
Proceedings of CIBB 2014 1

Data-intensive computing infrastructure systems for unmodified
biological data analysis pipelines

Lars Ailo Bongo(1), Edvard Pedersen(1), Martin Ernstsen(2)∗

(1) Department of Computer Science and Center for Bioinformatics,
University of Tromsø, Tromsø, Norway
larsab@cs.uit.no, edvard.pedersen@uit.no

(2) Kongsberg Satellite Services AS, Tromsø, Norway
martin.ernstsen@ksat.no

Keywords: data-intensive computing, biological data analysis, flexible pipelines, infras-
tructure systems.

Abstract. Biological data analysis is typically implemented using a flexible data anal-
ysis pipeline that combines a wide array of tools and databases. These pipelines must
scale to very large datasets, and therefore often require parallel and distributed com-
puting. There are many infrastructure systems for data-intensive computing. Currently,
most biological data analysis pipelines do not leverage these systems. An important
challenge is therefore to integrate existing biological data analysis frameworks with
data-intensive computing infrastructure systems.

We give an overview of data-intensive computing infrastructure systems, and de-
scribe how we have leveraged these for: (i) scalable fault-tolerant computing for large-
scale data; (ii) incremental updates to reduce the resource usage required to update
large-scale data compendium; and (iii) interactive data analysis and exploration. We
provide lessons learned and describe problems we have encountered during develop-
ment and deployment. Our results show that even unmodified biological data analysis
tools can benefit from infrastructure systems for data-intensive computing.

1 Scientific Background
Recent advances in instrument, computation, and storage technologies have resulted

in large amounts of biological data. To realize the full potential for novel scientific
insight in the data, it is necessary to transform the data to knowledge through data
analysis and interpretation.

Biological data analysis is typically implemented using a flexible data analysis pipeline
that combines a set of tools and databases. Biological data analysis is diverse and spe-
cialized, so the pipelines have a wide range of resource requirements. Examples include
the 1000 Genomes project [1] with a dataset of 260 TB analyzed on supercomputers or
warehouse-scale datacenters; the many databases and servers built for a specific type of
analysis; and simple analyses run using pre-defined Galaxy pipelines [2]. An important
challenge when building data analysis tools and pipelines is therefore to choose a hard-
ware platform and underlying data management and processing systems that satisfies
the requirements for a specific data analysis problem.

A data analysis and exploration tool typically has an architecture with the following
components:

• A front-end that provides the user interface used by the data analysts, including:
web applications, pipeline managers, web services, and low-level interfaces such
as file systems, and cloud APIs.

∗Work done while at the University of Tromsø



Proceedings of CIBB 2014 2

• Data analysis and interpretation services including: specialized servers, search
engines, R libraries such as BioConductor [3], and tool collections such as Galaxy
Toolsheds [2].

• Infrastructure system for data management including: file systems, databases,
and distributed data storage systems.

• Infrastructure system for parallel and distributed computation including: queuing
systems, and the Hadoop software stack (http://hadoop.apache.org/).

• Hardware platform, such as virtual machines, dedicated servers, small clusters,
supercomputers, and data warehouses.

In this extended abstract, we focus on the choice of data management and processing
infrastructure systems. In our experience, most biological data analysis uses a POSIX
file system in combination with a centralized database for data storage and management,
and are run either on a single machine or on a small cluster with a queuing system
such as Open Grid Engine (http://gridscheduler.sourceforge.net/). This platform has
four main advantages. First, the file system-, and database interfaces are stable, and the
technology is reliable. Second, many clusters for scientific computation are designed to
use a network file system and to run jobs on a cluster using a queuing system. Third,
the developers are familiar with these systems and interfaces. Fourth, there are already
hundreds of tools implemented for this platform.

An alternative infrastructure must therefore provide better scalability, performance,
or efficiency. Or, it must provide services not available on the standard platform. We
give an overview data-intensive computing systems, and describe how these can be
leveraged for biological data analysis. We describe how we used these systems to
transparently extended flexible biological data analysis frameworks with data intensive
computing services. We provide lessons learned, and describe the problems we have
encountered during development and deployment of the extended pipelines.

2 Materials and Methods
There are several specialized infrastructure systems developed for data-intensive com-

puting. Many of these were initially developed and deployed at web-scale companies
such as Google, Yahoo, Facebook, and Twitter, and then later implemented as open
source systems. There are also many new systems under development in both academia,
the open source community, and the industry. We provide a short description of the
features provided by these systems, and how we have leveraged these features for bio-
logical data analysis. To save space, we limit our description to the most used systems
and omit many emerging systems, and systems that provide a traditional file system or
SQL interface.

Data intensive computing systems are often built on a distributed file systems such
as Hadoop Distributed File System (HDFS) [4] that provide reliable storage on com-
modity component hardware and high aggregate I/O performance. A HDFS cluster
co-locates storage and computation resources to avoid the overhead of transferring
large datasets over the network to and from the computation nodes. For large sys-
tems, it reduces cost since high-volume network attached storage is expensive. The
main advantage of HDFS for biological data analysis is that the architecture is demon-
strated to scale to peta-scale datasets and it is widely used for data-intensive comput-
ing. The main disadvantage is that HDFS does not provide a traditional file system
interface, so it is necessary to either rewrite the many data analysis tools that use a
POSIX file system interface, to incur an overhead for moving data between HDFS and
a local filesystem, or incur the performance overhead of third-party library such as
(http://wiki.apache.org/hadoop/MountableHDFS). In addition, it is not yet a common



Proceedings of CIBB 2014 3

platform in scientific computing, so it may be necessary to purchase and build a new
cluster with storage distributed on the compute nodes.

MapReduce [4] is a widely used programming model and infrastructure system for
data-intensive parallel computation. It provides fault-tolerant computation on a HDFS-
like file system, and makes it easy to write scalable applications since the system han-
dles data partitioning, scheduling, and communication. Biological data analysis appli-
cations, especially for next-generation sequencing data, have already been implemented
using MapReduce ([5] provides examples). The main advantage of MapReduce is that
it scales to peta-scale datasets. Also, most cloud platforms provide a MapReduce inter-
face. The main disadvantage is that the MapReduce programming model may not be
suited for all applications. It is a low-level programming model so many higher-level
programming models have been developed to make it easier to write data analysis pro-
grams (but to our knowledge, these are not often used for biological data processing).

HBase (http://hbase.apache.org/) is a column based storage system that provides in-
memory caching for low latency random data access and efficient compression. Bio-
logical data analysis applications can use HBase to store data accessed interactively, to
implement custom data structures, or to structure data for more efficient compression.
Compared to relational databases it is more difficult to implement queries in HBase.
It is therefore common to a system built on top of HBase to execute queries. HBase
also does not provide ACID properties, so these must also be implemented by another
system.

An alternative for low-latency query processing is Spark [6]. It offers a richer pro-
gramming model than MapReduce, including iterative operations. It is well suited to
implement machine learning algorithms, and interactive data analytics. However, Spark
is based on the Scala programming language, which may be unfamiliar to many devel-
opers. In addition, compared to the systems discussed above the Spark codebase is still
immature, but it is now a top-level Apache project.

3 Results
We have extended several data-intensive computing systems to provide services for

biological data analysis. In this section, we answer the following questions:

1. Why did we choose a particular system?

2. What problems did the system solve?

3. What where the main limitations of the systems for our use?

4. What were the lessons learned during development and deployment?

We have used three clusters for development and deployment of our systems over
a period of five years. All were built for data-intensive computing with storage dis-
tributed on the compute nodes. We chose the Hadoop software stack, including HDFS
for distributed storage. Hadoop is probably the mostly used data-intensive computing
platform, and it has a very active development community. By using Hadoop, we have
benefited from improvements to the infrastructure systems, and the addition of new
infrastructure systems such as Spark to the ecosystem. We will give detailed achieve-
ments, issues, and lessons learned below.

3.1 Troilkatt
Troilkatt is a system for batch processing of large-scale collections of gene expres-

sion datasets. We use Troilkatt to process data for the IMP integrated data analysis tool
[7]. We built Troilkatt in order to scale our gene expression dataset integration pipeline
to process all datasets for several organisms in NCBI GEO. The pipelines comprise tools



Proceedings of CIBB 2014 4

Table 1: Our use of data-intensive computing systems for biological data processing

System Problem Solution Issues
Troilkatt Scale integrated anal-

ysis pipeline
HDFS: scalable storage Memory manage-

ment
MapReduce: I/O intensive pipeline
processing

GeStore Incremental updates
for analysis pipelines

HBase: data structures for generat-
ing incremental updates

Hadoop MapReduce
job startup time

MapReduce: I/O intensive pipeline
processing

Mario Tuning of analysis
pipelines

HBase: sparse data structure, low-
latency reads and writes

Performance tuning
HBase

for data cleaning, transformation, and signal balancing of these datasets. The integrated
data compendium for organisms such as human have ten thousands of datasets. The raw
data, final results, and intermediate data in a compendium use tens of terabyte of storage
space.

The pipeline processing is well suited for data-intensive systems since most pipeline
tools are I/O intensive. The data is stored in HDFS. We use MapReduce for parallel
processing and HBase for meta-data storage. We chose MapReduce since the processing
must scale to several tens of terabytes of data. Since the datasets can be processed
independently we use one Mapper task per dataset for each pipeline tool, and hence can
process all datasets in parallel. MapReduce is well suited for many of the tools, since
these process one row in a gene expression table at a time.

We achieved system that efficiently execute pipelines for processing integrated com-
pendia datasets. We did not have to implement data communication between tasks, nor
data locality aware mapping of tasks to compute nodes. Our main issue was large in-
memory data structures in two pipeline tools. Hadoop MapReduce is run in a JVM, so
the maximum heap size must be set at system startup time. The memory usage of the
largest tasks therefore limits the number of tasks that can be run in parallel on each node.
To achieve a good trade-off between memory usage and parallelism, we had to divide
the expression datasets by their memory usage and processes similarly sized datasets
together in a MapReduce job.

Since all datasets can be processed in parallel, and most organisms have hundreds
or thousands of datasets, the parallelism in the pipeline exceeded the available compute
resources even on the biggest 64-node cluster. We can therefore efficiently utilize a
much larger cluster. We also used up all storage on the clusters, and therefore have
to periodically delete raw data downloaded from public repositories. A full update
of the dataset therefore requires re-downloading tens of terabytes of data from public
repositories. We also have to share the clusters with other non-MapReduce jobs, and
will therefore benefit from a cluster management system such as Mesos [8].

3.2 GeStore
GeStore [9] is a system for adding transparent incremental updates to biological data

processing pipelines. We use GeStore to incrementally update large-scale compendia,
such as the IMP compendia described in the previous section. GeStore is integrated with
Troilkatt and Galaxy. We built GeStore since the processing time for a full compendium
update can be several days even on a large computer cluster, making it impractical
to frequently update all compendia. GeStore adds incremental updates to unmodified
pipeline tools by manipulating the input and output files of the tools. A plugin frame-
work provides services for parsing common genomic data file formats, implementing
tool-specific input file generators, and output file mergers.



Proceedings of CIBB 2014 5

GeStore must detect changes in, and merge updates into, compendia that can be tens
of terabytes in size. GeStore must also maintain and generate incremental updates of
meta-databases, such as UniProt (http://www.uniprot.org/). These can be tens of gi-
gabytes in size. We use HBase for data storage and MapReduce for generating input
files and merging output files. HBase provides high-throughput random data accesses
required for efficient change detection and merging. GeStore stores meta-database en-
tries as HBase rows, and updates to these entries by creating a new version of an HBase
table cell. The timestamps enable efficient table scans to find entries that have changed
in a time period and hence are part of an incremental update. In addition, the flexible
schema of HBase tables is used to reduce the work required to maintain plugins when
file structures or databases changes, allowing several years of database versions to be
stored in the same HBase table.

We achieved up to 82% reduction in analysis time for dataset updates when using
GeStore with an unmodified biological data analysis pipeline ([9] has additional exper-
imental results). We found HBase to be well suited for the data management require-
ments of GeStore. File generation and merging scales to large datasets since we use
MapReduce for data processing. In addition, we reduce storage space requirements by
storing multiple meta-databases versions in HBase instead of storing all versions sepa-
rately.

The overhead introduced by GeStore is high for incremental updates of small datasets,
since the startup time of Hadoop MapReduce jobs is tens of seconds. A system with
lower startup time, such as Spark, will significantly reduce this overhead.

3.3 Mario
Mario [10] is a system for interactive iterative data processing. We have designed

Mario for interactive parameter tuning of biological data analysis pipeline tools. For
such interactive parameter tuning, the pipeline output should quickly be visible for the
pipeline developer. Mario combines reservoir sampling, fine-grained caching of de-
rived datasets, and a data-parallel processing model for quickly computing the results of
changes to pipeline parameters. It uses the GeStore approach for transparently adding
iterative processing to unmodified data analysis tools.

Mario must efficiently produce random samples from a stream for reservoir sam-
pling, implement a cache of fine-grained pipeline tool results, and implement parallel
pipeline stage processing. We use HBase as storage backend due to its low-latency ran-
dom read and write capability, its ability to efficiently store sparse data structures, and
its scalability. Mario stores all intermediate data records produced during pipeline ex-
ecution in HBase, and uses the cached data to quickly find the data records that must
be updated when pipeline tool parameters are changed. Mario also uses HBase for data
provenance and single-pass reservoir sampling.

We achieved a system for iterative parallel processing that adds less than 100ms of
overhead per pipeline stage, and that does not add significant computation, memory, or
storage overhead to compute nodes (additional results are in [10]). We found HBase to
be very well suited for efficiently storing and accessing the sparse data-structures used
by Mario.

Our main issue was to configure HBase to achieve the required performance. We
chose a configuration where HBase region servers allocate 12GB DRAM on the cluster
nodes, and we traded reliability for improved write latencies by keeping write-ahead
logs in memory (and periodically flushing these to disk). The latter is acceptable for
Mario since the intermediate data stored in HBase can be recomputed at low cost, if
required.



Proceedings of CIBB 2014 6

4 Conclusion
We have transparently extended flexible biological data analysis frameworks to uti-

lize data intensive computing infrastructure systems. Our results show that even unmod-
ified biological data analysis tools can benefit from these for: (i) scalable fault-tolerant
computing for large-scale data; (ii) incremental updates in order to reduce the resource
usage required to update large-scale data compendium; and (iii) interactive data analysis
and exploration.

We have identified several limitations of the infrastructure systems we used. How-
ever, by using new systems recently added to the Hadoop ecosystem we can remove
many of these limitations. We will therefore continue using these systems to extend
biological data processing pipelines with new services for making data analysis more
efficient and for improving the quality of the analysis results.

5 Acknowledgements
Thanks to Einar Holsbø, Giacomo Tartari and Bjørn Fjukstad for their comments and

insights while writing this extended abstract.

References
[1] L. Clarke, X. Zheng-Bradley, R. Smith, E. Kulesha, C. Xiao, I. Toneva, B. Vaughan, D. Preuss,

R. Leinonen, M. Shumway, S. Sherry, and P. Flicek, “The 1000 Genomes Project: data management
and community access.,” Nature methods, vol. 9, pp. 459–62, May 2012.

[2] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive approach for supporting acces-
sible, reproducible, and transparent computational research in the life sciences.,” Genome biology,
vol. 11, p. R86, Jan. 2010.

[3] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier,
Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maech-
ler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. H. Yang, and J. Zhang, “Bio-
conductor: open software development for computational biology and bioinformatics.,” Genome
biology, vol. 5, p. R80, Jan. 2004.

[4] J. Dean and S. Ghemawat, “MapReduce - MapReduce simplified data processing on large clusters,”
Communications of the ACM, vol. 51, p. 107, Jan. 2008.

[5] R. C. Taylor, “An overview of the Hadoop/MapReduce/HBase framework and its current applica-
tions in bioinformatics.,” BMC bioinformatics, vol. 11 Suppl 1, p. S1, Jan. 2010.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, (Berkeley, CA, USA), pp. 2–2, USENIX Association, 2012.

[7] A. K. Wong, C. Y. Park, C. S. Greene, L. A. Bongo, Y. Guan, and O. G. Troyanskaya, “IMP: a multi-
species functional genomics portal for integration, visualization and prediction of protein functions
and networks.,” Nucleic acids research, vol. 40, pp. W484–90, July 2012.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: a platform for fine-grained resource sharing in the data center,” Proceedings of the 8th
USENIX conference on Networked systems design and implementation, p. 22, 2011.

[9] E. Pedersen, N. Willassen, and L. A. Bongo, “Transparent incremental updates for genomics data
analysis pipelines,” in Euro-Par 2013: Parallel Processing Workshops, vol. 8374 of Lecture Notes
in Computer Science, pp. 311–320, Springer Berlin Heidelberg, 2014.

[10] M. Ernstsen, Mario. A system for iterative and interactive processing of biological data. Master
thesis, University of Tromsø, Nov. 2013.


