
Systems Support for Remote Visualization of Genomics
Applications over Wide Area Networks

Lars Ailo Bongo1, Grant Wallace2, Tore Larsen1,
Kai Li2, Olga Troyanskaya2,3

1 Department of Computer Science, University of Tromsø, N-9037 Tromsø, Norway.
2 Department of Computer Science, Princeton University, Princeton NJ 08544, USA.

3 Lewis-Sigler Institute for Integrative Genomics, Princeton University,

Princeton NJ 08544, USA.

{larsab, tore}@cs.uit.no

{gwallace, li, ogt}@cs.princeton.edu

Abstract. Microarray experiments can provide molecular-level insight into a
variety of biological processes, from yeast cell cycle to tumorogenesis.
However, analysis of both genomic and protein microarray data requires
interactive collaborative investigation by biology and bioinformatics
researchers. To assist collaborative analysis, remote collaboration tools for
integrative analysis and visualization of microarray data are necessary. Such
tools should: (i) provide fast response times when used with visualization-
intensive genomics applications over a low-bandwidth wide area network, (ii)
eliminate transfer of large and often sensitive datasets, (iii) work with any
analysis software, and (iv) be platform-independent. Existing visualization
systems do not satisfy all requirements. We have developed a remote
visualization system called Varg that extends the platform-independent remote
desktop system VNC with a novel global compression method. Our evaluations
show that the Varg system can support interactive visualization-intensive
genomic applications in a remote environment by reducing bandwidth
requirements from 30:1 to 289:1.

Keywords: Remote visualization, genomics collaboration, Rabin fingerprints,
compression.

1. Introduction

Interactive analysis by biology and bioinformatics researchers is critical in extracting
biological information from both genomic [1], [2] and proteomic [3], [4], [5], [6], [7]
microarrays. Many supervised and unsupervised microarray analysis techniques have
been developed [8], [9], [10], [11], and the majority of these techniques share a
common need for visual, interactive evaluation of results to examine important

patterns, explore interesting genes, or consider key predictions and their biological
context.

Such data analysis in genomics is a collaborative process. Most genomics studies
include multiple researchers, often from different institutions, regions, and countries.
Of the 20 most relevant papers returned by BioMed Central with the query
“microarray,” 14 had authors located at more than one institution, and 7 had authors
located on either different continents or cross continents. Such collaboration requires
interactive discussion of the data and its analysis, which is difficult to do without
sharing a visualization of the results. To make such discussions truly effective, one in
fact needs not just static images of expression patterns, but an opportunity to explore
the data interactively with collaborators in a seamless manner, independent of the
choice of data analysis software, platforms, and of researchers’ geographical
locations.

We believe that an ideal collaborative, remote visualization system for genomic
research should satisfy three requirements. First, synchronized remote visualization
should have a fast response time to allow collaborating parties to interact smoothly,
even when using visualization-intensive software across a relatively low-bandwidth
wide area network (WAN). Second, collaborating parties should not be required to
replicate data since microarray datasets can be large, sensitive, proprietary, and
potentially protected by patient privacy laws. Third, the system should allow
collaborators to use any visualization and data analysis software running on any
platform.

Existing visualization systems do not satisfy all three requirements above.
Applications with remote visualization capabilities may satisfy the first and the
second requirements, but typically not the third as require universal adoption among
participating collaborators. Thin-client remote visualization systems, such as VNC
[12], Sun Ray [13], THINC [14], Microsoft Remote Desktop [15] and Apple Remote
Desktop [16] satisfy only the second requirement because they do not perform
intelligent data compression and all except VNC are platform-dependent. Web
browser-based remote visualization software can satisfy the third requirement, but not
the first two because these systems are not interactive and do not optimize the
network bandwidth requirement.

This paper describes the design and implementation of a remote visualization
system called Varg that satisfies all three requirements proposed above. To satisfy
the first requirement, the Varg system implements a novel method to compress
redundant two-dimensional pixel segments over a long visualization session. To
satisfy the second and the third requirements, the Varg system is based on a platform-
independent remote desktop system VNC, whose implementation allows remote
visualization of multiple applications in a network environment.

The main contribution of the Varg system is the novel method for compressing 2-D
pixel segments for remote genomic data visualization. Genomic data visualization
has two important properties that create opportunities for compression. The first is
that datasets tends to be very large. A microarray dataset typically consists of a
matrix of expression values for thousands or tens of thousands of genes (rows). The

second is that due to the limitation of display scale and resolution, researchers
typically view only tens of genes at a time by frequently scrolling visualization frames
up and down. As a result, the same set of pixels will be moved across the display
screen many times during a data analysis and visualization session. We propose a
novel method to identify, compress and cache 2-D pixels segments. Not sending
redundant segments across the WAN greatly improves the effective compression ratio
reducing network bandwidth requirements for remote visualization.

Our initial evaluation shows that the prototype Varg system can compress display
information of multiple genomic visualization applications effectively, typically
reducing the network bandwidth requirement by two orders of magnitude. We also
demonstrate that this novel method is highly efficient and introduces a minimal
overhead to the networking protocol; and that the Varg system can indeed support
multiple visualization-intensive genomic applications in a remote environment
interactively with minimal network bandwidth requirement.

2. System Overview

Figure 1: Remote visualization overview. The VNC server sends screen updates to the
VNC client. The Varg system caches updates and provides compression by replacing updates
already in the client cache with the cache index.

Varg is a network bandwidth optimized, platform-independent system that allows
users to interactively visualize multiple remote genomic applications across a WAN.
The architecture of Varg is based on a client-server model as shown in Figure 1. Varg
leverages the basic VNC protocol (called RFB) to implement platform-independent
remote visualization and extends it with a high-speed 2-D pixel segment compression
module with a cache in the server and a decompression module with a cache in the

client. The Varg server runs multiple visualization applications, compresses their
two-dimensional pixel segments, and communicates with the remote Varg client. The
client decompresses the data utilizing a large cache and performs remote
visualization.

The caches of the Varg server and client cooperate to minimize the required
network bandwidth by avoiding redundant data transfers over the network. Unlike
other global compression methods for byte data streams [17, 18], Varg is designed to
optimize network bandwidth for remote data transfers of 2-D pixels segments
generated by genomic visualization applications on the VNC server.

Since Varg is built on the VNC protocol, it allows multiple users to conveniently
visualize and control a number of applications in a desktop across a network. When
an owner of some sensitive or very large data set wants to collaborate with a remote
collaborator, she can run one or more analysis programs that access her sensitive data
on her Varg server, which connects with a Varg client on her collaborator’s site. The
researchers can then use these programs in a synchronized fashion across the network.
Although the collaborator can visualize and control the application programs in the
same way as the owner, the Varg client receives only visualization pixels from the
Varg server; no sensitive data is ever transferred across the network. We expect that
this feature may be especially useful to researchers working with clinical data due to
privacy and confidentiality concerns.

3. Compressing 2-D Pixel Segments

The main idea in the Varg system is to compress visualization pixel data at a fine-
grained 2-D pixel segment level. The system compresses 2-D pixel segments by
using a global compression algorithm to avoid sending previously transferred
segments and by applying a slow, but efficient, local compression [19] on the unique
segments. This section describes Varg’s basic compression algorithm, explains our
novel content-based anchoring algorithm for 2-D pixel segments, and outlines an
optimization of the compression algorithm using a two-level fingerprinting scheme
that we developed.

3.1. Basic Compression Algorithm

The basic compression algorithm uses fingerprints together with cooperative caches
on the Varg server and client to identify previously transferred pixel segments, as
shown in Figure 2.

Figure 2: Compression scheme. The screen is divided into regions which are cached at both
ends of the low-bandwidth network. Fingerprints are sent in place of previously sent regions.

The algorithm on the Varg server is:

• Process an updated region of pixels from the VNC server

• Segment the region into 2-D pixel segments

• For each segment, compute its fingerprint and use the fingerprint as the
segment’s identifier to lookup in the server cache. If the segment has not been
sent to the Varg client previously, compress the segment with a local
compression method and send the segment to the client. Otherwise, send the
fingerprint instead.

The algorithm on the Varg client is:

• If the received data is a 2-D pixel segment, decompress it with a
corresponding algorithm, write the fingerprint and segment to the cache, and
then pass the segment to the VNC client

• If the received data is a fingerprint, retrieve the segment of the fingerprint
from its cache and then pass the segment to the VNC client.

The basic algorithm is straightforward and its high-level idea is similar to previous
studies on using fingerprints (or secure hashes) as identifiers to avoid transfer of
redundant data segments [20, 21], [22], [17], [18]. The key difference is that previous
studies are limited to deal with one-dimensional byte streams and have not addressed
the issue of how to anchor 2-D pixel segments. In a later section, we will also present
an algorithm to use short fingerprints to compress repeated 2-D pixel segments.

3.2. Content-Based Anchoring of 2-D Pixel Segments

One basis of our approach is content-based anchoring where the 2-D region of
display-pixels is divided into segments based on segment content. A simpler
approach would be to anchor segments statically (such as an 8×8 pixel grid, used in
MPEG compression algorithms). The problem with a static approach is that the
anchoring is sensitive to screen scrolls. When a user scrolls her visualization by one
pixel, the segmentation of 2-D pixels will be shifted by one pixel relative to the
displayed image. Even if the entire scrolled screen has been transferred previously,

the content of segments will typically have changed, giving a new fingerprint and
requiring a new transfer across the WAN.

Our approach is to perform content-based anchoring instead of static anchoring.
The anchoring algorithm takes its input from the frame-buffer, and returns a set of
rectangular segments which subdivide the screen. The goal of the algorithm is to
consistently anchor the same groups of pixels no matter where they are located on the
screen. The main difficulty in designing a content-based anchoring algorithm for a
screen of pixels is that the data is two dimensional.

Manber introduced a content-based technique to anchor one-dimensional data
segments for finding similar files [22]. His method applies a Rabin fingerprint filter
[23] over a byte data stream and identifies anchor points wherever the k least
significant bits of the filter output are zeros. With a uniform distribution, an anchor
point should be selected every 2k bytes.

Our algorithm combines the statically divided screen approach with Manber’s
technique. The algorithm is based on the observation that content motion in
microarray analysis is often due to vertical or horizontal scrolling. However, it is not
practical to do redundancy detection both horizontally and vertically due to the
computational cost and reduced compression ratio caused by overlapping regions.
Therefore, we estimate whether the screen has moved mostly horizontally or mostly
vertically using Manber’s technique. We generate representative fingerprints for
every 32nd row, and every 32nd column for the screenshot, and compare how many
fingerprints are similar to the row and column fingerprints of the previous screenshot.
Assuming that horizontal scrolling or moving will change most row fingerprints, but
only a few column fingerprints, we can compare the percentage of similar row and
column fingerprints to estimate which movement is dominant.

Figure 3: A portion of the screen that is divided into segments that move with the content.

For predominately vertical motion we statically divide the screen into m columns
(m times screen height) and divide each column into regions by selecting anchoring
rows. The anchoring rows are selected based on their fingerprint calculated using a

four byte at a time Rabin fingerprint implementation. The column segmentation is
ideal for scrolling because the regions move vertically with the content. If we detect
predominately horizontal motion instead, we run the same algorithm but divide the
screen into rows first and then divide each row into regions by selecting anchoring
columns.

Screen data can include pathological cases when large regions of the screen have
the same color. For such regions, the fingerprints will be identical. Thus, either all or
no fingerprints will be selected. To avoid such cases, our algorithm does fingerprint
selection in three steps. First all fingerprints are calculated. Second, we scan the
fingerprints and mark fingerprints as similar if at least s subsequent fingerprints are
identical. Third, we select fingerprints using the k most significant bits, while
imposing a minimum distance m between selected fingerprints. Also, the first and last
rows are always selected.

Empirically we have found that the best results are achieved for s = 8, m = 16 or
32, and k such that each 64th row on the average is selected. Also, such similar
regions compress well using a local compression algorithm such as zlib [24] due to
their repeated content. We have found empirically that imposing a maximum distance
does not improve the compression ratio or compression time.

3.3. An Optimization with Two-Level Fingerprinting

An important design issue in using fingerprints as identifiers to detect previously
transferred data segments is the size of a fingerprint. Previous systems typically chose
a secure hash, such as 160-bit SHA-1 [25], as a fingerprint so that the probability of a
fingerprint collision can be lower than a hardware bit error rate. However, since the
global compression ratio is limited to the ratio of the average pixel segment size to the
fingerprint size, increasing the fingerprint size reduces this limit on the compression
ratio.

To maximize the global compression ratio and maintain a low probability of
fingerprint collision, we use a two-level fingerprinting strategy. The low-level
fingerprinting uses 32-bit Rabin fingerprint of fingerprints, one for each 2-D pixel
segments. Although using such short fingerprints will have a higher probability of a
fingerprint collision, they can be computed quickly using the fingerprints already
computed for the anchoring, thereby maintaining a high global compression ratio.

The high-level fingerprinting uses SHA-1 hashes as fingerprints. It computes a
160-bit fingerprint for each of the transferred pixel segments. The server computes
such a long fingerprint as a strong checksum to detect low-level fingerprint collisions.
When a low-level fingerprint collision is detected, the server resends the pixel
segment covered by the long fingerprint.

Another way to look at this method is that the server may send two sets of updates,
the first based on short fingerprints that can have collisions, and the second set of
updates consisting of corrections in case of short fingerprint collisions. This method
reduces the user perceived end-to-end latency.

4. Implementation

We have implemented a prototype system (called Varg) consisting of a sequential
server and a client, as described in Section 2. The Varg server implements the 2-D
pixel segment compression algorithm and Varg client implements the corresponding
decompression algorithm described in the previous section.

The integration of Varg compression, decompression, and cache modules with the
VNC client and server are simple. VNC has only one graphics primitive: “Put
rectangle of pixels at position (x, y)” [12]. This allows separating the processing of
the application display commands from the generation of display updates to be sent to
the client. Consequently the server only needs to detect updates in the frame-buffer,
and can keep the client completely stateless.

Varg employs a synchronized client and server cache architecture that implements
an eventual consistency model using the two-level fingerprinting mechanism. The
client and server caches are initialized at Varg system start time. The client cache is
then synchronized by the updates sent from the server. The compression algorithm
requires the client cache to maintain the invariant that whenever the client receives a
fingerprint, its cache must have the fingerprint’s segment. Since short fingerprints
may have collisions, our prototype allows the client cache to contain any segment of
the same short fingerprint at a given time. The long fingerprint will eventually
trigger an update to replace it with a recently visualized segment.

5. Evaluation

We have conducted an initial evaluation of the Varg prototype system. The goal of
the evaluation is to answer the following two questions:

• What are the network communication requirements for remote visualization
of genomic applications?

• How much compression of network communication data can the Varg
prototype system achieve for remote visualization of genomic applications?

To answer the first question, we have measured the difference between available
bandwidth on current WANs and the required bandwidth for remote visualization of
Genomic applications. To answer the second question, we used a trace-driven VNC
emulator to find how much the Varg system can reduce the communication time for
three genomic applications. In the rest of this section, we will present our
experimental testbed and then our evaluation results to answer each question.

5.1. Experimental Testbed

Figure 4: Experimental testbed for the bandwidth requirements and compression ratio
evaluation.

In order to compare compression ratios of various compression algorithms, our
experimental testbed (Figure 4) employs two identical Dell Dimension 9150, each
with one dual-core 2.8 GHz Pentium D processor and 2 GB of main memory. Both
computers run Fedora Core 4, with Linux kernel 2.6.17SMP.

The server runs with a screen resolution of 1280x1024 pixels and with a color
depth of 32 bits per pixel. We also run an experiment on a display wall with a
resolution of 3328x1536 pixels.

To compare different systems, an important requirement is to drive each system
with the same remote visualization workloads. To accomplish this goal, we have used
a trace-driven approach. To collect realistic traces, we used the Java
AWTEventListener interface to instrument three genomic microarray analysis
applications. We used these to record a 10-minute trace containing all user input
events for each case. Later the traces were used to create a set of screenshots, each
taken after playing back a recorded mouse or keyboard event that changes the screen
content. The screenshots are used by a VNC simulator that copies a screenshot to a
shadow framebuffer, and invokes the Varg server, which does change detection and
compression before sending the updates to the client.

5.2. Network Communication Requirements

In order to answer the question about the network communication requirements for
remote visualization of genomic applications, we need to answer several related
questions including the composition of communication overhead, the characteristics
of available networks, the behavior of remote visualization of genomic applications,
and the required compression ratio to meet certain interactive requirements. Our
finding is that genomic applications require high compression ratio to compress the
pixel data to use existing WAN connections.

The network communication overhead can be expressed with a simple formula:

C
RB

S
L +

!
+2 (1)

where L is the network latency, S is the data to be transferred, B is the
network bandwidth, R is compression ratio, and C is compression time. The formula
considers compression a part of the network communication mechanism, thus the
total communication overhead includes the round-trip network latency plus the time
to compress and transfer the data. This formula ignores the overheads of several
software components such as the VNC client and server. Also, we usually ignore
decompression time since it is low compared to the compression time (less than
1msec).

Based on this formula, it is easy to see that different network environments have
different implications for remote visualization. Conventional wisdom assumes that
WANs have low bandwidth. To validate this assumption we used Iperf [26] to
measure the TCP/IP throughput between a server and a client connected using various
local and wide area networks. The following table shows that the WAN throughput
ranges from 0.2 to 2.13 Mbytes/sec (Table 1). This is up to 400 times lower than for
Gigabit Ethernet. Also, the two-way latency is high, ranging from 11—120 ms.

Table 1: TCP/IP bandwidth and latency for client-server applications run on local area and
wide area networks.

Network Bandwidth (Mbytes/sec) Latency (msec)

Gigabit Ethernet 80.00 0.2

100 Mbps Ethernet 8.00 0.2

Princeton – Boston 2.13 11

Princeton – San Diego 0.38 72

Princeton (USA(– Tromsø (Norway) 0.20 120

Figure 5: For regions larger than 80×80 pixels, the transmission time dominates the total
communication overhead.

Based on the characteristics of the available networks, an interesting question is
what size of network transfers contribute significantly to the total communication
overhead. Figure 5 shows how much transmission contributes to the communication
time depending on the amount of pixel data sent over the network connection. For all
WAN networks, the ratio of transmission time to communication time is more than
50% for regions more than about 80×80 pixels or 25 Kbytes.

Two natural questions are, how frequent are screen updates larger than 80×80
pixels for genomics applications, and are the update sizes different compared to
Office applications usually used in remote collaboration. To answer these questions,
we measured the average VNC update size for three sessions using three applications
on Windows XP:

1. Writing this paper in Microsoft Word.

2. Preparing the figures for this paper in Microsoft PowerPoint.

3. Microarray analysis using the popular Java Treeview software [27].

For each application, we recorded a session lasting about 10 minutes. We
instrumented the VNC client to record the time and size of all screen updates
received. We correlated these to when the update requests were sent, to get an
estimate for the size of each screen update.

Figure 6: The screen regions update sizes for the Java Treeview application are much larger
than for the Office applications. About 50% of the messages are more than 80x80 pixels.

Figure 7: Compression ratio required to keep transmission overhead below a given
threshold for the Princeton-San Diego network connection. The x-axis shows the percentiles for
the Treeview message sizes in Figure 6. Compression time is not taken into account.

The results show that updated regions are much larger for the genomic application
than for the two office applications (Figure 6). About 50% of the messages are larger

than 80×80 pixels, and hence for these the transmission time will be longer than the
network latency for the WANs. Another observation is that the genomic application
has a higher update frequency than office applications. Combined these increase the
required bandwidth.

To see the impact of compressing pixel data for remote visualization, we have
calculated the compression ratio necessary to maintain the transmission time below a
given threshold for a cross-continent WAN (Figure 7). We have several observations
from the results. First, it requires a compression ratio of about 25:1 to keep the
transmission time below 10 msec for most of the network traffic. Second, the
compression ratio required to maintain the same transmission time increases rapidly
for the top two percentiles. Third, as the message size increases, the compression ratio
required for the different transmission times increases.

The following section examines which compression ratio and compression time gives
the best transmission time.

5.3. Compression results

To answer the question about what compression ratios the Varg system can achieve
for remote visualization of genomic applications, we have measured compression
ratios, compression cost and the reduction of transmission time.

Table 2: Compression ratio for four genomic data analysis applications.

Differencing

2D pixel
segment

compression

Ziv-Lempel
(zlib)

Total
compression

TreeView 1.89 5.74 19.98 216.76

TreeView-Cube 2.87 4.05 24.88 289.19

TMeV 1.52 2.46 7.90 29.54

GeneVaND 3.15 2.72 10.85 92.96

To measure the compression ratios the Varg system can achieve, we have used four
15-minute traces recorded using: Java Treeview [27], Java Treeview on the display
wall [28], TMeV [29], and GeneVaND [30]. For Treeview, the visualizations mostly
are scrolling and selecting regions from a single bitmap. GeneVaND has relatively
small visualization windows and the trace includes 3D visualizations as well as some
2D visualizations. TMeV trace includes different short visualizations.

The total compression ratios by our method are 217, 289, 30 and 93 for the four
traces respectively (Table 2). These high compression ratios are due to a combination
of three compression methods: Region differencing, 2D pixel segment compression,
and zlib local compression. We have several observations based on these data. First,
the combined compression results are excellent. Second, zlib contributes the most in
all cases, but zlib alone is not enough to achieve high compression ratios. Third, the
2D pixel segment compression using fingerprinting contributes fairly significantly to

the compression ratio ranging from 2.5 to 5.7. This is due to the fact that the
differencing phase has already removed a large amount of redundant segments.

Table 3: Average compression time per screen update. The total compression time depends
on the application window size, and how well the differencing and 2D pixel segment
compression modules compress the data before zlib is run.

 Differencing 2D pixel
segment

compression

Ziv-Lempel
(zlib)

SHA-1

TreeView 0.9 ms 3.8 ms 11.1 ms 3.5 ms

TreeView-Cube 2 ms 7.9 ms 30.2 ms 7 ms

TMeV 1.3 ms 6.6 ms 83.4 ms 7.7 ms

GeneVaND 1 ms 2.7 ms 10.1 ms 1.5 ms

To understand the contribution of different compression phases to the compression
time, we measured the time spent in each module (Table 2). The most significant
contributor is zlib, which consumes more than 10 ms in all cases. In TMeV it
consumes more than 83ms, since more data is sent through this module due to the low
compression ratios for the differencing and 2D pixel segment compression modules.
The second most significant contributor is anchoring, but it is below 8 ms even for the
display wall case. Although SHA-1 calculation contributes up to 8ms in the worst
case, its computation overlaps with network communication.

Figure 8: Communication time distribution for update messages over the Princeton—
Boston network. For Treeview and GeneVaND more than 90% of the communication
overheads are less than 100ms. The update size distribution differs from Figure 5, since a more
accurate tracing tool was used to capture the trace.

Figure 9: Communication time distribution for the Princeton—Tromsø network. For
Treeview and GeneVaND more than 80% of the communication overheads are less than
200ms.

Figure 10: Communication time distribution with VNC compression for the Princeton—
Boston network. Compared to Varg the communication time shown in Figure 9 significantly
increases for large messages.

To understand the reduction in communication time, we recorded for each update
the number of compressed bytes returned by each module, and the compression time
for each module. This allows us to use Formula 1 to estimate the communication time
for each of the WANs in Table 1. The cumulative distribution of communication times
for the highest and lowest bandwidth networks are shown in Figure 8 and Figure 9.
Without compression the communication overhead for the largest updates is several
seconds. For the Princeton—Boston network the communication overhead with Varg
is less than 100ms for over 90% of the messages (except for TMeV). On the
Princeton—Tromsø network, for 80% of the update operations the communication
overhead is less than 200ms, of which the latency contributes to 112 ms.

To compare our compression against the zlib compression used in many VNC
implementations for low-bandwidth networks, we disabled the 2D pixel segment
compression module in Varg, and did a similar calculation as above (Figure 10). The
results show a significant increase in communication time, especially for Treeview
where the communication overhead is more than 300ms for about 50% of the
messages.

6. Related Work

Compression algorithms used by VNC [12] implementations either take advantage
of neighboring region color similarities, use general purpose image compression [31]
such as JPEG [32], or general purpose compression such as zlib [19]. Neighboring
region redundancy compression is fast but has low compression ratio. Therefore zlib
is usually used for WANs. Our results show that the compression time for zlib is high.
JPEG is lossy, and is not suited for Microarray analysis, since it may introduce visual
artifacts that may influence the biologist’s interpretation of the data.

Remote visualization systems that use high level graphics primitives for
communication, such as Microsoft Remote Desktop [15], are able to cache bitmaps
used for buttons and other GUI components. However, the high-level graphics
primitives do not compress well leading to performance problems in WANs [13, 33].

Encoders used for streaming video, such as MPEG [34], compress data by
combining redundancy detection and JPEG type compression. Usually a static pixel
grid is used, which we have shown gives worse performance than our approach. In
addition the MPEG compression is lossy and there are no real time encoders
available. TCC-M [35] is a block movement algorithm designed for thin-client
visualization that use unique pixels in an image (feature sets) to detect 2D region
movement. However, redundancy is only detected between the two latest screen
updates thus reducing the compression ratio.

Earlier one-dimensional fingerprinting approaches [17, 18] require the two-
dimensional screen to be converted to some one-dimensional representation. This will
split up two-dimensional regions on the screen causing the size of the redundant
regions to decrease, hence reducing the compression ratio.

Access Grid [36] provides multiple collaborators with multimedia services by
multicasting audio, video and remote desktop displays such as VNC. However,
Access Grid does not provide compression to reduce the network bandwidth
requirement for specific data visualization such as genomic data exploration. Since
Varg extends the VNC protocols to compress 2D segments for genomic data
visualization, it can effectively work together with Access Grid systems to support
multi-party collaborations.

7. Conclusion

This paper presents the design and implementation of the Varg system: a network
bandwidth optimized, platform-independent system that allows users to interactively
visualize multiple remote genomic applications across a WAN. The paper has
proposed a novel method to compress 2-D pixel segments by using fingerprinting and
proposed a two-level fingerprinting method to improve global compression, and to
reduce compression time.

We also found that genomic applications have much higher network bandwidth
requirements than office applications. They require substantial compression of
network data to achieve interactive remote data visualization on some examples of
existing WAN.

An initial evaluation of our prototype system shows that the proposed 2-D pixel
segment compression method works well and imposes only modest overheads. By
combining with zlib and differencing compression methods, the prototype system
achieved compression ratios ranging from 30:1 to 289:1 for four genomic
visualization applications that we have experimented with. Such compression ratios
allow the Varg system to run remote visualization of genomic data analysis
applications interactively across WANs with relatively low available network
bandwidths.

8. Acknowledgments

This work was done while LAB and TL were visiting Princeton University and
was supported in parts by Princeton University, The University of Tromsø, The
Research Council of Norway (incl. project No. 164825), NSF grants CNS-0406415,
EIA-0101247, CNS-0509447, CCR-0205594, and CCR-0237113, and NIH grant R01
GM071966. OGT is an Alfred P. Sloan Research Fellow

9. References

1. Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ: High density synthetic
oligonucleotide arrays. Nature Genetics 1999, 21:20-24.

2. Schena M, Shalon D, Davis RW, Brown PO: Quantitative Monitoring of
Gene-Expression Patterns with a Complementary-DNA Microarray.
Science 1995, 270(5235):467-470.

3. Cahill DJ, Nordhoff E: Protein arrays and their role in proteomics. Adv
Biochem Eng Biotechnol 2003, 83:177-187.

4. Sydor JR, Nock S: Protein expression profiling arrays: tools for the
multiplexed high-throughput analysis of proteins. Proteome Sci 2003,
1(1):3.

5. Oleinikov AV, Gray MD, Zhao J, Montgomery DD, Ghindilis AL, Dill K:
Self-assembling protein arrays using electronic semiconductor
microchips and in vitro translation. J Proteome Res 2003, 2(3):313-319.

6. Huang RP: Protein arrays, an excellent tool in biomedical research. Front
Biosci 2003, 8:d559-576.

7. Cutler P: Protein arrays: the current state-of-the-art. Proteomics 2003,
3(1):3-18.

8. Kerr MK, Churchill GA: Bootstrapping cluster analysis: assessing the
reliability of conclusions from microarray experiments. Proc Natl Acad
Sci U S A 2001, 98(16):8961-8965.

9. Yeung KY, Haynor DR, Ruzzo WL: Validating clustering for gene
expression data. Bioinformatics 2001, 17(4):309-318.

10. Mendez MA, Hodar C, Vulpe C, Gonzalez M, Cambiazo V: Discriminant
analysis to evaluate clustering of gene expression data. FEBS Lett 2002,
522(1-3):24-28.

11. Datta S, Datta S: Comparisons and validation of statistical clustering
techniques for microarray gene expression data. Bioinformatics 2003,
19(4):459-466.

12. Richardson T, Stafford-Fraser Q, Wood KR, Hopper A: Virtual network
computing. Ieee Internet Computing 1998, 2(1):33-38.

13. Schmidt BK, Lam MS, Northcutt JD: The interactive performance of
SLIM: a stateless, thin-client architecture. In: Proceedings of the
seventeenth ACM symposium on Operating systems principles. Charleston,
South Carolina, United States: ACM Press; 1999.

14. Baratto RA, Kim LN, Nieh J: THINC: a virtual display architecture for
thin-client computing. In: Proceedings of the twentieth ACM symposium on
Operating systems principles. Brighton, United Kingdom: ACM Press; 2005.

15. Cumberland BC, Carius G, Muir A: Microsoft Windows NT Server 4.0,
Terminal Server Edition: Technical Reference. In. Edited by Press M.
Redmond, WA; 1999.

16. Apple Remote Desktop [http://www.apple.com/remotedesktop/]
17. Spring NT, Wetherall D: A protocol-independent technique for

eliminating redundant network traffic. In: Proceedings of the conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communication. Stockholm, Sweden: ACM Press; 2000.

18. Muthitacharoen A, Chen B, Mazières D: A low-bandwidth network file
system. In: Proceedings of the eighteenth ACM symposium on Operating
systems principles. Banff, Alberta, Canada: ACM Press; 2001.

19. Ziv J, Lempel A: A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory 1977 23(3):337 - 343.

20. Broder A: Some applications of Rabin's fingerprinting method. In:
Sequences II: Methods in Communications, Security, and Computer Science:
1993; 1993.

21. Broder A: On the Resemblance and Containment of Documents. In:
Proceedings of the Compression and Complexity of Sequences 1997. IEEE
Computer Society; 1997.

22. Manber U: Finding similar files in a large file system. In: Proceedings of
the Winter 1994 USENIX Technical Conference. San Francisco, CA; 1994.

23. Rabin MO: Fingerprinting by random polynomials. In: Technical Report
TR-15-81. Center for Research in Computing Technology, Harvard
University; 1981.

24. DEFLATE Compressed Data Format Specification version 1.3. In: RFC
1951. The Internet Engineering Task Force; 1996.

25. Secure Hash Standard. In: FIPS PUB 180-1. National Institute of
Standards and Technology; 1995.

26. Iperf webpage [http://dast.nlanr.net/Projects/Iperf/]
27. Saldanha AJ: Java Treeview--extensible visualization of microarray data.

Bioinformatics 2004, 20(17):3246-3248.
28. Wallace G, Anshus OJ, Bi P, Chen HQ, Clark D, Cook P, Finkelstein A,

Funkhouser T, Gupta A, Hibbs M et al: Tools and applications for large-
scale display walls. Ieee Computer Graphics and Applications 2005,
25(4):24-33.

29. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa
M, Currier T, Thiagarajan M et al: TM4: a free, open-source system for
microarray data management and analysis. Biotechniques 2003,
34(2):374-378.

30. Hibbs MA, Dirksen NC, Li K, Troyanskaya OG: Visualization methods for
statistical analysis of microarray clusters. BMC Bioinformatics 2005,
6:115.

31. Richardson T: The RFB Protocol version 3.8. In.: RealVNC Ltd; 2005.
32. Gregory KW: The JPEG still picture compression standard. Commun

ACM 1991, 34(4):30-44.
33. Lai AM, Nieh J: On the performance of wide-area thin-client computing.

ACM Trans Comput Syst 2006, 24(2):175-209.
34. Gall DL: MPEG: a video compression standard for multimedia

applications. Commun ACM 1991, 34(4):46-58.
35. Christiansen BO, Schauser KE: Fast Motion Detection for Thin Client

Compression. In: Proceedings of the Data Compression Conference (DCC
'02). IEEE Computer Society; 2002.

36. Access Grid [http://www.accessgrid.org/]

