

Faculty of Science and Technology
Department of Computer Science

Amdex: Automated meta-data extraction from KEGG
pathways
—

Kenneth Knudsen

INF-2990 Bachelor's Thesis in Computer Science - June 2014

Abstract

A pathway map is a graphical representation of a biological process that
allows researchers to gain new knowledge abaout an organism. Complex
disease such as cancer requires the study of multiple biological processes,
made possible by visualization pathway maps.

Visualization tools that exists today are either drawing on top of static im-
age of pathway maps or dynamically drawing pathway maps images from
database for curated pathways. The first approach limits the flexibility and
visualization of the visualization tool. The second approach is creating path-
way maps which are messy and is missing information.

This thesis presents Amdex, a tool for extracting meta-data from manually
drawn pathway maps. Amdex is loading the pathways which are presented as
png images. This allows the possibility to create dynamically pathway maps
which looks like they are static. We utilize the OpenCV library for image
processing, in order to detect elements such as genes within the pathway
maps.

Amdex extracts individual genes from the pathway maps and we evaluated
the extraction by testing 20 randomly selected pathway maps. Our results
show an average accuracy on 80%, and 100% for several pathways. We
have identified several challenges for extraction of meta-data from KEGG in
addition to genes. An important factor for gene recognition mis-prediction
are pixel-level errors made by the humans that draw the pathways.

Our initial results demonstrate that the process of automatically extracting
meta-data from pathway maps was harder than expected. Additional meta-
data has varous shapes, sizes and colors, and is therefore hard to extract
automatically.

iii

iv Abstract

The Amdex system provides promising initial results, but in order to ex-
tract all connections and additional meta-data future research is required
to tune the OpenCV methods, and find approaches for tolerating pixel-level
errors.

Acknowledgements

I would like to thank my adviser Associate Professor Lars Ailo Bongo and my
co-adviser Associate Professor John Markus Bjørndalen for their continuous
feedback, support and motivation during the course of this project.

I would like to thank Robert Jenssen with adressing the problems of the
assignment, which pointed us in the right direction. And big thanks to Ove
Henrik K̊aven for the help with the OpenCV library.

Finally, I would like to thank Bjørn Fjukstad for his continuously support
and contribution through the project period.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Related Work 5

2.1 Bubble Sets . 5

2.2 KEGGViewer . 6

2.3 Kvik . 7

2.4 enRoute . 7

2.5 Entourage . 8

3 Method 11

3.1 Approach . 12

3.2 The KEGG KGML database 13

3.3 OpenCV . 14

4 Implementation 15

4.1 Houghlines method . 15

vii

viii Contents

4.2 Edge detection . 16

4.3 Gene detection . 18

5 Evaluation 21

5.1 Discussion . 21

5.1.1 Gene box recognition 21

5.1.2 Edge detection . 23

5.1.3 Additional meta-data 24

5.1.4 Lessons learned . 24

6 Conclusion 27

6.1 Future Work . 27

References 29

Appendices

Appendix A Source Code 31

List of Figures

1.1 KEGG pathway for estrogen signaling. 2

2.1 Bubble Sets technique to visualize set relation. 5

2.2 Overview of the KEGGViewer component 6

2.3 Overview of the user interface of Kvik. 7

2.4 Path highlightning and its associated experimental data. . . . 8

2.5 Entourage showing the Glioma pathway in detail and contex-
tual information of multiple related pathways. 8

3.1 A small subset of a pathway visualized by the KEGG pathway
image and KEGG KGML drawn by KEGGViewer. 12

3.2 Approach for extracting edges 13

4.1 Visualization of houghline method. 16

4.2 Visualization of combined edge detection expressed as contours. 17

4.3 Pathway for citrate cycle with gene detection on. 18

5.1 Human error in a gene box. 22

5.2 A subset of a pathway illustration gene detection faults. 23

5.3 Visualization of the stippled line problem. 23

ix

x List of Figures

5.4 Pathway for oxidative phosphorylation which has additional
meta-data. 24

5.5 Pathway for homologous recombination which has additional
meta-data. 25

List of Tables

5.1 Experimental data . 22

xi

Abbreviations

API application programming interface.

KEGG Kyoto Encyclopedia of Genes and Genomes.

KGML KEGG Markup Language.

NOWAC Norwegian Women and Cancer.

PNG Portable Network Graphics.

REST Representational state transfer.

xiii

Chapter 1

Introduction

Tools for visualizations of biological pathways are essential for understanding
the biological processes in for example the development of cancer (carcigene-
sis). These pathways are networks of biomolecules and biochemical reactions
that describe a series of actions leading to specific biological effects. An
example pathway is shown in Figure 1.1.

The networks are both large and complex. Humans have approximately
20500 genes (nodes in the network), each with multiple reactions (edges),
and many of which are involved in multiple pathways. It is therefore not
practical to display the entire network at once. Instead, the network must be
split into sub-network for important biological processes, cleaned manually by
removing unimportant edges, and annotated by adding meta-data in the form
of symbols. These expert curated graphs form the basis of many biological
data visualization tools.

The most popular database for curated pathways is Kyoto Encyclopedia of
Genes and Genomes (KEGG)[1]. Alternative databases include Ingenuity[2]
and BioCarta[3]. In addition, there are many annotated pathways in the
scientific literature. These provide the pathways as images and associated
meta-data. Unfortunately, the meta-data provided by the databases may
not contain information about content removed from the sub-network by the
curator, nor the additional meta-data. It is therefore not possible for visual-
ization tools to dynamically draw pathways that are identical (or similar) to
the curated pathways (as in MetaCyc[4]). Instead, current visualization tools
either draw a pathway using the meta-data, or draw on top of a static image
of the pathway (as in Entourage[8] or Kvik[11]). The problem with the first

1

2 1 Introduction

approach is that the resulting pathway is messy and is missing information,
and it is therefore hard for domain expert to interpret. The problem with
the second approach is that the static representation limits the flexibility and
visualization approaches that can be used by a visualization tool.

Figure 1.1: KEGG pathway for estrogen signaling.1

This thesis describes an approach for extracting meta-data, including the
edges displayed from manually drawn pathway maps. The extracted meta-
data will allow us to draw dynamic pathways which look similar to curated
pathway maps enabling more flexible visualization.

The approach is realized as Amdex, which is a tool that extracts meta-data
from KEGG pathway maps. Since licensing restrictions prevent publication
of the extracted meta-data, Amdex will maintain a local database, populated
by the user. Since Amdex is run on an ordinary laptop or workstation, it is
therefore important that the image processing is fast and efficient.

Amdex retrieves pathway images from the freely available KEGG REST

1http://rest.kegg.jp/get/hsa04915/image

http://rest.kegg.jp/get/hsa04915/image

3

API2. The meta-data can be downloaded through this API, but the meta-
data is not consistent with the image. Amdex utilizes OpenCV[5], to detect
and locate genes. OpenCV is an open source computer vision and artificial
intelligence library written in C++. There are other computer vision libraries
such as VXL3 or AForge.NET4, but since the OpenCV is the most widely
known with well-documented we chose to use it for this exact reason.

We have implemented gene detection which is locating the genes found in
a static KEGG pathway map. Through an evaluation of Amdex we have
achieved an average accuracy on gene detection on 80.3%. The edge detection
is depending on the result of gene detection. Non detected genes are treated
as edges, this is because the edge detection detects every pixel on the pathway
map.

The experimental evaluation of image processing with the OpenCV library,
has shown that extracting meta-data from curated pathways is no easy task.
It shows there are still unsolved challenges in extracting meta-data that can
enable automatic generation of complete pathway maps.

The contributions of this work are:

• Identifying the challenges of automatically extracting meta-data from
manually curated pathway maps.

• The design and implementation of Amdex that successfully extracts
genes from such pathway maps.

The thesis is structured as follows. A short presentation of related visualiza-
tion tools is given in Chapter 2. Chapter 3 describes our approach for how
Amdex solves the different problems in the pathway. The implementation of
Amdex is presented in Chapter 4. Chapter 5 covers the evaluation of Amdex.
Concluding remarks and future works are given in Chapter 6.

2http://rest.kegg.jp
3http://vxl.sourceforge.net
4http://www.aforgenet.com

http://rest.kegg.jp
http://vxl.sourceforge.net
http://www.aforgenet.com

Chapter 2

Related Work

There have been an increasingly number of new visualization tools for bio-
logical data. Many are based on pathway visualizations. Biologists often use
these tools for exploring and managing large dataset of curated pathways.
Many uses the approach of drawning on top of static images. This provides
the illusion of dynamically drawn pathway, but the user can not drag ele-
ments or hide certain elements which may be done in a real dynamicly drawn
pathway.

2.1 Bubble Sets

Figure 2.1: Bubble Sets technique to visualize set relation [10].

5

6 2 Related Work

Bubble Sets is an highlighting approach to visualize set relations over existing
visualizations[10]. It respects the spatial rights of the initial visualization and
do not disturb it when displaying the secondary set relations.

2.2 KEGGViewer

KEGGViewer is a BioJS[12] component to visualize KEGG pathways. It uses
the KGML representations of pathways from the KEGG REST API to build
pathways, and visualizes them in a web browser using Javascript library
Cytoscape.js. Since KEGGViewer only uses the KGML representation to
generate the visualizations, they are lackin both in contextual information
as well as nodes and edges.

Figure 2.2: Overview of the KEGGViewer component[7]

2.3 Kvik 7

2.3 Kvik

Kvik is an interactive system for exploring the dynamics of carcinogenesis
through integrated studies of biological pathways and genomic data[11]. Kvik
provides lightweight visualizations of biological pathways from the KEGG
database integrated with genomic data from the NOWAC biobank. Similar
to Entourage, Kvik visualizes biological pathways by overlaying nodes ontop
of the static pathway image from the KEGG database. Figure 2.3 shows the
user interface of Kvik.

Figure 2.3: Overview of the user interface of Kvik. Figure from [11]

In the future, the developers of Kvik want to integrate Amdex into their
system. This will enable more flexible visualizations allowing users to modify
pathway maps and move nodes interactively.

2.4 enRoute

enRoute is an exploration tool that allow researchers to explore experimental
data from paths that are dynamically extracted from biological pathways[9].
It visualizes pathways by extracting graph nodes from the KGML description
of a pathway, and thereafter overlaying the nodes on top of the static pathway
image from the KEGG database.

To highlight the selected path in the pathway, it uses a slightly modified ver-

8 2 Related Work

Figure 2.4: A path highlighted in orange in the pathway map in (a). This is
extracted and shown next to associated experimental data in (b) [9].

sion of Bubble Sets. Beside the highlighted nodes, it visualizes the associated
experimental data side-by-side for comparison.

2.5 Entourage

Figure 2.5: Entourage showing the Glioma pathway in detail and contextual
information of multiple related pathways [8].

Entourage is a visualization technique that provides contextual information
when visualizing multiple related pathways[8]. It uses a single focus pathway
for main interaction and exploration, and visualizes only what is important
to researchers from other related pathways. Entourage visualizes subsets
of related pathways to give context information about the location of user
selected genes within related pathways.

2.5 Entourage 9

Entourage uses the enRoute technique to visualize experimental data and
Bubble Sets to highlight the selected nodes within a pathway.

Chapter 3

Method

To extract meta-data from KEGG Amdex does the following:

1. Download a PNG image from KEGG.
This has to be done manually from the KEGG REST API.5

2. When the PNG image is locally stored it is loaded into the Amdex.
Amdex uses the OpenCV library to extract meta-data which is stored
for later use.

3. Amdex represents the meta-data as vectors containing information about
nodes and interactions.

The KEGG KGML data is not consistent with the meta-data in the image.
The meta-data could be potentially useful, but is not used at the moment.
In Figure 3.1 we can see that the only consistent property is the position of
the nodes. But in some cases there may even be nodes that is not present in
the meta-data, and therefore we may not use this for the cause of the bigger
picture. Although the genes can be mapped their interaction (edges in the
graph) is very different in the KEGG KGML and the human drawn image.
Figure 3.1 shows the difference between a subset of pathway from KEGG
image, and how it would be if drawn based on the KEGG KGML data. The
molecule C00469 has no incoming edges but the pathway visualize that the
cluster of nodes has an edge to the molecule Ethanol. This implies that if we
would use the existing meta-data from KEGG, we would lose information.

5http://rest.kegg.jp

11

http://rest.kegg.jp

12 3 Method

There are also far more edges in the KEGG KGML data than in the KEGG
PNG.

(a) KEGG PNG (b) KEGG KGML

Figure 3.1: A small subset of a pathway visualized by the KEGG pathway
image7and KEGG KGML drawn by KEGGViewer.

3.1 Approach

To extract the meta-data from the KEGG pathway maps, we need to identify
all the elements and the connections between these. The elements may have
interaction or relation between eachother. This information is important for
the biologist who has interest in or use of these pathways. The genes have
to be seperated from the other elements in the pathway, and the gene may
have interaction to another gene, and this need to be captured and stored in
our data structure. These genes are notated as boxes in the pathways and
the expression, relation, interaction, etc. to another gene or molecule is seen
as a line with or without arrows.

Pathway maps vary in size with regards to such as the number of genes,
interactions. To extract the meta-data, we have to examine the pathway
map, at the pixel level. For example, we need to distinguish genes from
interactions. Both are represented as a two pixel wide line, so we need to
implement a program that can differentiate between what a gene is and what
an interaction is. OpenCV help us implement the required functionality.

Figure 1.1 shows a pathway where the genes are represented by boxes. Amdex
detect the boxes and stores the box as a vector for later use. The gene names
inside the gene boxes is also vital information that should be stored. To
extract this information Amdax require another algorithm. The genes may
have different color codings, so Amdax requires an algorithm to identify for
the color of the gene.

Since we have a specified representation of the box, we know that the meta-

7http://rest.kegg.jp/get/hsa00010/image

http://rest.kegg.jp/get/hsa00010/image

3.2 The KEGG KGML database 13

data that is extracted is a gene box. Since we do not have any predetermined
representation of interactions, every other element in the image may be clas-
sified as an interaction. So when we have extracted the gene box from the
picture, we need to use background noise and paste it over the gene position.
Such that the later detections such as interactions between the gene boxes,
will not include the gene boxes as interactions. The procedure must be re-
peated for all elements until we only have the interactions and expression
relations left in the png image. Figure 3.2 illustrates this process.

(a) (b)

Figure 3.2: In (a) all elements are present. In (b) all meta-data except
interactions are extracted.

3.2 The KEGG KGML database

The KEGG KGML representation of pathway is not consistent with the hand
drawn KEGG PNG image. There may also be nodes that are not present in
the database, so the use of the nodes position in the database will exclude
nodes in the manually drawn pathway image. Also, the additional meta-data
is not present at all in the database. The additional meta-data is important
to for the biologist who studies the image. If a gene product is within or a
interaction/relation goes through an annotation, it gives the biologist vital
information.

We compared the meta-data in the database8, with several pathways. We
found some similarities in the structure of the elements in the pathway map

8KEGG meta-data getter from Kvik: https://github.com/fjukstad/kvik

https://github.com/fjukstad/kvik

14 3 Method

which we took the advantage of in our implementation. Such as the genes
which are represented as boxes all have the same height and width. By
exploiting the existing structure we can extract all the genes by filtering out
all the other elements which does not fit in this gene representation.

3.3 OpenCV

The implementation of this project is built on the OpenCV library. It uses
several computer vision algorithms in order to recognice the different elements
within the . However, it is necessary to tune the OpenCV library. This
requires knowledge about image processing.

To extract the meta-data from the PNG image, we have to copy the image
and convert the copy to a binary image. This implies that the copy of the
image only has 0’s and 1’s to represent itself. All the 0’s is white and is
considered as the background. Whenever the image processing algorithms
find a pixel which is a 1, it is black and it represent an element. This could
be a gene, interaction, context within a gene.

Chapter 4

Implementation

In this chapter we present the OpenCV functions we have used for image
processing. Each section below is a separate function or method. We be-
scribe the motivation behind the implementation and present the results we
achieved.

We will mention function calls to the OpenCV library, these are presented in
italics. The python OpenCV library has legacy code, cv, and the up to date
code, cv2.

4.1 Houghlines method

We used the houglines method to find the lines on the pathway. This method
should find all the lines: horizontal, vertical or sloped. We extract the lines
to determine the interaction between different genes. This method does only
returns straight lines, which implies that if an interaction has a curve, we
have to find nearby interactions and merge these together.

We give the function, cv2.HoughLines(), its required inputs such as the binary
image. The function has properties to look for straight lines which has space
between them. This enables the extraction of stippled lines, because it allow
the straight line to have spaces in it.

As seen on Figure 4.1, the houghline only finds the straight lines as expected.
Some portion of the straight lines have not been included as a line repre-
sentation. We tried several modification of inputs to the cv2.HoughLines()

15

16 4 Implementation

function, such as modifying the threshold and angle resolutions, but this was
the best result we had.

(a) Small pathway por-
tion.

(b) Small pathway
portion with houghline
method.

Figure 4.1: Visualization of houghline method.

Based on our experiences using cv2.Houghlines() we decided not to use it.
It did not satisfy our requirements for our representation of an interaction.
In Figure 4.1 we can see that some lines only fractions are detected and no
sloped lines are detected.

4.2 Edge detection

The goal with edge detection is to find the lines on the pathway. We want
to use edge detection to find all the lines, even if they are not straight. The
extracted lines are used to determine the interaction between different genes.
We will therefore find contours within the pathway, but in order to do this we
have to exclude all the other elements before applying this detection. Since
we have no requirements for what an edge is, even textual context is classified
as a contour.

Before we can find the contours within the image, we have to find the edges.
We used first the cv2.Canny() function to retrieve all the edges from the
image, but since all the edges were thick so it was unnecessary for our contour
representation. The cv2.Canny() uses other functions with already specified

4.2 Edge detection 17

parameters. Therefore we used cv2.Laplacian() and cv2.adaptiveThreshold()
with our own parameters, in order for the thickness to only be 1 pixel wide.
And these two functions returns approximately the same as cv2.Canny(), but
when we control the parameters we also control the output. This gives a list
of 1 pixel wide lines. In order to find the contours we have used the function
cv2.findContours().

(a) Small pathway por-
tion.

(b) Small pathway por-
tion with edge detection.

Figure 4.2: Visualization of combined edge detection expressed as contours.

As seen on Figure 4.2 we have found every segment of all lines. On this small
portion of a pathway, we have found 8 contours. In this portion there are
9 interactions, the contour at the bottom is two interactions that is merged
together. To find every separate interaction between the genes, we need to
check this. An interaction has only one end and one start, so this contour
has to be split up. This can be checked by making sure the ends of a contour
have genes in the end. If so, the contours is the start of an interaction

With this method we find all the interactions, but it does also classifies pixels
that are not an interaction as an interaction. This detection must therefore be
run after the other elements in the pathway have been extracted as presented
in Figure 3.2

18 4 Implementation

4.3 Gene detection

The goal with the gene detection method is to find all the genes. The genes
are represented as square boxes which all has the approximate height and
width. The information about the representation of the gene boxes, was
found by using the KEGG KGML, Chapter 3.2. When we have square boxes
with approximate same size, we can exploit this by using contours.

We used the same approach on the gene detection as the edge detection. But
we can use the cv2.Canny() since we are not very interested in the box itself.
It does not matter if the box is represented as 2 pixel wide. The interesting
part of the gene is the context within the gene, which we will not consider
at this stage. When the canny function has given us the edges, we send
these edges to the cv2.findContours() function. These contours are useful
to analyse the image for genes. We specify that the contours should have
4 corners and the width and height match the representation in the KEGG
KGML. This way we exclude all the contours which are not squares and then
those that do not fit the representation.

Figure 4.3: Pathway for citrate cycle with gene detection on.9

9http://rest.kegg.jp/get/hsa00020/image

http://rest.kegg.jp/get/hsa00020/image

4.3 Gene detection 19

The implementation does not currently find all genes. In Figure 4.3 all
the genes are found and are highlighted with a red box. We evaluated the
accuracy on this detection which is found in Chapter 5.

Chapter 5

Evaluation

We want to evaluate Amdex in terms of accuracy and how long time it uses
for image processing. To check the accuracy of the pathway, Amdex printed
how many match it found on each pathway. We highlighted the pathways as
done in Figure 4.3 and counted how many genes that was not highlighted.

We evaluated gene detection accuracy by analysing a sample of 20 randomly
selected pathways using Amdex. The result are in Table 5.1. For five path-
ways Amdex recognised all genes. For most pathways the accuracy was over
80%. For four pathways it was less than 80%. For the worst pathway Amdex
only recognised 5% of the genes.

Amdex is very fast. The time used on one pathway is averagely 0.04 sec-
onds, which is would be acceptable for running on locally computers. The
measurements were for pathway images already downloaded to the machine.

5.1 Discussion

5.1.1 Gene box recognition

We evaluated the gene detection function. This is the most important func-
tion because in order to extract the interactions, all genes must be erased
from the image.

Since the pathway maps are manually drawn on a machine, there may be

21

22 5 Evaluation

Pathway Genes found Total number
of genes

Percentage of
genes found

Execution
time (s)

hsa00010 57 57 100.0 0.02
hsa00020 29 29 100.0 0.03
hsa00051 77 77 100.0 0.04
hsa01040 28 28 100.0 0.04
hsa05219 27 27 100.0 0.03
hsa00061 170 171 99.4 0.04
hsa05322 47 49 95.9 0.04
hsa00450 21 23 91.3 0.02
hsa05144 50 56 89.2 0.07
hsa04010 103 125 82.4 0.05
hsa05033 23 26 88.4 0.06
hsa04915 47 54 87.0 0.04
hsa05100 52 61 85.2 0.03
hsa05034 51 62 82.2 0.06
hsa05416 30 37 81.0 0.05
hsa05215 34 42 80.9 0.04
hsa03410 35 60 58.3 0.04
hsa04064 67 125 53.6 0.05
hsa03440 15 55 27.2 0.04
hsa00190 9 182 4.9 0.04
Total 972 1346 0.83
Average 48 67 80.3 0.04

Table 5.1: Experimental data

human errors. For example as when drawing an edge from a node, the
edge may start within the node. These small pixel errors are not visible
for humans, but may interfere with the algorithm that extract the nodes
from the pathway picture. In Figure 5.1 the human expert have drawn the
interactions too far and it ends within the gene box, which then causes the
box not to be detected. The interaction is only a single pixel inside the box,
but that is all it takes to exclude the box.

Figure 5.1: Human error on a gene box.10

5.1 Discussion 23

Our approach for recognising gene boxes may add additional gene boxes as
seen on Figure 5.2. The space between the boxes are exact the same as
the representation of the gene box. It is the cv2.findContours() function
that returned these as a contour. We have not solved these issues yet. One
possible way to solve this is to check the edges of the contour for color
verification. If all edges actually have a black pixel, if not then it is not a
gene box.

(a) Small sample of genes with inter-
actions.

(b) Gene detection fault.

Figure 5.2: A subset of a pathway illustration gene detection faults.11

5.1.2 Edge detection

For edge detection, there is one drawback by using contours method, rather
than the houghline method. The stippled lines are being discovered as a
several interactions, instead of a separate interaction. But when discovering
several small interactions, this could indicate that there is a stippled line.
We considered using the houghline method on these, which would result in
something like Figure 5.3.

(a) Stippled lines marked with
cv2.findContours().

(b) Stippled lines with a probalistic
houghline method.

Figure 5.3: Visualization of the stippled line problem. 12

10http://rest.kegg.jp/get/hsa04915/image
11http://rest.kegg.jp/get/hsa04915/image
12http://rest.kegg.jp/get/hsa05416/image
14http://rest.kegg.jp/get/hsa00190/image

http://rest.kegg.jp/get/hsa04915/image
http://rest.kegg.jp/get/hsa04915/image
http://rest.kegg.jp/get/hsa05416/image
http://rest.kegg.jp/get/hsa00190/image

24 5 Evaluation

Figure 5.4: Pathway for oxidative phosphorylation which has additional
meta-data.14

5.1.3 Additional meta-data

Additional meta-data is not supported in Amdex at all. This meta-data is
challenging to detect since these tend to be unique and vary in size, shapes
and color. Figure 5.4 and Figure 5.5 are examples of pathways with extra
meta-data. This additional meta-data is important for the user, so future
versions of Amdex should support these.

5.1.4 Lessons learned

It may seem like an easy problem to extract meta-data from PNG images.
However, we quicly realized that this was challenging. The prototype recog-
nised the most important elements and is therefore a useful first step in
solving the problem. But a lot more additional work is required to reach an

16http://rest.kegg.jp/get/hsa03440/image

http://rest.kegg.jp/get/hsa03440/image

5.1 Discussion 25

Figure 5.5: Pathway for homologous recombination which has additional
meta-data.16

accuracy and precision to fully solve the problem.

OpenCV is a powerfull library for image processing, which is why we chose
this in the first place. But the library requires in-depth knowledge of the
implemented algorithms/methods. The documentation is well-defined, but
is challenging to understand without a prior backgrount in pattern recog-
nition or image processing. We received help some help from collaborators
which has experience with the OpenCV library and physics background. For
example when we used the houghline method on our interactions, we did not
initially find every straigth line. We found all vertical lines in some areas and
the horizontal in another area. We were advised to use contours which would
find every seperate contour. These does not only find the straight lines such
as vertical and horizontal, but also the sloped interactions.

Chapter 6

Conclusion

This thesis has described the challenges of extracting meta-data from a man-
ually drawn pathway image.

There are no out-of-box tools that can recognise all meta-data elements in
KEGG images. There are methods in OpenCV that can be used to recognise
some/most meta-data elements, but the parameters of these methods must be
tuned. Since the pathway maps images are manually drawn, there are small
errors within the images. These cause problems for finely tuned OpenCV
methods.

Our initial results show that the accuracy is as good as KEGG KGML, since
we cannot find all genes in an image. Since all gene boxes have not been
extracted, the tool can not currently recognise gene interactions.

We believe that the tool is important for further exploration of biological
pathway. The ability to make a biological pathway dynamic, enables more
interactive implementations. If all meta-data could be extracted, even more
cross-viewing through the pathways could be done.

6.1 Future Work

Several interactions may merge together into one interaction towards a gene.
The tool, Amdex does not split these up into their representative interactions.

Interactions which are represented as stippled lines are another problem

27

28 6 Conclusion

which is not implemented in this tool. A possible way to solve this have
been presented in Subsection 5.1.2.

Additional meta-data support is a requirement for fully functionally auto-
mated meta-data extraction from KEGG pathways. These additional meta-
data may be unique in a single pathway, and the KEGG pathways may
change over time.

Integrate Amdex into Kvik for a more flexible visualization allowing users to
modify pathway maps and move nodes interactively.

References

[1] KEGG Pathway Database: http://www.genome.jp/kegg/pathway.

html

[2] Ingenuity Pathway Analysis: http://www.ingenuity.com

[3] BioCarta: http://www.biocarta.com

[4] MetaCyc Pathway Analysis: http://metacyc.org

[5] OpenCV: http://opencv.org

[6] KEGG Pathway Maps Information: http://www.genome.jp/kegg/

document/help_pathway.html

[7] KEGGViewer: http://www.ebi.ac.uk/Tools/biojs/registry/

Biojs.KEGGViewer.html

[8] Lex, Alexander, et al. Entourage: Visualizing relationships between bi-
ological pathways using contextual subsets. Visualization and Computer
Graphics, IEEE Transactions on, 2013, 19.12: 2536-2545.

[9] Partl, Christian, et al. enRoute: Dynamic path extraction from biological
pathway maps for in-depth experimental data analysis. In: Biological
Data Visualization (BioVis), 2012 IEEE Symposium on. IEEE, 2012. p.
107-114.

[10] Collins, Christopher, et al. Bubble sets: Revealing set relations with iso-
contours over existing visualizations. Visualization and Computer Graph-
ics, IEEE Transactions on, 2009, 15.6: 1009-1016.

[11] Bjørn Fjukstad. Kvik: Interactive exploration of genomic data from the
NOWAC postgenome biobank. UiT The Arctic University of Norway,
2014.

29

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.ingenuity.com
http://www.biocarta.com
http://metacyc.org
http://opencv.org
http://www.genome.jp/kegg/document/help_pathway.html
http://www.genome.jp/kegg/document/help_pathway.html
http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.KEGGViewer.html
http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.KEGGViewer.html

30 Appendix

[12] J. Gmez, et al. BioJS: an open source JavaScript framework for biological
data visualization., Bioinformatics (Oxford, England), vol. 29, pp. 11034,
2013.

Appendix A

Source Code

The source code follows on a CD-ROM.

31

	Abstract
	Acknowledgements
	Introduction
	Related Work
	Bubble Sets
	KEGGViewer
	Kvik
	enRoute
	Entourage

	Method
	Approach
	The KEGG KGML database
	OpenCV

	Implementation
	Houghlines method
	Edge detection
	Gene detection

	Evaluation
	Discussion
	Gene box recognition
	Edge detection
	Additional meta-data
	Lessons learned

	Conclusion
	Future Work

	References
	Appendix Source Code

