditional-allreduce allows the WAN latency to be hidden
for many converging iterative algorithms.

VII. CONCLUSION AND FUTURE WORK

Collective operations for Grids containing multiple clusters
should be designed to tolerate the high latency and low



bandwidth of WANs. We have evaluated two approaches
for improving the performance of the allreduce collective
operation on Grids of this kind: (i) latency hiding, and (ii)
extending collective operations with application semantics.

We have described conditional-allreduce, a novel allreduce
algorithm that applies application knowledge to reduce the
number of WAN messages exchanged. The performance of
conditional-allreduce was compared to other allreduce algo-
rithms by running a benchmark on a real multi-cluster.

We proposed hiding some of the WAN latency in system
noise, which delays the arrival of threads at synchronizing
collective operations. However, our results demonstrate that
the system noise in our multi-cluster is too low to allow a
significant part of the WAN latency to be hidden.

For our setup, a wide area optimal allreduce algorithm did
not perform significantly better than a sequential allreduce
spanning tree. This is due to the multi-cluster topology,
workload tuning problems on one cluster, and competition
for resources between the communication system and the
workload on another cluster.

Using conditional-allreduce, WAN latency was avoided for
most operations since these require values from only one
cluster. For the remaining operations, only values from a
few clusters were needed, and these where often pre-fetched.
There was no difference in performance when using a data
set from an iterative converging algorithm that converged
after 5403 iterations, or a data set from another algorithm
which converges after 273 iterations. Conditional-allreduce
only introduced overhead on the cluster with the slowest hosts.

Applications using conditional-allreduce can be run on
a grid without performance degradation, provided that the
point-to-point and other collective operations can tolerate the
WAN latency and bandwidth problems. For many applications
asynchronous point-to-point communication can be used [2].
We will as future work evaluate algorithms and communication
systems for Grids using other types of collective operations
with larger messages, such as all-to-all. We believe pre-
fetching and replication may improve the performance of
these operations. An open question is whether and how the
semantics of these operations can be relaxed, or if other
programming models may be required for applications using
these operations.
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