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Abstract With the deluge of omics data, the life sciences have become a big data
science. The management and analysis of omics data share many of the challenges
and technical solutions of other big data fields. However, there are also unique chal-
lenges. In particular, there is a need for data management solutions that are back-
ward compatible with unmodified tools, but at the same time scales to large-scale
datasets, and in addition manages the intermediate, meta-data, and provenance data
of analysis pipelines. In this chapter we present and discuss challenges and ap-
proaches for such big biological data management.

1 Introduction

The cost of producing data in bioinformatics is rapidly decreasing [39]. This has
resulted in several peta-scale omics data repositories [11]. In addition, there is a
similar growth in reference databases that contain data analysis results [37]. How-
ever, with rapidly increasing dataset sizes, the analysis cost and resource usage is
also rapidly increasing. The wealth of data therefore requires new approaches and
technical solutions for biological data analysis. In this chapter we will explore chal-
lenges and the use of state-of-the-art technical solutions for big biological data anal-
ysis with a focus on data management.

The current state-of-the-art in big data management [1] include systems such as
Amazon RedShift [18], Google’s Dremel [25], Apache Spark [40] and MapReduce
[8]. Most of these were developed to analyze text based data with few dimensions.
Biological data differs in that it has more dimensions and noise, it is heterogeneous
both with regards to biological content and data formats, and the statistical analysis
methods are often more complex. It is therefore not straight forward to adapt these
state-of-the-art systems for biological data analysis, nor to integrate these with the
analysis framework. It is challenging to even know at which level of the data analysis
stack to integrate them.
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In this chapter, we give an introduction to biological data analysis, with short
descriptions of the workflows, pipelines and execution environments used in the
field. In addition, we provide a case study from our own lab. Then we provide a
short review of big data storage and processing solutions, highlighting advantages
and disadvantages of different approaches for biological data management. Finally,
we summarize our own experiences in biological data management using big data
systems.

2 Biological Data Analysis

In this section we provide the necessary background required to understand the data
management requirements for biological data analysis. We describe how biological
data analysis is typically implemented, configured, and executed. We use our own
META-pipe [31] pipeline from the metagenomics field as a case study.

2.1 Metagenomic data analysis

The typical analysis of metagenomic data involves the following steps:

1. Retrieve and prepare the sample. This includes sample cleaning and DNA isola-
tion.

2. Analyze the sample using instruments such as next-generation sequencing ma-
chines.

3. Raw data processing. This is often done using vendor specific software and op-
erating procedures, and it is typically done at the instrument lab.

4. Quality control and data cleaning of the data received from the instrument lab.
This is typically the first step done by the researcher, and it can often be done
once for each dataset.

5. Run the data through a series of tools in a pipeline to produce the output data
needed to answer a particular research question. The same data may be used in
several data analysis pipelines, and a pipeline may be run periodically to update
the results with new input data or with updated reference databases.

6. Analyze the output data. This is typically done using interactive visual tools that
are often decoupled from the analysis pipeline.

In this chapter we will focus on the data analysis pipeline (step 5). This is the
step where the researchers put most effort into development time and computation
resources.
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2.2 Data analysis pipelines

Biological data analysis is typically done through a collection of tools arranged in a
pipeline where the output of one tool is the input to the next tool (figure 1). The data
transformations include file conversion, data cleaning, normalization, and data inte-
gration. A specific biological data analysis project often requires a deep workflow
that combines many tools [9]. There are many libraries [16, 14, 35] with hundreds of
tools, ranging from small, user-created scripts to large, complex applications [23].

There are four types of data managed for such analysis pipelines:

1. The input, intermediate, and output data. These are typically structured files
with many samples. The files may range in size from megabytes to terabytes.
The pipeline input data is produced by biotechnology instruments such as next-
generation sequencing machines, or downloaded from public repositories such
as GEO [10] and ENA [22]. The pipeline output files that are typically analyzed
using standalone interactive visualization tools.

2. Contextual data contains information about the data samples required for data se-
lection and interpretation. This includes information about how, where and when
the samples were collected. The contextual data may be used to select the datasets
and records to process for a pipeline execution, and by visualization and data ex-
ploration tools.

3. Reference databases with human or machine curated meta-data extracted from
the published literature and from analysis of experimental data [12]. These are
used to annotate the data to make it useful for scientists. The reference databases
range in size from small collections of annotation data (Swiss-Prot), to peta-scale
collections of analyzed samples (European Nucleotide Archive).

4. The Provenance required for experiment reproducibility. This includes data
lineage information with descriptions of the pipeline tools, their parameters,
databases and versions, and machines used in the analysis.

2.3 Pipeline frameworks and execution environments

The analyst specifies, configures, and executes the pipeline using a pipeline frame-
work (a review and taxonomy is provided in [23]). The pipeline framework provides
a way of specifying the tools and their parameters, management of data and meta-
data, and execution of the tools. In addition, a pipeline framework may enable data
analysis reproducibility by maintaining provenance data such as the version and pa-
rameters of the executed tools. It may also maintain the content of input data files,
reference databases, output files, and possibly intermediate data.

A pipeline framework may comprise of a set of scripts run in a specific platform,
or a system that maps high-level workflow configuration to executable jobs for many
platforms. There are also frameworks that provide an interactive GUI for workflow
configuration, and a backend that handles data management and tool execution.
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Fig. 1 The META-pipe pipeline tools, file formats, reference databases, and intermediate files. The
items inside the “Provenance data” box must have provenance information recorded for analysis
reproducability.
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Biological data analysis pipelines are typically run on a fat server, high perfor-
mance computing clusters, or a data-intensive computing cluster. Using a single
server has two main advantages. First, most biological analysis tools can be used
unmodified. Second, it is not necessary to distribute and maintain tools and data on
a cluster. The main disadvantage is the lack of scalability, both concerning dataset
size and the number of concurrent users.

Many biological data analysis tools can easily be run on high performance com-
puting (HPC) clusters by splitting the input (or reference databases) into many files
that can be computed in parallel. The main advantage of using an HPC cluster is
their parallel compute performance. The main disadvantage is that the centralized
storage system often becomes a bottleneck for large-scale datasets in I/O bound
jobs.

Finally, data-intensive computing clusters [34] distribute storage distributed on
the compute nodes, and provide data processing systems that utilize such distributed
storage. The main advantage is improved performance and scalability for I/O bound
jobs. The main disadvantage is that to fully utilize such a platform the analysis tools
may need to be modified [9, 30, 7].

A comparison of how a selection of workflow managers handle different types of
data is shown in table 1.

Pipeline Data Contextual data Reference databases Provenance
Galaxy Local files None Varies Workflow
GePan Local files None Packaged with pipeline Partial
EBI Metagenomics Remote files Packaged with data Packaged with tools Report to user

Table 1 Data management approaches for selected pipeline frameworks.

2.4 Case study: META-pipe

To illuminate the data management issues in bioinformatics, we use as a case study,
an in-house workflow manager and pipeline which we have used extensively in
research in this field. The pipeline and associated workflow managers are called
META-pipe. We are currently developing version 2.0 of the pipeline and workflow
manager that will be provided as a European Service in the ELIXIR e-infrastructure.

META-pipe is a successor to GePan, which was a workflow manager designed to
do annotation of genomes. META-pipe extends GePan by integrating several new
tools, as well as enabling pipelines to be run on supercomputer infrastructure.

META-pipe consists of a workflow manager which automatically generates a
pipeline based on the input parameters, and runs this pipeline on the local supercom-
puter. The pipelines created are for marine metagenomics analysis, and integrates
existing biological analysis frameworks with modern data management techniques
and infrastructures.
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The actual execution in META-pipe works by generating scripts based on the
input of the user, these scripts and the input data are then submitted to an execution
site, where the reference databases and tools are housed. The tools are run in a data-
parallel fashion, enabling the analysis of large samples. The user-facing frontend of
META-pipe is Galaxy, which allows users to examine the output of the pipeline in
several formats.

Data management in META-pipe is to a large degree up to the pipeline developer
and administrator. The input, output, and intermediate data are stored as files man-
aged by the META-pipe scripts. The META-pipe workflow manager handles the
intermediate data in the pipeline, but the pipeline developer must maintain the input
and output data. For parallel execution, the data must be split and distributed on a
cluster by pipeline scripts. Contextual data is not handled by META-pipe, and nei-
ther are the reference databases. These must be manually maintained as files stored
on a global file system. Finally, some data lineage is provided by the META-pipe job
scripts that specify the tools, tool parameters, and file paths. There is however, no
automated way of maintaining or specifying file and database versions unless these
are encoded in the filenames. We provide additional details in the next chapter.

3 Big Data Management

Biological data analysis jobs have moved from personal computers to data centers
and clusters, due to the increased need for storage and data processing resources.
However, bioinformatics analysis tools still often rely on files stored locally. It is
therefore not straight forward to start using state-of-the-art big data management and
processing systems for such analyses, and the developer must consider the strengths
and weaknesses of different big data approaches. In this section, we provide an
overview of these approaches and systems with respect to biological data manage-
ment. Throughout the chapter, we will use META-pipe as a case study for how the
different approaches may be used.

3.1 Local Data Storage

The most most common interface used by bioinformatics tools is the the file system,
where data is stored and managed as files in a directory structure. In addition to files,
many tools use simple relational databases to store provenance and contextual data.
This approach is sufficient for many cases, where the amount of data is limited. We
will not go into details about different databases and file systems in this chapter.

META-pipe version 1.0 uses the file system for data management. This worked
well when for small data sets. However, recent flagship metagenomics datasets are
too large to be replicated on each compute node. Hence, the data must be stored on
a global filesystem, which may then become a performance bottleneck.
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3.2 Distributed Data Storage

In computing, it is often necessary to decrease locality to increase capacity. Exam-
ples include swapping to disk when a dataset does not fit in memory, or using a
multi-level cache. To provide scalable storage and enable large-scale analysis with-
out decreasing locality, the data must be distributed over multiple machines in a way
that enables efficient distributed computing. Below we provide some approaches,
but note that these approaches are examples of systems which make it easy to de-
velop parallel programs that do computations on local data in a distributed fashion,
and hence there are other approaches to distribute data while maintaining locality of
data for computations.

One such approach are distributed file systems such as HDFS [34], GPFS [33]
and the Google file system [15]. These have been shown to be extendable to large-
scale datasets and they have been used to store biological datasets used by genomics
analysis pipelines [21, 9, 7] A distributed file system provides programmers with an
abstraction of a single file system, while also enabling efficient parallel computa-
tions that maintain data locality, such that tasks are scheduled to run on the cluster
nodes that contain the data to be processed.

Other big data fields, such as astronomy, distribute their data among multiple
standalone relational databases and then use distributed queries in the analysis [38].
There are also distributed databases such as Cassandra [5] and HBase [3], which
handle the distribution of queries and data automatically. These approaches both
enable locality, either through user defined coroutines, or through frameworks such
as Spark or MapReduce. But, we are not aware of bioinformatics tools that exten-
sively use distributed queries.

There are also many other big data management systems that are distributed
RDBM systems or NoSQL databases. Systems such as MySQL Cluster [28] are re-
lational databases which are deployed across multiple machines. NoSQL databases
often trade off ACID properties for other features to improve for example per-
formance. The NoSQL databases vary from simple in-memory distributed key-
value stores such as memcached [13] to almost full-featured databases such as
Cassandra[5]. There are also distributed databases that are even more connected
than relational databases that are useful for biological data management. For exam-
ple, graph databases such as Neo4j have been shown to be appropriate for some use
cases in bioinformatics. Have et al. [19] used Neo4j to do calculations on protein
interactions (which map well to graphs), and acheived a large speedup over Post-
greSQL.

For META-pipe, we have used Storage Area Network for storage on the super-
computer, Network Adressed Storage for archiving on our smaller cluster, Network
File System for storage on our smaller cluster, HDFS and HBase for expansions
like Mario and GeStore, BerkleyDB for the internal representation of reference
databases and SQLite as the database for our frontend.
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3.3 Generalized Distributed Data Processing

For biological data processing, we are primarily interested in distributed data pro-
cessing frameworks that: (i) are are easy to use and, (ii) distribute computation effi-
ciently.

Probably the easiest approach for data analysis is to use declarative queries. Many
data storage frameworks provide the necessary support for queries for their users.
The supported queries includes complex joins supported by relational databases,
and simpler operations such as scans and retrieval of a key-value pair supported
by key-value stores and NoSQL databases All of these queries enable data locality,
provided that the underlying database system supports data locality scheduling of
tasks. Many systems also provide support to extend queries with user defined func-
tions (stored procedures) that can be used to implement more complex processing.
The combination enables the ease of use, flexibly, and and power to solve many data
processing requirements in a distributed fashion.

Many bioinformatics tools and pipelines can utilize graph-based processing
frameworks such as MapReduce [8] and Spark [40] (note that these are systems
for graph-based processing, and not graph processing systems such as Pregel [24]).
These greatly simplifies embarrassingly parallel computations compared to earlier
approaches such as MPI. These frameworks automate data distribution, manage data
locality concerns, and handle load balancing. These are achieved by partitioning the
work into many small data-parallel tasks, which are scheduled and executed by the
compute engine of the framework. These frameworks model the computations as a
set of shared-nothing operations. For example, the building blocks of the MapRe-
duce framework are a map that transforms all values in a set, and a reduce that per-
forms a summary operation. This allows more flexible processing than is available
when using stored procedures or queries, as well as enabling the compute engine
to perform optimizations such as efficient load balancing as well as strategies to
minimize the effects of stragglers and failures on the parallel program.

The MPI programming model provides operations at an even lower level. The
MPI operations are for passing messages between processes running on different
nodes in the network, and they thereby allow the developer full control over the data
and computational distribution, as well as the communication between nodes. This
framework is widely used in bioinformatics tools which support distributed execu-
tion. The disadvantage of this approach is that it can be very complex to implement
even relatively simple data processing, as all the minutia of data distribution and
communication have to be explicitly defined by the developer. The large responsi-
bility put on the developer renders this framework relatively impractical for many
types of data processing, where something simpler can be used efficiently.

For META-pipe, the original pipeline was extended with analysis with tools
which utilize MPI, as well as batch data processing using MapReduce. The latest
version of META-pipe uses Spark extensively.
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Approach Load balance Data-independent Complexity Power
Queries Yes No Low Low
Stored procedure Yes No Low Medium
Graph-based processing Yes Yes Medium High
Message-passing Yes Yes High High

Table 2 Distributed data processing framework abstractions.

3.4 Specialized data processing

The general purpose frameworks in the previous section have been used to imple-
ment specialized data processing systems for uses such as incremental updates, it-
erative computation, and interactive analysis. These systems provide additional fea-
tures, besides batch processing and provenance, that are useful for biological data
analysis.

Incremental systems, such as the Incoop [6] and Marimba [32] MapReduce ex-
tensions, provide iterative computation. These systems reduce the pipeline execu-
tion time for updated datasets, by only processing the new data that is appended
to a dataset. The results are then combined with previously computed results. For
META-pipe, we provide this functionality using GeStore [29], which allows incre-
mental updates for unmodified biological data analysis tools.

Interactive analysis systems, such as Cloudera Impala [20] and Apache PigPen
[27], are designed to execute interactive data analysis jobs with very short execution
time. Our Mario system, which uses HBase [3] as a backend, is built to interactively
tune the parameters of pipeline tools. We have found parameter tuning especially
useful for finding the best cutoff value for sample quality in a filtering step. This is a
step done early in the pipeline, and parameter changes without Mario would require
manually executing the full pipeline for each parameter.

Graph processing systems, such as GraphX [17], are designed for large-scale
graph processing. These are used in biological data analysis tools such as in Spaler
[2] a de-novo graph-based genome assembler.

4 Big Data Systems for Biological Data Management

To integrate the data management and processing systems described in the previous
section with the workflow managers and pipelines in use in bioinformatics, several
approaches can be taken:

• Direct integration, where the distributed data management systems are used di-
rectly by the workflow manager or pipeline.

• File system integration, where the workflow manager or pipeline is not changed,
but instead the file system operations are replaced with use of the data manage-
ment system through an interface or wrapper.
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• Extra tool, where the data management is implemented as a tool in the pipeline,
which is used between steps.

We have used all three approaches for integrating our data analysis pipelines with
our data processing systems [30].

We have primarily used the Hadoop stack (HDFS, HBase and MapReduce) as
the data management and processing backend. We have also researched and tested
other systems. We chose these as we had need for several layers of data storage and
a simple processing framework. The Hadoop stack provides a simple integrated and
mature framework. Using a mix of HBase and HDFS as well as MapReduce enables
us to minimize the overhead large-scale data processing expansions that we added
to the existing META-pipe workflow manager.

For example, we have been able to achieve a speedup of up to 14x for incremental
updates with minimal changes to the workflow system [29]. This speedup comes
from generating a small reference database for the tools from a tera-scale collection
of reference database versions. In a similar vein, Mario uses HBase to generate tiny
workloads, which in turn enables interactive parameter tuning on real data [7].

System What we have used it for
HDFS Intermediate files, caching, unstructured data
HBase Structured and semi-structured data
MapReduce Computing delta files, parsing and exporting data

Table 3 Data-intensive computing systems we have used in our research.

Other projects that have combined big data systems with biological data analy-
sis includes ADAM [26], which implements an entire variant calling pipeline using
Apache Avro [4], Parquet [36] and Spark. They achieve large speedups when com-
pared to traditional tools. They also examine using the same approach with an as-
tronomy workload, where the Spark-based implementation achieved a 8.9x speedup
compared to a MPI-based approach.

Diao et al. [9] have used large-scale data processing frameworks to run unmodi-
fied bioinformatics tools in parallel. They provide a generalized approach for using
these tools and the discuss some of the advantages and challenges of their approach.

For the next version of META-pipe, we plan to use a hybrid of these two ap-
proaches, where many of the in-house tools will be implemented in Spark, and the
remaining tools will be run unmodified in a data-parallel fashion.

5 Summary

The field of bioinformatics has just recently started to experience the effects of ex-
ponential data growth. However, bioinformatics pipelines and tools are typically not
designed to scale these large data volumes. There has been large influx of large-
scale data processing frameworks that enable efficient distributed data processing in
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fields such as web-scale data mining and astronomy. By leveraging the knowledge
gained in these fields to increase data analysis scalability, the exponential growth of
data can be used to increase the quality of bioinformatics analyses.

We have found that integration with legacy pipelines is challenging but it offers
great potential to improve analysis performance. Our experiences show that the in-
tegration of legacy systems with large-scale data processing can be done without
disrupting or supplanting existing pipelines. In addition, it enables features such as
better provenance management, data versioning, fault-tolerance, and interactive pa-
rameter tuning. We believe our approaches are general and that they can be applied
to other data analysis pipelines in bioinformatics and other fields.
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