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Abstract

Data cleaning is important for the analysis of large data sets. There are
many tools for cleaning biological and non-biological data, but these have
several limitations with respect to handling future biological data. First,
tools can often only identify potential issues that a human expert must
check in order to determine if it is an error or just expected variance. This
requires interactive response times. Second, future biological data sets are
predicted to be Peta-scale. Biological data cleaning tools do not currently
handle Peta-scale data sets. Third, non-biological data cleaning tools that
scale well do not work well with biological data sets.

To address these issues we present OutlierApp and SparkStats. Out-
lierApp is a prototype for a GUI that simplifies some manual steps in the
current data cleaning process, by providing a web interface in place of user
written R-scripts. SparkStats is a library of statistical methods for outlier
detection. It provides interactive response times for large biological data
sets.

The implemented GUI prototype shows that it is possible to support the
basic data cleaning work-flow. The experimental evaluation of the Spark-
Stats library demonstrate that large amounts of biological data can be an-
alyzed on Spark with interactive response times.

We believe that by combining OutlierApp and SparkStats it is possible
to provide an interactive solution for cleaning future big biological data sets.
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1 INTRODUCTION

1 Introduction

Big datasets have great potential for novel insight in fields such as biology,
physics, and social sciences. However, they require data cleaning as they
contain a lot of noise that must be removed in order to gain the insight.

Big biological datasets often comprise many samples analyzed using a wide
variety of instruments, models, and methods. For these datasets noise may be
caused by sample contamination, instrument errors and inaccuracies, analy-
sis methods and models faults, human mistakes, and even by the measured
biological processes themselves. There have been developed many statistical
methods and tools for removal of such noise[22]. But often these tools can only
identify potential issues that a human expert must check in order to determine
if it is an error or just expected variance. This can be a tedious and time con-
suming task, so there is a need to provide better tools support for such data
cleaning.

We believe that a system for data cleaning of next-generation biological
data should satisfy the following requirements. First, it should handle Peta-
scale datasets since it is expected that biological datasets soon will be of that
size. Second, it should be interactive since data cleaning requires the involve-
ment of a human expert as discussed above. Third, it should automate data
management and provenance to provide traceability for which, when, and why
data was removed. To our knowledge no existing system for biological data
cleaning provides these requirements.

We believe that a system for data cleaning of next-generation biological
data should satisfy the following requirements. First, it should handle Peta-
scale datasets since it is expected that biological datasets soon will be of that
size[17]. Second, it should be interactive since data cleaning requires the in-
volvement of a human expert as discussed above. Third, it should automate
data management and provenance to provide traceability for which, when, and
why data was removed. To our knowledge no existing system for biological
data cleaning provides these requirements.

Existing approaches for biological data cleaning often use scripts written
with statistical libraries provided by frameworks such as R. These work well for
small datasets that fit into the DRAM of a single computer, but do not scale to
Peta-scale datasets. Also, statistical libraries do not provide automated data
provenance, but instead assume that the script ensures that enough prove-
nance data is saved.

Wrangler is a tool for data cleaning and transformation. While Wrangler pro-
vides tools to create conversions between formats, it does not provide mecha-
nisms for detecting outlying samples like distance measures[18, 15].

Usher provides a technique for flagging form submissions that are pre-
dicted to be outliers, and will make the user re-submit forms based on those
predictions[8]. While this is suitable for questionnaires, it does not seem to be
applicable to biological data.

DataPlay is a system that lets users use a trial-and-error approach to spec-
ify queries[5]. While this is useful when specifying complex queries on rela-
tional data, it does not seem likely that this can be used on biological data, as
it is typically not relational.

Hadoop is a MapReduce framework for performing parallel computations
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1 INTRODUCTION

on massive data sets. It does not however provide interactive response times,
and even simple jobs can take minutes to schedule and execute. This poses
a problem for cleaning biological data as the work-flow is iterative and requires
user interaction on every iteration.

In this report we present a prototype system for interactive data cleaning of
Peta-scale datasets. The system is built on Spark that is a relatively new sys-
tem that provides interactive response times to large distributed computations.
In this work I will describe the implementation of some basic operations that
are essential to any data cleaning task[16] in Spark. We built a library that in-
clude distances-from-mean, and methods for selecting samples based on their
relative position within the data set.

In addition to the abovementioned, we implemented a GUI for data cleaning
for the NOWAC dataset. The GUI displays plots that are generated by user
supplied scripts and implements methods for selecting and removing outliers.
The GUI also displays which outliers have been removed.

We evaluated the statistical methods on a 78.3 GB generated data set that
resembles a large set of biological data. The data set was cached in DRAM
on a 10 node Spark cluster. Vector sum on all the data was performed in 430
ms and 384 ms using two different representations of the vectors. Calculating
vector distance from mean was done in 6079ms. This demonstrate that large
amounts of biological data can be analyzed on Spark with interactive response
times.

The data cleaning GUI prototype demonstrates that it is possible to support
the basic data cleaning work-flow with user supplied scripts from a simple web
interface. It tracks removed outliers in the browser and lets the user undo any
action.

The implemented GUI prototype shows that it is possible to support the
basic data cleaning work-flow. By merging the GUI and the Spark application
we can support data cleaning of future biological data sets.

In this report I will begin by explaining some data cleaning and big data
systems in section §2 and section §3. Then I will explain a subset of Scala’s
syntax in 4. In 5 and 6 I will explain OutlierApp and SparkStats respectively. In
the final part of the report I will provide a conclusion (section §7).
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2 Data Cleaning

2.1 Wrangler

Wrangler[18] is an interactive system for data cleaning and transformation.
Wrangler simplifies “data wrangling” by presenting a user interface, and sug-
gestions about how to transform data. The user can explore the suggestions
to see how different transformations transform the data.

A central feature of Wrangler is that its output is: “not just transformed data,
but an editable and auditable description of the data transformations applied”.
This auditable description is in the form of a declarative data transformation
language. The intent is to define robust transformations, rather than having the
user do manual editing.

Transformations The Wrangler Transformation Language is a declarative
data transformation language. It relies on a small set of primitives for trans-
forming data. These primitives include map, lookups and joins (with external
tables), approximate joins using string edit distance, reshape (fold, unfold), po-
sitional transforms (fill and lag operations), and various sorting and aggregation
functions.

Visual transformation previews An important feature of Wrangler is that it
visualizes every transformation immediately after it has been selected. It fol-
lows the concept of programming by demonstration (BPD), where the system
automatically suggest transformations and the user can explore these transfor-
mations by clicking on the suggestions and immediately see how they affect
the data.

Wrangler has an inference engine that will use a corpus of usage statistics
to predict what transformations the user might be interested in, and rank them
according to complexity. They are ranked according to complexity in order to
make it easier for the user to read through the top suggestions.

Data types and semantic roles Wrangler has a set of data types, that it
uses to discover data quality issues. Wrangler will try to infer the data-type of
a column by seeing which data types validate for more than half of the non-
missing values. This, in turn, is used to create the data quality meter, which
is: “a divided bar chart that indicates the proportion of values in the column
that verify completely”. The user can click the bar chart to get suggestions for
transformations.

History viewer Wrangler includes a history viewer where the user can see a
list of the transformations that has been performed on the data set. The history
list is in human readable language, and the user can use it to modify the steps
that leads to the resulting output.
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2.2 Proactive Wrangling

In Wrangler[15], users are often unsure which sequence of operation is needed
to convert data into the desired format. The authors behind this paper have
observed that: “both novice and expert users may consequently resort to blind
exploration of the available transforms[15]”.

The authors behind this paper address these issues by providing proac-
tive suggestions. This paper describes a method to proactively suggest data
transforms that map input data to relational formats. The key idea behind the
technique is to calculate a suitability score for a table, then suggest transforms
that will increase the suitability of a table. Empirical data has been used to limit
the search space for solutions, such that not all possible transforms are eval-
uated, but instead, only a small subset. The transformations are chosen such
that they cover “the majority of use cases, as indicated by our data corpus[15]”.

2.3 NOWAC Data cleaning

The Norwegian Woman and Cancer (NOWAC) is a study that consists of more
than 170,000 Norwegian women[12]. The data that has been used in this work
is from the NOWAC postgenome cohort study, which is explained by the quo-
tation below:

The Norwegian Women and Cancer (NOWAC) postgenome co-
hort study consists of approximately 50,000 women born between
1943 and 1957 who gave blood samples between 2003 and 2006
and filled out a two-page questionnaire. Blood was collected in such
a way that RNA is preserved and can be used for gene expression
analyses. (Dumeaux 2008 [12])

At time of writing, data cleaning of NOWAC data sets is done using custom R
scripts. This imposes certain limitations, as it requires the whole dataset to fit
in RAM. As future biological datasets are predicted to be in the PB-scale, a
new approach is needed.

3 Big Data Systems

In this section I will explain some systems that allows a user or a system to
interact with large amounts of data.

3.1 Spark

Spark[30] is a distributed system that is designed for parallel operations where
parts of the data set can be reused in between computations. Spark is dis-
tributed and offers an alternative computation model to MapReduce. The main
abstractions in Spark is RDD (Resilient Distributed Dataset), and Parallel Op-
erations, which is an operation on an RDD.

An RDD is a distributed, immutable dataset that can be constructed from
another RDD by applying an operation on it, or it can be constructed from a
(HDFS) file.

9
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3.2 Brainwash

Brainwash[6] is a system that reduces the difficulties in creating trained sys-
tems. Trained systems are systems that allows to run queries on data that are
less structured than traditional relational data.

According to the authors these systems are challenging to build and that
one of the critical pain points in building trained systems is feature engineering.
From the paper:

Features, sometimes called signals, encode information from raw
data that allows machine learning algorithms to classify an unknown
object or estimate an unknown value.

A benefit of using feature engineering is that it lets the system creators combine
different techniques from different sources. However, according to the paper
writing features can be extremely difficult.

Simplify feature engineering According to the authors, these tasks makes
feature engineering painful:

1. Statistical “grunt work”: The dataset’s characteristics are often completely
different from anything the developer has seen before.

2. Unknowable Specs: Interesting datasets are often large and noisy. This
makes: “the actual feature code “spec” nearly unknowable without re-
peated testing against the data itself[6]”. The authors demonstrate this
by showing an example where after collecting usernames from social me-
dia to determine users age, the developer discover that usernames often
have numbers and adjectives appended to the username.

3. Unexpected Failure: It is possible that a feature, when implemented, does
not capture any useful information, or it’s information is already captured
by a previously implemented feature.

Design The authors envision a centralized system to give programmer hints,
derived from data as well as code written by other users.

Brainwash attempts to place few assumptions on the input format, as it
needs to be able to process a diverse variety of data. The authors treat feature
development as a work-flow of developer-written functions (udf).

3.3 DataPlay

DataPlay[5] is a system that lets users use a trial-and-error approach to specify
queries. Central to DataPlay’s approach is to display non-answers as well as
correct answers to a user’s query.
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Non-answers The authors behind the paper argues that when only looking
at different correct query results, it is impossible to determine which results
come from which query. By displaying non-answers it becomes possible to tell
queries apart.

An example that is used in the paper, is the task of selecting straight-A
students from a student database. It first presents the following query to select
all students that got some A (existential):

SELECT ∗ FROM students s , takes t ,
WHERE t . grade = ’A ’ AND t . s tuden t_ id = s . i d ;

In this example the ‘takes‘ table relates students to classes, and contains their
grades.

The result from the query above will display users and grades, where all
grades are A.

Next it presents a query to select students that only got A (universal):

SELECT ∗ FROM students s , JOIN takes t WHERE NOT
EXISTS
(SELECT grade FROM takes WHERE grade != ’A ’
AND s tuden t_ id = s . i d ) ;

The result from this query, as with the above, are tuples containing students
and grades, where all grades are A.

Only by looking at the non-answers can we tell these tables apart: in the
existential examples the non-answers will not contain any ‘A’s. In the universal
example, however, there are students with ‘A’s.

Data and query model DataPlay uses the nested universal relation (nested
UR). This model combines the properties of universal relations with nested
data models such as JSON, XML and nested relations. The purpose is to
have a single representation of the relations in the database, and to have an
hierarchical structure of the relations.

4 Scala

Scala is a multi-paradigm programming language for the JVM. It supports both
functional- and object-oriented programming, and has become a trending lan-
guage on the JVM. Companies that use Scala include Twitter, LinkedIn, Novell,
The Guardian, Xerox, FourSquare, Sony, Siemens, and many others[10].

Scala is used for most of the implementation in this project (in addition to
JavaScript). In this section I will explain a small subset of Scala’s syntax that
is used in the examples in this report, and that might be unfamiliar to program-
mers coming from other languages. Because Scala is a large programming
language, in terms of features, I will only explain the minimum syntax that is re-
quired to understand the examples in this report. Its, however, been assumed
after this section that the reader has a basic understanding of Scala.

As some of the concepts in this section will be explained in the context of
Java, it is assumed that the reader has a prior basic understanding of the Java
programming language.
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4.0.1 Types and generics

Some examples in this report will use Scala’s syntax for types and generics. In
this section I will explain the minimum amount of syntax surrounding types that
is used in this report, and describe some relevant semantics.

Scala is a statically typed programming language. While Scala has type
inference, it is sometimes necessary to explicitly annotate types (method argu-
ments is an example). Sometimes type annotations are added for clarity. In
this section I will explain some of the syntax concerning types in Scala. Scala’s
type system is quite complicated and a detailed discussion would not be within
the scope of this report.

In Scala type annotations are added after the declaration of a value (or a
variable):

va l x : I n t = 5
va l x = 5 / / type i s i n f e r e d by the compi ler

Generics are described using the following notation (for a List of Integers):

va l l i s t : L i s t [ I n t ] = L i s t (1 ,2 ,3 )
va l l i s t = L i s t (1 ,2 ,3 ) / / compi ler i n f e r e s L i s t [ I n t ]

Values vs. variables (mutable vs. immutable) In Scala a val is an im-
mutable reference (similar to final in Java). A var is a mutable variable. For
example:

va l l i s t : L i s t [ I n t ] = . . . / / Immutable re ference to a L i s t
var l i s t : L i s t [ I n t ] = . . . / / Mutable re ference to a L i s t

In Scala it is idiomatic to use val whenever possible. In addition, all col-
lections are immutable by default. Mutable collections are found in a separate
package. Thus both Lists in the example above are immutable. Transforma-
tions on an immutable collection will result in a new immutable collection.

4.1 Closures

Some of the examples that are given later in this report will rely on Scala’s sup-
port for closures, and anonymous functions. Below, I will explain the different
closure syntaxes that I use in the examples in this report.

In Scala anonymous functions are known as function literals. I will present
a few examples that are equivalent to each other, but use different syntaxes. If
we assume that we have a method called reduce, on an object named list that
takes a function called reducer as a parameter, and that reducer is a function
that takes two arguments of type Double, and returns a Double. The type
signature for reduce could be defined as follows.

def reduce ( reducer : ( Double , Double ) => Double ) : Double

The following ways to call reduce with a reducer are equivalent:

12
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Algorithm 1 Different ways to declare a function

/ / 1 : E x p l i c i t l y d e f i n i n g a f u n c t i o n c a l l e d ’ reducer ’
def reducer ( l hs : Double , rhs : Double ) : Double = {

/ / Last expression i s always re turned : no need
/ / f o r an e x p l i c i t r e t u r n statement .
l hs + rhs

}
va l r e s u l t = reduce ( reducer )

/ / 2 : Using a f u n c t i o n l i t e r a l
va l r e s u l t = reduce ( ( lhs , rhs ) => lhs + rhs )

/ / 3 : A f u n c t i o n l i t e r a l may span m u l t i p l e l i n e s i f
/ / i t ’ s enclosed i n brackets
va l r e s u l t = reduce { ( lhs , rhs ) =>

lhs + rhs
}

/ / 4 : Shorthand f o r the above : the f i r s t ’ _ ’ means the f i r s t
/ / argument , the second ’ _ ’ means the second argument ( and so on ) .
va l r e s u l t = reduce ( _+_ )

In the examples in this report, all four ways of declaring a function will be
used.

4.2 Operator syntax

In Scala operators are method calls. That is, the following are equivalent:

Algorithm 2 Operator syntax

va l ten = 5 + 5
va l ten = 5 .+ (5 )

va l h = " h e l l o " . charAt ( 0 )
va l h = " h e l l o " charAt 0

Using this property it is easy to define our own types with custom operators:

13



5 OUTLIERAPP

Algorithm 3 Vector operators

c lass Vector {
def +( o ther : Vector ) : Vector = { . . . }
def −( o ther : Vector ) : Vector = { . . . }

/ / More methods . . .
}

/ / Usage
va l v1 : Vector = . . .
va l v2 : Vector = . . .
va l r e s u l t = v1 + v2

This technique has been used to create a small vector class in the Spark-
Stats application (section §6), which is frequently referred to in this report.

5 OutlierApp

OutlierApp is a web GUI application that was developed to assist in data clean-
ing of NOWAC data. This application is designed to both assist in the current
data cleaning process, and to assist in a future process which involves much
larger data sets (see SparkStats: section 6 on page 18).

5.1 Current process

The current process, consists of a statistician using R-scripts for outlier detec-
tion. The statistician will write an R-script that produces different plots where
the outliers can easily be found [22]. The R-script is then modified by the user
so that it removes the outliers. A new plot is then generated from the resulting
dataset, and the process is repeated.

Manual labor in this process includes:

• Modifying the R-script in order to remove outliers

• Running the R-script from the command line

Despite of the drawbacks of the current process, it also has a benefit: The fact
that the user is creating their own script to generate their plots, gives the user
a lot of power and flexibility. For example, if requirements were to change, and
a new type of plot- or a different outlier detection algorithm were required, then
the user could easily accommodate this by using one of the many features that
are already present in R. The users are already using different outlier detection
algorithms in their current process.

The goal of OutlierApp is to automate the tedious parts of this process, so
that the user is relieved of having to manually modify and run a custom script,
while at the same time preserve the user’s flexibility. An important point w.r.t.
to automating the process, is that the users don’t actually want to automate the
entire process; they want to make sure that a human expert makes the final
decision about every outlier, as they don’t trust statistical models to do this job.

14
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5.2 Challenges

Flexibility The current process is very flexible, since the user supplies her
own script. OutlierApp needs a similar amount of flexibility. In particular the
algorithm that detects outliers must be easy to replace.

Security As the data is of commercial interest, it is a requirement that the
data never leaves Stallo, which is the supercomputer at UiT[2] .

5.3 Architecture

The architecture of OutlierApp is as follows: It is divided in two parts: A web
GUI that is available from the user’s web browser, and a backend that interacts
with the data. The web GUI lets the user interact with the data via the back-
end. Only aggregated results are sent back to the client (e.g. plots), and no
actual data. This is in line with the security requirements mentioned in sec-
tion 5.2. A general principle in this architecture is that the app itself doesn’t
make any assumptions about the data formats, or how the plots are generated,
or how outliers are detected. These concerns are left to user supplied scripts.
OutlierApp will only run those scripts when the results are required by the user.

The architecture is illustrated in figure 1.

Figure 1: OutlierApp architecture

5.4 Design

The user has to supply three scripts. The separation into three scripts makes
it possible for the statistician to change the detection algorithms without having
to duplicate the removal- and plotting code.

The execution of the processing the data is broken down into three steps,
which will be executed by scripts that are provided by the user (figure 2).

15



5.4 Design 5 OUTLIERAPP

Figure 2: OutlierApp design

5.4.1 User supplied scripts

The scripts are parametrized via environment variables, as these are easily ac-
cessible from R, as well as most other programming languages and platforms.
The scripts are parametrized and run by the backend server, whenever the user
demands an updated plot in the browser.

All file paths in the environment variables are defined to be absolute file
system paths. The format of the actual data files and the outlier identifiers have
been left undefined on purpose to allow for maximum flexibility on behalf of the
user. This means that it’s up to the user to decide on the input- and output
formats, and to make sure that they align.

Remove outliers This script takes a raw dataset that contains all the data
points, and removes the outliers that are specified by the user.

16



5 OUTLIERAPP 5.5 Implementation

Name Description
INPUT_FILE Path to the file that contains the raw data
OUTPUT_FILE Path to the file that should contain the data

with the outliers removed
OUTLIERS Comma-separated list of outliers

Table 1: Environment variables for remove outliers

Detect outliers This script detects possible outliers within a dataset.

Name Description
INPUT_FILE Path to the file that contains the data
OUTPUT_FILE Path to the file that should contain the

detected outliers

Table 2: Environment variables for detect outliers

Generate plot This script generates different plots from the generated out-
liers, and the filtered input, and puts them in a directory.

Name Description
DATA_FILE Path to the file that contains the data
OUTLIERS_FILE Path to the file that contains the detected

outliers
OUTPUT_DIR Directory that should contain the generated

plots.

Table 3: Environment variables for generate plot

5.5 Implementation

The implementation is separated into a front end / JavaScript application that
runs in the browser, and a back-end web server that serves the web app and
acts as an interface between the web app and the data cleaning process.

The front-end is implemented in JavaScript. It uses Angular.js for MVC, and
Twitter Bootstrap for style and layout, whereas the back-end is implemented in
Scala and the Play Framework.

5.6 Future work

GUI A key component of the application are the user supplied scripts. Cur-
rently there is no way for the user to upload- or manage these scripts from the
browser. This functionality would be simple to implement.

Plot file formats The current prototype only supports *.jpeg, but the actual
R-scripts are capable of producing a much wider selection of formats. It would
be easy to implement support for all browser supported image formats, as they
only need to be served and referenced in an img-tag.
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Support for plotting in the browser Currently OutlierApp depends on a
user-supplied script to put plots into a directory on the file system. A more
flexible approach would be to allow the user generated scripts to generate data
points that can be plotted in the browser. This would make it possible for the
user to interact with the plots.

Live updates of plots in the browser Currently the browser waits for all the
plots to be completed before it start drawing, which can lead to long perceived
response times if the plot generator takes a significant amount of time to com-
plete. An alternative solution would be to send the plots to the browser using
Web Sockets immediately after they become available on the file system.

Integration with Spark It should be possible to use Spark on the back-end
in addition to user supplied scripts.

5.7 Evaluation

All the data must fit in DRAM. This can be a challenge for biological datasets,
as these are predicted to be Peta-scale. To solve this issue, I introduce Spark-
Stats, which is an application that can run simple outlier detection algorithms
on a Spark cluster.

6 SparkStats

Currently data cleaning is done in R, however this will not scale as future meth-
ods will generate data that does not fit into memory of a singe computer. For
these cases something new is required, and Spark could be a suitable platform.

A key observation that can be made from OutlierApp is that the back end
that currently executes user supplied scripts, might also execute interactive
jobs on a large cluster. However, it is a requirement that the system on the
cluster allows for interactive response times, as observed by the user. Spark is
a system that provides interactive response times. This makes Spark different
from Hadoop in which even a simple job can take minutes to schedule and
execute.

SparkStats is an application that was developed to demonstrate different
data cleaning techniques on a Spark cluster.

6.1 Vectors

6.1.1 Array representation

In this section I will discuss vectors that are stored in sequence in the RDD,
such that the RDD has type RDD[Vector]. A small vector class which sup-
ports both destructive- as well as non-destructive operations was written for
this purpose. Because the name Vector was already taken in the Scala stan-
dard library, I named the class Vec. A simplified description of the class is
shown in (table 4 on the next page). Each object of type Vec is backed by an
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Array[Double], and all operations are implemented in terms of the underlying
array.

Method signature Description
def +(other: Vec): Vec Produce a new vector which value is this +

other.
def -(other: Vec): Vec Analogous to +
def +=(other: Vec): Vec Add other to this (updates this in-place).

Returns this.
def -=(other: Vec): Vec Analogous to +=
def negate: Vec Produce a new vector which value is the

negative of this.
def norm: Double The euclidean vector norm of this.
def copy(): Unit Produce a new vector which is identical to

this.
def hasChanged: Boolean true if the vector has been mutated after it’s

creation. Otherwise false.

Table 4: Class Vec.

6.1.2 Vector sum on Spark using array representation

Naive implementation Given an RDD[Vec], named rdd, the most straight-
forward way to sum all the vectors in rdd would be by reducing it using the ‘+‘
operator (as defined on Vec):

va l sum: Vec = rdd . reduce ( _+_ )

While this implementation is correct, it’s performance is far from optimal.
Since the ‘+‘ operator allocates a new vector (and thus a new Array), n − 1
new vectors will have to be allocated for a partition containing n vectors. This
is illustrated in (figure 3). As shown in table 5, allocating these arrays is very
expensive.

Figure 3: Naive vector sum, using rdd.reduce(_+_)
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Optimization In order to describe how this implementation can be optimized,
we must first take a closer look at how Spark implements reduce (fig. 4).

1. Spark will run reduceLeft on each partition.

2. Spark will send the result of each partition to the master node, and reduce
them to an accumulated value.

Figure 4: Reduce, as implemented by Spark

The essential part is that Spark runs reduceLeft on each partition. The
reduceLeft method is defined in the trait TraversableOnce in the Scala standard
library (see algorithm 4).

Algorithm 4 Implementation of reduceLeft, as defined in the Scala standard
library (scala/collection/TraversableOnce.scala).

1 def reduceLef t [B >: A ] ( op : (B, A) => B ) : B = {
2 i f ( isEmpty )
3 throw new UnsupportedOperat ionExcept ion ( " empty . reduceLef t " )
4
5 var f i r s t = t rue
6 var acc : B = 0. asInstanceOf [B ]
7
8 f o r ( x <− s e l f ) {
9 i f ( f i r s t ) {

10 acc = x
11 f i r s t = f a l s e
12 }
13 else acc = op ( acc , x )
14 }
15 acc
16 }

If we study the implementation in Algorithm 4, we see that it keeps the
accumulated partial result in the variable acc on line 6, and that this variable
is consistently passed into the supplied function op as the first argument (line
13). This implies that whenever we return the first argument in op, the same
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object will be passed in as the first argument in the next iteration. This means
that we can accumulate the result ourselves (in the op function) by mutating the
first argument and return it. When the results of each partition is reduced on
the driver node, they are reduced in a similar manner as in the standard library,
using the first argument as the accumulator. This means that we will benefit
from such an optimization twice: once when reducing the partitions, and once
again when reducing the results from the partitions.

A simple way to implement an optimized vector sum, using this technique,
would be the following code:

va l rdd : RDD[ Vec ] = . . .
va l sum = rdd . reduce ( _ += _ ) / / Wrong : breaks the RDD’ s

/ / immutable proper ty

While this code would produce the correct result, it would also break the
immutable property of the RDD (see figure 5). This would corrupt future com-
putations on the RDD if the RDD is persistent (i.e. cached).

Figure 5: Incorrectly optimized vector sum. The color of the vector indicates it’s
‘hasChanged ‘ property at the end of the computation.

An obvious solution to this problem would be to copy the first vector in the
partition, and then write the accumulated results into the copy (fig. 6 on the
next page).
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Figure 6: Optimized vector sum

In order to implement this solution we must somehow identify the first vec-
tor within a partition from within the reduce function (op), copy it, and return
the copy for use in future iterations: Because the RDD is immutable none
of the contained vectors may ever have been mutated. This implies that the
hasChanged property of each vector within the partition is false. If we were
to return a mutated copy from op then its hasChanged property would be true
and the copy would be passed into op as the first argument on the next iteration
(ref. implementation of reduceLeft). This gives us a simple way to determine
if a vector is a copy that can be safely mutated: it’s a copy if (and only if) its
hasChanged property is true. If we consistently return the copy when we en-
counter it in the reduce function, then the only occasions where the reduce
function will encounter a vector with hasChanged=false as it’s first argument
will be when the first argument is the first vector in a partition, and the second
argument is the second vector in a partition. In this case we can return a copy.
This yields the algorithm listed in (Algorithm 5).

Algorithm 5 Optimized vector sum on Spark

1 def vectorSum ( rdd : RDD[ Vec ] ) : Vec = rdd . reduce { ( lhs , rhs ) =>
2 i f ( l hs . hasChanged ) {
3 lhs += rhs
4 lhs
5 } e lse {
6 va l copy = lhs . copy ( )
7 copy += rhs
8
9 asser t ( copy . hasChanged )

10
11 copy
12 }
13 }
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6.1.3 Vector distances

Given a tuple of vectors, V = (v0, . . . ,vn), and an average vector v̄ defined
as v̄ = 1

n−1

∑n
i=0 vi, we want the tuple of vector distances defined as D =

(‖d0‖ , . . . , ‖dn‖), where di = vi − v̄.
Let j represent the indices into the vectors vi and v̄. A way to calculate

‖di‖2 would be ‖di‖2 =
∑

j (vi,j − v̄j)
2.

Calculating distances An efficient representation for this problem on Spark,
is to lay the vectors in the same direction as the RDD, as can be seen in figure 7.

Figure 7: Vector repressentation

We can now calculate all (vi,j − v̄j)
2 by performing a single map on the

RDD (Algorithm 6).

Algorithm 6 Calculating all (vi,j − v̄j)
2

va l r : RDD[ Vec ] = rdd .map { ar ray =>
va l average = ar ray . sum / numVectors
ar ray .map ( x => ( x − average ) ∗ ( x − average ) )
Vec ( ar ray )

}

This results in an RDD consisting of vectors that are represented using array
representation. In order to get ‖di‖2 we sum the resulting RDD of vectors using
the technique described in Algorithm 5.

Comparison to array representation The benefit of using this represen-
tation is that calculating (vi,j − v̄j)

2 can be done in a single map operation,
whereas if we use the array representation we would need a separate reduce
operation just to calculate the average. Because of this and the fact that arrays
have fast lookups and writes, we could say that we trade away the ability to do
fast operations between a single vector’s dimensions, for the ability to do fast
operations between multiple vectors, but on a single dimension.
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6.1.4 Conclusion

Array representation The timings for the array representations are in table 5.
These are acceptable latencies for interactive work-flows.

Experiment Average Median Min Max Std.dev
Wrongly optimized vector sum 522 523 492 553 13
Optimized vector sum 430 428 406 605 21
Naive vector sum 3323 3309 3240 4338 110

Table 5: Vector sum run times. 2M vectors, 5K dimensions. All measurements
in milliseconds. Each experiment has been run 100 times.

Vector distances The timings for calculating vector sums and distances from
average using the representation explained in section 6.1.3 are shown in ta-
ble 6. We can see a slight improvement on vector sum. Calculating vector
distances takes longer, as the algorithm has to do several passes over the
data. The timings are still tolerable for interactive work-flows, although some
improvements would be beneficial.

Experiment Average Median Min Max Std.dev
Vector distance from average. 6079 6070 5829 6453 118
Vector sums. 384 371 320 677 66

Table 6: Vector distance run times. 5K vectors, 2M dimensions. All measure-
ments in milliseconds. Each experiment has been run 100 times.

6.2 Associating elements of an RDD with their relative posi-
tion

There are use cases in which it is necessary to associate each element of
a sequence to its relative position (index) within that sequence. Use cases
include slicing operations and element selection, which are both important
in data cleaning. To accommodate this the Scala standard collection library
comes with a method called zipWithIndex that associates each element in a
sequence to its (relative) index. The result is a sequence of tuples of the form
(element, index). An example can be seen in fig. 8.

Figure 8: zipWithIndex

Many operations, including slicing and element selection, can easily be im-
plemented from zipWithIndex, filter, and map. An example of a slicing operation
can be seen in figure 9 on the facing page.
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Figure 9: Slicing elements from index 1 until 3.

The Scala standard library also includes a method named slice(from,to) that
lets the user slice any sequence.

A Spark RDD implements the methods filter and map, but it does not come
with a method like zipWithIndex that lets the user associate each element to
its relative index. Nor does it come with methods for slicing, or arbitrary ele-
ment selection based on an element’s relative position. These operations are
important in data cleaning, and therefore motivate an implementation.

6.2.1 Implementing zipWithIndex

In the standard Scala collection library zipWithIndex is implemented using a
regular (sequential) for-loop. Unfortunately, this is not a practical way to im-
plement zipWithIndex on a large multi-GB dataset distributed across a large
cluster. However, there are two methods that lets us implement zipWithIndex
in a concurrent fashion: zip and Range. Zip is a method defined on any se-
quence in Scala that lets the user combine one sequence with another into
tuples (like a zipper on a jacket). An example can be seen in figure 10.

Figure 10: Combining the sequences A and B, using zip

Range is an object that represents a range of numbers (say from 0 to 10). It
implements the trait Seq and features lazy evaluation. An obvious way to imple-
ment zipWithIndex using the standard library would be to zip a given sequence
with a Range that represents the sequence’s indices (Algorithm 7).

Algorithm 7 Implementing zipWithIndex using Range and zip.

def z ipWi th Index [ T ] ( seq : Seq [ T ] ) = {
seq . z ip ( Range (0 , seq . leng th ) )

}

Spark has specific optimizations in place to generate an RDD from a Range.
An RDD does come with a method named zip, but it’s subtly different from the
zip that is defined in the standard library. Below I have quoted the documenta-
tion for the method “zip” from the Spark API documentation:

Zips this RDD with another one, returning key-value pairs with
the first element in each RDD, second element in each RDD, etc.
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Assumes that the two RDDs have the *same number of par-
titions* and the *same number of elements in each partition*
(e.g. one was made through a map on the other). [My empha-
sis] [3]

Studying the source code in the official Spark repository, reveals why these
assumptions need to hold: it appears that zip will simply align all the partitions
of the two RDDs1 and then perform zip on each pair of partitions2[4].

This insight gives a clue as to what could go wrong if we naively attempt
to implement zipWithIndex on an RDD in a similar manner as implemented
in Algorithm 7 on the previous page: It could be that the partitions of the two
RDDs, the one that we want to index and the one with the indices, line up
differently and we get an incorrect result! This is illustrated in figure 11.

Figure 11: Naive zipWithIndex implemented on an RDD using Range.

It turns out that correctly implementing zipWithIndex on an RDD requires a
more elaborate solution (as shown in 6.2.2).

6.2.2 Implementing zipWithIndex on an RDD

We need to generate the indices such that they line up with each partition. For
transforming partitions an RDD[T] has two methods, mapPartitions and map-
PartitionsWithIndex. Their documentation is quoted below (some arguments
have been omitted for brevity and clarity):

def mapPartitions[U](f: Iterator[T] => Iterator[U]): RDD[U] Return a new
RDD by applying a function to each partition of this RDD.[3]

def mapPartitionsWithIndex[U](f: (Int, Iterator[T] => Iterator[U]): RDD[U]
Return a new RDD by applying a function to each partition of this RDD, while
tracking the index of the original partition.[3]

By using mapPartitions we can count the number of elements in a single
partition, as seen in Algorithm 8 on the next page.

1core/src/main/scala/org/apache/spark/rdd/ZippedRDD.scala, lines 30-34 [4]
2core/src/main/scala/org/apache/spark/rdd/ZippedRDD.scala, line 64. Class instantiated by

method zip in core/src/main/scala/org/apache/spark/rdd/RDD.scala, line 537 [4]
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Algorithm 8 Counting the elements of each partition in an RDD

va l counts = rdd . mapPar t i t ions ( _ . leng th )

If we collect() these counts (send them to the driver node), we can compute
the index of the first element of each partition. When we have an array of first
indices we can use mapPartitionsWithIndex to map every partition of the input,
into a partition of tuples (element, index), where index is the global index of
the first element plus the relative position of element within the partition. The
whole process is illustrated in figure 12.

Figure 12: zipWithIndex implemented on an RDD

6.2.3 Discussion and future work

This implementation of zipWithIndex is both correct, and preferment. However,
it still has a few drawbacks that I will discuss below.

Evaluation is not lazy Because collect() on an RDD is defined as an action,
it follows that the entire input RDD has to be materialized in order to compute
the offsets. In the delivered implementation this is done eagerly as soon as
zipWithIndex is called. This may lead to wasted (re-)computations in cases
where the input RDD has a deep dependency graph. A workaround would be
to cache the input RDD until the result of zipWithIndex is ready (this assumes
that the input will benefit from caching, i.e. it fits mostly in ram of the cluster).

There might exist a better solution where the array of counts is stored in an
RDD, and the computation of offsets is a mapping on this RDD between step 1
and step 2. This approach was not explored, as it was less obvious that it would
work, but if it works it would retain the lazy property of the transformation.
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The full input RDD has to be materialized This is a consequence of the fact
that we need to count each element in every partition – there is no way to know
the number of elements in advance. However, we can’t count an element that
hasn’t been materialized, as the underlying iterator on each partition returns a
materialized element (the iterator is used for counting). This can be wasteful if
we’re only interested in a small subset of the output (i.e. when doing a slice on
a small interval, or selecting a single element). A solution could be to box every
element in a lazy container, meaning that a container will only materialize its
content upon demand (and then cache it), but the container still being present
in the RDD, such that it can be counted. This was not done, although this would
significantly reduce overhead, if we assume that iterating the elements is cheap
relative to computing their contents. A lazy container is easy to construct in
Scala, as Scala has language support for lazy evaluation (lazy val). An example
of a lazy container can be seen in Algorithm 9.

Algorithm 9 A lazy container

c lass LazyContainer [ T ] ( _element : => T) { / / The ’= > ’ means
/ / c a l l−by−name

lazy va l element = _element / / Only evaluated once
}

/ / Usage

def expensiveComputation : I n t = { p r i n t l n ( "EVALUATED " ) ; 5}
va l con ta ine r = new LazyContainer ( expensiveComputation )

/ / In the Scala REPL
scala > con ta ine r . element
EVALUATED
res9 : I n t = 5

scala > con ta ine r . element
res10 : I n t = 5

6.2.4 Conclusion

The timings from running zipWithIndex and some use cases can be seen in ta-
ble 7. In the experiment the data set was already cached in RAM on the cluster.
Because of this, run times were relatively short, as the algorithm only needed
to iterate each partition’s iterator once, thus performing only 5000 iterations in
total (1 for every vector).
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Experiment Average Median Min Max Std.dev
zipWithIndex 95 67 44 358 80
slice(1000, 1000) 67 68 49 154 12
slice(1000, 1400) 64 64 51 76 5
slice(1000, 2000) 75 68 47 191 30

Table 7: Use-cases for zip-with-index. 5K vectors, 2M dimensions. All mea-
surements in milliseconds. Each experiment has been run 1000 times.

6.3 Future work

Statisticians use more sophisticated outlier detection algorithms. They use
inter-array correlation (IAC) methods and more thorough statistical analysis.
This was not implemented in SparkStats due to time constraints, and thus it is
left for future work. However, implementing this on top of SpakStats should not
pose any major challenges.

7 Conclusion

The experimental evaluation of the SparkStats library demonstrate that large
amounts of biological data can be analyzed on Spark with interactive response
times. One of the most interesting surprises was how small optimizations can
yield massive runtime improvements. Avoiding unnecessary memory alloca-
tions and using for-loops instead of iterators when iterating arrays provided
large speedups.

The implemented GUI prototype shows that it is possible to support the
basic data cleaning work-flow. By merging the GUI and the Spark application
we can support data cleaning of future biological data sets.
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