
Scalable Processing and Communication Performance in a Multi-Media Related
Context

John Markus Bjørndalen
�
, Otto J. Anshus

�

Tore Larsen
�
, Lars Ailo Bongo

�
, Brian Vinter

�

���
Department of Computer Science

University of Tromsø

���
Department of Mathematics and Computer Science

University of Southern Denmark

Abstract

The PATHS system for configuring an application on one
or multiple clusters in a GRID is described and then used on
three applications to demonstrate scalability with regards to
processing and communication.

The PATHS system use a “wrapper” to provide a level
of indirection to the actual run-time location of data. A
wrapper specify where data is located, how to get there,
and which protocols to use. Wrappers are also used to add
or modify methods accessing data. Wrappers are specified
dynamically. A “path” is comprised of one or more wrap-
pers. Sections of a path can be shared among two or more
paths.

The PATHS system is used to configure a global sum, a
wind tunnel, and a video distribution application with the
purpose of scaling processing performance when the num-
ber of processors increase, and scaling data distribution
performance when the number of clients increase.

The performance measurements show that the PATHS
system can be used to both scale the processing and com-
munication performance.

1 Introduction

A key challenge when running distributed high perfor-
mance applications is to establish mappings of processes to
hosts that achieve high performance or ef�cient execution.
Attacking this challenge requires balancing the con�icting
goals of distributing threads for improved load balancing,
while reducing communication and synchronization over-
heads. High performance and good scalability with respect
to processing and communication typically requires manual

�ne-tuning of the mapping in order to balance the factors
signi�cantly in�uencing the performance.

Mappings may be speci�ed by directives in the appli-
cation source-code, or determined by communication li-
braries, middleware or the operating system. For the pur-
pose of this paper, and due to space restrictions, we will
focus on static mappings given to the application by the pro-
grammer.

In [2] three categories of useful tools were found when
tuning the performance of NOW-Sort, a parallel disk-to-
disk sorting algorithm on a cluster system: tools that help
set expectations and con�gure the application to different
hardware parameters, visualization tools that animate per-
formance counters, and search tools that track down perfor-
mance anomalies. We are developing similar tools.

This paper describes some components on our work on a
middleware extension inspired by method combination[10]
and remote procedure calls[3] which allows the commu-
nication topology to be directed by specifying meta-code
and meta-data, without introducing any modi�cations to
the application code. The extended middleware also allows
computations to be speci�ed and executed along the access
paths to data. For now, we assume that the application under
study runs alone on all hosts in the system; i.e. there are no
other applications competing for host resources. The goal
of the mapping is to achieve high performance for a partic-
ular application having exclusive access to all resources.

We provide tools for specifying and experimenting with
load-time mappings, and demonstrate how one through
a few experiments may identify �exible location policies
achieving high performance and good scalability.

Section 2 describes how wrappers are used and com-
bined to specify and identify access paths. Section 3 present
the applications we have used to experiment with, section

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

4 describes our experiments using three different clusters
located at the University of Tromsø, Norway and the Uni-
versity of Southern Denmark, Odense. Section 5 presents
related work, and section 6 presents our conclusions.

2 PATHS: Con�gurable Orchestration and
Mapping

Our research platform is PastSet[1][15], a structured dis-
tributed shared memory system in the tradition of Linda[7].
A PastSet element is a sequence of tuples that are of the
same or equivalent type. Tuples can be read from and writ-
ten to the element using the move and observe operations.
Each element is globally accessible by specifying the ele-
ment’s name.

PATHS[4], is an extension of PastSet that allows for
mapping of processes to hosts at load time, selection of
physical communication paths to each element, and distri-
bution of computations along the path. Figure 1 shows an
example where a path is created between a thread and an
element. A thread only references the toplevel stage in the
path, and invokes operations through that stage.

Paths can be joined (forming a tree structure) to amortize
communication overhead. As an example, �gure 2 shows
partial sums being computed in each node before being for-
warded to the server containing the element.

A thread may use multiple paths to the same element,
each of which can be speci�ed and built dynamically. Each
stage in the path is implemented using a Wrapper of a given
type.

Since only leaf wrappers are referenced in the applica-
tion source code, applications can be mapped onto arbi-
trary cluster con�gurations without changing source code
or recompiling. Fitting and optimizing applications to any
particular con�guration is instead done by changing path-
specifying meta-data and code.

The wrappers are partly inspired by the PastSet X-
functions[16], which are operation modi�ers speci�ed by
the programmer and associated with speci�c elements to
modify the semantics of the elements operations.

Thread

Element

Remote access
Remote access

Server 1 Server 2

Figure 1. A path between a thread and an ele-
ment

Thread Thread Thread Thread

Global Sum

Remote access

Global Sum

Remote access

Global Sum

Element

Node 1 Node 2

Server

Figure 2. Four threads on two hosts access-
ing a shared global sum element on a sep-
arate server. Each host computes a partial
sum that is forwarded to the global-sum wrap-
per on the server.

2.1 Building and specifying paths

After deciding on a mapping of processes onto hosts, set-
ting up access from one thread to a PastSet element involves
the following two stages:

Specify the path. This involves examining information
such as process mappings, cluster topologies, and lo-
cation of target elements.

Build the path from the description. This involves creat-
ing and binding wrappers with parameters speci�ed in
the path description.

Each wrapper in the path description is parameterized.
Some parameters are common among all wrappers (such
as whether the wrapper need to use thread synchronization
mechanisms), whereas others are provided only for speci�c
wrapper types (i.e. what protocol to use, server address, and
service requirements for remote access wrappers).

An example path description used by one of the nodes in
Figure 2 is included in Figure 3.

Each thread creates (or is given) its path description, be-
fore calling build_path which returns reference to the
top-level wrapper in the path. Build_path checks path
descriptions, and merges paths when it is feasible to share
portions of the paths.

Pro�ling is provided via trace wrappers that log the start
and completion times of operations that are invoked through
each wrapper. The trace wrappers may also be used to
store information about operation parameters, and tuples
provided and returned in the operation. Any number of trace
wrappers may be inserted anywhere in the path trees.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

path = make_path(stage("reduce-sum", num_threads=2),
stage("remote", proto=TCP, host="p0"),
stage("reduce-sum", num_threads=2),
stage("core", name="PI-SUM1"))

elm = build_path(path)

Figure 3. Example path specifictation and building in Python

Traces stored with the corresponding path speci�cations
are later read by specialized tools to examine the perfor-
mance aspects of an application.

3 Applications

The applicability of PATHS is tested using three parallel
applications, Global sum, Wind tunnel, and Video.

Global sum computes a global sum that is aggregated
from parallel threads providing partial sums. The algorithm
works essentially as the MPI Allreduce function. Global
Sum is used in experimenting with the effects of thread
mappings, communication parameters, and hierarchal re-
duction of the latencies of global reductions. In Section 4.2
we report our �ndings from experimenting with a hierarchal
global reduction to reduce latencies. Earlier experiments
using Global sum can be found in [4].

The Wind tunnel application is a Lattice Gas Automa-
ton doing particle simulation. It uses eight matrices in
which particles are shifted around to simulate the �ow of
air. The parallel version splits each matrix into slices, which
are then assigned to threads. When running, each thread
exchanges the border entries of its slices with threads com-
puting on neighboring slices. We demonstrate how we can
map the application to different cluster con�gurations and
change the mapping to improve the scaling and performance
of the system.

The Video application demonstrates parallel distribution
of one video feed. A feeder application captures images
from a frame grabber, converts each image into a jpeg, and
stores each jpeg as a tuple in a PastSet element. Each video
client uses the last-observe wrapper to retrieve the latest
available new jpeg. If no jpeg exists that is newer than
the ones already observed, last-observe blocks until one ar-
rives. A client program decompresses the images and dis-
plays them in a TKinter window.

Organizing the PastSet servers and paths hierarchically,
we demonstrate that no jpeg image needs to be transmitted
more than once down any wire, that clients which cannot
consume images at full speed only retrieves the latest avail-
able image (and skip older images), and that faster clients
pre-fetch images for the slower clients; essentially turning
the last-observe wrapper into a cache.

4 Experiments

Experiments were done using Global sum and Wind tun-
nel, to study the ability of PATHS to improve processing
performance by re-con�guring applications at load time.
Additional experiments were done using the Video appli-
cation to study the ability of PATHS to provide scalable dis-
tribution of one video-feed.

Wrappers were used to extract performance data which
were visualized using our prototype performance data
tools[5].

We are now experimenting with the Video Distribution
system using the Wind Tunnel application output with the
purpose of prototyping a multimedia application scaling
well both with regards to computation and data distribution.

4.1 Hardware Platform

The hardware platform consists of three geographically
dispersed clusters, each with 32 processors:

� 2W: 16*2-Way Pentium III 450 MHz, 256MB RAM
(Odense, Denmark).

� 4W: 8*4-Way Pentium Pro 166 MHz, 128MB RAM,
(Tromsø, Norway).

� 8W: 4*8-Way Pentium Pro 200 MHz, 2GB RAM,
(Tromsø, Norway).

All clusters run intra-cluster communication using
TCP/IP over 100 Mbps Ethernet. 4W has an additional in-
ternal 100 Mbps 100 VG-AnyLAN connection that is used
for some experiments. Communication between 4W and
8W used a 100 Mbps 100 VG AnyLan connection. All
communication between the cluster in Odense (2W) and the
two clusters in Tromsø (4W and 8W), uses institutional re-
sources at the respective sites, each country’s national re-
search and educational backbone, and the Nordic intercon-
nection of national research networks (NORDUnet). Us-
ing the PastSet system, the latency between two threads on
different nodes using the 100 Mbps networks is typically
around 100-250 microseconds depending on the systems
and protocols used. Using the network between Tromsø and
Odense, the latency is typically around 40 milliseconds.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

4.2 Global Sum Experiments

In the Global sum experiment we measured the average
execution time of a global sum computation. The number
of threads applied is equal to the number of values to be
added. The Global sum experiment is run on 2W only.

barrier_sync();
gettimeofday();
TS(0);
for (i = 1; i= < iters; i++)
{

sum = gsum(i);
TS(i);

}
gettimeofday();

Figure 4. Pseudocode for the Global Sum
benchmark. Only one thread runs the times-
tamp code, all other threads run the same
code with the timestamp code removed.

Figure 4 shows pseudocode for the Global sum bench-
mark. The TS() macro samples the Pentium Pro timestamp
counter, and stores the timestamp in an array. Gettimeof-
day() samples the real-time clock on the host computer with
microsecond resolution. The gsum benchmark was run with
an �iters� of 1.000. For each test, the average execution time
of �ve runs is plotted on the graphs.

In one experiment we measured the performance us-
ing the even distribution algorithm. Using this algorithm,
threads are distributed as evenly as possible among all hosts
in the cluster; i.e. the number of threads on any two hosts
differs by at most one. One single thread computes the ag-
gregate of the partial sums computed by every other thread.
More elaborate algorithms are investigated in[4].

In [4] we observed that increasing the number of threads
per host beyond three or four would reduce the computa-
tional ef�ciency of each host. This observation suggests
that using four threads per sum wrapper and arranging the
threads and wrappers hierarchically as shown in 5 gives an
organization that maps easily onto the cluster, while limit-
ing the number of threads per wrapper to four. Compared to
a �at organization, the hierarchical organization offers po-
tential performance improvements due to a higher degree of
parallelism.

Figure 6 shows a plot of the execution times using the hi-
erarchical and even organizations as the number of threads
increases from one up to the number of CPUs in the cluster.
The number of values to be added is increased linearly for
each thread added.

Using hierarchical organization, we measure double or

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sum Sum Sum Sum

Sum

Element

Figure 5. Hierarchial global reduction sum
tree. The numbers represent threads. The
upper layer of sum wrappers computes par-
tial sums used in the lowermost sum wrapper.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Number of threads (= problem size = number of CPUs)

Part 4
Non part

(a) 2-Way cluster

Figure 6. Global sum, cluster partition, even
distribution

better performance for twelve or more threads, compared to
the even distribution algorithm. Observations from [4] were
applied in [16] when comparing the performance character-
istics of PastSet using the path framework with MPI[17]
(LAM-MPI). Results demonstrated that PastSet was 1.83
times faster than LAM-MPI on global reductions. We are
currently experimenting with a PATHS-inspired con�gu-
ration mechanism for LAM-MPI, and preliminary results
show that we are able to signi�cantly improve some group
operations.

4.3 Wind Tunnel Experiments

We used the Wind Tunnel benchmark to evaluate
whether PATHS could be used effectively to experiment
with different mappings and identify mappings that scaled
well.

Using an even distribution of threads to CPUs, we expe-
rienced linear speedups for this application on every cluster
by itself, and when combining both clusters in Tromsø (4W

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

and 8W). Combining the Odense cluster (2W) with any of
the Tromsø clusters gave us less than linear speedups.

From an initial even mapping of one thread per 80th
Mhz, we used PATHS to quickly set up several variant map-
pings that we experimented with. For these experiments,
each thread carries the same effective workload regardless
of mapping.

� Increasing the relative workload at 2W by evenly in-
creasing the number of threads from 12 to 14, reduced
the performance.

� Decreasing the relative workload at 2W by evenly de-
creasing the number of threads from 12 to 10, had no
performance effect.

� Decreasing the relative workload at 2W further, by
evenly decreasing the number of threads to eight re-
duced the performance.

� Reducing the load on the single node on 2W that han-
dled all communication external to the cluster, slightly
improved the performance.

� Reducing the number of sequential remote operations
by moving data to 2W had no performance effect.

� Increasing the problem size to get a higher processing
to communication ratio, resulted in improved perfor-
mance. Effectively scaling our experiments along this
approach was limited by the memory size (128 MB) of
each host in 4W.

Using a prototype PATHS performance data visualiza-
tion tool revealed that after some time, the progression of
every thread in the clusters was effectively reigned in by the
progression of the 2W inter cluster communication node.
This phenomenon will be investigated further.

4.4 Video Distribution System

The Video Distribution experiment was designed to in-
vestigate if PastSet and PATHS could be applied in quickly
developing a video broadcast system where each client that
requests to receive the broadcast, receives its feed at a rate it
can process, and without loading the server and network by
delivering frames that would otherwise be skipped by the
client.

The video broadcast system was con�gured to have one
dedicated root node on each cluster. (see Figure 8). Ev-
ery participating client thread has a path that goes through a
host-local PastSet server, on through the root node in the
cluster, and �nally to the broadcast server that holds the
original video data.

The last-observe wrapper is used to cache frames pulled
down from a server further up in the hiearchy. A new frame

Video Encoder Video Element

Last Observe

Last Observe

Proxy

Th 0 Th n

Last Observe

Proxy

... C
luster

N
-1

Video Server

Root node

Node 0

...

...

N
ode

N
-1
Cluster 0

Figure 8. Hierarchial Video Application

is only requested from a server further up when the last-
observe wrapper does not have a frame as new as, or newer
than the one being requested by a client further down. Only
the latest available frame will be returned by the wrapper.
Older frames are dropped.

To test the scalability of this design, we started with
one client per processor in the clusters and dynamically in-
creased the number of clients while monitoring the frame
rate at the server process and at every client process. The
server process load was also monitored. The broadcast
server was located in Tromsø, but external to 4W and 8W.
The stream of jpegs consisted of 320x240 pixel images,
delivered at 12.5 Hz. The client processes were evenly
mapped across 2W, 4W, and 8W.

At 960 clients there was no noticeable degradation on the
server or any client. Every client, including the 320 at 2W
in Odense, ran at the full frame rate at 12.5 Hz.

At 2016 client processes, there was still no noticeable
degradation of the server or of the processes on 2W in
Odense. At this load however, the clients running on the
clusters in Tromsø (next room to the video server) did ex-
hibit slight degradation, dropping the frame rate to about 12
Hz on 4W, and about 10-11 Hz on 8W.

We observe that of the two clusters in Tromsø, processes
at 4W (166MHz four-way nodes) perform better than pro-
cesses at 8W (200MHz eight-way nodes) when the number

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

... TH 0TH 1TH 8TH 9...

C �

D �

C �

D �

C �

D �

C �

D �

C ���

D ���

......

C ���

D ���

TH ...

C ���

D ���

TH ...

Node 0Node 1Node N-1

Cluster 0

Cluster 1 Cluster 2

Figure 7. Multi-cluster Wind tunnel Experiment

of client processes is increased beyond a threshold level. We
suspect this indicates processor-memory bus contention on
the eight-way systems due to the high communication load
of this benchmark. Processes at the faster 2W cluster per-
form best, and are not hindered by the slow Tromsø-Odense
connection.

5 Related work

Accurate and ef�cient performance prediction of exist-
ing distributed and parallel applications on target con�gu-
rations with potentially thousands of processors is hard. A
number of simulators have been developed, including Par-
allel Proteus[11], LAPSE[8], SimOS[13], and Wisconsin
Wind Tunnel[12]. The slowdowns range from 2 to 100.
Few simulators simulate both computation and I/O opera-
tions. In contrast to simulators, our approach execute the
actual application code several times, each time with a dif-
ferent mapping.

In [9] both processor and memory load balancing are
used to support low contention and good scaling to hun-
dreds of processors. Gang-scheduling is used to avoid wast-
ing cycles spinning for a lock held by a descheduled pro-
cess. In contrast, our system is much simpler and provides
for much less or no automatic support at the present time.

In [14] it is shown that there is a communication and
load balance trade-off when partitioning and scheduling
sparse matrix factorization on distributed memory systems.
Block based methods result in lower communication costs
and worse load balancing, whereas a "round robin"-based
scheme where all threads are distributed over the processors

gives better load balance but higher communication costs.
In [18] an approach to load balancing for general-

purpose simulations is reported in which little modi�cation
is needed to the user’s code. Their approach uses run-time
measurements and demonstrates better load-balancing than
approaches without such measurements. This approach is
similar to ours in that little modi�cation of the user’s code
is needed. As they do, we also use different mappings and
leave it to the application to control them. Our approach
differ in that we can both try different mappings and add ar-
bitrary code along the access path to data. Also, we differ in
that we do a prerun of a few mappings, and then we choose
a single one and we let the application use the selected map-
ping without incurring further overhead. Of course, we take
all the overhead when choosing a mapping. For clusters
where they can be dedicated to applications running often,
this con�guration hunting overhead will be amortizised over
time.

In [6] it is shown that dramatic reductions in the band-
width demand on the underlying server operating system
can be gained via application-level data caching. This is in
accordance with our work.

6 Conclusion

Fine-tuning the performance of high-performance dis-
tributed applications through analytical means or simulation
is hard, requiring detailed insights into complicated factors
including the tradeoffs and effects of caching, synchroniza-
tion, locality, load balancing, communication demands, and
how network protocols and synchronization mechanisms

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

have been implemented. Using the PATHS system different
mappings of an applications communication and computa-
tions can quickly be tried out without changing the applica-
tion code.

Through several experiments we discovered some of the
factors contributing negatively to the performance of a set
of applications, and then we remapped the applications to
�nd con�gurations with better performance.

We believe that our system can improve performance
by �nding a con�guration where the resource usage better
avoids hot spots, bottlenecks, and expensive waiting times
for processor, memory, cache, and I/O by trading between
load sharing and communication. The �exibility of using
maps, paths and wrappers also make it possible to monitor
the application and provide data for visualization of both
behaviour and performance.

References

[1] ANSHUS, O. J., AND LARSEN, T. Macroscope: The
abstractions of a distributed operating system. Norsk
Informatikk Konferanse (October 1992).

[2] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., CULLER, D. E., HELLERSTEIN, J. M., AND

PATTERSON, D. A. Searching for the sorting record:
Experiences in tuning NOW-Sort. Proceedings of the
SIGMETRICS symposium on Parallel and distributed
tools (SPDT 98), USA (1998), pp. 124�133.

[3] BIRRELL, A. D., AND NELSON, B. J. Implement-
ing remote procedure calls. In Proceedings of the
ninth ACM Symposium on Operating Systems Princi-
ples (1983).

[4] BJØRNDALEN, J. M., ANSHUS, O., LARSEN, T.,
AND VINTER, B. Paths - integrating the princi-
ples of method-combination and remote procedure
calls for run-time con�guration and tuning of high-
performance distributed application. Norsk Infor-
matikk Konferanse (November 2001), 164�175.

[5] BONGO, L. A. Steps: A performance monitoring and
visualization tool for multicluster parallel programs,
June 2002. Large term project, Department of Com-
puter Science, University of Tromsø.

[6] BRADSHAW, M. K., WANG, B., SEN, S., GAO, L.,
KUROSE, J., SHENOY, P., AND TOWSLEY, D. Pe-
riodic broadcast and patching services - implementa-
tion, measurement, and analysis in an internet stream-
ing video testbed*. ACM MM’01, Ottawa, Canada.

[7] CARRIERO, N., AND GELERNTER, D. Linda in con-
text. Commun. ACM 32, 4 (April 1989), 444�458.

[8] DICKENS, P., HEIDELBERGER, P., AND NICOL,
D. Parallel direct execution simulation of message-
passing parallel programs. IEEE Transactions on Par-
allel and Distributed System (1996).

[9] GOVIL, K., TEODOSIU, D., AND YONGQIANG

HUANG AND, M. R. Cellular disco: resource man-
agement using virtual clusters on shared-memory mul-
tiprocessors. ACM Symposium on Operating Systems
Principles (SOSP’99), published in Operating Sys-
tems Review 34(5) (December 1999), pp 154�169.

[10] KICZALES, G., DES RIVIERES, J., AND BOBROW,
D. G. The Art of the Metaobject Protocol. MIT Press,
1991.

[11] LUO, Y. Mpi performance study on the sgi origin
2000. Pacific Rim Conference on Communications,
Computers and Signal Processing (1997), pp 269�
272.

[12] REINHARDT, S., HILL, M. D., LARUS, J., LEBECK,
A., J.C, LEWIS, AND WOOD, D. The wisconsin wind
tunnel: Virtual prototyping of parallel computers. Pro-
ceedings of the 1993 ACM SIGMETRICS Conference
(May 1993).

[13] ROSENBLUM, M., BUGNION, E., DEVINE, S., AND

HERROD, S. Using the simos machine simulator to
study complex computer systems. ACM Trans. On
Modeling and Computer Simulation Vol. 7, No. 1 (Jan-
uary 1997), pp. 78�103.

[14] VENUGOPAL, S., AND NAIK, V. K. Effects of parti-
tioning and scheduling sparse matrix factorization on
communication and load balance. Proceedings of the
1991 conference on Supercomputing (1991), pp. 866�
875.

[15] VINTER, B. PastSet a Structured Distributed Shared
Memory System. PhD thesis, Tromsø University,
1999.

[16] VINTER, B., ANSHUS, O. J., LARSEN, T., AND

BJØRNDALEN, J. M. Extending the applicability of
software dsm by adding user rede�nable memory se-
mantics. Parallel Computing (ParCo) 2001, Naples,
Italy (September 2001).

[17] WALKER, D. W. The design of a standard message-
passing interface for distributed memory concurrent
computers. In Parallel Computing, Vol. 20. April
1994, pp. 657�673.

[18] WILSON, L. F., AND NICOL, D. M. Experiments
in automated load balancing. Proceedings of the
10th Workshop on Parallel and Distributed Simulation
(PADS ’96) (1996).

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

