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Abstract. Microarray experiments can provide molecular-level insight into a 
variety of biological processes, from yeast cell cycle to tumorogenesis. 
However, analysis of both genomic and protein microarray data requires 
interactive collaborative investigation by biology and bioinformatics 
researchers. To assist collaborative analysis, remote collaboration tools for 
integrative analysis and visualization of microarray data are necessary. Such 
tools should: (i) provide fast response times when used with visualization-
intensive genomics applications over a low-bandwidth wide area network, (ii) 
eliminate transfer of large and often sensitive datasets, (iii) work with any 
analysis software, and (iv) be platform-independent. Existing visualization 
systems do not satisfy all requirements. We have developed a remote 
visualization system called Varg that extends the platform-independent remote 
desktop system VNC with a novel global compression method. Our evaluations 
show that the Varg system can support interactive visualization-intensive 
genomic applications in a remote environment by reducing bandwidth 
requirements from 30:1 to 289:1. 

Keywords: Remote visualization, genomics collaboration, Rabin fingerprints, 
compression. 

1. Introduction 

Interactive analysis by biology and bioinformatics researchers is critical in extracting 
biological information from both genomic [1], [2] and proteomic [3], [4], [5], [6], [7]  
microarrays.  Many supervised and unsupervised microarray analysis techniques have 
been developed [8], [9], [10], [11], and the majority of these techniques share a 
common need for visual, interactive evaluation of results to examine important 



patterns, explore interesting genes, or consider key predictions and their biological 
context. 

Such data analysis in genomics is a collaborative process.  Most genomics studies 
include multiple researchers, often from different institutions, regions, and countries.  
Of the 20 most relevant papers returned by BioMed Central with the query 
“microarray,” 14 had authors located at more than one institution, and 7 had authors 
located on either different continents or cross continents. Such collaboration requires 
interactive discussion of the data and its analysis, which is difficult to do without 
sharing a visualization of the results. To make such discussions truly effective, one in 
fact needs not just static images of expression patterns, but an opportunity to explore 
the data interactively with collaborators in a seamless manner, independent of the 
choice of data analysis software, platforms, and of researchers’ geographical 
locations.   

We believe that an ideal collaborative, remote visualization system for genomic 
research should satisfy three requirements.  First, synchronized remote visualization 
should have a fast response time to allow collaborating parties to interact smoothly, 
even when using visualization-intensive software across a relatively low-bandwidth 
wide area network (WAN).  Second, collaborating parties should not be required to 
replicate data since microarray datasets can be large, sensitive, proprietary, and 
potentially protected by patient privacy laws.  Third, the system should allow 
collaborators to use any visualization and data analysis software running on any 
platform.   

Existing visualization systems do not satisfy all three requirements above.  
Applications with remote visualization capabilities may satisfy the first and the 
second requirements, but typically not the third as require universal adoption among 
participating collaborators.  Thin-client remote visualization systems, such as VNC 
[12], Sun Ray [13], THINC [14], Microsoft Remote Desktop [15] and Apple Remote 
Desktop [16] satisfy only the second requirement because they do not perform 
intelligent data compression and all except VNC are platform-dependent.  Web 
browser-based remote visualization software can satisfy the third requirement, but not 
the first two because these systems are not interactive and do not optimize the 
network bandwidth requirement. 

This paper describes the design and implementation of a remote visualization 
system called Varg that satisfies all three requirements proposed above.  To satisfy 
the first requirement, the Varg system implements a novel method to compress 
redundant two-dimensional pixel segments over a long visualization session. To 
satisfy the second and the third requirements, the Varg system is based on a platform-
independent remote desktop system VNC, whose implementation allows remote 
visualization of multiple applications in a network environment.   

The main contribution of the Varg system is the novel method for compressing 2-D 
pixel segments for remote genomic data visualization.  Genomic data visualization 
has two important properties that create opportunities for compression.  The first is 
that datasets tends to be very large.  A microarray dataset typically consists of a 
matrix of expression values for thousands or tens of thousands of genes (rows).  The 



second is that due to the limitation of display scale and resolution, researchers 
typically view only tens of genes at a time by frequently scrolling visualization frames 
up and down.  As a result, the same set of pixels will be moved across the display 
screen many times during a data analysis and visualization session.  We propose a 
novel method to identify, compress and cache 2-D pixels segments.  Not sending 
redundant segments across the WAN greatly improves the effective compression ratio 
reducing network bandwidth requirements for remote visualization. 

Our initial evaluation shows that the prototype Varg system can compress display 
information of multiple genomic visualization applications effectively, typically 
reducing the network bandwidth requirement by two orders of magnitude.  We also 
demonstrate that this novel method is highly efficient and introduces a minimal 
overhead to the networking protocol; and that the Varg system can indeed support 
multiple visualization-intensive genomic applications in a remote environment 
interactively with minimal network bandwidth requirement. 

2. System Overview 

 

Figure 1: Remote visualization overview. The VNC server sends screen updates to the 
VNC client. The Varg system caches updates and provides compression by replacing updates 
already in the client cache with the cache index. 

Varg is a network bandwidth optimized, platform-independent system that allows 
users to interactively visualize multiple remote genomic applications across a WAN.  
The architecture of Varg is based on a client-server model as shown in Figure 1.  Varg 
leverages the basic VNC protocol (called RFB) to implement platform-independent 
remote visualization and extends it with a high-speed 2-D pixel segment compression 
module with a cache in the server and a decompression module with a cache in the 



client.  The Varg server runs multiple visualization applications, compresses their 
two-dimensional pixel segments, and communicates with the remote Varg client. The 
client decompresses the data utilizing a large cache and performs remote 
visualization.   

The caches of the Varg server and client cooperate to minimize the required 
network bandwidth by avoiding redundant data transfers over the network.   Unlike 
other global compression methods for byte data streams [17, 18], Varg is designed to 
optimize network bandwidth for remote data transfers of 2-D pixels segments 
generated by genomic visualization applications on the VNC server. 

Since Varg is built on the VNC protocol, it allows multiple users to conveniently 
visualize and control a number of applications in a desktop across a network.  When 
an owner of some sensitive or very large data set wants to collaborate with a remote 
collaborator, she can run one or more analysis programs that access her sensitive data 
on her Varg server, which connects with a Varg client on her collaborator’s site.  The 
researchers can then use these programs in a synchronized fashion across the network.  
Although the collaborator can visualize and control the application programs in the 
same way as the owner, the Varg client receives only visualization pixels from the 
Varg server; no sensitive data is ever transferred across the network.  We expect that 
this feature may be especially useful to researchers working with clinical data due to 
privacy and confidentiality concerns. 

3. Compressing 2-D Pixel Segments  

The main idea in the Varg system is to compress visualization pixel data at a fine-
grained 2-D pixel segment level.  The system compresses 2-D pixel segments by 
using a global compression algorithm to avoid sending previously transferred 
segments and by applying a slow, but efficient, local compression [19] on the unique 
segments.  This section describes Varg’s basic compression algorithm, explains our 
novel content-based anchoring algorithm for 2-D pixel segments, and outlines an 
optimization of the compression algorithm using a two-level fingerprinting scheme 
that we developed. 

3.1. Basic Compression Algorithm 

The basic compression algorithm uses fingerprints together with cooperative caches 
on the Varg server and client to identify previously transferred pixel segments, as 
shown in Figure 2. 



 

Figure 2: Compression scheme. The screen is divided into regions which are cached at both 
ends of the low-bandwidth network. Fingerprints are sent in place of previously sent regions. 

 

The algorithm on the Varg server is:  

• Process an updated region of pixels from the VNC server 

• Segment the region into 2-D pixel segments 

• For each segment, compute its fingerprint and use the fingerprint as the 
segment’s identifier to lookup in the server cache.  If the segment has not been 
sent to the Varg client previously, compress the segment with a local 
compression method and send the segment to the client.  Otherwise, send the 
fingerprint instead. 

The algorithm on the Varg client is: 

• If the received data is a 2-D pixel segment, decompress it with a 
corresponding algorithm, write the fingerprint and segment to the cache, and 
then pass the segment to the VNC client 

• If the received data is a fingerprint, retrieve the segment of the fingerprint 
from its cache and then pass the segment to the VNC client. 

The basic algorithm is straightforward and its high-level idea is similar to previous 
studies on using fingerprints (or secure hashes) as identifiers to avoid transfer of 
redundant data segments [20, 21], [22], [17], [18].  The key difference is that previous 
studies are limited to deal with one-dimensional byte streams and have not addressed 
the issue of how to anchor 2-D pixel segments.  In a later section, we will also present 
an algorithm to use short fingerprints to compress repeated 2-D pixel segments.   

3.2. Content-Based Anchoring of 2-D Pixel Segments 

One basis of our approach is content-based anchoring where the 2-D region of 
display-pixels is divided into segments based on segment content.  A simpler 
approach would be to anchor segments statically (such as an 8×8 pixel grid, used in 
MPEG compression algorithms). The problem with a static approach is that the 
anchoring is sensitive to screen scrolls.  When a user scrolls her visualization by one 
pixel, the segmentation of 2-D pixels will be shifted by one pixel relative to the 
displayed image. Even if the entire scrolled screen has been transferred previously, 



the content of segments will typically have changed, giving a new fingerprint and 
requiring a new transfer across the WAN.  

Our approach is to perform content-based anchoring instead of static anchoring. 
The anchoring algorithm takes its input from the frame-buffer, and returns a set of 
rectangular segments which subdivide the screen.  The goal of the algorithm is to 
consistently anchor the same groups of pixels no matter where they are located on the 
screen.  The main difficulty in designing a content-based anchoring algorithm for a 
screen of pixels is that the data is two dimensional. 

Manber introduced a content-based technique to anchor one-dimensional data 
segments for finding similar files [22]. His method applies a Rabin fingerprint filter 
[23] over a byte data stream and identifies anchor points wherever the k least 
significant bits of the filter output are zeros. With a uniform distribution, an anchor 
point should be selected every 2k bytes. 

Our algorithm combines the statically divided screen approach with Manber’s 
technique. The algorithm is based on the observation that content motion in 
microarray analysis is often due to vertical or horizontal scrolling. However, it is not 
practical to do redundancy detection both horizontally and vertically due to the 
computational cost and reduced compression ratio caused by overlapping regions. 
Therefore, we estimate whether the screen has moved mostly horizontally or mostly 
vertically using Manber’s technique. We generate representative fingerprints for 
every 32nd row, and every 32nd column for the screenshot, and compare how many 
fingerprints are similar to the row and column fingerprints of the previous screenshot. 
Assuming that horizontal scrolling or moving will change most row fingerprints, but 
only a few column fingerprints, we can compare the percentage of similar row and 
column fingerprints to estimate which movement is dominant. 

 

Figure 3: A portion of the screen that is divided into segments that move with the content. 

For predominately vertical motion we statically divide the screen into m columns 
(m times screen height) and divide each column into regions by selecting anchoring 
rows. The anchoring rows are selected based on their fingerprint calculated using a 



four byte at a time Rabin fingerprint implementation. The column segmentation is 
ideal for scrolling because the regions move vertically with the content. If we detect 
predominately horizontal motion instead, we run the same algorithm but divide the 
screen into rows first and then divide each row into regions by selecting anchoring 
columns. 

Screen data can include pathological cases when large regions of the screen have 
the same color. For such regions, the fingerprints will be identical.  Thus, either all or 
no fingerprints will be selected. To avoid such cases, our algorithm does fingerprint 
selection in three steps. First all fingerprints are calculated. Second, we scan the 
fingerprints and mark fingerprints as similar if at least s subsequent fingerprints are 
identical. Third, we select fingerprints using the k most significant bits, while 
imposing a minimum distance m between selected fingerprints. Also, the first and last 
rows are always selected.  

Empirically we have found that the best results are achieved for s = 8, m = 16 or 
32, and k such that each 64th row on the average is selected. Also, such similar 
regions compress well using a local compression algorithm such as zlib [24] due to 
their repeated content. We have found empirically that imposing a maximum distance 
does not improve the compression ratio or compression time.  

3.3. An Optimization with Two-Level Fingerprinting 

An important design issue in using fingerprints as identifiers to detect previously 
transferred data segments is the size of a fingerprint. Previous systems typically chose 
a secure hash, such as 160-bit SHA-1 [25], as a fingerprint so that the probability of a 
fingerprint collision can be lower than a hardware bit error rate. However, since the 
global compression ratio is limited to the ratio of the average pixel segment size to the 
fingerprint size, increasing the fingerprint size reduces this limit on the compression 
ratio. 

To maximize the global compression ratio and maintain a low probability of 
fingerprint collision, we use a two-level fingerprinting strategy.  The low-level 
fingerprinting uses 32-bit Rabin fingerprint of fingerprints, one for each 2-D pixel 
segments. Although using such short fingerprints will have a higher probability of a 
fingerprint collision, they can be computed quickly using the fingerprints already 
computed for the anchoring, thereby maintaining a high global compression ratio.   

The high-level fingerprinting uses SHA-1 hashes as fingerprints.  It computes a 
160-bit fingerprint for each of the transferred pixel segments.  The server computes 
such a long fingerprint as a strong checksum to detect low-level fingerprint collisions.  
When a low-level fingerprint collision is detected, the server resends the pixel 
segment covered by the long fingerprint.   

Another way to look at this method is that the server may send two sets of updates, 
the first based on short fingerprints that can have collisions, and the second set of 
updates consisting of corrections in case of short fingerprint collisions.  This method 
reduces the user perceived end-to-end latency.  



4. Implementation 

We have implemented a prototype system (called Varg) consisting of a sequential 
server and a client, as described in Section 2.  The Varg server implements the 2-D 
pixel segment compression algorithm and Varg client implements the corresponding 
decompression algorithm described in the previous section. 

The integration of Varg compression, decompression, and cache modules with the 
VNC client and server are simple.  VNC has only one graphics primitive: “Put 
rectangle of pixels at position (x, y)” [12]. This allows separating the processing of 
the application display commands from the generation of display updates to be sent to 
the client. Consequently the server only needs to detect updates in the frame-buffer, 
and can keep the client completely stateless.     

Varg employs a synchronized client and server cache architecture that implements 
an eventual consistency model using the two-level fingerprinting mechanism.  The 
client and server caches are initialized at Varg system start time.  The client cache is 
then synchronized by the updates sent from the server.  The compression algorithm 
requires the client cache to maintain the invariant that whenever the client receives a 
fingerprint, its cache must have the fingerprint’s segment.  Since short fingerprints 
may have collisions, our prototype allows the client cache to contain any segment of 
the same short fingerprint at a given time.   The long fingerprint will eventually 
trigger an update to replace it with a recently visualized segment. 

5. Evaluation 

We have conducted an initial evaluation of the Varg prototype system.  The goal of 
the evaluation is to answer the following two questions: 

• What are the network communication requirements for remote visualization 
of genomic applications? 

• How much compression of network communication data can the Varg 
prototype system achieve for remote visualization of genomic applications? 

To answer the first question, we have measured the difference between available 
bandwidth on current WANs and the required bandwidth for remote visualization of 
Genomic applications.  To answer the second question, we used a trace-driven VNC 
emulator to find how much the Varg system can reduce the communication time for 
three genomic applications.  In the rest of this section, we will present our 
experimental testbed and then our evaluation results to answer each question. 



5.1. Experimental Testbed 

 

Figure 4: Experimental testbed for the bandwidth requirements and compression ratio 
evaluation. 

In order to compare compression ratios of various compression algorithms, our 
experimental testbed (Figure 4) employs two identical Dell Dimension 9150, each 
with one dual-core 2.8 GHz Pentium D processor and 2 GB of main memory. Both 
computers run Fedora Core 4, with Linux kernel 2.6.17SMP.   

The server runs with a screen resolution of 1280x1024 pixels and with a color 
depth of 32 bits per pixel. We also run an experiment on a display wall with a 
resolution of 3328x1536 pixels. 

To compare different systems, an important requirement is to drive each system 
with the same remote visualization workloads.  To accomplish this goal, we have used 
a trace-driven approach.  To collect realistic traces, we used the Java 
AWTEventListener interface to instrument three genomic microarray analysis 
applications. We used these to record a 10-minute trace containing all user input 
events for each case. Later the traces were used to create a set of screenshots, each 
taken after playing back a recorded mouse or keyboard event that changes the screen 
content. The screenshots are used by a VNC simulator that copies a screenshot to a 
shadow framebuffer, and invokes the Varg server, which does change detection and 
compression before sending the updates to the client. 

5.2. Network Communication Requirements 

In order to answer the question about the network communication requirements for 
remote visualization of genomic applications, we need to answer several related 
questions including the composition of communication overhead, the characteristics 
of available networks, the behavior of remote visualization of genomic applications, 
and the required compression ratio to meet certain interactive requirements. Our 
finding is that genomic applications require high compression ratio to compress the 
pixel data to use existing WAN connections. 

The network communication overhead can be expressed with a simple formula: 
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where L is the network latency, S is the data to be transferred, B is the 
network bandwidth, R is compression ratio, and C is compression time.  The formula 
considers compression a part of the network communication mechanism, thus the 
total communication overhead includes the round-trip network latency plus the time 
to compress and transfer the data. This formula ignores the overheads of several 
software components such as the VNC client and server. Also, we usually ignore 
decompression time since it is low compared to the compression time (less than 
1msec). 

Based on this formula, it is easy to see that different network environments have 
different implications for remote visualization.  Conventional wisdom assumes that 
WANs have low bandwidth. To validate this assumption we used Iperf [26] to 
measure the TCP/IP throughput between a server and a client connected using various 
local and wide area networks. The following table shows that the WAN throughput 
ranges from 0.2 to 2.13 Mbytes/sec (Table 1). This is up to 400 times lower than for 
Gigabit Ethernet. Also, the two-way latency is high, ranging from 11—120 ms. 

Table 1: TCP/IP bandwidth and latency for client-server applications run on local area and 
wide area networks. 

Network Bandwidth (Mbytes/sec) Latency (msec) 

Gigabit Ethernet 80.00 0.2 

100 Mbps Ethernet 8.00 0.2 

Princeton – Boston 2.13 11 

Princeton – San Diego 0.38 72 

Princeton (USA(– Tromsø (Norway) 0.20 120 



 

Figure 5: For regions larger than 80×80 pixels, the transmission time dominates the total 
communication overhead. 

Based on the characteristics of the available networks, an interesting question is 
what size of network transfers contribute significantly to the total communication 
overhead. Figure 5 shows how much transmission contributes to the communication 
time depending on the amount of pixel data sent over the network connection. For all 
WAN networks, the ratio of transmission time to communication time is more than 
50% for regions more than about 80×80 pixels or 25 Kbytes.    

Two natural questions are, how frequent are screen updates larger than 80×80 
pixels for genomics applications, and are the update sizes different compared to 
Office applications usually used in remote collaboration. To answer these questions, 
we measured the average VNC update size for three sessions using three applications 
on Windows XP: 

1. Writing this paper in Microsoft Word. 

2. Preparing the figures for this paper in Microsoft PowerPoint. 

3. Microarray analysis using the popular Java Treeview software [27]. 

For each application, we recorded a session lasting about 10 minutes. We 
instrumented the VNC client to record the time and size of all screen updates 
received. We correlated these to when the update requests were sent, to get an 
estimate for the size of each screen update.  



 

Figure 6: The screen regions update sizes for the Java Treeview application are much larger 
than for the Office applications. About 50% of the messages are more than 80x80 pixels. 

 

Figure 7: Compression ratio required to keep transmission overhead below a given 
threshold for the Princeton-San Diego network connection. The x-axis shows the percentiles for 
the Treeview message sizes in Figure 6. Compression time is not taken into account. 

The results show that updated regions are much larger for the genomic application 
than for the two office applications (Figure 6). About 50% of the messages are larger 



than 80×80 pixels, and hence for these the transmission time will be longer than the 
network latency for the WANs.  Another observation is that the genomic application 
has a higher update frequency than office applications. Combined these increase the 
required bandwidth. 

To see the impact of compressing pixel data for remote visualization, we have 
calculated the compression ratio necessary to maintain the transmission time below a 
given threshold for a cross-continent WAN (Figure 7).  We have several observations 
from the results.  First, it requires a compression ratio of about 25:1 to keep the 
transmission time below 10 msec for most of the network traffic.  Second, the 
compression ratio required to maintain the same transmission time increases rapidly 
for the top two percentiles. Third, as the message size increases, the compression ratio 
required for the different transmission times increases.  

The following section examines which compression ratio and compression time gives 
the best transmission time. 

5.3. Compression results 

To answer the question about what compression ratios the Varg system can achieve 
for remote visualization of genomic applications, we have measured compression 
ratios, compression cost and the reduction of transmission time.  

Table 2: Compression ratio for four genomic data analysis applications.  

  

Differencing 

2D pixel 
segment 

compression 

Ziv-Lempel 
(zlib) 

Total 
compression 

TreeView 1.89 5.74 19.98 216.76 

TreeView-Cube 2.87 4.05 24.88 289.19 

TMeV 1.52 2.46 7.90 29.54 

GeneVaND 3.15 2.72 10.85 92.96 

To measure the compression ratios the Varg system can achieve, we have used four 
15-minute traces recorded using: Java Treeview [27], Java Treeview on the display 
wall [28], TMeV [29], and GeneVaND [30].  For Treeview, the visualizations mostly 
are scrolling and selecting regions from a single bitmap.  GeneVaND has relatively 
small visualization windows and the trace includes 3D visualizations as well as some 
2D visualizations.  TMeV trace includes different short visualizations. 

The total compression ratios by our method are 217, 289, 30 and 93 for the four 
traces respectively (Table 2).  These high compression ratios are due to a combination 
of three compression methods: Region differencing, 2D pixel segment compression, 
and zlib local compression.  We have several observations based on these data.  First, 
the combined compression results are excellent.  Second, zlib contributes the most in 
all cases, but zlib alone is not enough to achieve high compression ratios.  Third, the 
2D pixel segment compression using fingerprinting contributes fairly significantly to 



the compression ratio ranging from 2.5 to 5.7.  This is due to the fact that the 
differencing phase has already removed a large amount of redundant segments.   

Table 3: Average compression time per screen update. The total compression time depends 
on the application window size, and how well the differencing and 2D pixel segment 
compression modules compress the data before zlib is run. 

 Differencing 2D pixel 
segment 

compression 

Ziv-Lempel 
(zlib) 

SHA-1 

 

TreeView 0.9 ms 3.8 ms 11.1 ms 3.5 ms 

TreeView-Cube 2 ms 7.9 ms 30.2 ms 7 ms 

TMeV 1.3 ms 6.6 ms 83.4 ms 7.7 ms 

GeneVaND 1 ms 2.7 ms 10.1 ms 1.5 ms 

To understand the contribution of different compression phases to the compression 
time, we measured the time spent in each module (Table 2).  The most significant 
contributor is zlib, which consumes more than 10 ms in all cases. In TMeV it 
consumes more than 83ms, since more data is sent through this module due to the low 
compression ratios for the differencing and 2D pixel segment compression modules. 
The second most significant contributor is anchoring, but it is below 8 ms even for the 
display wall case. Although SHA-1 calculation contributes up to 8ms in the worst 
case, its computation overlaps with network communication. 

 

Figure 8: Communication time distribution for update messages over the Princeton—
Boston network. For Treeview and GeneVaND more than 90% of the communication 
overheads are less than 100ms. The update size distribution differs from Figure 5, since a more 
accurate tracing tool was used to capture the trace. 



 

Figure 9: Communication time distribution for the Princeton—Tromsø network. For 
Treeview and GeneVaND more than 80% of the communication overheads are less than 
200ms.  

 

Figure 10: Communication time distribution with VNC compression for the Princeton—
Boston network. Compared to Varg the communication time shown in Figure 9 significantly 
increases for large messages.  



To understand the reduction in communication time, we recorded for each update 
the number of compressed bytes returned by each module, and the compression time 
for each module. This allows us to use Formula 1 to estimate the communication time 
for each of the WANs in Table 1. The cumulative distribution of communication times 
for the highest and lowest bandwidth networks are shown in Figure 8 and Figure 9. 
Without compression the communication overhead for the largest updates is several 
seconds. For the Princeton—Boston network the communication overhead with Varg 
is less than 100ms for over 90% of the messages (except for TMeV). On the 
Princeton—Tromsø network, for 80% of the update operations the communication 
overhead is less than 200ms, of which the latency contributes to 112 ms. 

To compare our compression against the zlib compression used in many VNC 
implementations for low-bandwidth networks, we disabled the 2D pixel segment 
compression module in Varg, and did a similar calculation as above (Figure 10). The 
results show a significant increase in communication time, especially for Treeview 
where the communication overhead is more than 300ms for about 50% of the 
messages. 

6. Related Work 

Compression algorithms used by VNC [12] implementations either take advantage 
of neighboring region color similarities, use general purpose image compression [31] 
such as JPEG [32], or general purpose compression such as zlib [19]. Neighboring 
region redundancy compression is fast but has low compression ratio. Therefore zlib 
is usually used for WANs. Our results show that the compression time for zlib is high. 
JPEG is lossy, and is not suited for Microarray analysis, since it may introduce visual 
artifacts that may influence the biologist’s interpretation of the data. 

Remote visualization systems that use high level graphics primitives for 
communication, such as Microsoft Remote Desktop [15], are able to cache bitmaps 
used for buttons and other GUI components. However, the high-level graphics 
primitives do not compress well leading to performance problems in WANs [13, 33]. 

Encoders used for streaming video, such as MPEG [34], compress data by 
combining redundancy detection and JPEG type compression. Usually a static pixel 
grid is used, which we have shown gives worse performance than our approach. In 
addition the MPEG compression is lossy and there are no real time encoders 
available. TCC-M [35] is a block movement algorithm designed for thin-client 
visualization that use unique pixels in an image (feature sets) to detect 2D region 
movement. However, redundancy is only detected between the two latest screen 
updates thus reducing the compression ratio. 

Earlier one-dimensional fingerprinting approaches [17, 18] require the two-
dimensional screen to be converted to some one-dimensional representation. This will 
split up two-dimensional regions on the screen causing the size of the redundant 
regions to decrease, hence reducing the compression ratio. 



Access Grid [36] provides multiple collaborators with multimedia services by 
multicasting audio, video and remote desktop displays such as VNC. However, 
Access Grid does not provide compression to reduce the network bandwidth 
requirement for specific data visualization such as genomic data exploration.  Since 
Varg extends the VNC protocols to compress 2D segments for genomic data 
visualization, it can effectively work together with Access Grid systems to support 
multi-party collaborations. 

7. Conclusion 

This paper presents the design and implementation of the Varg system: a network 
bandwidth optimized, platform-independent system that allows users to interactively 
visualize multiple remote genomic applications across a WAN.  The paper has 
proposed a novel method to compress 2-D pixel segments by using fingerprinting and 
proposed a two-level fingerprinting method to improve global compression, and to 
reduce compression time. 

We also found that genomic applications have much higher network bandwidth 
requirements than office applications. They require substantial compression of 
network data to achieve interactive remote data visualization on some examples of 
existing WAN.  

An initial evaluation of our prototype system shows that the proposed 2-D pixel 
segment compression method works well and imposes only modest overheads.  By 
combining with zlib and differencing compression methods, the prototype system 
achieved compression ratios ranging from 30:1 to 289:1 for four genomic 
visualization applications that we have experimented with.  Such compression ratios 
allow the Varg system to run remote visualization of genomic data analysis 
applications interactively across WANs with relatively low available network 
bandwidths. 
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