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Abstract
In listening to lung sounds with stethoscopes or lung auscultation, pulmonary
crackles are used as an indicator of pulmonary disease. General Practitioners
often use the stethoscope when referring patients to pulmonologists, but there
is a lot of subjectivity in what each general practitioner hears and classifies as
a crackle. We propose an approach to do a computerized analysis to detect
crackles in recordings from stethoscopes, through using signal processing and
machine learning. We created an analysis pipeline that first pre-processes
each audio file, dividing the audio signal into smaller windows and extracting
features from these windows. Second our pipeline classifies each of these
windows, we use the features extracted with a hierarchy of Support Vector
Machines. They cooperate using a probability measure for whether there is an
abnormal sound or normal sound in the current window. Finally we present
the findings of each window to the user as an annotated waveform.

We evaluated the approach using cross validation when training our classifiers
and also running experiments with our classifiers on data from the biggest
dataset of lung sounds to date. Our results show that our pipeline picks up
a rate of 1.3 crackles in each Normal audio file, which may be false positives,
but crackles might occur naturally in lungs without further significance. More
interesting, our pipeline found a rate of 5.3 crackles per crackle signal. We also
evaluated our training accuracy of our classifiers, and we got 87% accuracy.
Our approach, realized through our pipeline, can be used by medical staff both
as a training tool or as an aid in diagnosis when listening to lungs.
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1
Introduction
In medicine there are many classification problems, such as discriminating
between positive or negative findings, or different types of findings. This is
true in Pulmonary¹ medicine as well. Often these tasks are prone to subjectivity
of the observer, andmay therefore be unreliable diagnostic indicators. Therefore
there is a need for a gold standard that people in the medical field can use in
both training, and as aid in practice.

In this report we propose a system for doing a computerized analysis and
classification of one of these diagnostic indicators, namely Lung Sounds. We use
signal processing andmachine learning techniques to perform this classification
task. Our goal is to create an approach for training medical students, and also
to help medical professionals in classifying of Lung Sounds.

This project is part of the study Inter-observer variation in categorizing lung
sounds. A comparison between experts, lung specialists and general practitioners
(from now abbreviated the Inter-observer Study). The study is done by Juan Car-
los Aviles Solis, Prof. Hasse Melbye and Prof. Peder Halvorsen. They will record
the biggest repository of expert curated lung sounds in the world. The study
is a part of Tromsøundersøkelsen[UiT, ], which is a long term epidemiological
study conducted periodically in Tromsø since 1974.

1. Relating to, associated with, or affecting the lungs

1
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1.1 Gold Standard
Our main goal is to develop an approach to classify sounds into different
types, or classes, of lung sounds. As a part of the Inter-observer Study, the
investigators will record lung sound samples from close to 3,000 patients,
each session consisting of 6 audio recordings per patient, which culminates
to around 18,000 audio samples. Out of these samples, we estimate it to be
abnormal sounds present in about 10% of the recordings. The purposes of the
Inter-observer Study will be to create this gold standard for lung sounds.

To create the gold standard, this large dataset has to be analysed manually
and each sound file has to be classified as either normal or containing a
type of abnormal sounds. In lung auscultation there are three different types
of abnormal sounds that are relevant: Crackles, Wheezes and Rhonchi. All
findings has to be agreed upon by three different doctors with experience in
pulmonology². This is a time consuming procedure, and possible disagreement
adds even more time complexity to the process.

The resulting gold standard helps with the main challenge that projects deal-
ing with automatic lung sound classification; the lack of large, diverse and
representative datasets.

1.2 Related Work
The two most important fields of related work are machine learning and
automatic crackle detection. Previous studies have applied both machine learn-
ing and rule-based decision systems to problems in automatic crackle detec-
tion.

Machine learning techniques applied to audio tend to often be in speech
recognition[Deng and Li, 2013],music recommendation[van den Oord et al., 2013]
andmore specializedfields such as dental drill sound recognition[Zakeri et al., 2015].

We have seen that techniques for detecting abnormal lung sounds that are rule
based,using a set of parameters extractedusing signal processing[Pinho et al., 2015].
Some studies have also applied machine learning algorithms to these problems
such as SVMs and Neural Networks[Serbes et al., 2013][Göğüş et al., 2015] and
with very good results, but a common problem is the lack a large, diverse
dataset. We believe that if the approach should have a real world application,
it must also be able to deal with diverse data recorded under normal clinical

2. Medical specialization involving lung conditions and diseases
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circumstances.

In addition, the Inter-observer study repository lung sounds provides the needed
large multi-annotator gold standard, and also what sets this project apart from
previous studies. There have also been few projects to apply machine learning
to this type of data, and often the input audio are already divided into windows.
Other repositories have audio that are recorded under special circumstances
not available to general practitioners.

1.3 Automatic Classification
Manual classification can be a time consuming task. We therefore propose to
use a computerized analysis in order to automatically classify the mentioned
dataset.

Our solution is to develop an approach in collaboration with the Department of
Public Health and General Practice to automatically classify these Pulmonary
Sounds collected in Tromsøundersøkelsen. Our approach uses signal process-
ing techniques to generate features that can later be given to our classifiers.
There are several types of features that might be relevant to classification of
pulmonary audio, especially from the areas of speech recognition and music
information retrieval. After feature extraction, we need to employ Machine
Learning techniques in order to learn a model from the manually classified
data, that we can apply to previously unseen data.

Computers can analyse huge amounts of data in only a fraction of the time
it would take humans to manually analyse data. We use Machine Learning
because it is desirable to have a system that automatically perform classification
tasks, for large amounts of data, without needing intervention of a human
expert. As Pedro Domingos puts it in his paper A Few Useful Things to Know
about Machine Learning:

"Machine learning algorithms can figure out how to perform important tasks by
generalizing from examples. This is often feasible and cost-effective where manual
programming is not."[Domingos, 2012]

One of the main uses of Machine Learning is clustering, which entails finding
specific patterns in a medium of data, be it text documents, pictures, music
files or even electrical signals. It is a way of discovering correlations in im-
mense amounts of data. An equally important aspect of Machine Learning
is classification. Classification requires some prior knowledge about data to
formulate a set of classes that correspond to certain patterns. Classification
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requires a training set, which is a pre-classified set of data that can be used to
learn these patterns and which classes they should adhere to. Learning can be
done through several different methods dependent on the type of classifier. In
this study the classifiers used are Support Vector Machines, from now abbrevi-
ated SVM, which learns patterns by finding a separating hyperplane between
features that is plotted in a certain space.

Implementing our approach in a software tool and making it available to
researchers in pulmonology can be of benefit in classifying and managing large
datasets, simplifying data gathering and analysis.

1.4 Our Approach
Our approach requires a pipline with the following steps:

Filtering is done for all audio files before analysis. Filtering in this contextmeans
that any given audio file must be band pass filtered (excluding frequencies
above or below a certain threshold) in order to keep the relevant frequency
spectrum and discard an frequencies that may be of disturbance to the analysis,
for example frequencies that are below 50 Hz are generally not of interest to
this study. All audio files must be divided into smaller windows in order to
gain a more fine grain analysis in the time scale, meaning that every time an
abnormal sound is detected, it should be able to trace it back to its location
in time. Dividing the audio also serves the purpose of limiting the amount of
data that has to be analysed at a time, making it easier for a machine learning
algorithm to distinguish patterns. Lastly this makes each data point (collection
of an audio signal) conform to a set size, eliminating the chance that data
points may be misclassified due to a lack of standardization of data length and
shape.

Feature Extraction is important for any machine learning program, as it further
decreases the size of the data without discarding the properties of the data.
It can be seen as a summary of the data’s contents. Our pipeline extracts a
certain set of features in order to learn patterns that adhere to each of the
different classes.

Classification is performed based on the previous steps on audio files of any
given size and shape. The classifier employs machine learning techniques and
algorithms in order to achieve this. The classifier is trainable (and re-trainable)
with different training data. After we classify each audio file, we represent
the findings in a way that is easy to understand, but also customizable (visual
images, timestamps, boolean values etc.).
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Persistence of results is important for users of the solution, and export any
results into Excel or CSV.

A User Interface is provided in order for people not familiar with concepts of
programming to be able to interact with proposed solution. This way it is useful
for medical research and training, which is one of the main goals of this study.
The solution is available through a simple web interface.

1.5 Contributions
The contributions of our work are:

• A novel approach to detect crackles in lung sounds, using machine learn-
ing and signal processing.

• Implementation and Design of our approach as a automatic pipeline that
detects abnormal pulmonary sounds in audio recordings. Our pipeline
performs the analysis without requiring any input or preprocessing from
a user as this is part of our analysis.

• An experimental evaluation of our classifiers’ accuracy through cross
validation while training a hierarchy of Support Vector Machines, using
the largest database of its kind in the world.

Through our experiments we found that we are able to achieve a cross-validated
accuracy of 0.87. Running our analysis pipeline on samples of audio files of
varying length we found that it can detect crackles of varying loudness and
duration, in files containing ambient (extravascular) noise. We found some
problems with these ambient noise sounds as the tubing of the stethoscope
can produce crackle-like noises, which leads to a rate of false positives in
our normal files. 25% of the normal files produce more than 4 crackles (that
are false positives), but many of these are due to the patient talking during
examination. 62.5% of the normal files are classified as true negative, which
means the remaining 12.5% of our false negatives can be eliminated in post-
processing. We found that the distribution of crackles in crackle files were at
60% containing more than 4 crackles. Which means most of the crackle files
would not be affected in post-processing.





2
Methods
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Figure 2.1: Overview of the different main steps in analysing audio

This chapter we will present the methods we used and how we arrived at a
solution using Machine Learning methods. Our solution can be broken down
into three main steps: Preprocessing, Classification and Presentation. In our
Preprocessing we divide a signal into smaller chunks, as we found that looking
at the signal as a whole gave a low accuracy close random guess. In addition
the audio files were of varying length. After dividing the signal we do feature
extraction from each of the smaller chunks before handing the set of features
to the Classifiers. The classifiers will then label each of the chunks as either

7



8 CHAPTER 2 METHODS

a normal sample or a crackle sample and push the now labeled data to the
presentation step. In Presenting the now labeled chunks, we rebuild the signal
into a waveform representation of the original signal, and annotate each crackle.
Further in this chapter we will look at each of these three steps in detail.

2.1 Preprocessing

Figure 2.2: Dividing a signal into smaller chunks. Each window can either be exam-
ined individually to produce a training set, or sent to the classifier for
classification.

First we have used a Butterworth bandpass to pass through frequencies between
150 Hz and 2400 Hz. The Butterworth bandpass is an electronic filter that
rejects unwanted frequencies and has a uniform sensitivity for the wanted
frequencies[Butterworth, 1930]. Frequencies above this range will most likely
not be related to crackle sounds and frequencies below will most likely contain
cardiovascular sounds that might interfere with the classification.

Further when investigating approaches to learn from the audio data, we found
that using smaller chunks, of fixed size windows, produced a higher accuracy
than looking at the signal as a whole. We believe that having less data per
classification task will help to successfully find all crackles, and also their



2.2 FEATURES 9

location in time. So to achieve this chunking we divide the signal by sliding a
window of 4096-points across the signal,with a 50% overlapping to the previous
window (Figure 2.2). This is to avoid losing potential crackles between two
windows. The last window of a signal is zero-padded if it is too short to fit into
a 4096-point window. When we do this modification to the signal, the relation
between windows will be unknown to the classifier, and each window will be
treated as an isolated event. By extracting these windows and labelling them
as either a window of normal breathing or crackle.

As the last step in preprocessing we extract features from each of these windows.
Christopher M. Bishop states the goal of feature extraction in his book Pattern
Recognition and Machine Learning: "For most practical applications, the original
input variables are typically preprocessed to transform them into some new space
of variables where, it is hoped, the pattern recognition problem will be easier to
solve" [Bishop, 2006, p. 2] The three types of features we extract are Wavelet
Statistical Features, Short Time Fourier Transform Coefficients and Spectral Flux.
Although the aforementioned chunking of the signal can also be considered a
part of feature extraction, the aforementioned chunks are further transformed
before they are given to the classifier.

2.2 Features
When we extract features from the audio files, all windows are decimated by
a factor of M , in our case M = 4. This means the windows go from 4096
samples down to 1024, by only keeping every 4th sample and throwing away
M-1 samples in between [Crochiere and Rabiner, 1981]. The reason for this is
to further try to reduce the amount of data, while still keeping the features of
interest intact.

One of the problems we have seen is that there is no one-fits-all type of feature.
Some feature types, such as Spectral Flux, may be good at identifying the
abnormal sound, but may also make the classifier very sensitive to additive
noise. Since the information in the Spectral Flux feature is only concerned with
rate of change of a signal. Other feature types have shown to make the classifier
less sensitive to additive noise, but also very insensitive to the actual abnormal
sounds, such as the Statistical Wavelet Coefficients. They have more detailed
information about different sub-bands of the spectrum, but might miss more
subtle crackles with less prominent characteristics (the ones that are harder
to detect both by computers and humans). We also observed that the tubing
of the stethoscope produced additive noise sounds that mimic the signal of a
crackle very closely, and therefore they are often mistaken for crackles. Because
of this we have chosen to include three different types of features in order for
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our pipeline to have a balance between.

The original signal is kept as well, but not used as a feature. The raw data is only
used to construct a waveform of the original signal after classification.

2.2.1 Short Time Fourier Transform
The Fourier Transform is often a central part of signal processing and especially
in audio. While a Fourier Transform will give a summary of the frequencies in
the audio, but it discards the time domain in order to do so. One of the most
important uses of Fourier Transforms is the ability to shift time-dependent data
into the frequency domain. So for a signal SAmplitude

T ime the Fourier Transform

translates this data into ŜAmplitude
Frequency(Hz), which gives an overview of the spectral

contents of the signal. Now the Short Time Fourier Transform uses a series of
consecutive Fourier Transforms to compute a Spectrogram that retains the time
scale.

Since the Crackle sound is an explosive sound which keeps its power through
frequencies up to 1000.0 Hz, the fourier calculated spectrogram will give some
indication of crackles that might be located in the audio.

2.2.2 Daubechies Discrete Wavelet Decomposition
Discrete Wavelet Decomposition is an alternative to the Fourier Transform, but
it automatically retains the time scale. It also uses a less naive approach to
different frequencies where the higher frequencies are sampled at a higher rate
than lower frequencies. A multilevel discrete wavelet decomposition means that
a signal will be decomposed several times, down-sampling and band passing the
signal at each level creating a binary tree of coefficients, also known as a filter
bank. Each of these levels of decomposition produces a set of Detail Coefficients,
while the last decomposition is named the Approximation Coefficients.

After performing the DWT on a signal of a window, we summarize all of the
coefficients by calculating the Maximum frequency and Average Power of the
absolute values in each individual coefficient set.

2.2.3 Spectral Flux
Spectral Flux is a measure of how much a signal changes over time with
regards to the power spectrum. Often used in Music Information Retrieval it is
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an indication of the timbre of a signal. In this project the spectral flux is an
indicator of how much the signal fills each window. Finding the Spectral Flux
coefficients of a given signal usually involves calculating the Euclidian distance
between two normalized spectra. One of the keywords here is the normalization
step. All data has to be normalized, otherwise a window containing weaker
amplitudes of normal breathing might have a very different coefficient than
windows containing stronger amplitudes, e.g. a higher loudness in the sound.
The result of this analysis means that a high coefficient indicates that the signal
is changing a lot over the course of time in the window. A small coefficientwould
mean there are little change over time. This translates to that all windows that
has a high peak, or a high spike in the amplitude would have a low coefficient,
while a signal that contains few spikes would have a high coefficient.

We calculated the spectral flux by computing the change between windows of
256 samples with each of the 4096 sample window. This gives a 3-dimensional
vector for each window, which is significantly lower than the other features.
We have chosen to keep this feature in the feature set, but it will most probably
be replaced in the future.
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2.3 Classifiers

Voting

SVM SVM SVM

Short Time Fourier 
Transform 

Coefficients

Wavelet Statistical 
Coefficients

Spectral Flux 
Coefficients

P (Crackle)
P (Normal)

P (Crackle)
P (Normal)

P (Crackle)
P (Normal)

P(Normal) > P (Crackle) P(Normal) < P (Crackle)

Crackle SampleNormal Sample

Figure 2.3: The classifiers hierarchy and voting scheme for determining the class of a
given window.

For this project, we chose to use SVMs¹ as classifiers. One of the reasons for this
is that SVMs are very flexible in terms of the decision boundary because of the
kernel type. Using a non-linear kernel, the SVM is able to represent non-linear
relations. Since the data is non-stationary, and none of the features selected
works exclusively well for all samples, the SVMs are structured into a hierar-
chy inspired Serbes et al.[Serbes et al., 2013]. These SVMs will try to classify
one window at a time, where each of the classifiers outputs a probability for
each class using Platt Scaling[Platt, 1999]. The Platt Scaling formula solves the
problem that SVMs does not output any degree of certainty about an answer.
Platt scaling works by fitting a logistic regression model to the classifiers scores
and the formula is given by:

1. Support Vector Machine
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P(y = 1|x) = 1
1+exp(Af (x )+B)′

Then using a simple voting scheme the result of the classification will be two
probabilities for each class:

P(Crackle) =
n∑
i=0

Pi (Crackle)∗W P(Normal) =
n∑
i=0

Pi (Normal)∗W

Where n is the number of classifiers andW is the weight, the weight is just
assigned to be 1

n and i is the ith classifier. The class that has the highest
probability will be the final class of the window. This can be seen in Figure
2.3.

2.4 Parameter Tuning
Support Vector Machines are dependent on several parameters, and for the
SVM to perform well in classification, we need to chose optimal parameters for
our classification problem. We can either choose these parameters manually,
or search for the optimal combination using Grid Search. When using a Grid
Search, we define a set of test parameters, and then systematically build a
model using each of these parameters, and cross validating the models score.
If the new model has a better accuracy than our previous try, we chose the new
models parameters as the optimal ones, and if not we discard the new model.
The advantage of SVMs is that the kernel is also interchangeable, which means
that if any of the features are not linearly separable (Figure 2.5), we can just
choose a non-linear kernel for that feature type. The wavelet decomposition
features have 14 dimensions per vector (each window being a single vector),
while the short time fourier transform coefficients have 2145 dimensions. This
might be a case of the Curse of Dimensionality, where we may need to further
reduce the dimensions of the latter vector.

The two first Principal Components of the Wavelet Decomposition Features
(Figure 2.4) are almost linearly separable in a 2-dimensional space. Comparing
to the two first Principal Components of the Short Time Fourier Transform
features (Figure 2.5), are not separable in 2 dimensions. It is important to note
that even though features are not linearly separable in 2 dimensions, they may
be in higher dimensions, but it is not possible to show this separation on a 2
dimensional plane.
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Figure 2.4: Principal 2-component analysis of Wavelet Decomposition Features. Red
points are crackle features, while blue are normal breathing features.
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Figure 2.5: Principal 2-component analysis of Short Time Fourier Transform Features.
Red points are crackle features, while blue are normal breathing features.
This feature type is inseparable in 2 dimensions.





3
Implementation

Input Directory

Main Runtime

Preprocessor Feature Sets Classifier

Classified Audio 
Windows

User 
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Representation of 
Classified Audio Data

Figure 3.1: The overall Architecture of the solution

The general architecture of the current pipeline is given above in Figure 3.1
have three main components: An input unit, the core program and an output
unit. The input unit can be just a folder, a web interface or a full desktop client
that supplies audio files to the core main runtime, in our approach the Input
Unit will take the form of a web interface that supplies audio files to a folder
that can be reached by the core main runtime.

The core program consist of three specific units: Main Runtime, a Preprocessor
and a Classifier. The Main Runtimes purpose is to handle input and output

17
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for all other units, with the exception of the training set, which has its own
utility module for storing and loading audio waveforms as binary data. It is
also responsible for formatting data that can be understood by the different
units. We have also tasked it with annotating the Raw Audio Waveform that is
supplied by the Classifier. This correspond to the summary/presentation step
in Figure 2.1. This is also the reason that the raw audio data is included in the
feature set.

The pipeline is implemented in Python 2.7 using Scikit-learn for machine
learning functionality, Numpy for array and matrix operations, Scipy.signal for
interaction with and filtering of audio files, librosa and pywt for the Short Time
Fourier Transform and Wavelet Decomposition.

Our experiments were run on a machine with the following specs:

Intel Core i5-4570S Quad Core CPU @ 2.90 GHz
6,00 GB RAM @ 1600 MHz
Gigabyte G1.Sniper B5 Motherboard
Windows 10 Pro, 64-bit Operating System

3.1 Training Set
As we have mentioned earlier, the preprocessor is able to create a training set
by manual interaction. Each of the chunks collected from a signal can be saved
to respective directories dependent on what class the user inputs. All chunks
are then saved to either directory as binary files for optimal performance with
Numpy. We have generated the current training set consisting of 98 samples,
of which 37 are crackles and 61 is normal. It is a very small training set in
comparison to how many audio files are available, and this will need to be
expanded as the repository of lung sounds grows in order to utilize it to its
full potential. In our experiments using grid search for parameter tuning, the
optimal parameters depends a lot on the fold of the training data. This will be
further discussed in the evaluation section.

3.2 Interface
Our intention is that the analysis pipeline we have implemented will run as
a web server available within the university network. The web server uses a
Python Flask back-end and runs within a Windows Server 2012 Virtual Machine.
Figure 3.2 is the current web interface, we have used Bootstrap for visual
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Figure 3.2: Web interface to the analysis pipeline, a user can upload audio files to the
server for analysis.

components and Dropzone.js to handle file upload to the server. We have not
yet connected the server interface to the actual implementation of the analysis
pipeline, so the server is currently not able to analyse audio files.

We plan to have users upload audio files to the server for analysis and present
the results to the user in two different stages. The first stage is a summary of
whether there have been any abnormal sounds detected or not and second a
detailed overview of each audio files with annotated waveforms.





4
Evaluation
When evaluating our pipeline, we look at the results from our classifiers. We
evaluated our classifiers with regards to: Precision, Recall and F1-score. Precision
is the number of Predicted Positives that was actually True Positives, or the
number of correct hits compared to the number of false hits. Recall is the
number of Predicted Positives that was actually in the total amount of True
Positives, or how many that are true did the classifiers find. The F1-Score is a
weighted combination of the Precision and Recall. The accuracy measurement
is a combination of precision and recall, much in the way of the F1-score, but it
is not weighted. The accuracy will give an indication of how well the classifiers
are classifying every sample correctly and the standard deviation of accuracy
between training cycles shows that the classification accuracy is not dependent
on certain samples of training data.

4.1 Methodology
When training the classifier we can validate the accuracy using a Stratified K-
fold. We divide the training set into three equally sized sets (and with the same
distribution of classes in each). We have used this to validate the performance
of our classifier, and running a training - validation cycle 100 times. For our
experiments we have used only the Short Time Fourier Transform Coefficients
and the Wavelet Statistical Coefficients as our features, this means that there
are two classifiers working in the hierarchy. The reason we chose to omit the
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Spectral Flux Coefficients is that through earlier experiments they did not impact
the results of our classification.

To create a basis for comparison, we have run our experiments using three
different classifiers, Support Vector Machines (with hierarchical voting using
one SVM for the Wavelet and Short Time Fourier Transform features),K-Nearest
Neighbor and Gaussian Naive Bayes Classifier. Each training cycle consisted of
fitting the classifiers using the initial parameters. We then using a grid search
to find the optimal parameters, except in the case of the Gaussian Naive Bayes
Classifier since it is based on probability with no additional parameters. After
the optimal parameters for the fold were found, we used the hold-out set of
samples from the Stratified K-Fold to verify the performance with regards to
the aforementioned criteria.

SVM Precision Recall F1-score
Crackle 0.90 0.73 0.81
Normal 0.85 0.95 0.90
Avg/Total 0.87 0.87 0.86

Table 4.1: SVM classifiers Precision, Recall and F1-score after running 100 training and
cross-validation cycles.

KNN Precision Recall F1-score
Crackle 0.92 0.25 0.39
Normal 0.68 0.99 0.80
Avg/Total 0.77 0.70 0.65

Table 4.2: K-Nearest Neighbors classifiers Precision, Recall and F1-score after running
100 training and cross-validation cycles.

Naive Bayes Precision Recall F1-score
Crackle 0.57 0.10 0.18
Normal 0.63 0.95 0.76
Avg/Total 0.61 0.63 0.54

Table 4.3: Gaussian Naive Bayes classifiers Precision, Recall and F1-score after running
100 training and cross-validation cycles.

From the results above we can see that the SVM classifier performs best
in comparison with KNN and Bayes classifiers. All of the classifiers are ar-
ranged in a hierarchy as stated in the methods, using our two most indicating
features (Short Time Fourier Transform and Wavelet Decomposed Statistical
Features).

An important observation that we made in our experiments is that the standard
deviation in accuracy is fairly low. The accuracy only varies with about 6%
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Accuracy
SVM 0.87 ±0.06
KNN 0.70 ±0.07
Bayes 0.63 ±0.06

Table 4.4: Average accuracy and standard deviation of the different classifiers.

throughout the 100 training cycles. This is a good indication that there is
low variation in results with each cycle, we believe that this is a positive
indication that there are common distinctions between crackle signals and
normal signals.
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Figure 4.1: A plot of the average accuracy of the different classifiers.

However in our experiments, the optimal parameters (found in our grid search)
for our classifiers changed quite frequently for each of the training cycles. We
believe that this is due to a low amount of training data, only 98 samples in
total (37 crackle and 61 normal). This means that even though the accuracy is
good, there are too few datapoints to find a common best set of parameters
for all training samples. Our SVM parameters changed between using a linear
kernel with a high cost parameter, C, and using a RBF¹ kernel with a low cost
parameter. We believe that increasing the amount of training data might also

1. Radial Basis Function
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help to eliminate some of the false positives that occur in our normal audio
files. As we discussed there are additive noise in a number of these normal
audio files that are very similar to the crackle signals. These are a source of
false positives in our experiments, but it is something that we cannot discard
as isolated events, since ambient noise is a reality of clinical settings.

4.2 Experiments on Real Data
In this section we will go through the common cases that we have seen in
our experiments when applying our pipeline to real data. All of these audio
files have already been classified by the investigators from the Inter-observer
study.

In Figure 4.2 we see a typical crackle audio file, with the crackles annotated in
red. For most of these types of samples, the pipeline analysis are able to find
almost all crackles.

Figure 4.2: A typical crackle audio file.

In some more extreme cases we see examples of what is referred to as Fine
Crackles. These are typically shorter and have less power than the standard
Coarse Crackles, our classifier are able to find these crackles as well, but it does
not distinguish between Fine and Coarse types of crackles.

We consider these findings to be promising, since these are audio files recorded
in what would be a typical clinical setting. But we have also found that there
are many problematic samples as well. There are many cases of ambient noises
that imitates crackles and produces false positives (Figure 4.4). When listening
to these files we can hear that they are in fact close to crackles as well. This
is of course also a problem for Medical Staff when it comes to listening to the
lungs, so if we can improve our solution to discriminate between these ambient
noises and true crackles, it can prove very useful in both practice and training
of said Staff.
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Figure 4.3: A rarer case of crackle audio files. This particular one is recorded from a
patient diagnosed with pulmonary fibrosis.

Figure 4.4: A problematic audio file which contains ambient noise. These spikes are
labelled falsely as crackles.

This shows of course one of the more problematic ones, but there are some
normal audio files which have significantly fewer false positives, often between
1 to 6 false crackles. We have come up with an idea for a post-processing step to
eliminate these looking at how often a crackle occurs in the audio file, and also
if there is some sort of cyclic pattern to their occurrence if they do appear more
than once. A single crackle, even if it is a true positive, does not necessarily
have any significance (Figure 4.5).

Figure 4.5: A normal audio file containing a single false positive, this might be elimi-
nated with a post-processing step.

We experimented with real data (full sized audio files) that have been classified
by the experts at the Inter-observer study. Themain problem seems to be varying
results, and that each experiment is dependent on the parameters found with
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each SVM. Due to this we found that our rate of false positives for all normal
audio files are up to 1,3 false positive crackles per audio file, while the rate of
true positives are about 5,3 crackles per audio file. We believe this is due to
the small amount of training data, which will be a focus for our future work
where we need to expand our training set. As we discussed earlier, these false
positives can also be eliminated in post-processing by having a certain number
of crackles that must appear in an audio file before reporting it as a positive
finding.

4.3 Comparison to Related Work
In the paper Automatic Crackle Detection Algorithm Based on Fractal Dimension
and Box Filtering[Pinho et al., 2015] a team of researchers from the University
of Aveiro, Portugal suggest a technique of automatic crackle detection. The
methods they use can be summerized in three steps. 1) Extract the window
of interest that may contain a crackle, they do this by using fractal dimension
and box filtering teqniques. 2) Verify the signal if it adheres to the CORSA²
established criteria. and 3) Characterization of the Crackle’s parameters. Their
methods of detecting crackles are based on previous work done in the field of
examining the nature of Crackles. One of the criteria they use to determine
if a window contains a Crackle is the initial deflection width (IDW) and the
largest deflection width (LDW).

Although these Crackle parameters seems to have worked out well in their tests,
it does not exclude the possibility that there are signals which mimic these
parameters in normal breathing. Which they do not mention in their work,
and might have an impact on the accuracy of their developed software. Their
tests were performed in 24 audio files and comparing to a multi-annotator gold
standard, and seems to perform very good, on these 24 cases. The advantage
that our project has over this study is that the number of sample audio files
vastly outnumber their test cases (at the end of the study up towards 18 000
audio samples). Which means problems that can appear in a normal clinical
setting, is more likely to be discovered at a testing stage.

They also highlight an important problem with most developed techniques
today:
"Despite the high values of sensitivity and specificity associated with these tech-
niques, limited testing have been performed with respiratory sound files recorded
in clinical settings and validated against a multi-annotator gold standard"

2. need citation: Basic techniques for respiratory sound analysis. Eur. Respir. Rev.
2000;10:625–35.
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Most of the experiments performed in automatic crackle detection, either have
a low amount of audio samples, or audio samples collected from a few patients.
These sample sets might not be representative of the general populus.

The paper Pulmonary crackle detection using time–frequency and time–scale
analysis[Serbes et al., 2013] have taken a very similar approach to our own
project, and also inspired our approach. The study is based on comparing
different classifiers to each other and using different techniques for feature
extraction, comparing the results to find the optimal method. The two different
feature extraction methods are Time Scale and Time Frequency, where the Time
Scale analysis consists of a 64 scale wavelet transform using three different
wavelet families such as Morlet, Paul and Mexican Hat. For the Time Frequency
analysis they use a 64 point Fourier transform using a number of different
window types such as Gaussian, Blackman, Hanning, Hamming etc. These
two types of analysis is then integrated over time and frequency to obtain
the different behaviours of the signal with regards to different domains. The
features extracted together with the original signal is then fed to each their
classifier which outputs a probability estimate for each feature and using simple
voting to determine the class of a given signal.

They have a sample set of 6000 audio signals, 3000 containing normal breathing
and 3000 containing a crackle signal. Each sample consist of a 512-pointwindow
at a sampling frequency of 9,6 kHz, and have been classified by physicians.
Now this may be the biggest difference from our project as they do not have
full audio files which they divide up, but rather a pre-divided set of signals that
have been classified by physicians.

4.4 Discussion
For future work we plan to evaluate additional types of classifiers. SVMs is
often a good approach to two class problems (both linear and non-linear) but
historically, Hidden Markov Models are used more frequently in speech recogni-
tion. Since speech recognition is closely related to the current project, it would
be natural to also test the solution using this classifier.[Gales and Young, 2007]
One of the advantages of our implementation is that the classifier type is com-
pletely interchangeable, which will make it easy to test with different classifiers
in the future.

We also want to expand our training set, trying to utilize as many of the audio
files in the Inter-observer study as possible. We also need to focus on
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As we have seen in our test results on real data, we intend to improve the
ability of our classifier to distinguish false positives that occurs in many of our
normal samples. We need to develop a method to distinguish the crackle-like
noises from the actual crackles that we have mentioned earlier. One solution
we have seen is the power in the spectrum, crackles usually keep their power
all the way up to 1000.0 Hz, while the crackle-like noises loses some of this
power up towards the same frequencies. It is a marginal difference, so we need
design experiments to determine whether or not this characteristic can be used.
Increasing our training set might also solve this problem, as the classifiers have
a good cross validated accuracy, but have conflicting results when testing on
actual data. Our classifiers are able to find crackles in the crackle samples, but
they also find crackles in the normal samples.

Another feature that is often used in speech recognition is the Mel Frequency
Cepstral Coefficients (MFCC). The MFCC is a transformation that maps frequen-
cies to the Mel-scale, which is a non-linear representation of frequency, that
closely approximates how humans perceive frequency or pitch.





5
Conclusion
In this report we have presented a problem of classification between two
classes of audio, recorded from lungs by means of a stethoscope. We found
that a signal processing and machine learning approach to this classification
is feasible, and we have developed a pipeline that is capable of this analysis.
Overall the pipeline we have developed seems to solve at least the simplest
classification problems, being able to distinguish the most obvious crackles
from normal audio. However, there are some problems which naturally occurs
in a clinical setting, that we will need to take into consideration. We believe
that since our pipeline has been developed using data recorded in a clinical
setting, we had to handle some of the problems that may occur in such a setting.
We have found a challenge with false positives, but we believe that we can
eliminate these in future work. Our approach provides the basis for our future
work, as it is an efficient way of finding crackle signals. We believe this tool
will be useful for general practitioners and the experts at the Inter-observer
study a tool in their analysis as well. In addition, we believe our approach is
not limited to pulmnoray crackles, but other types of bodily sounds as well
such as jaw clicking, and abnormal clicking sounds from knee joints.
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