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Abstract

Cancer is the leading cause of death in economically developed countries, and
the second leading cause of death in developing countries. There have been
significant advances in the di↵erent instruments collecting biological data,
reducing both cost and data collection time. With the access to big data
sources containing peta-scale genomic datasets, the are great possibilities for
novel discoveries by analysing and visualizing this data. Advances in cancer
research are reliant upon inter-disciplinary collaboration between di↵erent
sciences, ranging from biology to computer science.

This report will give a thorough description of the entire data analysis and
knowledge discovery pipeline for epidemiological studies. It will describe the
di↵erent epidemiological studies, among case-control and prospective cohort
studies, and how these builds a foundation for biology research. It gives
an introduction to molecular biology for computer scientists, including the
high-throughput instruments used, and describes how state of the art big
data systems can be used to manage the immensely large quantities of bio-
logical data generated. The report will outline the challenges of visualizing
multi-variate data such as biological data, and the modern techniques used in
the data exploration community. Finally the first prototype of the NOWAC
Explorer, a biological data exploration tool for fast and interactive visual-
izations in the modern web browser, is described. It will investigate if it can
be visualized with su�cient scalability and performance in a modern web
browser.

The main lesson learned in this project is that recent advances in epidemi-
ology, biology instruments, and big data systems are making it possible to
conduct new studies using massive data sets. However, we found that cur-
rent biology visualization systems have not fully reached their potential to
support novel biological discoveries.
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Chapter 1

Introduction

Cancer is the leading cause of death in economically developed countries and
the second leading cause of death in developing countries. It is continuing
to increase as the world’s population is aging and growing. Also because
of the cancer-causing behaviour, like smoking, being adopted in developed
countries. It is estimated that in 2008 there were about 12.7 million cancer
cases and 7.6 million cancer deaths [34]. Many of these cases could have
been prevented by introducing tobacco control programs, promoting physical
activity and healthier dietary intake, earlier detection and treatment. Of the
many types of cancer, breast cancer is the most frequently diagnosed and the
leading cause of cancer death among women. The advances are reliant upon
collaboration between sciences such as biology, statistics, computer science
and epidemiology.

Scientists in di↵erent disciplines are collaborating develop new techniques
for diagnosis and treatment of cancer patients. In an inter-disciplinary col-
laboration it is neccessary for researchers from the di↵erent fields to have
some insight into the di↵erent fields they are collaborating with, in order to
understand the possibilities and limitations within these. Computer scien-
tists would have to have some understanding in the human body in order to
provide solutions usabe for biology end-users

In this research field the analysis of large quantities of data is necessary. The
data is immensely heterogeneous, and can for example consist of Deoxyri-
bonucleic acid (DNA) samples from humans, or lifestyle choices, e.g. if a
person is a smoker or non-smoker. Data must be collected and stored in
a computer system in order for scientist to investigate them. This investi-
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2 1 Introduction

gation is usually done using some software allowing researchers to perform
advanced statistical analysis of their data, and fast visualization techniques
for discovering patterns leading to scientific discoveries. Currently, epidemi-
ology visualization tools are primitive both in their support for large amounts
of data as well as the visualization techniques used. Usually these tools are
designed as native applications to take advantage of the underlying architec-
ture of the platforms they are running on thus allowing access to hardware
resources such as storage and graphics devices. With the improvements in
web browsers and HTML 5 [65], web applications are seeing an increased pop-
ularity. With new technologies such as WebGL [39], developers are able to
utilize Graphics Processing Units (GPUs) through the web browser, allowing
more advanced visualizations. With such web applications, researchers can
perform data exploration without having to install any third-party software.

One example of a big dataset is the Norwegian Women and Cancer (NOWAC)
study, a prospective study which aims at identifying the relationship between
lifestyle and the risk of cancer. The NOWAC study started its data collection
in 1991. In 2006 the study contained questionnaire information from 170 000
women with repeated collection of information after 4-6 years (2 or 3 times)
[42]. In 2006 the collection of blood samples to The NOWAC Postgenome
Study [22] started, and after 50 000 blood samples the data collection was
finished. In addition there have been collected over 800 biopsies (small sam-
ples of breast tissue), half of which are from healthy women and the other
half from women with breast cancer.

The goal of the project is to investigate the techniques possible for creating
interactive visualizations for this dataset, and implementing a prototype for
such a visualization. The project will make use of the advances in web
technologies, to aid visualizations of the NOWAC dataset. The data used in
this project is a subset of the NOWAC data, where the individuals have a
follow-up time of maximum three years. The data contains gene expression
measurements for over 400 individuals, collected at di↵erent times. This
allows for the investigation on how gene expression changes over periods of
time. All individuals have been made anonymous, hence do not require (by
law) a secure storage and processing facility. Scientifically and comercially
valuable, meaning that nor the data or the visualizations will not be publicly
available.

In order to get an understanding of the dataset at hand, and the technologies
available to design an interactive visualization, the project is split into three
parts, (i) a literature study of the concepts in epidemiology, molecular biology
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and genomic data generation; (ii) a literature study to understand systems
for visualizing and handling big data; (iii) development of a prototype of the
NOWAC Explorer.
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Figure 1.1: Outline of the report

The rest of the report will follow the structure shown in figure 1.1. It starts
with chapter two, giving an introduction to epidemiology, the systematic
search of causes of diseases. It will look into the di↵erent types of epidemio-
logical studies as well as the many terms used in epidemiology. The chapter
will give an understanding of the di↵erent approaches taken by researchers
to design studies, as well as a description of what type of study the NOWAC
study is. The third chapter will give an introduction to molecular biology,
which contain descriptions of basic concepts like cells, genes, DNA and pro-
teins. This chapter will give an understanding of the building blocks of the
human body and introduction to cancer. The Genomics Data chapter, chap-
ter 4, gives an description of the technologies and methods used for collecting
biological data. The chapter gives a description of how these methods gener-
ate the vast ammounts of data needed to be stored and processed. The fifth
chapter will give an overview to the di↵erent big data management systems
used to store and mange large quantities of data. It describes the possible so-
lutions that can be used to store large quantities of biological data generated
by the genomics data tools in chapter 4. Chapter six will investigate di↵erent
visualization techniques and systems. It discusses how visual analytics tools
such as Tableau and Spotfire manage their big data. In addition it presents
challenges and methods to visualizing biological and other multi-dimensional
data. Finally the chapter discusses future technologies for visualization sys-
tems and possible interaction methods in these. The seventh chapter presents
a prototype of the NOWAC Explorer, an interactive data exploration tool
for investigating genomic data from the NOWAC study.





Chapter 2

Epidemiology

When designing visualization tools for researchers, it is fundamental to un-
derstand the type of study being used. If researchers are using a specific
method of conducting a study, the visualization may have to adapt to this,
e.g. if the study is designed to discover di↵erences between individuals some
disease, compared to (similar) healthy individuals.

The NOWAC study is a prospective study designed to identify the possible
relationships between lifestyle and the risk of cancer. This chapter gives
an introduction to epidemiology and the di↵erent types of epidemiological
studies.
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Figure 2.1: Epidemiology is the first stage in the pipeline of designing a bio
data exploration tool

2.1 Terms and background

Epidemiology is the systematic search for causes of diseases. In epidemiology
the researchers are interested in predicting who will get ill and why, in order
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6 2 Epidemiology

to prevent diseases. To do this, epidemiologists study the number of sick in-
dividuals in a population, the risk factors involved, and causal relationships.
Risk factors are variables that describe an increase in risk of a disease or be-
ing infected. Examples of risk factors are age, ethnicity and gender. Causal
relationships are relationships that are causally related, that is one event oc-
curring as a direct result of another. An example of such a relationship can
be the relationship between smoking and the risk of lung cancer.

Epidemiological studies often collect large datasets, often from di↵erent sources,
to detect patterns and gain knowledge. The data can be collected for example
through questionnaires or blood samples of individuals om the population.
The detection of patterns is often done using advanced statistical methods
and is often a collaboration between di↵erent scientific disciplines.

There are two main branches of epidemiology, descriptive and analytical epi-
demiology. In descriptive epidemiology, the task is to describe how frequently
a condition (i.e. a disease) occurs. In analytic epidemiology the main goal is
to describe the underlying reasons behind a disease to find the risk factors,
and thereby diagnosis and treatment tools.

In order to describe the frequency of a condition, there are two measures
used; prevalence and incidence. Prevalence describes the condition at the
current time, for example the number of smokers in a population. Incidence
gives a number of how many new occurrences of a given condition within a
time frame, e.g. the number of new smokers during a year.

Often in epidemiology the researchers are interested in finding a quantitative
measure of the relationship between a risk factor and a disease. This measure
can be expressed as either a relative risk or an attributable risk. A relative risk
describes how many times the risk increases when an individual is exposed,
compared to the risk when not exposed. This risk is calculated as the ratio
between the incidences of the exposed divided by the incidences of the non-
exposed individuals. If we can not determine the incidence, like in a cohort
study, section 2.2, this risk can be estimated by the ratio between the odds
of individuals with a disease being exposed (case) divided by the odds of
individuals without the disease (control) was exposed. Attributable risk gives
a measure of how many more cases of a disease occurs because of an exposure.
Relative risk describes the causal relationship of the disease while attributable
risk gives an indication of preventive measures of removing the exposure.

In epidemiological studies the main focus is to find causal relationships be-
tween risk factors and diseases. Other relationships like random, bias or
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confounding are challenges epidemiologists face during this process.

A random relationship describes a relationship occurring in a epidemiological
study but does not reflect the real world. To determine if a relationship is
random or if there is actually a pattern, the p-value is calculated. If this value
is below a given significance level, the null hypothesis (there is no relationship
between two events, e.g. smoking and lung cancer) is rejected.

Bias is an error in the design, execution or analysis of a epidemiological study,
which gives an erroneous indication of the relationship between exposure and
the risk of being infected. There are two types of bias; information and
selection bias. Information bias is information researchers are not aware of
during the study, e.g. errors in height measurements of individuals. Selection
bias covers the samples within the study and how representative they are
with regards to the population.

Confounding relationships are relationships where the variables studied leads
to over- or underestimation of a relationship. If we suppose a statistical
relationship between ice cream consumption and drowning deaths over a
given time period. These two correlate positively, resulting that one might try
to explain that eating ice cream causes drowning or the other way around. A
likely explanation is that there is another variable, the confounding variable,
which influences them both, namely the season.

If the observed relationship is not because of chance, bias or confounding,
but is actually real, we have a causal relationship. An example of such a
relationship between smoking and lung cancer, where the risk of getting lung
cancer increases dramatically for smokers.

2.2 Epidemiological studies

There are four main types of epidemiological studies; ecological studies, cross-
sectional studies, case-control studies and prospective studies.

2.2.1 Ecological studies

Ecological studies concentrates on using groups as observational units, mean-
ing that these studies are concerned with measuring frequency, risk factors
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and causal relationships between di↵erent groups. A group can be any subset
of a population where the members have something in common, e.g. ethnic-
ity, age or whether they smoke or not. These types of studies are easy to
perform as well as cheap. However there are many causes of errors in these
studies, the primary being that the observational unit are groups not indi-
viduals.

2.2.2 Cross-sectional studies

In a cross-sectional study the observational unit are individuals in a popu-
lation. Information retrieval from the individuals are gathered at one single
time, meaning that any surveys and/or biological data are sampled at the
same time. When collecting multiple pieces of information from the individ-
uals, one is able to study any statistical correlation between the observed
information. This study will be able to retrieve results fast, making it possi-
ble for conclusions to be drawn relatively fast. However in these studies it is
di�cult to make any good predictions about the causal relationships between
being exposed to an illness and being infected by it.

2.2.3 Case-control studies

Case-control, or retrospective, studies focuses on studying individuals in two
groups, one group consisting of individuals infected by a disease (case) and a
group consisting of individuals that are not infected (control). The persons
within the control group should be representative for the population, but this
can prove to be a di�cult task. Another di�culty with case-control studies
is that they cannot be used to study diseases where individuals cannot be
interviewed. Further patients are aware of their illness which may bias their
answers in a possible survey. Case-control studies are however very useful,
especially when there is a need for an answer fast, for instance locating the
source during E.coli outbreaks.

2.2.4 Prospective cohort studies

The previous studies have been retrospective, in the sense that the individuals
being studied have already been infected by the disease. In a prospective,
or cohort, study the individuals are selected from a healthy sample of the
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population. This sample can be representative of the population, but is
not necessarily required. The individuals are then studied with regards to
exposure, for example by monitoring the use of birth control pills or the
individual’s age. Then one awaits for the number of infected individuals to
reach a certain number, in order to draw statistical conclusions from the
observations. With such a study the possible risk of biased answers will be
largely avoided since the individuals do not know if they will be infected.
Since the monitoring may be over a longer time frame, depending on the
prevalence of the disease, this study may take a longer time to produce
answers.

The NOWAC study is classified as a prospective cohort study, since it collects
blood samples of women both before they get breast cancer, as well as at the
time of diagnosis.

"

"

([SRVXUH

'LVHDVH

5HVHDUFK

5HVHDUFK

"

"

'LVHDVH

([SRVXUH

&DVH &RQWURO 5HVHDUFK
5HVHDUFK�
EHJLQV "

,QIRUPDWLRQ�
WKH�VWXG\�
VHHNV�WR�ILQG�

&DVH�
&RQWURO

3URVSHFWLYH�
&RKRUW

Figure 2.2: A visual comparison of case-control and prospective epidemio-
logical studies.
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2.2.5 Randomized controlled trial

A randomized controlled trial is described as the gold standard within epi-
demiological studies or trials. Like cohort studies this type of study also start
with a sample of healthy individuals, but this study will have control over
which of the individuals are exposed or not. The sample of individuals are
split into two groups randomly, one group being exposed (i.e. given a hope-
fully e↵ective treatment) and the other not (i.e. given a placebo drug). The
study is then performed as long as required to determine if the treatment is
e↵ective or not. The study is said to be double blind if neither the recipients
of the treatment or the researchers are aware of the individual’s membership
to the experimental group or the control group.

The main advantage with such a study is the groups created are completely
comparable with regards to the factors introduced to influence the risk of
being infected. This is because of the randomization done when allocating
individuals to the treatment groups. Downsides to this type of study is
that they are quite expensive and may take long time to complete. Another
comment is that the results found may not be generalizable to the population,
since the sample chosen for the study often is a homogeneous group with a
common set of features on the contrary to the general population. Another
downside to such a study is that it may not even be possible to generate the
two groups. In the NOWAC study, having full control over the subjects and
dictating their lifestyle choices would not be ethically responsible or even
possible.



Chapter 3

Molecular Biology

The goal of the NOWAC study is to understand the impact of lifestyle choices
on the risk of having cancer. To understand what cancer is and how it
develops in the human body, we must have some base knowledge of how the
human body works and the building blocks of our body. With this knowledge
we can create helpful visualizations and tools for the researchers working in
the field, since we have some understanding of what the visualizations must
contain.

This chapter gives an introduction to the biological aspects of this project.
First a discussion on cells will be presented, continued by a brief introduction
to proteins, followed by a section on DNA and protein synthesis. The chapter
ends with a section on genetic engineering which completes the foundation
for the rest of the report.
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Figure 3.1: The fundementals of molecular biology is the second stage of the
pipeline towards the NOWAC Explorer
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3.1 Cells

Cells are the smallest units an organism can be divided into, that still pos-
sesses the functions performed by living organisms. These cells perform many
of the same tasks, involving exchanging of materials with their environment,
self duplication, transmitting and receiving signals with their environment,
and the synthesizing of molecules. The human body contains about 100
trillion cells [41], while the simple organisms like bacteria are single celled.
Within the human body all cells are specialized. This specialization task is
known as cell di↵erentiation. When cells have been specialized they migrate
to form tissues. These tissues form organs, which in turn form organ systems.

Cells are categorized very broad into four categories: muscle cells ; nerve cells ;
epithelial cells ; and connective-tissue cells. Muscle cells generate moment
and mechanical forces within the human body, for example to move limbs
or to pump blood within the heart. Nerve cells are the cells responsible for
controlling the activities of other cells. These cells achieve this by initiate and
conducting electrical signals. The epithelial cells are mainly barriers within
the human body, located on the surfaces that either cover the body, organs or
other structures within the body. The last type of cells, the connective-tissue
cells, are as the name hints, responsible for connecting and maintaining the
inter-structure of the body. Importantly, many other cell types exist, for
example those of the immune system.

As mentioned above specialized cells form tissues, and as with cells there
are four main types of tissue; muscle tissue, nerve tissue, epithelial tissue
and connective tissue. Tissue is defined both as aggregate of a single type of
specialized cell and the general cellular fabric of any organ or structure.

Organs are compositions of any these four types of tissues, which can be
structured in various ways. Often organs are organized into small subunits
referred to as functional units. Organ systems are a collection of organs who
together perform some function, for example the digestive system.

3.2 The working units of the cell

Poteins are large molecules found in any living organism. They vary in size
and function. Some function as messengers within an organism, transmitting
messages between cells. In the human body, proteins aid in many processes,
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for example by turning food into energy, the process of cell development, and
contribute to the distribution of oxygen in the body. Proteins are fundamen-
tal

A protein is composed of carbon, hydrogen, oxygen, and nitrogen molecules,
as well as other small amounts of other material. It is a macromolecule in
the sense that its a chain of more than 50 subunits, known as amino acids.
Chains with less than 50 amino acids are known as peptides. Amino acids are
molecules with special properties. There are 20 di↵erent amino acids, where
all except proline has a common formula. Since the chains can have up to
1000 or more amino acids, and there are 20 amino acids in total, there number
of di↵erent proteins is extremely large. Proteins can also be composed by a
number of polypeptide chains, these are known as multimeric proteins.

The structure of the proteins are determined by two factors; (i) the number
of amino acids; and (ii) the order of amino acids in the chain. This structure
is essential for how the protein functions, and the 3D structure is known
as the conformation of a protein. Figure 3.2 shows the 3D structure of the
protein Myoglobin.

3.3 Genetic code

All cells within an organism contain the same genetic information, this ge-
netic information is stored within nucleic acids which are responsible for
storage, transmission and expression. There are two types of nucleic acids,
Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA), each with its
properties. DNA are responsible for the storage of genetic information, while
RNA is in charge of decoding the information stored within DNA. Both of
these acids are composed of a sequences of subunits known as nucleotides.

DNA are composed of two classes of nucleotides, the purine bases adenine (A)
and guanine (G), and the pyrimidine bases cytosine (C) and thymine (T).
DNA is structured as two chains of nucleotides, held together by hydrogen
bonds between the purine and pyrimidine bases. Because of the molecular
structure of the nucleotides, G is always connected to C, and A is always
connected to T. This is the principle of complimentary base pairing.

From these four bases, DNA codes information using three-letter keywords
(codons) from one strand of DNA. The codons specifies the sequence of amino
acids, but can also be used as stop signals to denote the end of a sequence.
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Figure 3.2: Visualization of the 3D structure of protein Myoglobin. Figure
retrieved from [8].

98% of the human genome do not contain any protein coding information
[23], but serve mainly regulatory function.

There can be more than one sequence of bases specifying a single amino acid.
As an example, the sequences C-C-A, C-C-G, C-C-T and C-C-C all specify
the amino acid glycine. From this we can deduce that there are multiple
sequences of amino acids that can describe a protein.

RNA on the other hand consist only of a single chain of nucleotides, but where
DNA has the pyrimidine base thymine, it is replaced by a pyrimidine base
uracil (U). This results in a A-U pairing in the nucleotide chain. Figure 3.3
illustrates a messenger RNA (mRNA) molecule containing series of codons.
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Figure 3.3: An illustration of a series of codons of a mRNA molecule. Figure
from [61]

3.3.1 Genes

A gene is a sequence of DNA nucleotides which specifies the amino acid
sequence of a single polypeptide chain. Genes are used during the protein
synthesis to specify how particular proteins should be constructed. genes of
an organism have been passed on to it from its ancestors. A genome is the
total genetic information stored in DNA within a typical cell of an organism.
The human genome contains approximately 20 500 genes, but the number
of proteins is considerably higher due to redundancy of the genetic code,
and multiple steps of regulation and modification. In each cell there are 46
chromosomes, which is a piece of DNA containing many genes. Chromosomes
also contain a class of proteins called histones. These proteins package DNA
and controls its functions.
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3.4 Protein synthesis

It is important to understand how proteins are put together, or synthesized
in order to understand the importance of genes. These genes specify exactly
how a protein should be put together, so that they can contribute in the
di↵erent processes within the body.

In order to synthesize the proteins within an organisms, both DNA and RNA
are used. The protein synthesis happens within a specific part of the cell,
separated from where the DNA is stored. The sequence information of DNA
is transferred to RNA in a process called transcription, in order for the genetic
information to be used in the protein synthesis. RNA can then be used to
synthesize a protein in a process called translation. See figure 3.4.
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Figure 3.4: Dogma of molecular biology

3.4.1 Transcription

As mentioned, information needs to be transfered to RNA which transports
the message from DNA and to the location in the cell where protein synthesis
occurs. Information is transcribed from DNA to a special type of RNA called
mRNA. The DNA strands are separated from each other, in order for the
DNA strand to act as a template for the mRNA, according to the rules of
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complementary base pairing. A special enzyme, which is simply a protein
which acts as a catalyst, initiates this process and is responsible for the
creation of the mRNA. Before the RNA is transfered, some modifications to
it is performed. These modifications remove the areas of the RNA which do
not contain any protein coding information. This process is termed splicing.

3.4.2 Translation

When the mRNA has been spliced it is transfered to a part of a cell called
a ribosome. The ribosome is constructed from about 80 di↵erent proteins
as well as ribosomal RNA (rRNA). This structure is responsible for trans-
lating the RNA and constructing proteins from these translations. When
the ribosome receives a mRNA it generates a chain of amino acids based on
the sequence in the mRNA. Another type of RNA, transfer RNA (tRNA)
is responsible for transferring the correct amino acid to the correct mRNA
sequence. tRNA are the smallest of the di↵erent RNA molecules, but is very
important in that it binds the correct amino acid to the correct RNA codon.
Within the ribosome the incoming amino acid is connected to the protein
chain generated.

When the protein has been assembled it must be folded to complete its cre-
ation. It is this folding that characterizes each protein. Smaller proteins
are folded simultaneously as they emerge from the ribosome, while larger
proteins must be folded when the protein chains are complete. When pro-
teins have been folded they can undergo some post-translational processing
if necessary. This process could split a protein into several smaller peptide
chains.

3.5 Replication and Expression of Genetic In-
formation

In humans the egg and sperm cell each contain 23 molecules of DNA, each
containing a di↵erent set of genes. From these 23 chromosomes, 22 contain
genes which produce proteins which govern most cell structures and func-
tions. These are known as autosomes. The last chromosome is known as
the sex chromosome determining the gender. When the egg is fertilized it
contains in total 46 chromosomes, 44 of these are autosomes and two sex
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chromosomes.

DNA replication is the process of taking a single DNA molecule and produc-
ing two identical copies of the molecule. As with the synthezising of RNA,
an enzyme is involved with splitting a DNA molecule and creating a new
DNA. This enzyme is known as DNA polymerase. When the DNA’s double
helix structure is divided into two individual strands, the DNA polymerase
reads from the two strands and pairs each base according to complementary
base pairing. The process completes with two identical DNA molecules. Of
course, since there are 40 trillion cells in the adult human body, coming from
this one fertilized egg cell, errors are bound to occur. After the creation of
the new DNA molecule, they go through a process of proof reading which
should correct any errors. However, some errors goes through unnoticed after
this process.

The rate of cell division varies from cell type, but the fastest growing cells
can divide about once every 24 hours. The capacity of undergoing cell divi-
sion also depends on the type of cell. Some cells can undergo cell division
continuously trough is lifetime (like skin cells), while others (like nerve cells)
rarely or never divide.

When DNA replicates, there is a large chance for it to be corrupted. Any
alteration in the nucleotide sequence in the DNA is known as a mutation.
Mutations can occur if a base is replaced by another one or if parts of the
DNA strands are deleted or added. The latter may cause the loss of an entire
gene or gene group.

There are three ways a mutation might a↵ect a cell; either it may cause no
noticeable changes to the cell, it could modify a cell but still be compatible
with cell growth and replication, or it could cause cell death. There are
mechanisms for repairing DNA, but they depend on the error only occurring
in one of the two DNA strands. Repairing DNA is performed by special
enzymes and is crucial for long-lived cells which rarely divide.

The e↵ect of a mutation can e↵ect either the organism or its o↵spring. If the
mutation occurs in an egg or sperm cell the mutation will be passed on to
its o↵spring, however it may not a↵ect the organism itself.

Genetic diseases are diseases which are a result of inheritance of mutant
genes, rather than infections or viruses. There are over 4000 of these [62]
which categorize into three categories; single gene diseases, chromosomal
and polygenic diseases. The first only require a single gene to produce the
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disease, while the last two require multiple genes. Chromosomal diseases
are the result of addition or deletion of chromosomes or partions of these.
A classic example of a chromosomal disease is Down’s Syndrome. Plygenic
diseases require interactions between multiple genes, which individually can
cause no harm, but together produces disease. Examples of polygenic diseases
are diabetes or cancer.

3.5.1 Cancer

As mentioned cancer is a polygenic disease, but it is not however an inherited
genetic disease depending on mutations within the reproductive cells. Cancer
however are results of gene mutations which can occur in any cell anytime.
A cancer cell is a cell which has a capacity of uncontrolled growth. Of
the di↵erent types of cancer, about 90% develop in epithelial cells and are
known as carcinomas. Of the remaining 10%, cancer developing in muscle
and connective tissues are known as sarcomas and cancer derived from white
blood cells are called leukemias and lymphomas [62]. Cancer is primarily a
disease of old age, due to accumulation of mutations over many years. Some
inherited mutations may increase the risk of cancer considerably, e.g. the
BRCA gene mutation that increases the risk of breast cancer.

Tumors are results of the uncontrolled growth of cancer cells. These are a
growing mass of tissue, which could be either benign or malignant. Benign
tumors have not invaded surrounding tissues, while malignant tumors have
spread to their surrounding tissues interrupting their functions.





Chapter 4

Genomics Data

In order to collect genetic information about cancer patients, one must be
able to measure or collect information about a patient’s DNA. This is done
in a process called DNA sequencing which determines the the ordering of
nucleotides within a strand of DNA. This process determines the sequence of
the four bases adenine, guanine, cytosine and thymine. To sequence a DNA
molecule, the main strategy is to first reverse transcribe the RNA strand into
a complimentary DNA (cDNA) molecule and then use the same sequencing
technique as for DNA molecules.

In the NOWAC study, this DNA sequencing is crucial in order to collect
information about the subjects in the trial. With new technology this is
achievable in just a work day, and has helped researchers.

This chapter will give an introduction to the technologies used in the collec-
tion of genomic data. First a discussion on the topic of genomic data and the
problems concerning it is given, before the main techniques and technologies
used in DNA sequencing is presented.
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Figure 4.1: The production of genomics data is an important step in the
pipeline, generating the datasets to be visualized.
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4.1 History

The sequencing of the human genome stands as one of the major scientific
achievements of the twentieth century [49]. It is a recent idea to sequence the
human genome, but it could not be possible if not for the decades of advances
within biology and compute power. Already in 1953 researchers Watson and
Crick discovered the DNA structure. In 1973 the first genes were replicated
by Berg and Cohen, before Sanger in 1975 sequenced the first small molecule.
In the early 1990’s the idea behind sequencing the entire human genome was
conceived, but not until twenty years later the work was near completion.
In 2003 about 20 500 genes was described. The next-generation sequencing-
era started in 2004 with the introduction of massively parallel sequencing
platforms [18].

4.2 Motivation

The expression of genes in di↵erent cells, tissues or organisms, are constantly
changing during health, adaption, toxicity, disease and aging. However an
individual’s genetic blueprint remains relatively static during its lifespan. At
any point in time only a portion of a genome is expressed in specific cells
and tissues, this portion is named the transcriptome. Of the 20 500 di↵erent
genes in the human genome the transcriptome consists of about 10-15 000
di↵erent genes expressed in tissue.

There are di↵erent levels of gene expression; the genome level consisting
of the genes, the transcriptome level consisting of the genes transcribed at
a given point in time, the proteome level consisting of proteins making up
cells and tissues, and the metabolome level consisting of small molecules and
metabolites. The motivation behind sequencing DNA is that it allows for
the study the genes and their e↵ect on the proteins synthesized and their
contribution in the di↵erent metabolisms.

As mentioned in the previous chapter there is a possibility for mutations in
the DNA during replication. This mutation may cause a number of diseases,
and if one wants to detect such a mutation the mutant DNA must be se-
quenced and compared to the DNA of a healthy individual. However, the
problem is that there are many mutations of a DNA that may not produce
any observable biological consequence.
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Detecting such mutations have been found by sectional resequencing of DNA,
using Sanger-methods which could just sequence shorter regions of the hu-
man genome. Newer technologies makes it practical sequencing much larger
regions of the human genome.

4.3 Genomic Data

The size of a genome in an organism range from just under 4,000 base pairs,
found in the bacteria Bacteriophage MS2 [25], up to 670 billion base pairs
found in the amoeboid Polychaos dubium [47]. Humans have two copies of
their inherited genome of 3.2 billion base pairs each [63].

In the later years, the technology used in the collection of genomic data has
seen a tremendous improvement. Today, single week-long sequencing runs
can produce as much data as did entire genome centers just a few years ago
[35]. With this growth in data generation, the need for e↵ective solutions for
both handling such vast amounts of data, as well as analytic tools has become
necessary for the advances within the biological and medical sciences.

The growth of the amounts of data produced by the sequencing labs across
the world has out outperformed the advances both in compute power and
storage capacity [35]. Sequencing output is now doubling every 9 months,
leaving disk storage and high-performance computation fields far behind.
Analyzing the collected data is also a growing problem, and it is today at a
much higher cost than producing the actual data, often as much as a factor
of ten higher.

The problems with many of the current sequencing technologies is the raw
data produced. Many of the systems use digital imaging for capturing the
bases being sequenced, leading to the creation of many terabytes of images
every day. These images must then be processed in order to read the specific
base encountered. Some systems use real-time processing of the images to
reduce the cost of storing the images, and output only the base call. This
reduces storage required with several orders of magnitude. Even if the storage
capacity required can be reduced, when moving the data downstream of the
sequencing machines bottlenecks emerge. Often research institution have
access to a high-speed internet connection, often with connection speeds at
gigabit level. However, if one should download the entire dataset for the 1000
Genomes Project, which is currently at over 200 terabytes [44], it would take
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several weeks before the download would be finished. To solve this problem,
using service-oriented architectures where the computations are moved closer
to the data is in use. However, data security and privacy issues must be taken
into account when working with human data and renting services from a third
party.

Another solution to the storage problem is to introduce reference genomes.
With these reference genomes, instead of storing an entire genome, the dif-
ference to the reference genome is stored. Since mutations on a genome
typically is less than 0.1% of the data, it has potential for reducing storage
costs. This method has not been fully adopted, and currently there exists no
human reference genome.

4.4 Next-generation Sequencing

Next-generation sequencing (NGS) is a term used to describe the newer tech-
nologies that allow massively-parallel sequencing of genes. The di↵erent tech-
niques available today use di↵erent methods for sequencing, but they all share
a common pipeline consisting of three phases: preparation, sequencing and
imaging, and data analysis.

Of the many NGS instruments, the Roche 454 Genome Sequencer is consid-
ered the pioneer within NGS. It was released in 2004 and was able to simulta-
neously sequence hundreds of thousands DNA fragments, with read lengths
of over 100 base pairs. In 2006 the Illumina Genome Analyzer was released.
This sequencer generated tens of millions of shorter 32 base pair reads. Ap-
plied Biosystems’ SOLiD was the last sequencer to arrive the marked, but
with capabilities of sequencing 400 million 50 base pair reads. The first
single-molecule sequencer was the Helocos BioScience HeliScope, which was
capable of producing 400 million 25-35 base pair reads [18].

4.4.1 Preparation

There are two methods used in the preparation stage, either clonally am-
plifying templates which originates in single DNA molecules or using single
DNA molecules as templates.

Common to the preparation stage in most of the sequencing techniques is
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to break down DNA into smaller strands, from which templates are created.
This template is then attached to a solid surface, usually glass, and with
the spatially separated templates the sequencing of thousands to billions of
nucleotides can occur simultaneously.

For clonally amplifying DNA two methods are common; either Emulsion
PCR (emPCR) or solid-phase amplification. emPCR builds on the Poly-
merase chain reaction (PCR) technology, which can from only a few copies
of DNA generate millions of copies of the same DNA sequence. emPCR
creates a library of fragments or mate-pair targets, on which specific DNA
molecules can attach to. After DNA is attached to the targets, it is separated
into sngle strands and captured onto specific beads. These beads will only
allow one DNA molecule to be attached. When DNA have been attached to
the beads they can be immobilized and captured onto a surface or inserted
into wells where the sequencing reactions may occur. In solid-phase ampli-
fication the DNA is broken into fragments which is attached to ’primers’ on
each of its ends. These are then attached to a surface, where a reaction that
clones each of the DNA fragments occurs, creating clusters of these.

Using the single-molecule temples one can reduce the amount of DNA ma-
terial needed. These methods do not rely on PCR which could produce
mutations in the clonally amplified templates. This method is often used in
RNA-seq [43] because of the small amounts of mRNA used. There are three
di↵erent approaches, each involving the immobilization of DNA onto some
surface.

4.4.2 Sequencing and imaging

Depending on the methods used in the preperation stage, sequencing and
imaging must be performed accordingly. Upon imaging of the DNA with the
clonally amplified templates, the signal recorded is a consensus of the nu-
cleotides or probes added at a given cycle. Because multiple signals must be
processed, this demands high e�ciency on the imaging devices used. When
using single DNA molecules as templates, multiple nucleotide or probes could
be added at any given cycle, introducing errors.

Cyclic reversible termination is a imaging strategy used for sequencing DNA.
In this strategy the templates are washed with fluorescently modified nu-
cleotides, which attaches to the templates one nucleotide at a time. When
a nucleotide is attached to the template a light is emitted, which can be
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captured with a camera. The di↵erent bases are labeled with a di↵erent flu-
orescent dye, emitting light at di↵erent wavelengths. When the nucleotide
has been added the DNA synthesis process terminates, and the remaining
nucleotides not being attached is washed away. Then the process continues
with the surface being washed with nucleotides, each hoping to attach to a
template. This continues until the DNA has been sequenced. The Illumina/-
Solexa Genome Analyzer (GA), which has dominated the Next-generation
sequencing marked is using this technique [43].

Sequencing by ligation is di↵erent method which uses DNA ligase, a specific
enzyme that facilitates the joining of DNA strands together. In this method
flourescently labeled probes attaches itself to a complementary sequence,
before being joined by the DNA ligase. Non-ligated probes are washed away
and fluorescent imaging is used to determine the identity of the ligated probe
[43]. This is repeated over again until the DNA has been sequenced.

Another method for sequencing is Pyrosequencing. Instead of modified nu-
cleotides being added which terminates the DNA synthesis in every step, sin-
gle deoxyribonucleoside triphosphate (dNTP) are washed across wells that
contain template beads and some other enzymes. When the dNTP attaches
to the bead, it starts a chemical reaction emitting light which is captured
by a camera. The order and intensity of the light peaks are recorded as
flowgrams, which reveal the underlying DNA sequence [43].

Real-time sequencing is one of the newest technologies, which involves imag-
ing the continuous addition of the flourescently labeled nucleotides during
DNA synthesis. What separates this from reversible terminators, is that the
synthesis is not halted when a nucleotide is attached.

Another technology that is gaining momentum, is semi-conductor sequencing.
One such sequencer is the Ion Proton sequencer which claims to be able to
sequence an entire human genome for just $1000 in a few hours. The Ion
Proton sequencer uses advances in semi-conductor technology to achieve this
low cost, with the sequencing being done on a single chip [54]. The chip itself
contain imaging technology for capturing the chemical sequencing reactions.

4.5 Microarray

In principle DNAmicroarrays are matrices on some solid surface (often glass),
with attached DNA oblinucleotide probes attached to. mRNA is sampled
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from an individual, and then purified, amplified and labeled. Afterwards it
is placed on the microarray allowing it to hybridize by complimentary base
pairing with the oblinuclotides on the microarray. Any excess material is
washed away and image analysis determines the quantities of mRNA in the
sample.

There are three main objectives of microarray sequencing, the most impor-
tant in the NOWAC study being the discovery of di↵erently expressed genes.
With

4.5.1 Illumina Human WG-6 Chip

In the NOWAC study, the prospective data collected has been collected using
the Illumnia Human WG-6 chip. This is a micoarray chip using 50 mer
oblinucleotide probes attached to beads randomly assembled and replicated
in each array. The probes used target transcripts/positions in the genome.





Chapter 5

Big Data Systems

There are numerous systems for managing the large quantities of data used
in visualization systems. These systems are required to handle the three
V’s of Big Data: volume, variety and velocity [33]. Volume describes the
size of the data stored, often ranging from terabytes to petabytes. Variety
describes the di↵erences within the data itself, whether the data is structured,
unstructured, or some combination of the two. The last V, velocity, describes
the speed data is generated at.
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Figure 5.1: Systems for managing the peta-scale genomic datasets has be-
come increasingly important as the datasets are produced faster containing
increased ammounts of data.

There are two main approarches to managing and interacting with big data,
either using a Database management system (DBMS) or a storage solution
built on top of the MapReduce framework on top of Google File System
(GFS) or Hadoop Distributed File System (HDFS). DBMS are fit for man-
aging large quantities of structured data, which can fit into a well defined
schema. This will require the system to convert the data when loading it into
the system, but does not have to worry about any parsing during execution.
MapReduce (MR) on the other hand requires the developer to write any logic

29



30 5 Big Data Systems

into the application, which can understand the underlying structure of the
data.

This chapter will given an introduction to big data systems. It will discuss
the two di↵erent branches of management systems, either built on top of
Relational Database Management Systems (RDBMs), or GFS or HDFS. The
chapter is split in two, discussing both pure storage systems and analytical
engines. The storage systems consists of a discussion of relational database
systems, followed by an introduction to GFS used in several storage systems.
The storage section continues with a discussion of non-relational database
systems, such as mongoDB and BigTable, and the chapter ends with an
introduction to analytical engines using MapReduce and storage systems
built on the popular open source implementation of MapReduce Hadoop.
Figure ?? illustrates the di↵erent types of data management systems.

$SS�� $SS�� ��� $SS�1

0DS5HGXFH���
+DGRRS���+LYH���3LJ���
,PSDOD

%LJ�7DEOH

*)6���+')6 5'%0

2UDFOH���
7HUDGDWD���
0\64/ PRQJR

'%

Figure 5.2: Di↵erent types of data management systems

5.1 Storage

5.1.1 Relational databases

A DBMS is a system for managing quantities of organized data. Traditional
database systems were often placed on powerful mainframe computers, often
with specialized hardware, to manage database and transaction processing
tasks. Traditionally, the relational model have been opted for and used in
DBMS, where data is stored in tables, and every item is identified by a key.
The access of such databases is done in a query language, such as Structured
Query Language (SQL). What is important in relational databases, is the
possibility of linking information stored in di↵erent tables together.
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From the DBMS systems, Parallel database management systems (PDBMS)
have been developed. These systems take advantage of the relational data
model, which is suitable for parallelization, and are built on clusters of com-
puters with commodity hardware, communicating and exchanging data over
an interconnection network. The database is often partitioned among di↵er-
ent computers, allowing di↵erent computers to operate on di↵erent parts of
the dataset, facilitating parallelism. Partitioning is done either by column-
wise or row-wise, depending on the di↵erent systems. Row-wise partitioning
will distribute rows to di↵erent computers, while column-wise distributes
columns to di↵erent computers. Row-wise partitioning is suitable if the
database should normally read entire records at a time, e.g. in a phonebook
looking up both name, number and address for a single person. If a column-
wise partitioning is suitable if the access patterns are for the same attribute of
multiple rows, e.g. looking up a range of phone numbers. The partitioning of
data can be done using multiple techniques. The simplest being round-robin
where rows are distributed in round-robin fashion to the available computers.
Another approach is to use hash-partitioning which computes a hash of each
row, and distributes it based on this hash. Given that the hash function
distributes rows uniformly, this technique will function as a load balancer,
and ensure that data is evenly distributed among the machines. However if
the user is likely to access certain ranges at a time, range partitioning might
be feasible. This will parition the data based on some pre-defined ranges,
for example that in a phone book all numbers starting with 555 is stored on
a single machine. A problem with range partitioning is that data may be
unevenly distributed, with a risk that larger parts of the data is stored on a
single node.

A property of DBMS that has made them attractive on the marked, is their
use of indices. These are data structures that improves the data retrieval
time, both for random and sequential access. An index is often just a copy of
one or more columns from a database table that requires faster access times.

5.1.2 GFS

GFS is a distributed file system developed at Google. It is designed to pro-
vide fault tolerance while running on inexpensive commodity hardware [28].
While it uses an architecture with a single point of failure, it provides high
performance to a large number of clients. When designing this file system,
the developers identified both current and anticipaded workloads, and cre-
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ated a file system that would target these. They identify four insights, which
should be optimized for: (i) failures are the norm; (ii) files are huge, often
many gigabytes; (iii) file operations are often appends, not random writes
within a file; and (iv) designing the file system application programming
interface (API) and application benefits the overall system.

GFS runs on a cluster of commodity machines, and consists of a single master
and multiple chunkservers. Files are divided into chunks of fixed size, 64 MB,
which are assigned a chunk handle upon creation. The chunks are stored as
regular files on the chunkservers, and GFS stores on default three replicas
for each chunk, but this can be changed by the user.

The master stores metadata regarding the location of the chunks and the
mapping between chunks and files. It also controls which chunkserver should
hold specific chunks, migration of chunks between chunkservers and the
garbage collection of chunks. To detect any failing chunkserver the master
periodically sends heartbeats that records the state of the chunkserver.

When a client wishes to retrieve a file, it contacts the master. This master
determines the chunks the file consists of and where these are stored. The
client receives this information and continues to contact the chunk servers
directly.

In GFS the only atomic operations are file creations, which are handled
exclusively by the master. Other operations to chunks and their replicas
are handled by a primary replica. This primary determines an ordering of
operations to the other replicas and ensures serializability. Primaries are
given a lease and if a primary would fail during execution, a new replica is
granted the lease and can carry out further operations.

In GFS the decision to use a single master allows for a simple design and more
sophisticated placement policies, because a master can use global knowledge
to place chunks. To prevent the master to become a bottleneck, the clients
will cache the chunk locations for a limited time. This reduces the interaction
required with the master. Also, in the case of a master failure, the master
does not store the chunk location persistently, instead it asks all chunkservers
at startup and whenever a chunkserver joins the stoarge cluster.

GFS provides data locality in the sense that the master can place replicas of
a data item closer to a client, reducing the latency.

Since GFS has chosen a large chunk size, it reduces the interaction with
the master, communication can be reduced since clients are likely to perform
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Figure 5.3: GFS architecture. Figure from [50].

multiple operations on a single chunk, and it allows for the chunk to filesystem
mapping to fin in main memory.

5.1.3 Non-relational databases

As described above, SQL has been used to access data stored in relational
databases. These rely on the underlying relational model, where data must
be stored after a specific schema. Newer storage systems has seen the rela-
tional model as a limitation, and have opted for the non-relational or NoSQL
databases. NoSQL databases provide better scalability and availability at
the cost of consistency guarantees. NoSQL databases are often suitable for
managing large quantities of data, where the nature of the data does not
require a relational data model. Within the NoSQL databases, the main-
stream data models are as follows: (i) key-value stores, where data items
are specific storage node dictated by a hash function. Examples of these are
Amazon Dynamo [21] and Walter [51]; (ii) column family stores, where data
is stored by columns. Examples of these is BigTable [15], Cassandra [40] and
Hbase [56]; and (iii) document oriented stores which is similar to key-value
stores, but the values are stored in a structured document, often in JSON
or XML format. Example of document oriented stores are mongoDB [1] and
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CouchDB [57].

This report will only discuss column family stores and document oriented
stores.
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Figure 5.4: The di↵erent types of non-relational database systems

mongoDB

mongoDB is an open-source NoSQL-database [56]. The mongoDB database
contain multiple collections that contain multiple documents. These docu-
ments can be structured di↵erently, and is represented as a JSON structure.
Within these documents, key-value pairs are stored. Queries on the mon-
goDB database are structured as JSON as well, and can be sped up by the
use of indicies. To prevent data loss, mongoDB provides the replication of
data through replica sets. Using this techniques a master is elected to handle
all writes on an object. Reading can be performed from any of its replicas,
but the master is only allowed to perform writes. To distribute data over a
cluster di↵erent computers, mongoDB provides sharding. To avoid data loss
data is stored on logical nodes which consist of multiple physical computers.
This is similar to the storage policy used in Haystack [9], to prevent any loss
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of photos.

With mongoDB there are some clear advantages, first developers can write
simple queries in plain query syntax. This alleviates the need to write com-
plex SQL queries. Second, mongoDB allows for sharding to be deployed eas-
ily, something that can be troublesome with e.g. MySQL databases. Third,
it uses no data schema, which can be helpful if the data schema is not know
ahead of time and can change from time to time. However, mongoDB pro-
vides no joins or transactions which may be critical in some storage solutions.

Interestingly, the 32-bit version of mongoDB only supports a database of up
to 2GB while the 64-bit version does not have any size limitations [2].

BigTable

BigTable is a distributed storage system for managing structured data that
is designed to scale to a very large size: petabytes of data across hundreds or
thousands of commodity servers [15]. BigTable was developed at Google and
is used in the backend solutions for web indexing, Google Earth and Google
Finance. Comparing to mongoDB BigTable provides better availability and
scalability. It is currently not availible outside Google, but an open source
BigTable-like implementation, Hbase, is availible. Also BigTable is column
oriented, making it more suitable for certain applications than mongoDB’s
document oriented storage model.

BigTable shares many implementation strategies with databases, but it pro-
vides a di↵erent interface than the traditional PDBMS. In BigTable the data
is organized in three dimensions: rows, columns and timestamps. A data
item with a specific row key, column key and timestamp is called a cell. The
data is stored in column-oriented fashion, opposite to traditional relational
databases where the data is stored in a row-fashion. BigTable performs a
clever optimization by not storing columns without values in specific columns,
which is very good for sparse tables.

Rows in BigTable are stored lexicographically by the row key. Reads and
writes under a row are serializable, providing an easy interface for users with
concurrent updates to the same row. This implies that rows are the unit of
transactional consistency. Rows are stored in what is called tablets. These
tablets hold rows with consecutive row keys, and will grow until a set size
before they are split into two. With these tablets, reads within a small range
of keys will limit the communication with storage nodes. This property can
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be exploited by the end users to gain performance.

Column keys are grouped together into column families. Data stored within
a column family tends to be of similar type and can be compressed. The
number of such families tends to be small, at most a couple hundred, but
number of columns are unlimited.

Timestamps are introduced to support versioned objects, allowing tables to
contain multiple versions of the same data, indexed by timestamp.

Figure 5.1.3 shows an example table storing web pages. It shows two column
families, contents and anchor, consisting of web page contents and the text
of any achor that reference to this page respectively. NRK’s homepage is
referenced by both NRK Beta and the home page of the University of Tromsø.
Each of the achor cells have only one version, while the contents column
contain three versions at di↵erent timestamps.
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Figure 5.5: An example table in BigTable

To organize servers in a big table cluster, a cluster managemnt system is used
for job scheduling, managaing resources, monitoring the nodes and handling
machine failures. BigTable uses a single master to serve any request, which
is simply forwarded to a BigTable tablet server that responds to the request.
These tablet servers can be added dynamically to accomodate changes in
workload [15]. BigTable relies on GFS to store files, and uses an in-memory
mapping which allows for lookups using a single disk seek. It uses Chubby
[14] for ensuring that there is only master to serve requests, as well has
holding some metadata for recovery purposes.
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5.2 Analysis

5.2.1 MapReduce

MapReduce is a programming model and associated implementation for pro-
cessing and generating large datasets [20]. In this programming model is up
to the user to create map and reduce functions. The map function should
process input (key, value) pairs into a set of intermediate (key, value) pairs.
These intermediate pairs are grouped together with regards to the key and
is passed to the reducer. The reducer should merge these values together to
produce a result.

The implementation of MapReduce should handle partitioning of the input
data, scheduling the execution of the program across multiple machines, han-
dling failures and handling any inter-machine communication. This allows
the programmer to focus on the problem at hand, and not having to have
any prior experience with parallel and distributed systems.

Architecture

The MapReduce framework has a master-slave architecture, with a single
master and several workers, often one per cluster node. Users submit MapRe-
duce jobs to the master which assigns the map and reduce tasks to the
workers. The workers executes the tasks and handles any data transmission
between the map and reduce phases.

Implementation

MapReduce uses re-execution as the primary mechanism for fault tolerance,
and will restart any failed job. The initial implementation of MapReduce
used GFS for managing the stored data on disk, using replication to provide
availability on top of unreliable hardware. During execution the map invo-
cations are distributed multiple machines by the partitioning of the input
data into M splits. The input splits can then be processed in parallel by
di↵erent machines. Reduce invocations are distributed by the partitionig of
the intermediate keys into R pieces using a partition function specified by
the user, usually a simple hash funcion on a key.
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The MapReduce implementation handles both worker failure and master
failure. The master pings the workers at reggular intervals to detect node
failure. If it detects that any of the nodes are down it schedules the re-
execution of the failed job. If the master would fail, the entire MapReduce
task must be restarted. It is however very rare that a master would fail,
because MapReduce is often run on a cluster with houndreds of nodes and
it is very unlikely that one specific node would fail.

The underlying file system used in MapReduce should provide data locality.
The MapReduce master will try to schedule jobs that can run on nodes
hosting the data, or physically close th the node holding the input data.

Evaluation

There are many benefits of using MapReduce for both storing and interacting
with data. It is easier for developers to write any code to access the data,
due to the fact that the MapReduce library hides any code dealing with fault
tolerance, distribution and parallelization.

Also, the developers using MapReduce does not have to learn a new language
in order to write MapReduce jobs. These can be written in any programming
language, making it easier for developers to get going and maintaining the
applications.

Unfortunately the MapReduce programming model has its limitations. With
its one-input two-stage data flow, if the user needs more complex operations
like joins or multi stage operations, custom solutions must be written. This
leads to code that is hard to maintain and di�cult to reuse [46].

5.2.2 Apache Hadoop

Apache Hadoop [26] is a open source software framework which implements
the MapReduce programming model. Hadoop provides a distributed filesys-
tem, the Hadoop distributed filesystem (HDFS) [11], for storing large datasets
over large collections of computers, and technique for executing work (MapRe-
duce jobs). These MapReduce jobs are run across the same large collection
of computers, ensuring that computations are run near the data.

A limitation with Hadoop is that the filesystem used, HDFS is optimized for
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sequential scans and not for random access [59]. In data exploration the case
is often that the data investigated is accessed in a random pattern, which
makes HDFS less satisfactory for interactive exploration tools.

Pig

Pig is a system written on top of Hadoop, allowing users to specify SQL-
like statements, which are translated into map-reduce jobs. Pig compiles
programs written in Pig Latin a language designed to fit in a sweet spot
between the declarative style of SQL, and the low level procedural style of
map-reduce [46]. It was developed by researchers at Yahoo!, and in their
2008 paper they describe how development and execution of their data anal-
ysis tasks was sped up after introducing Pig. Another key aspect of Pig is
the debugging environment. Traditionally when writing MapReduce jobs on
large datasets, it may take minutes if not hours for the jobs to complete.
When writing programs in an iterative approach, developers are dependent
on fast feedback to correct any errors that may occur. With MapReduce the
run-debug-run cycle may be very slow an ine�cient, but the Pig debugging
environment speeds up this cycle by generating example data which illus-
trates the output of every stage. The developer can then use this output to
determine if the program must be modified.

Hive

Hive is a data warehousing solution also built on top of the Hadoop software
framework. Like Pig [46] it supports queries in a declarative language. This
language is termed HiveQL which like Pig Latin is compiled into map-reduce
jobs to be executed on Hadoop. Hive supports tables, analogous to tables in
relational databases. What separates Hive from Pig is the Hive-Metastore, a
system catalog containing metadata about the tables stored in Hive [59]. This
metastore is contacted whenever tables are referenced in HiveQL, allowing
potential speedup. It is stored within either a relational database, or another
filesystem that allows for fast random access.
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Impala

Cloudera Impala is a new platform built on top of Hadoop allowing real-time
queries using a declarative language. It uses the same metadata, SQL syntax
(HiveQL), ODBC driver and user interface as Hive [24]. Unlike Hive and Pig
that uses Hadoop’s HDFS, Impala accesses data through a distributed query
engine like the ones found in RDBMSs, which provides an order-of-magnitude
better performance than Hive [24]. Using such an query engine, it allows for
systems to use it where interactivity is key. According to Cloudera in [24],
Impala is capable of 3-4x speedup on I/O bound queries, 7-45x speedup on
queries involving more than one join operation, and 20-90x speedup if the
data accessed in the query comes out of its cache.



Chapter 6

Visualization Systems

To gain valuable insights in the peta-scale datasets stored in big data stor-
age systems, visualization systems are often needed. There are a wide range
of tools availible, solving many problems across multiple domains. In the
NOWAC study over 170 000 women participated in questionnaires over a
time period of over 4-6 years. In addition blood samples from over 400
individuals have been collected and stored in a biobank. Creating visualiza-
tions that e�ciently visualize data from multi-variate data, such as from the
NOWAC dataset, is not a straightforward task. Visualizations must both
be interactive, provide useful visualizations to the user, and even including
advanced statistical tools to generate the visualizations needed.

This chapter will give an introduction to the di↵erent visualization systems
avalible, both for biological data and data from other sciences, how they
handle large datasets, and finally present challenges faced in data visualiza-
tion tools. In addition a short description on visualization and interaction
techniques for high-resolution display walls will be given.
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6.1 Backends

In addition to providing a fault tolerant storage solution, the backend systems
serving data to data exploration tools must also provide a simple and fast
interface for the visualization systems. These systems must present large
quantities of data to the user while providing an interactive experience.

There are three main actions performed by data exploration tools: data
management, data modeling and visualization [68]. The data management
is often done by contacting one or more relational databases, from which
data modeling and visualization can be performed. Most of the data explo-
ration tools allow connections to relational database systems such as SQL,
PostrgeSQL or Oracle [68]. However there is only a few systems that al-
lows for direct interaction with scalable storage systems such as Hadoop,
mongoDB or web-based systems such as Amazon Simple Storage Service
(Amazon S3).

The di↵erent data exploration tools can be grouped into either stand-alone
desktop applications or applications run in a server farm. Of the many
commercial applications available Tableau, QlickVeiw and Spotfire support
the use of a server farm [19]. Join operations are a common trend within
big data systems, and is found very helpful in many scenarios. However,
many tools are restricted by the DRAM on the system when performing join
operations.

This chapter contains a survey of two tools, Tableau and Spotfire, and how
they manage big datasets.

6.1.1 Tableau

Tableau is a visual analytics system for performing ad-hoc exploration an
analysis of customer data sets [55]. Tableau Software was founded at Stan-
fard as a research project before becoming a commercial product [17]. The
Tableau application is run as a desktop application, which can either connect
to an online data store or operate on its own o✏ine subset of the data.

The online data store may consists of one or more database systems, ensuring
consistency across the users. Tableau like many other visual analytics plat-
forms also supports an iPad application, as well as a Dashboard accessible
from any web browser. This makes it possible for users to perform analytics
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tasks on multiple platforms, and on the go. In [55] the authors identified
three key arguments for developing an o✏ine data engine: (i) The original
data may be unavailible, often the case when travelling; (ii) the data may
be stored on some storage device or format which requires is not suited for
analytical queries; and (iii) the analysis itself should be presented as a report.

From these Tableau created an extract feature which allows for users to ex-
tract or retrieve a portion or the data collection and perform any o✏ine
analysis. The o✏ine data engine was originally implemented using the Fire-
bird relational database, but Tableau has made some recent development
introducing their own data engine. This has allowed Tableau to relax their
dependency on third-party software. Also with its own data engine, the un-
necessary optimizations for small sets of queries is dropped, so that the data
engine will be optimized for the exact usage Tableau is seeing.

Like many other data exploration tools, Tableau needs to handle unstruc-
tured exploration of new datasets, as well as advanced aggregation and join
operations. Tableau has support for multidimensional data which requires
that filtering is also possible to perform on this data. A requirement for the
data engine is to support the various other data sources it should connect
to. It should understand the semantics of the data, with an easily extensible
type system. Further the Tableau system should work on 32-bit Windows
laptops with limited resources and available memory.

Queries

In Tableau queries are often generated in a drag-and-drop fasion, where the
user performs some interaction with the presented data and the result are
then presented to the user in the same interface. Tableau uses VizQL lan-
guage to describe an analytical query and associated graphical output [55].

Tableau Data Engine

In order for o✏ine exploration, Tableau has developed its own Tableau Data
Engine (TDE), a specialized column store [67]. This data engine can be
run on desktop machines, or on a shared server. This Data Engine uses
special tables for storing metadata which allows for faster access. Using such
a columnar store, Tableau is able to compress the data and operate on the
data in its compressed form, similar to what is done in BigTable.
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Figure 6.2: Screen shot of the Tableau Desktop Application

The data engine is composed of five layers: (i) a storage model; (ii) a ex-
ecution engine; (iii) a query parser and optimizer; (iv) a communication
interface; and (v) the Tableau VizQL compiler.

Like traditional databases the TDE contains the logical notion of schemas,
columns and tables. These are structured as multi-level directories. Since the
TDE is column oriented, each table is a simple directory, where the columns
are stored as files. A schema is a directory containing the tables, and a
database is simply a top-level directory containing the schemas. Columns
contain either fixed width arrays of values, or a dictionary file containing
tokens. These tokens are just an index into a dictionary, e.g. if we want a
specific date within a range, rather than having mulitple entries with long
date strings like 10/01/2013 it could just point to a dictionary containing the
possible values. These tokens are represented as integers and can be treated
as such, if two entries contain the token they point to the same date. In
[67] they report that these dictionaries could save up to 50% on the storage
requirements.



6.1 Backends 45

The execution engine follows from traditional databases, generating a query
plan from a set of operators taking rows as inputs and producing output rows.
For performance TDE uses block processing, where intermediate records are
generated to be used by other operators. In the query tree one can think of
a lower-level operators producing such blocks, which can then be operated
on by its parent.

The Query parser and Optimizer is used to analyze and perform general
optimizations to a query. TDE uses the Tableau Query Language (TQL) for
representing a query. The parser accepts commands in TQL and generates
an in-memory tree representation which the optimizer further transforms and
converts into an executable query plan.

The TDE runs as a separate process and is communicated to through regular
sockets. From Tableau queries are sent which the TDE reads and routes them
to a session manager which executes the queries. The results are then written
back to Tableau. The communication interface handles this communication
as well as any communication regarding longer running queries that require
progress reports to the user.

The VizQL compiler compiles the visualization specifications and compiles
them into database queries such as SQL and TQL.

With the column-oriented storage model, Tableau is able to compress data
and operate on it in its compressed form [55]. As mentioned in [55], Tableau
targets an analytic workload where traditional row-oriented databases su↵ers
to provide su�cient performance. TDE is able to provide e�cient utilization
of processors available, allocating independent queries to separate processor
cores.

Other data sources

Like other vendors Tableau allows its software to connecto to other sources
using Open Database Connectivity (ODBC), a standard API for accessing
DBMS. It is a middleware that sits between applications that translates
general-purpose requests written in SQL to database-specific requests.

Using ODBC, Tableau has like many other vendors made use of the Apache
Hadoop framework. As of the fall of 2012 the company had been supporting
Hive as a datastore. However while it is great for bach jobs, it was not able to
provide a fast and interactive solution for ad-hoc data exploration [66]. When
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Cloudera released Impala in October 2012, they announced that Tableau was
one first data exploration tools to use Impala. Integrating Impala in Tableau
is done easily and requires only a simple plugin to allow for connection to
Impala. The key advantages using another tool on top of the Hadoop stack
is that when the data first has been collected, there is no overhead in moving
it to another datastore for querying. Since Impala uses a distributed query
engine, it is suitable for allowing the ODBC connection. Tableau makes
it possible to explore petabytes of data using Impala, making it extremely
suitable for big data exploration.

6.1.2 Spotfire

TIBCO Spotfire is another data exploration tool, that has come out of a
research group. It is very similar to Tableau in that it allows for exploration of
large datasets. These originating in either simple text or excel files, relational
database systems or data originating from TIBCO’s ActiveSpaces. Figure 6.3
shows a screen shot of a typical user session using the Spotfire Application.
Spotfire also provides a client available from web browsers.

TIBCO Spotfire provides support for big data analytics, through its dis-
tributed peer-to-peer infrastructure. The ActiveSpaces platform uses a spe-
cific membership protocol and does not rely on any central administration
[60]. TIBCO reports in [60] that this improves latency as well as e�ciency,
and it combines database and messaging functionality under a single inter-
face. Peers in the network contribute with compute and storage capability,
storing all data in-memory. These peers can be any computer, often servers
either running Linux or Windows Server. If a clients wants to join the net-
work in order to perform any query, it can join as a ’leech’. These ’leeches’
have full access to the network, or space as TIBCO calls it, without having to
contribute with computational or storage resources. Figure 6.4 illustrates the
structure of the ActiveSpaces data grid. As the figure illustrates, it allows
for any database or application to join the grid and participate with storage
and processing power. This architecture allows for elastic scalability, making
it easy for developers to add and remove peers.
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Figure 6.3: Screen shot of the Spotfire Application

6.1.3 Wrangler

Wrangler is an interactive system for creating data transformations [36].
Wrangler targets the problem of the tedious task of manipulating data, e.g.
reformatting data values or correcting erroneous or missing values, in order to
perform analytics tasks on the data. These transformations can be di�cult to
specify formally and reuse later on di↵erent datasets. Like Tableau it trans-
lates user interactions and manipulation of the visualizations into queries that
modify the underlying data. Wrangler employs clever techniques to leverage
the semantics in the data types, e.g. geo locations or dates, to suggest data
transformations relevant to the user.

The authors report that data cleaning is responsible for up to 80% of develop-
ment time and cost for data warehousing projects. And that the data wran-
gling often is done using scripting languages like Python or Perl. However it
may be a hard task to specify specific data transformation in a programming
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Figure 6.4: TIBCO ActiveSpaces is a distributed peer-to-peer in-memory
data grid that enables heterogeneous applications to share, exchange, and
process data in real time. Figure from [60].

language, and may often require advanced parsing of the input data. Wran-
gler allows users to select data through interactions and suggests applicable
transformations based on the current visualizations being presented to the
user. Users may preview selected data transformations in order to decide
whether to apply them or not. Wrangler is able to record the data transfor-
mations applied in a script. This script can either be run in a web browser
or be converted into Python or MapReduce code. The MapReduce code al-
lows for developers to wrangle a smaller subset of the entire dataset on a less
powerful device such as a laptop or tablet, and then run the MapReduce jobs
on a cluster for the entire dataset.
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Figure 6.5: A screenshot of the Wrangler interface. The left panel contains
history of previously performed operations and suggestions for new transfor-
mations. The right panel contains an interactive table with the dataset the
user is currently working on. Figure from [36]

6.2 Biological Data Visualization

In the last decades the methods for visualizing and exploring biological data
has improved greatly. With the increased rate data is generated at, the need
for tools that can manage and allow for fast exploration has emerged. Es-
pecially tools that generate massive amounts of data, like high-throughput
DNA sequencers, has driven the need of novel data exploration tools. Today
there are a wide spectrum and large number of di↵erent tools, but biology re-
search projects often require custom built solutions for their specific problem
set.

Molecular graphics are the most mature in the di↵erent visualization areas in
biology, and is widely used in textbooks and popular media [45]. Figure 6.6
are examples showing a Porin molecule created with the molecular graphics
tool QuteMol [64]. Other newer branches within biology that is making use of
computer aided visualizations are genome visualizations, which has become
popular since the sequencing of the human genome.

This chapter will discuss di↵erent methods for visualizing biological data,
the challenges with creating exploration tools, as well as the data exploration
tools available.
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Figure 6.6: Molecular graphics. A Porin molecule shown side by side to put
emphasis on how rendering e↵ects can improve the 3D shape. Images from
[4, 5].

6.2.1 Challenges

There are multiple challenges that needs to be overcome when designing
biological data exploration tools.

• The key challenge is to benefit from the extreme quantities of data
without being overwhelmed by it. It may be intersting to both show
expression data as well as pathway data in the same presentation, but
how this can be done in an intuitive way is still a challenge. This
challenge is still largely unfulfilled and will require the development of
truly integrated and highly usable tools [45].

• A second challenge is to build tools that are easy to learn and use. This
requires an understanding the needs of the researchers and designing
graphical user interfaces (GUIs). The tools should be easy to interact
with and provide useful visualizations, while not bombarding the user
with information.

• A third challenge in data exploration tools used by biologists, is how to
represent data from di↵erent scales. In genomic exploration, the tools
may need to be able to visualize data consisting of whole genomes,
down to the nucleotides that form the DNA strands. In order for the
visualizations to be useful they must display the correct level of detail
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at the di↵erent zoom levels. E.g. it would be unnecessary to visualize
every atom when looking at cells.

• Another challenge is resolving what can be automated in di↵erent data
exploration systems. Ideally the tools should provide visualizations for
tasks requiring human inspection, while automating others.

• For representing large biological datasets, the size of the display hard-
ware has been a limiting factor for what can be displayed at once. The
use of high-resolution displays such as a display wall can introduce new
possibilities for researchers. Figure 6.7 shows how high-resolution dis-
play walls can motivate collaboration between researchers. Also, in [45]
they advocate that large display devices and tiled arrays with improved
resolution are likely to be of significant benefit.

Figure 6.7: Visualization of a genomic microarray dataset using a high-
resolution display wall. Image retrieved from [53].

• Another challenge is the computational requirements of the visualiza-
tion. Often datasets can be terabytes in size, and require advanced
statistical methods in the visualizations. For these, desktop computers
are not powerful enough to carry out the computations needed.
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6.2.2 Current techniques

Visualization techniques has evolved over the last decades. The data explo-
ration tools have evolved from something only domain experts had access to,
to something widely available to the general public. The main reason for this
is the advances within computer hardware and networks, reducing the cost of
computational power. In addition with the faster interconnection networks,
tools are being integrated with remote knowledgebases that provide both
data and visualizations. Many of todays tools can also be run directly in the
web browser and do not require any additional installation. These tools are
being used to integrate web applications for data ming and browsing, often
using multiple visualization tools [45].

Currently there are two somewhat overlapping categories in the visualization
tools available, (i) tools focused on automated interpretation and exploration
of large biological networks ; and (ii) tools focused on assembly and curation
of pathways [27].

In (i) we find tools for example looking at protein-to-protein interactions,
and maybe exposing patterns in such interactions. Also tools for generating
heatmaps of expression values fall into this category. Often data may be
multi-variate and the tools need to support clustering algorithms and dimen-
sionality reduction, as discussed in ??. Tools for assembling pathways are
typically used for discovering patterns in how cells cooperate and interact.
Many of these are web-based and make use of knowledgebases containing
these, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG) [37].

This subsection will cover the techniques used in the following , (i) protein
interactions; (ii) gene expression; (iii) metabolic pathways.

Protein interactions

The datasets required to study the interactions between proteins, the datasets
are often large in size and require heavy processing. A common trend is to
visualize their interactions by plotting each protein as a node in a graph, with
the interactions between them as edges in the graph. In order to present these
graphs in an asthetically pleasing way, they are often manipulated using force-
direction layout algorithms. These algorithms minimize the overlapping of
edges, producing grahps that are easier to investigate by researchers. Figure
6.8 shows a graph of proteins and their interactions.
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Figure 6.8: Graph of interacting protein pairs with proteins (nodes) colored
according to cell cycle expression profile cluster membership [10].

As figure 6.8 shows, there are several clusters in the graph. These may
be useful to collapse into a single node, to hide some level of detail to the
user. Because the layout itself does not tell anything of where the proteins
are found within the organism, it may be necessary to display this using
di↵erent coloring of nodes.

Gene expression

The goal of gene expression profiling is to usually to find a set of genes or,
less typically, proteins that share a related pattern of expression [45]. With
these profiles the problem is that they may contain several thousand genes
and origin from di↵erent samples taken at di↵erent time points, making the
visualizations possibly complex.

With gene expression, common plots are scatter plots combined with dimen-
sionality reduction, heatmaps and dendrograms are commonly used. Figure
6.9 shows a heatmap visualization. On the figure genes have been rearranged
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according to the hierarchical clustering shown in the dendrograms.

Figure 6.9: Heatmap generated from DNA microarray data reflecting gene
expression values [6].

From the heatmaps generated it is often relevant to look at the pathways the
di↵erent genes are represented in. As we will see in 6.2.2 the pathways are
often also plotted as graphs, and a common trend in the visualization society
is to map the gene expression values down to the nodes in the graphs. These
could either contain the colors from the heatmaps or some bars indicating
their expression values.

Metabolic pathways

The study of how molecules interact within a cell to produce reactions and
chemical reactions, visualizations is key. These visualizations can be either
static providing precomputed images, e.g. KEGG or dynamic that allow users
to modify and create their own pathways, like GenMAPP [29]. Figure 6.10
shows a global map from KEGG. As the illustration shows, these maps may
be very complicated, and clever visualization techniques can be very helpful
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for detecting patterns more easily.

Figure 6.10: Global KEGG map. Figure from [37].



56 6 Visualization Systems

6.3 Multi-Dimensional Data Visualization

Creating understandable and interactive visualizations for scientific data is
an often neccessary task in order to gain knowledge into the large datasets
collected. One of the many di�culties with creating such visualizations is
the trend that data and model is becoming multi-faceted [38]. Also creating
intuitive ways of interacting with the visualization systems are crucial to
their design.

In this chapter, the di�culties regarding creating and interacting with scien-
tific visualizations is discussed. It will emphasis on the survey paper Visu-
alization and Visual Analysis of Multi-faceted Scientific Data: a Survey [38]
and the fourth chapter of the Ph.D. thesis Device-Free Interaction and Cross-
Platform Pixel Based Output to Display Walls [52].

6.3.1 Visualization and visual analysis of scientific data

In the literature the notion of multi-faceted data describes data that is (i)
spatio-temporal, relating to both space and time, e.g. the tracking of an
object; (ii) multi-variate, consisting of di↵erent attributes, e.g. temperature
or pressure; (iii) multi-modal, with data from di↵erent data sources; (iv)
multi-run, consisting of data from di↵erent simulations or runs; and (v)multi-
model, data from simulaitons using di↵erent simulation models.

Generally the technologies perform at good at one of the above types, but not
a combination. With newer scientific discoveries, it has become increasingly
important to create solutions which integrates di↵erent data sources and
types into a single representation.

In [38] they identify that the visualization of spatio-temporal and multi-
variate data have been broadly studied, while multi-run and multi-model
data scenarios are new to the visualization community.

Spatio-temporal data

Managing spatio-temporal visualizations is important within several disci-
plines. Within meteorology it can be interesting to study the movement of
hurricanes during the hurricane season, and within medical sciences it may be
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interesting to study how cancer cells evolve over time. Representing this data
in an intuitive manner can be complicated, and techniques involving placing
visualization side-by-side for visual inspection. The choice of representing
data in 2D or 3D is also something which must be taken into concideration.
This decision often relies on the task at hand [38], but some data inherently
suggest 3D representation.

When visualizing spatio-temporal data visualizations use common approaches,
like automatically generated animations or interactive sliders for selecting dif-
ferent time ranges. Often the animation generated show the data at di↵erent
time steps, or along some time axis.

Multi-variate data

Visualizations may also require that multiple attributes and relations must
be inspected in order to provide any interesting output. When scientists
are faced with data with numerous attributes, the visualization tools must
be integrated with statistic analysis tools and dimensionality reduction soft-
ware. These statistical tools may be computationally intensive, and must
provide high performance to better the user experience. Typical tools for
dimensionality reduction include Principal Component Analysis (PCA) and
Multi-Dimensional Scaling (MDS). PCA transforms multi-dimensional data
into a coordinate system that is orthogonal to the variable with the largest
variance. PCA can transform a dataset that cannot be visualized using
know techniques, into lower-dimensional dataset easily represented in 2D or
3D. MDS maps higher-dimensional data onto a lower dimensional space, still
containing the dissimilarities between the data.

Multi-variate data is often visualized using scatterplots or polar coordinates.
These expose correlations or outliers often interesting to researchers. With
these techniques the human aspect of the computations come in hand, al-
lowing users to spot patterns in the data. Glyphs are often powerful when
visualizing multi-variate data, where the data is used to determine its shape,
color, position and so on. These can again be used to draw attraction by
for example using di↵erent color schemes to aid human pattern recognition
abilities. If the visualization is in 3D further techniques can be employed to
enhance the depth perception.
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Multi-modal

With multi-modal data coming from di↵erent sources, often of the same
spatio-temporal location, the challenge is to merge the data together to give
more information to the user. An example of this is integration of the two
di↵erent set of images generated by either Computer Tomography (CT) scans
or Magnetic Resonance Imaging (MRI). CT scans are good for imaging bone
structures, while MRI are better at imaging soft tissue, but a visualization
may want to visualize them together.

Multi-run

Using multi-run simulations, it may be be interesting for researchers to tweak
certain parameters in order to inspect the di↵erent outcomes. With such
simulations it can be interesting for an aggregated summary between each
run, but also simultaneous visual inspection. Creating such an aggregated
summary can prove to be di�cult when the data is multidimensional.

When generating suitable representations for multi-run data, it may prove
challenging because of its high-dimensionality, size and because it may be
multi-variate.

Multi-Model

When researchers are investigating complicated physics simulations where
interactions between di↵erent parts, e.g. the interaction betwean ocean and
athmosphere in climate research. Creating visualizations that correctly vi-
sualize and represent these relationships is a hard task.

As well as interactions, the data may be simulated in di↵erent grids, one
in 2D the other in 3D. With this in mind the visualization systems must
identify the di↵erences and determine how data can be represented using the
di↵erent models. In [38], the work of creating visualizations of multi-model
scenarios have not yet been fully adopted by the community, and there exists
only a single system targeting this type of data visualization.

In addition to the di↵erent facets described including adding pictures, video
or text to the visualiaztions. In a data exploration tool, adding some infor-
mation or labels through text may prove crucial in order to generate some
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semantic context to the data.

Data exploration

With data visualizations researchers are able to interact directly with the
datasets, not just presenting finds.

There are many standard visualization techniques developed, e.g. histograms,
scatter plots, parallel coordinates or graphs. These are often in 2D allowing
for users to select, or brush, data items for comparison against other plots.
Many visualization tools allow for users to interact with several visualizations
at once, for easy comparison.

To interact with a visualization users can either navigate manually by some
user gestures, automatically or computationally assisted. The gestures or
interactions performed by the user can be zooming in, rotating the view or
panning. Finding a view that reveals significant ammounts of information to
the user can be di�cult, and in some cases it may be neccessary to hide some
details from the user in order to not overwhelm users with information. Often
data may be too large and complex to be represented to the user directly,
and must be filtered accordingly.

From the user’s perspective the system must provide a fast and snappy inter-
face, meaning the interfaces and data presentations should be instant upon
user interaction.

An interesting point in [38] is to integrate machine learning into the analytics
process. These systems can learn from previous explorations and reduce
exploration tasks by automating many fundamental tasks. If users have a
tendency to focus on the time aspect of some data, the visualization system
could optimize for this hiding away some low level filtering and algorithms.

Gap in visualization techniques

A key observation in [38] is that they see a gap between the techniques used
by domain experts, and the features provided by visualization research. New
advances in visualization are rarely used in application domains. They argue
that this may be because the methods provided by visualization research are
often complex and does not integrate simply in the workflow of the domain.
They claim that a major challenge for future development is the bridging of
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this gap, for example by a collaboration with domain experts when designing
visualzation systems. These systems should (i) follow guidelines from percep-
tion research and human computer interaction; (ii) provide simple graphical
user interfaces and advanced visualizations.

6.4 Display wall data visualization and inter-
action

Interesting technologies that has not been fully adopted by the community
is the use of high-resolution tiled display walls. These often provide screen
resolutions orders of magnitude larger than commodity desktop computers
or laptops. In addition, these encourage collaboration between researchers
in front of the display wall, not hanging over a small monitor. This section
gives an introduction to two systems developed at the Tromsø Display Wall,
one visualization system and the other an system for interactions with the
display wall.

6.4.1 Interaction Spaces

Interactions with computing systems can be done with or without devices.
Typical devices for interacting with computers are keyboards and mice. Dis-
play walls allow mulitple users to interact with large visualizations, and for
these types of interactions, the traditinoal devices have several downsides
[52]. Problems with traditional devices is that they cannot easily be carried
around, require some tracing surface (like mice), and they do not scale to
multiple users. In addition devices are easily lost and since they must be
portable they require batteries which must be changed from time to time.
Interactions without devices is possible by computer assisted speech recogni-
tion or gesture detection. Such systems often require the user to wear special
equipment, and speech regognition is not fully developed yet. Gesture de-
tection that do not require that the user wears some equipment, often limits
the tracking to 2D.

Wether interacting with a device or without one, it is still restricted to a sin-
gle computer. In [52] the author presents the concept of Interaction Spaces,
which is a volume within which user interaction is detected. This volume
is not restricted to a single user or computer, but shared among di↵erent



6.4 Display wall data visualization and interaction 61

users and computers. Figure 6.11 illustrates the interaction spaces concept.
It shows three interaction spaces, the largest (yellow) created using four mi-
crophones, the blue created using floor mounted cameras, and the magneta-
colored is created using a camera mounted in the celing behind the user.

Figure 6.11: An illustration of the Interaction Spaces concept. Figure from
[52]

From the concept of Interaction Spaces, three systems are presented in [52];
(i) Camera-sense, a system which can track objects in 3D using commodity
cameras; (ii) Snap-detect, a system capable of locating user by tracking the
sound of a user snapping her fingers or clapping her hands; and (iii) Arm-
angle, a system that can regonize the angle of a user pointing her arm. In
6.11, Snap-detect is shown as the yellow sphere, Camera-sense the blue, and
Arm-angle the magneta colored sphere. Of the three di↵erent systems, only
Camera-sense allows for supports multiple users detecting interactions in 3D.

The Camera-sense system

The Camera-sense system is able to detect user interactions by using many
commodity cameras mounted along the floor in from of the display surface.
The system can not identify objects, whether its a hand or a pencil, just
their location. The Camera-sense system is built using several cameras and
a cluster of computers to detect motion from the images gathered by the
cameras. The information about detected objects are then passed from the
cluster and to a workstation. This workstation does the process of locating
objects in 2D and 3D.
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The Snap-detect system

The Snap-detect system is able to detect users clapping or snaping their
fingers by comparing audio samples with a pre-recorded audio clip with a
user snapping her fingers. The system is composed of four microphones which
can locate origin of the snap by measuring the arrival time at the di↵erent
microphones. Even if the system can detect sounds in 3D the actions are
mapped down to 2D. In the Snap-detect system four microphones are placed
in a rectangular shape in front of the Tromsø display wall, two close to the
ceiling and two close to the floor. The signals from the four microphones are
sent to a workstation, which detects the sound and localizes its origin.

The Arm-angle system

The Arm-angle can detect users pointing in any direction by looking for
straight lines on images captured by a camera. In the system a single steer-
able camera is mounted in the back of the room, looking over the Troms
display wall and any users in from of it. The camera is connected to a work-
station that controls its field of view and determines the direction in which
an object points.

6.4.2 WallScope

The idea behind WallScope is to separate display resources from computa-
tional resources so that computational resources are not constrained by num-
ber of display nodes, and the display-side can access customized data for the
visualization system. WallScope consists of pull-based Network Accessible
Display (NAD) resources requesting visualizations from Network Accessible
Compute (NAC) resources [32].

The overall architecture of WallScope is shown on figure 6.12. The display
nodes sends requests to the live datasets which translates these into compute
messages to the compute nodes, the compute nodes respond with results that
are used as a part of the final rendering on the display nodes.

A NAD is defined as a display with functinality that enables usage over
a network. With NADs it allows computers to connect to a display over
a network connection as if it was physically connected. NAC resources are



6.4 Display wall data visualization and interaction 63

computational resources providing content any network accessible display. In
[32] the author presents NAD and NAC resources for interactive visualization
of data on displays ranging for laptops with a limited resolution dislay, to
high-resolution tiled display walls, such as the Tromsø Display Wall, a 22-
megapixel rear-projected display [7].

Figure 6.12: The WallScope Architecture. Figure from [32].

In WallScope the NACs can be either static or dymaic. A static NAC can
be though of as a cluster or supercomputer permanent to the system. A
dynamic NAC is a resource that can register in the system, perform some
computations, and later leave the system.

On the display side of WallGlobe, four compnents have been developed: (i)
WallGlobe, a visualization system for visualizing globes or planets, similar
to Google Earth [30] or The WebGL Globe [31]; (ii) WallView, a visualiza-
tion system for high-resulution images; (iii) LDSView, a system combining
WallGlobe and WallView; and (iv) The live data set, a coordinator between
display-side and compute-side The visualization systems are composed of
tree internal components, a rendering engine, a rendering queue and a re-
quest queue.

On the compute-side, three components were designed and implemented: (i)
WallCompute, a system for computing images and other data for WallGlobe
and WallView; (ii) WallWeather, a system for computing both images and
weather forcasts; and (iii)Dynamic compute resources, a system for managing
dynamic compute resources

The WallScope system shows a near linear speedup using 1 - 6 compute
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nodes. Beyond 6 compute nodes the speedup is slightly reduced caused by
the round-robin work distribution [32]. Further it identifies computation of
customized data to be the main bottleneck of the system. WallScope also
demonstrates that personal desktop computers can be made interoperable
with high-resolution display walls.



Chapter 7

NOWAC Explorer

We have now described the entire pipeline, starting with epidemiology and
ending with biological data visualizations. The last part of the report will
contain a description of the prototype, the NOWAC Explorer, a data visu-
alization and exploration tool created for the NOWAC dataset. The idea
behind the NOWAC Explorer is to allow ad-hoc exploration of the NOWAC
dataset, utilizing modern technologies to provide interactive and intuitive
visualizations.
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Figure 7.1: The NOWAC Explorer is the last stage in the pipeline, combining
knowledge from the previous steps, integrating them into a single system for
interactive biological data exploration

It is increasingly common to use web applications for visualization in biology,
making use of more powerful web browsers and standards. We have chosen to
investigate visualization technologies for web applications, with an emphasis
on client performance and scalability.

The prototype consists of the following visualizations: (i) 2D heatmap and
histograms for the NOWAC dataset; and (ii) a 3D graph visualization of
KEGG pathways. These visualizations were created using the Data-Driven
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Documents (D3) and three.js libraries.

This chapter contains the overall architecture and design of the NOWAC
Explorer prototype, and its corresponding implementation.

7.1 Architecture

The NOWAC Explorer consists of three separate parts: (i) Visualization
Tools used to visualize and explore the NOWAC dataset; (ii) An Analytics
and Statistics platform, used to perform analytical or statistical analysis
on the dataset; and (iii) A Data Store holding the NOWAC dataset and
additional resources. Figure 7.2 outlines the architecture.

The simple NOWAC prototype was focused on the visualization tools, not
the underlying storage or analytics engine.
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Figure 7.2: General architecture of the NOWAC Explorer prototype.

The visualization tools are exposed to the users, which can run any of these
in order to explore the NOWAC dataset. The visualization tools will com-
municate with the analytics and statistical platform to produce applicable
visualizations to the user.
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In the NOWAC explorer prototype the analytics and statistics platform as
well as the data store is placed on a server or server farm. This server should
be capable of handling both storing and analysis of the data needed for the
visualizations. The server will perform any computation and return only
what is needed to visualize the results at the client.

An advantage using this approach, where all computation is done remotely,
is that clients can be lightweight and possibly run on a mobile device. If the
data itself should be transferred to the client, it may increase the bandwidth
needed for the visualization tool, and the computations may take longer
time. However, once the data is downloaded to the client, it can perform any
operations to it even if the server should go down, or client get disconnected.

7.2 Design

The general design of the system is outlined on figure 7.3. It follows a three-
tiered model consisting of (i) a backend containing providing data collected
from di↵erent data sources, e.g. sequencing instruments or KEGG; (ii) a
webserver providing an interface for access to the data store ; and (iii) a web
application containing interactive data visualizations for the user.
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Figure 7.3: General design of the system
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The sytem is composed of two major components: (i) a server-side backend
component that is responsible for retrieving data from multiple data sources,
and exposing the computed data for visualization; (ii) A webserver hosting
a web application exposed to users; and (ii) a web application containing a
visualization library providing di↵erent set of visualizations for clients. This
small project will focus on the visualization library.

Currently there are four simple visualizations developed: (i) Histogram of an-
verage di↵erences in gene expression between cases and controls; (ii) Average
years to diagnosis histogram; (iii) Heatmap of the entire NOWAC dataset;
and (iv) Graph visualization of a pathway selected from KEGG. These will
be discussed in more detail in 7.4.

The visualization tools within the web application are exposed to the clients,
which can display them on their local system. The visualization tools query
the data store to generate visualizations for the client.

The visualization tools can be entire applications downloaded and installed
at the client, or provided through some generic interface, like an applet run-
ning in a web browser. Downloadable applications allows for wider access
to the local systems, e.g. storage or other hardware, but they have to be
written explicitly for di↵erent platforms and installed before they can be
used. Applet-style visualization tools allow for users to begin data explo-
ration without having to install any additional software. In addition, since
the tools are retrieved from the server upon every launch, updates to the
software can be done seamlessly without any user interaction. With local
applications, upgrades to the software often involve user interaction, which
may not be done for years, if ever [3].

The backend system has opted for the latter approach to visualization li-
braries, where the clients access the tools through a web service tough a
browser. Clients request visualizations by contacting the backend system
using a specific Uniform Resource Locator (URL).

Data from the remote sources can either be gathered into the local data store
of the backend system, the data warehouse approach, or fetched upon query
of the specific data items. There are several benefits and drawbacks by using
either of the approaches. If data must be collected from remote data sources
upon a query, the time taken to fetch this information will e↵ect the time
length of the query from the visualization system. In some cases, maybe
making the system unresponsive. Another drawback is that if a remote data
source goes down for maintenance, the backend system cannot fetch any data
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from their store. However, a benefit of using such an approach is that there is
little or no storage requirements for the backend system itself, everything is
stored remotely. With the peta-scale datasets available this would absolutely
reduce the storage costs dramatically. If the backend system should choose
to pre-fetch data from the remote sources, there are several benefits for this
as well. There is no additional latency in accessing data from the remote
data sources, since everything is stored locally. The information is available
as long as the backend system is available. However, when data is updated at
the di↵erent sources, the pre-fetched data must also be updated. This may
lead to inconsistent data, since the local stores may take some time before
they are updated.

In the system there is currently one local data store, containing the NOWAC
dataset, and a remote dataset consisting of KEGG pathways.

7.3 Background

7.3.1 D3

D3 is a representation-transparent graphics library for use on the web. It
enables direct inspection and manipulation of the standard Document Ob-
ject Model (DOM) [13]. It provides a JavaScript library for visualizing and
manipulating documents. It uses the combined capabilities of HyperText
Markup Language (HTML), Scalable Vector Graphics (SVG) and Cascad-
ing Style Sheets (CSS) to provide functional visualizations for the web. The
project started at the Stanford Visualization Group, and is in continuous
development. The library is open source and can be found at [12]. Figure
7.4 shows example visualizations using D3.

7.3.2 three.js

three.js is a lightweight 3D visualization library that supports rendering using
WebGL, a JavaScript API that allows for GPU acceleration of graphics in
the web browser. WebGL uses the HTML5 canvas element accessed through
DOM interfaces similar to D3. three.js is open source and can be found at
[58].
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Figure 7.4: Visualizations using D3. Figure from [13]

Figure 7.5: Visualizations using three.js. Figure from [58].

7.3.3 KEGG

KEGG is an online data knowledgebase containing information about genomes,
metabolic pathways, biological chemicals and proteins. It provides a freely
available API and a paid FTP subscription.

7.3.4 NOWAC dataset

The NOWAC dataset contains 263 pairs of case-control and their respec-
tive gene expression values for 22782 genes. The case-controls have been
anonymized and the genes are given a number from 0 to 22781. Additional
labeling of genes are available, but not necessary in this prototype.
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7.4 Implementation

The implementation of the backend system follows its design. It consists
of a storage system and a web server exposing the di↵erent viualizations to
di↵erent clients.

Currently the backend storage system consists of one large datafile containing
the NOWAC dataset, and a smaller file describing a single KEGG pathway.
The NOWAC dataset is stored within a single R [48] data file provided by
the NOWAC research group. This file is then processed by Python scripts
that generate the data used in the visualization. The Python scripts make
extensive use of the numpy module for matrix operations. The KEGG path-
way available for visualization is manually added to the storage system, and
there are no tools generated for retrieval of such KEGG pathways. How-
ever, KEGG allows for developers to access its open API, and this was used
to download the KEGG Markup Language (KGML), an eXtensible Markup
Language (XML) like format, file describing the pathway. It is imaginable
that there exists libraries with support for downloading the KEGG pathways,
e.g. BioPython.

Due to the security requirements for accessing NOWAC data, the computer
currently hosting the web service is the same running the di↵erent clients.
This is because there are not currently implemented any access control reg-
ulations in the web service that would permit unauthorized users to access
the NOWAC dataset.

The di↵erent visualizations are all written in Javascript embedded into dif-
ferent web pages hosted on the web server. The first three make use of the
D3 library, while the last uses three.js for visualization. When a web browser
accesses a web page, the containing text, images and other content is down-
loaded to the client. If any Javascript code is found, the built-in interpreter
reads the code and runs it. Using Javascript the entire code base is main-
tained at the server, which can update it anytime allowing seamless updates
at the clients.

7.4.1 Average gene expression histogram

The first visualization shows the average di↵erence in gene expression be-
tween the case-control pairs per gene. Figure 7.6 shows only the first bars of
the visualization. In this visualization a Python script parses the NOWAC



72 7 NOWAC Explorer

dataset and generates a Comma Separated Values (CSV) file that can be
parsed by D3 used for plotting. The file contains tuples of gene number and
value, which translates to a colored bar.

Figure 7.6: Histogram showing the average di↵erence in gene expression
between the case-control pairs.

The visualization is interactive and displays more detailed information about
the gene numer and corresponding value, whenever a user hovers over the
di↵erent bars.

7.4.2 Average year to diagnosis histogram

This is a simple interactive three-bar histogram. Like the previous the back-
end provides the information required to construct the histogram, and the D3
library is used to visualize it. It was developed to demonstrate an interactive
visualization using D3. The visualization is shown on figure 7.7

Figure 7.7: Simple histogram showing the average years to diagnosis in the
NOWAC dataset.
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7.4.3 NOWAC Heatmap

Figure 7.8: Heatmap visualization of the NOWAC dataset.
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The Heatmap visualization was developed using two techniques. The first
with a simple visualization using D3 that manipulates the DOM tree. This
adds a DOM element for every (gene, expression value) pair, creates a square
and colors it accordingly. However with the over 20 000 genes and 263 pairs
of case-control, it uses large amounts of memory and takes a long time to
load. Because of this a second visualization is provided. It uses the HTML5
canvas element, and a Render Queue [16] to render the di↵erent squares.
This is a much faster and memory e�cient visualization reducing load times
significantly. Figures 7.8 and 7.9 shows the visualization.

Figure 7.9: Heatmap show in Figure 7.8 zoomed in to reveal more information

7.4.4 KEGG Pathway

The KEGG pathway visualization imports a pathway from KEGG, translates
it from KGML to a set of CSV files containing nodes and the paths between
them, and visualizes this graph using three.js. All nodes are drawn using a
single particle, and the edges between them are lines. To minimize edge and
node overlap a force direction algorithm is applied to the graph. It does not
make any distinction on what type of node read from the KGML file, so the
visualization does not draw cells or genes di↵erently. Figure 7.10 shows the
visualization.

7.5 Discussion and Future Work

The prototype visualization tools for the NOWAC explorer show that new
technologies using HTML5 and WebGL are suitable for visualization of bi-
ological data. The visualizations created are fully interactive and can be
used to visualize the NOWAC dataset without any installation of third party
software. In addition it has created a springboard for further development
withing biological data visualization, a rapidly changing and interesting field.
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Figure 7.10: KEGG Pathway visualization

The visualizations were all relatively simple to create without any prior
knowledge or experience in Javascript or graphics programming. The li-
braries used, D3 and three.js, provide a simple interface without having to
concentrate on the low-level graphics programming, and were a great asset
during the prototype development.

The prototype implemented still has plenty of features left to be completed
in order to realize the system: (i) It lacks a designated storage system both
for storing the NOWAC dataset, but also data from sources like KEGG; (ii)
there is no component for downloading and visualizing an arbitrary KEGG
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pathways; (iii) the files sent over http for the visualizations can grow very
large, e.g. the CSV file for the heatmap is 1.2 megabytes large; (iv) the system
should be platform independent, but have not yet been fully tested on mobile
devices; (v) the system lacks access control mechanisms for authenticating
users; and (vi) the system supports only a handful of basic visualizations.

In future work we plan to focus on the visualization parts of the system, cre-
ating a generic pathway visualizer that can be integrated with the NOWAC
dataset. This integration must be able to capture interesting parts of the
dataset, hopefully by statistical analysis, and create an interactive data ex-
ploration tool for researchers.

To test the capabilities of three.js a 50.000 node and 25.000 edge graph was
generated using three.js without any clever rendering techniques. It can be
interactively explored without any problems, and demonstrates the power of
WebGL in the web browser. Also it demonstrates that every human gene can
be plotted without any problem using three.js. However, using the current
force direction implementation causes the visualization to run dead slow.

Figure 7.11: Illustration of the di↵erent zoom-levels of the graph visualiza-
tion. The graph is randomly generated and consists of 50 000 nodes and 25
000 edges.

To conclude, our experience show that implementing biological data visual-
ization tools in the modern web browser provide fully functional tools requir-
ing relatively short development time.
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Summary

This report has given a review of the di↵erent stages in big data analysis and
visualization pipelines.

The report has described the di↵erent types of epidemiological studies used
in the research communities today, including the prospective cohort NOWAC
study. It has given an introduction to molecular biology by introducing the
building blocks of an organism and its genetic code, in order to understand
di↵erent diseases studied in epidemiology, such as cancer. The report has
presented the modern technologies used by researchers to measure and collect
information about an individuals genetic material, and describe why these
produce immensely large datasets. Continuing it has described state of the
art big data systems for managing large datasets, and how visualization
systems handle the drive towards big data exploration. It describes both
state-of-the-art commercial and biology visualization tools and the challenges
tackled by these. The report also contain a review of a few systems to meet
future demands, such as interaction on high-resolution tiled display walls.
Finally it has described the first prototype of the NOWAC Explorer, a simple
prototype of a biology data exploration tool. It was created to understand the
data structures and requirements of visualizing NOWAC data. The NOWAC
data is visualized using 2D heatmap visualizations and 3D metabolic pathway
graphs. It interacts with the KEGG database and utilizes technologies for
visualizing data in the web browser.

The main lesson learned in this project is that recent advances in epe-
diomolgy, biology instruments, and big data systems are making it possible
to conduct new studies using massive data sets. However, we found that cur-

77
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rent biology visualization systems have not fully reached their potentional to
support novel biological discoveries.
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The source code for the prototype of the
NOWAC Explorer
The source code is attached on a CD-ROM, and contains two folders:

Heatmaps and histograms
Kegg Pathways

Since the NOWAC dataset is of both commercial and scientific interest it cannot be shared
without permission. Because of this the heatmap and histogram visualizations will not
function on a computer without the dataset. If required, temporary access can be granted to
anyone requesting to see the visualizations, just contact bfj001@post.uit.no . The graph
visualziation should however work fine without the NOWAC dataset.

The visualizations can be run starting

////python/2m/SimpleHTTPServer/

from the root folder and accessing localhost:8000  in the local web browser



Heatmaps and Histograms
average_diff_per_gene.html  contains the html page for creating the avg. difference

per gene.
colorbrewer.css  contains some css that can be used in the visualizations that are

using d3. this is not currently used
the d3  folder contains the source code for the d3 library
expression_avg.py  contains the python code required to generate the histogram labels

for the two histograms.
expression_d3_datagen.py  empty
exprs.js  javascript code for the average difference in gene expression
gl2matrix  matrix library. not used.
heatmap.html  html page for the heatmap visualization using DOM manipulation
heatmap.js  javascript for generating the heatmap using DOM manipulation
http_server.py  simple HTTP server. used when testing the different visualizations.
index.html  overview of the possible heatmap and histogram visualizations
playground.html  html page that contains the code for the heatmap using a render

queue.
playground.js  javascript for generating the heatmap using render queue.
style.css  some styles
three  three.js library
three.html  threejs test
three.js  threejs test
webgl.html  WebGL testing, not complete.
webgl.js  WebGL testing, not complete.
years_hist.py  python script for generating the years to diagnosis histograms.
years_to_diag_histogram.html  html page for years to diagnosis histograms.
years_to_diag.js  javascript code for visualizing the years to diagnosis histograms.



Kegg Pathway
circle.png  image of a circle. can be used to represent a node in the different graphs.

not used.
csvGraph.html  example graph generated from a set of csv-files.
forceDirectedGraph.html  the kegg pathway visualization
graph.csv  input to csv graph
index.html  overview of possible visualizations
js  javascript files:

csvGraph.js  javascript for generating graph from csv files
forceDirectedGraph.js  kegg graph visualization
forceDirectedGraph.js.old  old implementation of the kegg graph. not used.
randomParticleGraph.js  javascript for generating a large random graph.
randomSphereGraph.js  javascript for generating a random graph using spheres as

nodes.
kgml_nodes.csv  nodes in the kegg pathway. used in visualization.
kgml_paths.csv  paths in the kegg pathway. used in visualization.
lib  different libraries used

d3  d3 library
gl2matrix  matrix library
jquery  jquery library. for fetching csv files.
three  threejs library.

nodes.csv  node list for csv graph
particle.png  image that can be used to represent a node. not used.
paths.csv  path list for csv graph
python  various python scripts

data_generator.py  for generating random graphs
kgml  folder containing kgml files downloaded from the kegg web site
kgmlparser.py  scipt for parsing kgml files and writing a set of nodes & paths csv

files.
randomParticleGraph.html  html page for random particle graph.
randomSphereGraph.html  html page for random sphere graph.
stats.csv  node list. not used.
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