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Abstract

Metagenomics is a rapidly growing field of research. Novel organisms
are discovered at a blazing pace, and the commercial uses of these or-
ganisms are just beginning to be discovered, helped by the development
of new sequencing machines, which produce massive amounts of sequenc-
ing data. This has spawned a need for effective processing and storage
solutions. In this paper, we provide a short introduction to the field of
metagenomics and some of the computer science challenges this field faces
due to the large amount of data to be analyzed, as well as some possi-
ble tools and techniques to handle the big data challenges. We present
a metagenomics pipeline developed at the University of Tromsg, provide
a scalability analysis showing potential problems like storage and fault
tolerance, and we provide some suggestions to achieve scalability required
for production use.
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2 Introduction

Genomics and metagenomics are the studies of the hereditary material of mi-
croorganisms, which have allowed us to make plants that are immune to pes-
ticides, create artificial human insulin and given us new treatments for cancer,
among many other things. An important tool to achieve such biological insights
is the analysis of results from sequencing machines, which produce vast amounts
of data that needs to be interpreted computationally. This requires the use of
state of the art big data analysis to be done in an acceptable time frame.

Big data analysis is the term for techniques used to do computations on
peta-scale data, that include requirements with regards to fault tolerance, dis-
tribution and reliability are paramount. Systems that attempt to satisfy these
requirements exist, but identifying which tools suit our needs is not trivial.

To facilitate the analysis of metagenomic data, different pipelines are used,
which consists of many tools to analyze the data, these pipelines are designed
to fit specific research project(s), and are as such highly heterogeneous in terms
of the tools and approaches used.

We present a metagenomics pipeline developed at the University of Tromsg,
provide a scalability analysis showing potential problems like storage and fault
tolerance, and we provide some suggestions to achieve scalability required for
production use.

This report gives a brief overview of genomics and metagenomics (section
3), some big data analysis systems which can be used to analyze metage-
nomic data(section 4) and an overview and evaluation of a pipeline in use
currently(section 5), as well as conclusions and some suggestions for further
development(section 6).
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3 Genomics and metagenomics

In this section we present a brief overview of genomics and metagenomics, which
is required to appreciate and understand the computer science problems we
encounter in these fields.

3.1 What is genomics?

Genomics[1, 2, 3, 4] is the study of the genes of cells, and is a subset of genetics.
We focus on the analysis of sequencing data from these genes, since it is among
the most important emerging technologies for studying the structure of the
genetic material of organisms, and for example, to understand the function of
proteins, cells and organisms. It has already given the scientific community
information about genetic diseases, which enabled the creation of new drugs
for diseases that were previously more severe. The goal is to continue this
development, not only to treat more diseases, but also to create new bioactive
compounds for use in e.g. biotechnology.

An overview of DNA

The principle for reproduction for most biological entities is that two specimens
combine their DNA! to create offspring. This offspring then takes some traits
from each parent, along with some mutations. If selection (artificial or natural)
is in play, some traits will be more desirable than others in the long run, in the
case of natural selection, the traits for survival in the wild, and in the case of
artificial selection, the traits that people find beneficial.

DNA is a double helix containing four different nucleotide bases. In the DNA
helix, the four bases are arranged in fixed pairs (G pairs with C, and A with T).
The order of the bases in the DNA chain determine the traits of the organism,
and the functions they perform.

To create the building blocks
of cells, a segment of the DNA

unr.avels, and RNA is created DN A mRN A Protein
which corresponds to the DNA
segment. \

This RNA can be one of sev- neRN AL

eral different types, depending
on the DNA transcribed, where
mRNA is the type that codes Figure 1: Protein synthesis

for different amino acids used in

protein synthesis, tRNA is used

to connect amino acids to the mRNA, and other types are used for different jobs
in the cell.

The importance of the amino acids is that protein is made up of segments
of amino acids, and proteins are the primary ”workers” inside cells, in that the
other components are more or less inert, and the protein works on them. This
makes proteins, and enzymes, immensely important parts of life as we know it.

1Deoxyribonucleic acid
IncRNA are RNA types other than mRNA, that is, ”helper” RNA types, that don’t contain
hereditary material, including tRNA
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So, by understanding the production of these proteins, we can understand
what a gene actually does, and use this information to do things like produce
human insulin in a lab.

Glossary of terms

Term Description

Genome The complete DNA of an organism, which contains
both genes and non-protein coding sequences (ncRNA).

Gene A hereditary part of a genome. Each gene codes

for either a protein or an RNA chain that has
a function in the organism.
DNA Living organisms encode their genes in long strands
of DNA made up of repeating nucleotide units.
Amino Acid Building blocks of proteins.

Enzyme The catalysts for chemical reactions, special proteins.
Protein Building blocks for cells.
Allele One of two or more versions of a gene.

Nucleotide Repeating unit in DNA and RNA; Adenine, Thymine,
Cytosine or Guanine for DNA, Thymine is replaced
by Uracil for RNA.

DNA sequencing

By understanding the sequences that build up a complete genome, it is possible
to perform gene therapy, create crops immune to herbicides, construct bacteria
that produce proteins and small molecules and many more.

The key to doing this, is DNA and RNA sequencing. There are a number
of technologies and instruments for doing this (described in 3.3), a common
denominator for them is the need for processing the raw data produced.

12



3.2 What is metagenomics?

The primary motivation for metagenomics is that many organisms in nature live
in symbiosis with other organisms, which make them hard to grow in a petri
dish. Metagenomics[6] avoids this problem by looking directly at environmental
samples of whole communities of microorganisms instead of growing the samples
in the lab, like it is done within genomics.

Next generation sequencing (discussed below) is an enabling technology for
metagenomic studies since it allows us to sequence these microorganism com-
munities as a whole.

To put this into perspective, an environmental sample may have as many
as 10 000 different species per gram of sediment, in contrast to conventional
genomics, where only one genome is in focus. This is what makes the sequencing
difficult, we have a myriad of short DNA sequences? from hundreds to thousands
of heterogeneous genomes. In addition to assembling the short reads into longer
DNA strings®, we have to annotate the genes to cluster sequences to single
genomes and perform diversity analysis.

3.3 Instruments used in genomics

In this section, we take a glance at three widely-used instruments used for
genomic research.

Microarray

One of the advances genomics has brought to the world, is genetic testing for
disease. This is predominantly what microarrays are used for.

A microarray[7, 8] is an array of samples of genes on a glass slide. It measures
the expression of different genes. Or in other words, how active the different
genes are in creating mRNA, which in turn influences their effect on traits,
one important thing to note is that the array structure allows a microarray
experiment to measure the expression of thousands of different genes in parallel.

This allows us to see things like genetic disease by measuring how active
different genes are. An example is Huntington’s disease, where patients show
reduced activity in a small subset of genes in the brain.[9]

The  way a  microarray experiment works is this:[10]

1. Different gene sequence strands are
fixed into an array of support struc-
tures.

2. Complimentary DNA (cDNA) is syn-
thesized from mRNA and a fluorescent
tag is added so they can be identified.

3. The ¢cDNA is mixed with the DNA on

the array. Figure 3: Output of a microarray
experiment[11]

2DNA reads
3Contigs

13



4. A laser and a camera are used to de-
tect bound ¢cDNA (where the ¢cDNA
has bound to the array-fixed DNA)

5. The two resulting images (one for each
dye) are combined by a computer (Fig-
ure 3), to produce a kind of heat map (a two-dimensional table, with colors
representing the expression of each of the two measured strands, typically
one diseased strand and one healthy) of the gene expression.

It should be noted that DNA microarrays aren’t exclusively used to measure
gene expression to find disease and the like, it can also be used for sequencing (by
comparing known sequences to unknown ones). Microarrays have, however, been
mostly replaced by techniques described in section 3.3, and is not experiencing
the popularity growth that those techniques are having.

To summarize, microarrays are both a technology and a methodology for
doing genomic experiments and measurements.

Sanger sequencing

Where microarrays are primarily used to measure gene expression, Sanger se-
quencing is used to determine the sequence of the bases in DNA.

The Sanger sequencing method[12] was one of two sequenc-
ing methods developed simultaneously.[13, p. 105] It involves
using DNA-polymerase to insert radiolabeled bases to the DNA
chain, which stops it from growing further, leaving truncated
DNA chains. By running gel electrophoresis, the labeled DNA
can be separated. As the smaller sequences will move further
than the longer ones, by moving back through the gel, the dif-
ferent bases can be uncovered. With this information, we can
interpret the classic illustration of DNA sequencing (Figure 4).

This method of sequencing is in declining use, as it has largely
been replaced by next-generation sequencing.

Next-generation sequencing

The problem with Sanger sequencing is that it is low-throughput,
despite generating long read lengths, and therefore incurs a
high cost for researchers when performing large-scale sequenc-
ing. Many new sequencing methods have been developed, like
454 sequencing[14], Solexa, SOLiD and others.[15] These next-
generation sequencing methods allow researchers to sequence
large genomes and metagenomes rapidly at low cost.

The main difference between traditional Sanger sequencing
and more modern approaches, is that next-generation sequenc-
ing methods utilize so-called shotgun sequencing, where many
short reads are done in parallel, where Sanger sequencing uses
reads of up to 300-1000 base pairs, modern sequencing machines
can produce reads of less than 20 base pairs in length[15], but
perform them in parallel. In order to assemble these reads into a
larger sequences, the reads have to overlap. Several algorithms

quencing
machine
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have been developed to puzzle them together into contigs, and
the reduced cost of computation has enabled this development.

That being said, there are machines being developed that produce longer
reads, which is less computationally intensive to assemble[16].

These advances have lead to a reduced cost of sequencing (which continues
to halve every 5 months[16]), allowing researchers to generate more sequences
in less time than before.

In summary, the principle behind next-generation sequencing is sequencing
many samples in parallel, leading to much faster sequencing, with much larger
processing requirements.

3.4 Data wall in genomics

The so-called Data Wall[17, 18] in genomics is the phenomenon that the amount
of data produced is exceeding the possibility of storing the data. This means
that the results of experiments can not be stored cost-effectively, and poses an
issue for researchers where the data they are interested in is simply too large-
scale to be stored and maintained reliably.

This problem becomes apparent when we consider that a single sequencing
machine can produce 40 giga base pairs (4 x 10%bases, equivalent to around 40
gigabytes of pure sequence data) per day as of February 2011[19], and this is
doubling every 9 months. When we take into account that the raw output of
these machines are gigantic image files, the data produced reaches impractical
size, on the scale of 5 terabytes of data per day for some labs[19].

It should be noted that the size of the data decreases as it progresses through
the processing stages. The image files are interpreted and stored as sequencing
data, for instance, along with additional metadata like quality scores. What
data to store, and how much of it, is not an easy question to answer.

In addition to the data from the sequencing machines, the databases of
already-sequenced genetic data are huge.

This massive amount of data brings several challenges with it described in
section 4.1.
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4 Big data analysis

In this section we present an overview of big data analysis, which refers to
doing computation on massive datasets, like the ones we find in metagenomics
analysis.

4.1 Requirements

When doing big data analysis for metagenomics, we have to have some require-
ments for what the system should provide.

Provenance

Provenance[20] is a concept of storing the source of data, in addition to the data
itself. In the area of scientific data, this means storing the information needed
to reproduce an experiment.

This can be a challenge, because it means that the storage requirements
increase as we do more processing, as we want to store all the intermediate
steps, from the imaging data produced by the sequencing machine, to the final
annotated gene data presented to the end-user of the pipeline (see section 5 for
a description of the pipeline).

Storage capacity

One requirement we have when doing big data analysis like this, is reliable
storage.

We need to be able to store a large amount of data, as the data from next-
generation sequencing machines can be huge, and we want to preserve as much
of it as is needed to preserve provenance.

Reliability is a prime concern when storing data from scientific experiments
like these, this means that the data should not be lost if we lose one machine,
or even a complete data center. This means replication.

When we couple these two requirements and look at the amount of data
produces by next-generation sequencing machines, we may be looking at storage
requirements of a minimum of around 120 gigabytes of sequence data per day
running the sequencing machine*, before doing any computation.

I/0 bandwidth

Another requirement is that we need a high-bandwidth network to transfer our
data to and from the compute center, between the compute nodes, and to and
from the disk. With a large amount of data and relatively low bandwidth,
physical transfer of the data may be more efficient than electronical transfer,
and even then we may run into problems with the bandwidth of the disk. We
also run into the question of reliability when talking about networking, e.g. we
don’t want a single router failure to stop all communication.

4 Assuming 3x replication, 40 gbp per day, discarding the raw image data
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Figure 5: GFS architecture, figure from [21]

Parallelism

A prerequisite for the computations done to be reasonably fast, is that it is
possible to run them in parallel. Sequential execution of the computations
means that throwing more hardware at the problem won’t help. We also want
the parallelism to be fault-tolerant, in that we don’t want to be stopped by a
single failed node, for example. Another requirement here is that we want load
balancing, to prevent the issue where one node may be holding up the whole
system.

Fault-tolerance

We need our entire system to be fault-tolerant to as large an extent as possible,
a malfunction somewhere shouldn’t put the system out of action, this is par-
ticularly important in big data analysis, as a single task may run for days on
end.

Cost

The system needs to be cost-efficient, this means using commodity hardware
and not relying on expensive hardware or software to fulfill our requirements.

4.2 Solutions

There are systems used to solve challenges like the ones we have described for
metagenomics data analysis, here we take a look at some of them.

Google File System

The Google file system (GFS) is a distributed file system with a focus on reli-
ability and performance[21], designed to run on commodity hardware that will
frequently fail. Reliability is ensured through replication, which is achieved by
the use of a master server, which itself has it’s state replicated, that coordinates
the replication amongst the nodes. GFS uses garbage collection to handle dele-
tions and orphaned chunks, this means deleted files aren’t actually freed up until
some interval has gone by. It is also rack-aware, meaning that data is grouped
in a way that minimizes internal communication inside the cluster of nodes. To

18



support the appending of data, it supports a atomic append operation which
allows several data producers to append to the file simultaneously while giving
defined behavior.

The main usage GFS is designed for is a collection of large files that are
either appended to, or read from, preferably sequentially. This aligns well with
a large number of large-scale data processing problems, where we have a lot
of data arranged in large files that we want to use for analyzing or processing
without changing.

This design is very well aligned with the use of MapReduce-type (described
below) systems, which means it is well-aligned with the needs of metagenomic
research, since metagenomic work also requires the massively parallel computa-
tion capabilities of MapReduce-type systems.

There are several alternatives to GFS-style systems. The most closely related
are other network file systems like Amazon’s S3, which offer a similar approach
to file storage, perhaps the largest difference between S3 and GFS, is that S3
isn’t rack-aware, while GFS is. Numerous black-box vendors also exist that
sell premade storage systems that are more or less just a black box presenting
an interface for file manipulation over the network. The disadvantages to this
approach is that it is expensive, and the bandwidth to and from the boxes may
limit throughput. Another approach is parallel database systems, which operate
on a higher level of abstraction, described in the section on SciDB.

The evaluation in the paper is done using two approaches, a synthetic bench-
mark and looking at real-world systems. The synthetic testing was done doing
ideal read/write operations on a clusters consisting of 16 chunkservers and 16
clients, and shows performance in the realm of 75% of theoretical maximum for
reads and 50% for writes. Similar results were encountered in the real-world
cluster usage, where the clusters were storing around 50-150 terabytes of data
across hundreds of chunkservers. But a caveat here is that the applications
running on their cluster are tuned with GFS in mind, so other applications may
not achieve the same results.

GFS is in use at Google, while the primary open-source implementation,
HDFS (Hadoop File System), is in use in a large number of businesses, examples
include LinkedIn, Yahoo! and many others.

MapReduce

MapReduce[23, 24] is a framework for doing parallel computations, the idea is
to facilitate SIMD computations done in parallel on a cluster. It was created
by Google to help with the massively parallel computations they do in relation
to their search engine technology, but has been adopted for widespread use
in a variety of fields. It is designed to be a fault-tolerant, simple way to run
algorithms on large datasets using clusters.

The usage space of MapReduce is doing massively parallel computations,
often in combination with huge datasets, with the caveat that the computations
can be expressed in a data-parallel way.

A MapReduce program is divided into two distinct stages, a map stage, and
a reduce stage. The mapper functions output into the reducer functions using
key/value pairs to decide which reducer the mappers map to. A master server
coordinates the logistics of giving out map and reduce tasks to the different
machines in the cluster, and reassign straggler tasks to new nodes if needed,
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meaning the failure of a node mid-computations does not imply the job needs
to be restarted, the master node also handles load balancing and job allocation
within the cluster.

There are alternatives that attempt to do similar things, like Dryad[25],
which is a more general-purpose framework than MapReduce. There are also
more low-level approaches like MPI, and more high-level approaches like dis-
tributed databases.

The evaluation done looks at MapReduce programs running on hundreds of
compute nodes, running two programs, a grep program which searches through
10'° 100-byte records, which runs in 150 seconds, and a sort program which sorts
10'° 100-byte records, similar to the TeraSort benchmark. The sort program
runs in 891 seconds, which is comparable to the best results for that bench-
mark at time the evaluation was done. Another indication of the success it has
achieved at Google is the number of jobs run using MapReduce, which passed 2
million in September of 2007, using a combined input of 400 petabytes of data.

MapReduce is in use at Google, and the Hadoop equivalent is in widespread
use at, for example, Amazon and Facebook.

Pregel

Pregel[26] is a system for distributed large-scale graph processing. The novelty
of this system compared to many other graph processing systems is the thought
of vertices being nodes of computation, rather than analyzing the graph as a
whole. Or in other words, analyzing the graph from the inside, rather than from
the outside. Other important properties of the system are fault-tolerance and
scalability.

Pregel is used to mine web graphs at Google, which gives an indication of
the scale and data it is used to process. It was created at Google, to handle
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the large-scale graph processing needs they have. It is still primarily in use at
Google.

The design of the system is such that a master node coordinates the execution
of the job, splitting the graph among the workers. Each worker is responsible
for the part of the graph it is assigned, running the code for each vertex. Data
is stored using GF'S or BigTable (discussed below).

In the system, each vertex is either active or inactive, and all vertices are
active at the start. A user-defined compute function is run on each active vertex,
and a vertex will go inactive when it has no more work to do unless it is triggered
by another vertex in the graph. The compute function is run until all vertices
vote to halt (i.e. go inactive), when the job is finished. The execution model
is based on the idea of supersteps, so that communication and state changes
happen once inside each superstep, and are processed in the next superstep, see
figure 7.

There are some alternatives, both Dryad and MapReduce are used in the
same problem space for example, even though they don’t have the same graph
focus, which leads to a more difficult system to use and optimize. There are
also parallel graph processing frameworks, but a common denominator is that
they aren’t fault tolerant in the same manner that Pregel is.

The evaluation in the paper shows that Pregel scales to billions of vertices,
where increasing the number of workers from 50 to 800 achieves a speedup of 10.
Also tested was increasing the graph size, showing a linear relationship between
graph size and runtime. Using random graphs, similar results were obtained.

It is currently in use at Google, Hama, the primary open-source equivalent,
is under development for the Hadoop framework.

BigTable

BigTable[27] is a distributed non-ACID columnar storage system, similar to
a database, it doesn’t implement a relational model though, and instead opts
for a lower-level read/write system. The design lies somewhere in between a
distributed key-value store and a distributed database, and is designed to scale
to petabytes of data and thousands of machines.

The usage space of BigTable is what separates it from GFS, where GFS
stores files in a hierarchical manner, BigTable stores data in a three-dimensional
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sorted map. This is comparable to the usage of key-value stores. This, combined
with in-memory caching, means that BigTable supports random access and low-
latency reads, in a way that GF'S can’t, as well as structuring the data and doing
compression.

The structure of BigTable is such that rows are the basic unit of transac-
tion, as opposed to fully relational databases, where operations that change
multiple rows are allowed. It’s also interesting to note that BigTable is a three-
dimensional structure, with rows and columns as usual, but also timestamps.
So versioning is supported by design in BigTable. A BigTable system consists
of a master server, a number of metadata servers, and a large number of tablet
servers. It treats all data as uninterpreted strings, it is up to the user to inter-
pret it. Data is stored using GFS, and Chubby[28] is used to provide locking
services. Another important point to note is that data is stored in columnar
fashion, instead of being physically organized by rows.

It is highly integrated into the Google ecosystem, and interacts very well
with GFS and MapReduce.

In terms of alternatives, distributed key-value stores like Amazons Dynamo[29]
are similar in many areas, but the interface is more basic in just maintaining a
key-value relationship, and BigTable manages locality by grouping rows, while
Dynamo doesn’t. Distributed databases are also similar, and also provide a
relational data model and transactions, but don’t generally offer the benefits of
the columnar/locality storage model.

The performance evaluation in the paper is done by running tests on N
servers, interacting with a 1786-node GFS cluster, and registering results when
N is varied through a number of tests. The tests illuminate the problems with
this stack when doing small random reads, where the network is saturated by
transferring blocks of mostly useless data (a 64-kilobyte block is transferred for
every 1000-byte read), but it also shows good speedup on the other performance
metrics (linear reads, reads from memory, writes and scans). Of note is that
writes are faster than reads, random reads/writes in particular, by up to an
order of magnitude, due to writes being written to a commit log and streamed
to the GFS cluster. Even so, perhaps the most compelling performance metric
is that BigTable is in widespread use at Google and YouTube, among others.

The open-source implementation used in research environments is HBase, a
part of the Hadoop framework.

Dremel

Dremel[30] is an interactive query system for read-only data, built on top of
systems like BigTable and/or GFS. It is specifically designed for interactions
with the rest of the Google framework, and is in use at Google and elsewhere.

Dremel is used for analyzing very large datasets by using a SQL-like query
language that allows the user to do queries on the data. What sets it apart
from using MapReduce on BigTable to do these queries, is the time it takes to
return results, where MapReduce returns results in minutes, Dremel can deliver
the results in seconds, making it useful for getting quick results.

As scientific data often isn’t relational, the Dremel framework uses a nested
data model instead of a relational one. It also orders the data in a columnar
format, meaning that instead of ordering the data according to rows, it orders
them according to columns. This requires some extra processing, but it also
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means that sparse data sets are possible to process much faster. It should be
noted that the read-only nature of Dremel means that it’s not useful for data
management, only data analysis.

There are some alternatives to Dremel, most immediate is perhaps dis-
tributed databases, but columnar storage is not common among distributed
databases, and it also uncommon to scale to thousands of nodes. Another al-
ternative is using MapReduce to execute these queries, but a drawback of this
approach is losing the benefits of using a higher-level tool to get rapid results,
as well as Dremel being optimized to return results in seconds. There is also
Hadoop Pig and Hive that can be used to run queries on the Hadoop framework,
which is similar in goal as Dremel.

The experiments in the paper show that the large majority of queries in
their typical workload execute in less than 10 seconds, and can scan close to 100
billion records per second on their clusters, operating on terabytes of data.

In terms of users, Dremel has been an internal project at Google, but recently
they have released BigQuery, which is a service to use Dremel.

SciDB

SciDBJ31] is is a distributed data management system in the same vein as tra-
ditional distributed database management systems, with a focus on scientific
data. The biggest departure from traditional relational DBMS, is the array
focus, where data is stored not according to a schema, but in a multidimen-
sional array. This lines up well with data like the output from next-generation
sequencing machines.

The architecture of SciDB is such that a central server manages the distri-
bution of data on the nodes in the system. Each node stores the data it contains
in columnar fashion, and this is further split into overlapping chunks between
servers. It should also be noted that data is immutable in this system.

SciDB can be viewed as a possible alternative to the entire Google/Hadoop
framework, as it supports very similar operations, from storage to computations,
through an interface familiar to those who have worked with relational DBMS
in the past. It is also designed to scale to thousands of nodes. One of the
biggest differences between the Google framework and SciDB is the modular
approach within the Google framework, versus the package supplied by SciDB.
This means that if the requirements align closely with what SciDB offers, it will
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probably be a more suited tool to the task than the Google stack, where custom
components are required to mix and match pieces to best suit the requirements.
Unfortunately, as SciDB is still in the early stages of development and de-
ployment, there aren’t at the time of writing any papers published evaluating
SciDB against the Google framework, so it’s difficult to say anything about the
performance of the system, or the suitability for different problems.

Nectar

Nectar[32] is a system for handling data and computations to reduce storage
requirements. It works by storing provenance data and the computations needed
to produce the final data for data that isn’t accessed often. It is designed by
Microsoft Research.

Nectar is useful in a storage-intensive field such as metagenomics, as storing
the data from every step of computation is not feasible, and discarding the data
without preserving the provenance violates the principles of reproducibility.

This system is realized by associating data with the programs that produced
them, or in other words, storing the provenance(see section 4.1) of the data,
meaning both the data, and the computation that produced it. This allows
the system to discard storage-intensive data that isn’t accessed frequently, and
recompute it if needed. As a consequence of this, intermediate computations
can be re-used, and throw-away results (i.e. results that are only useful for a
short time) can be discarded automatically.

Nectar relies on Dryad /Dryad LINQ[33] and TidyFS[34] to supply the under-
lying framework. This is an alternative to the Google/Hadoop framework, where
Dryad replaces MapReduce as the computational component, Dryad LINQ has
a Hadoop equivalent in Pig/Hive, and TidyFS is very similar to GFS/HDFS.

The evaluation in the paper shows the savings for applications analyzing a
1-terabyte document collection. By saving intermediate computations instead
of recalculating them, they are able to run 4 different tests using the same
preliminary computations, saving over 90% of the computation time per job.
There are also some analysis done of 25 production clusters, estimating the
computational time saved by using cached results from previous calculations
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instead of redoing them, showing that most of the clusters can save 20% to 40%
of computation time.

At the time of writing, it is not known if Nectar is in use on production
clusters, and the experiments in the paper were done on experimental clusters.

Trident

Trident[35, 36] is a scientific workflow workbench, a tool for managing the type
of pipeline described in section 5. This allows researchers to organize the com-
putation on large datasets in a simple and visual manner, while maintaining
information about provenance and fault tolerance on a distributed system.

The usage space for Trident is creating and managing scientific pipelines.
In a field such a metagenomics, this is a attractive replacement for manually
designing and creating the pipelines in script languages.

The system is based on Windows Workflow, which has been modified to suit
the needs of scientific projects, like provenance.

Trident abstracts away the underlying storage layer, so that many differ-
ent storage systems can be used seamlessly. Users can develop algorithms in
languages that support .NET and use XML to describe the workflow, or use
existing web services, and these can be combined visually in the workbench to
create a complete workflow. The workbench also allows users to do things like
assign priorities, describe which nodes should be used and scheduling. This data
is then used to run the jobs on Windows HPC clusters.

In terms of alternatives, perhaps the most prevalent alternative is using
scripts to stitch together the modules that go into a workflow, but this can mean
doing a lot of work that has already been done elsewhere. Another alternative
is to use the more general workflow managers to design the workflow, but these
tools may not have native support for concepts, such as provenance, needed in
scientific applications.

At the time of writing, no papers have been published evaluating the per-
formance of Trident, and it is unclear if there are any users.
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Figure 10: Metagenomic process description, items in bold are handled by the
current version of the pipeline

5 Metagenomics pipeline

In this section we present a metagenomic pipeline which is in development by
Tim Kahlke at the Willassen lab at the University of Tromsg, and is composed
of several modules in a pipelined layout.

5.1 Pipeline description

The metagenomics pipeline is designed to be modular in nature, so that new
tools can be plugged in with ease. It is also designed to be a generic pipeline
that can be modified to suit different needs.

To achieve this, a generic method for registering tools and databases in a
workflow is used. The pipeline then orders these tools and databases in such a
way that they execute in the correct order with the correct input.

Adding tools and databases to the pipeline is a relatively simple task, XML
files provide the information the workflow needs to use the tools and databases
in pipelines. For our pipeline we use a subset of the tools available today, the
tools are chosen to be representative of a typical pipeline used in research at
the time of writing (as described below).

A typical use case for metagenomics analysis of the system is a researcher,
having gathered an environmental sample, sequences the sample. The researcher
then decides which tools to use to annotate these sequences, and starts the
pipeline using these tools, on the data from the sequencer. When the pipeline
is finished, the researcher then explores the data to identify the probable genes
in the sample, and what the functions of these genes are predicted to be.

Sequencing, interpretation and assembly

The sequencing step of the process does the actual sequencing, this is the ma-
chine that takes the samples, and outputs image data. This image data is then
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interpreted to find the millions of short reads, which is then assembled into
longer reads (as described in section 3.3). These steps are handled outside of
the pipeline by vendor-supplied machines and software.

Preprocessing

The input to the preprocessing stage is the output of the analysis from the
sequencing machine.

The preprocessing step is concerned with removing data that isn’t interest-
ing, like duplicate sequences, very short sequences or other uninteresting data.
This part of the pipeline is currently not implemented.

Prediction

In the prediction step the contigs® are analyzed in order to find probable genes.
This is done to create input for the annotation step. The prediction is currently
done by the Glimmer3 tool.

Annotation

In the annotation step the genes found in the prediction step are annotated
with biological information like biochemical function by comparing the genes to
existing databases (transferred annotation). To do this, a number of annotation
tools are typically used, and the results are combined into a single file.

In our pipeline, we use BLASTp for transferred annotation®, against different
databases, and HMMer3 for functional annotation’, against the Pfam database.

Frontend

The frontend needs to present the data in a way that is easy to understand and
interpret for end users, allowing users to use the data without having to look
through the annotations manually. Currently the frontend is not implemented
in our pipeline.

5.2 Performance and scalability
5.2.1 Experiment setup

To analyze the performance and scalability of our pipeline, we look at the E.
coli bacteria, strain K-12[37] by running parts of it through our pipeline. The
complete genome contains 4,639,221 base pairs.

Our main focus is to evaluate the scalability of the system. We are evaluating
how data size impacts the performance, how adding CPUs impacts performance,
and how using different databases impacts performance.

The cluster we are running our tests on consist of a frontend for running
the experiments, and four computers used as compute nodes, each having two
Intel Xeon E5620 quad-core CPUs running at 2.4 Ghz. The machines have 24

5DNA segments
6Comparing the genes to already-annotated genes
7In this case used to search for protein domains
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gigabytes of memory, three local disks of 1.4 terabytes each, and a network drive
of 1.4 terabytes.

Scaling the data size is done by taking the first N bytes (equivalent to about
N base pairs) of the E. Coli sequence file. Adding CPUs is done by splitting the
input file into N parts and analyzing these parts in parallel. Three databases for
BLAST were used in our experiments, all from the UNIPROT-KB collection.

5.2.2 Pipeline implementation

The pipeline (figure 11) consists of 7 steps,
executed one after the other, the follow-
ing step not being started until the pre-

ceeding step is completely finished. The
pipeline starts out with Glimmer3, which is

a gene prediction tool, this is followed by

the Glimmer3 exporter, which converts the Prediction
output from Glimmer3 to FASTA format. _
Then comes the file partitioner (FileSched- Fie operationt
uler), which splits up the input file into N Annotation
parts, where N is the number of threads
to be run. Then HMMer3 is run against

the Pfam database, for functional annota-

tion, and BLASTp is run against the Uniprot
database, for transferred annotation. The

annotator follows, which gets the hits from

the output of the annotation tools, adds the Figure 11: Tools in the pipeline,
annotation data to these hits, and combines “file operations” are tools
them into result files. The exporter then that do I/O work like pars-
combines the annotation data from the an- ing, file splitting and other
notators into a single result file of a format non-computational work
specified by the user.

Jobs in the pipeline are run using the Sun Grid Engine, which handles the
load balancing and scheduling of tasks.

The input to the pipeline is stored on a NFS network drive, and each step
of the pipeline copies the file(s) from the network drive to local disk, does
the computations, and copies the results back to the network drive. This input
consists of genomic data in a FASTA file, which may be output from a sequencing
machine, already-sequenced genomes, or subsets of genomes.

The final output of the pipeline is a file containing predicted genes and their
annotation, which can be used to locate and identify genes in the input sample.

5.2.3 Results

In our first experiment we measure how the pipeline scales in terms of runtime
when the input data size is increased. The experiment was done using a single
CPU, and the data size was scaled up exponentially from around 4000 base
pairs, to around 128 000 base pairs. Figure 12 shows a roughly linear relation-
ship between input size and runtime, the runtime increased 22-fold when input
size was increased 32-fold, from 312 seconds at 4 kbp, to 6805 seconds at 128
kbp. This is expected, as doubling the input data also doubles the numbers
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Figure 12: Runtime when scaling input size

of operations that need to be done to analyze the data, we also saw that the
runtime is relatively higher at very small input sizes, due to time spent on setup
and cleanup in each step. An experiment using 2 560 000 base pairs and 32
CPUs shows that the trend holds true for much larger data sets.

In the second experiment we measure the increase in output size when input
size is increased. This experiment was done using the same paramaters as the
first experiment, but comparing the output sizes instead of the runtime, this
data includes data stored for provenance. Figure 13 shows a linear relationship
between input size and output size. The output size grew from 5 mb at 4 kbp,
to 151 mb at 128 kbp, and the same test was done using 2 560 000 base pairs
and 32 CPUs, showing the same trend by growing to 2.6 gb.

In another experiment we measure how the pipeline handles scaling up the
number of CPUs used. The tests were done using the 128 kbp input size from
the first tests, increasing the number of CPUs from 1 to 32. Figure 14 shows
that the runtime is reduced almost linearly with the number of CPUs used, a
speedup of 7 is observed when using 8 CPU cores, while a speedup of 16 is
achieved when using 32 CPU cores, we also saw that with 32 CPU cores, some
threads finished 48% faster than the slowest threads, spending the rest of the
time waiting. This could be due to several threads being scheduled on a single
CPU core.

The final experiment evaluates the effect of using different databases for
BLAST, and how this effects output size and runtime. The database size (table
1) effects both the runtime and the output size non-linearly. For example, com-
paring the plants and bacteria databases, we see that increasing the database
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Figure 13: Output size when scaling input size

size tenfold, only increases runtime by around 4 times. This is unexpected, as
the amount of data in the database was expected to be linear in relation to the
runtime. A possible explanation is that the databases contain genetic informa-
tion from different domains, and as such contain very different genetic material,
but a definitive answer requires more experiments.

Database DB size (mb) | Runtime (seconds) | Output size (mb)
Bacteria (Baseline) 2852 429 152
Archaea 5 67 25
Plants 312 117 24

Table 1: Effect of on runtime and output size changing database

Our testing shows that three steps are responsible for over 90% of the com-
putation time, these are HMMer3, BLASTp and the annotator. Figure 15 shows
how the ratios change in three different tests. We can see that BLASTp takes
around 85% of the time for the small inputs, while the annotator takes a larger
chunk of time for the large input, meaning that the runtime of the annotator
increases faster than the runtime of HMMer3 and BLASTp when input size is
increased.

Rudimentary testing of memory usage was also done, and showed that the
memory requirements for our tools are not large enough to be a concern at the
moment, peaking at around 2.8 gigabytes for BLASTp per node.

31



10000

680

) 351
1]
?
i)
E 178
T
% 1000
= 945 =Runtime
5
§ 547
V]
)] 429

100

1 2 4 8 16 32
CPUs

Figure 14: Runtime when scaling number of CPUs, error bars show potential
time lost due to load-balancing errors

5.2.4 Analysis

Our experimental evaluation indicates some of the challenges that we face as
the input size is scaled up to billions of base pairs.

We have seen that the runtime of most of the pipeline scales well, both when
increasing the CPU count and the data size, scaling problems are expected with
the annotator when data size reaches giga-scale, there are also problems with
the scheduler for many cores, where one core may get more than one task, when
there are still idle cores avaliable.

In terms of storage space, we expect the intermediate data to be around
1000 times bigger than the input if using the largest database for BLAST, and
the end results to be around twice as big as the input, using smaller databases
results in smaller result in smaller storage requirements. The storage space
is largely linear with the size of the input in our experiments, provided the
database stays the same. The storage space is primarily used for the output of
BLAST in our experiments, with the results being around 1/500th of the size
of the BLAST output. This means that for our expected data sets (described
below), the storage requirements will be around 500 mb for the data set, 5 mb
for the input to the pipeline, 10 mb for the results, and 5 gb for the intermediate
data, giving us a total of around 5.5 gb.

Data distribution on the cluster is done by copying data from a single NFS
disk to a local disk for computations, and back when computations are done.
Backups are also done to a network disk.

Varying the database has an effect on both runtime and output size, the rela-
tionships appear to be non-linear, but due to the differing data in the databases,
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it is difficult to say something conclusive, beyond that the runtime and output
size is expected to increase as the databases grow in size. Updates to the
database currently require a complete re-run of the experiment.

The fault tolerance of the pipeline has not been tested extensively, but there
were occurrences of jobs not concluding successfully due to input errors or being
killed, where the pipeline continues to run uninterrupted, while missing input
data and therefore not producing correct output.

In total, running experiments on genomes like E. Coli, with a size of around
4 mbp, takes around 4 hours when using 32 CPUs, and produces around 5 gb
of data when using the pipeline we have used. Metagenomic work may use
much larger input data sets, the latest sequencing machines can produce 600
gb of data in a single run. We expect to be working with around 100 data sets
per year. Each data set around 500 mb in size, which will then be reduced by
filtering and assembly, leaving around 5 mb to be processed by the pipeline,
taking around 5 hours on 32 cores. The pipeline is expected to handle these
data sets well, although metagenomic work may require much larger data sets
to be analyzed (maybe as much as several ghp), as we process around 10 base
pairs per second per CPU core, analyzing a single gbp of data takes around 40
days, so more nodes are required to be able to analyze that amount of data fast.
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6 Conclusion and future work

In this report we have provided an introduction to the field of metagenomics,
identified some requirements and solutions, and evaluated a pipeline under de-
velopment at the University of Tromsg. We have found that while the pipeline
in question satisfies most of the requirements we have set with regards to the
network, parellizability, cost and provenance, it does not fulfill the requirement
of fault tolerance.

The storage requirements are largely due to the intermediate results from
BLAST, these could potentially be discarded after some time has gone by, but we
also want to include more data (tools and databases) in the stored information
to preserve provenance. The data is also not stored reliably between backups at
the moment, and a system for reliable storage needs to be implemented, GFS
may be one part of a possible solution here.

It is expected that the single machine storing the input and intermediate data
will become a bottleneck when the data and number of CPUs scale up, high-
performance storage distribution may alleviate this problem if it is experienced
when scaling up.

Reusing the results from previous experiments may save time when multiple
experiments are done using different tools (e.g. using the same input data to
different pipelines), an approach similar to Nectar may be useful here.

Branching capabilities should be introduced to the pipeline to enable filtering
of unimportant data and more sophisticated pipeline creation, as currently only
linear, single-path pipelines are supported.

Changing the pipeline execution so that every part of each step does not
need to be completed before the next step begins may yield some benefits, this
can be achieved by using a more sophisticated dependency system, where each
subtask is only dependent on the preceding subtask, rather than the preceding
task, a tool like MapReduce might be used here.

Improving the load balancing may be very useful as experiments show that
up to 48% of CPU time of some CPUs is spent waiting for other tasks to
complete, closely related to this is fault-tolerance, as the current pipeline is
very sensitive to errors, a possible solution to these problems may be using a
MapReduce-style tool to handle these individual stragglers.

A related issue is the fault tolerance, which is not complete at the moment.
There are ways to improve this, like using more advanced features of the Sun
Grid Engine, verifying results, and using a MapReduce style system. This is of
particular importance when increasing the number of nodes in the cluster, as it
is expected that nodes will fail more often.

There is at the time of writing, no working frontend to the pipeline, but
work is being done to use METAREP([38] to display results.

Adding more databases and tools to the framework would allow a broader
range of experiments to be run, and this is something that is being worked on.

Analyzing the network and disk bandwidth usage of the pipeline might reveal
further improvements, but are outside the scope of this report.
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