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Abstract

This paper addresses the problem of universal synchro-
nization primitives that can support scalable thread synchro-
nization for large-scale many-core architectures. The univer-
sal synchronization primitives that have been deployed widely
in conventional architectures, are the compare-and-swap (CAS)
and load-linked/store-conditional (LL/SC) primitives. How-
ever, such synchronization primitives are expected to reach
their scalability limits in the evolution to many-core architec-
tures with thousands of cores.

We introduce a non-blocking full/empty bit primitive, or
NB-FEB for short, as a promising synchronization primitive
for parallel programming on may-core architectures. We show
that the NB-FEB primitive is universal, scalable, feasible and
convenient to use. NB-FEB, together with registers, can solve
the consensus problem for an arbitrary number of processes
(universality). NB-FEB is combinable, namely its memory re-
quests to the same memory location can be combined into
only one memory request, which consequently mitigates per-
formance degradation due to synchronization "hot spots" (scal-
ability). Since NB-FEB is a variant of the original full/empty
bit that always returns a value instead of waiting for a condi-
tional flag, it is as feasible as the original full/empty bit, which
has been implemented in many computer systems (feasibility).
The original full/empty bit is well-known as a special-purpose
primitive for fast producer-consumer synchronization and has
been used extensively in the specific domain of applications.
In this paper, we show that NB-FEB can be deployed eas-
ily as a general-purpose primitive. Using NB-FEB, we con-
struct a non-blocking software transactional memory system
called NBFEB-STM, which can be used to handle concur-
rent threads conveniently. NBFEB-STM is space efficient:
the space complexity of each object updated by N concurrent
threads/transactions is Θ(N), the optimal.

Keywords: many-core architectures, non-blocking syn-
chronization, full/empty bit, universal, combining, non-blocking
software transactional memory, synchronization primitives.

1 Introduction

Universal synchronization primitives [28] are essential for
constructing non-blocking synchronization mechanisms for
parallel programming, like non-blocking software transactional
memory [21, 27, 30, 36, 43]. Non-blocking synchronization
eliminates the concurrency control problems of mutual exclu-
sion locks, such as priority inversion, deadlock and convoy-
ing. As many-core architectures with thousands of cores are
expected to be our future chip architectures [5], universal syn-
chronization primitives that can support scalable thread syn-
chronization for such large-scale architectures are desired.

However, the conventional universal primitives like compare-
and-swap (CAS) and load-linked/store-conditional (LL/SC)
are expected to reach their scalability limits in the evolution

to many-core architectures with thousands of cores. For each
shared memory location, the LL/SC implementation con-
ceptually associates a reservation bit with each processor. The
reservations are invalidated when the location are modified by
any processor. Implementing LL/SC in the memory (with-
out compromising its semantics) limits the scalability of the
multiprocessor since the total directory size increases quadrat-
ically with the number of processors [37]. Therefore, the
LL/SC primitives are built on conventional cache-coherent
protocols [37, 14]. However, experimental studies have shown
that the LL/SC primitives are not scalable for multicore ar-
chitectures [48]. The conventional cache-coherent protocols
are considered inefficient for large scale manycore architec-
tures [5]. As a result, several emerging multicore architec-
tures like the NVIDIA CUDA [39], the ClearSpeed CSX [49],
the IBM Cell BE [23] and the Cyclops-64 [12] architectures
utilize fast local memory for each processing core rather than
coherent data cache.

For the emerging many-core architectures without coher-
ent data cache, the CAS primitive is not scalable either since
CAS is not combinable [32, 10]. Primitives are combinable if
their memory requests to the same memory location (arriving
at a switch of the processor-to-memory interconnection net-
work) can be combined into only one memory request. Sepa-
rate replies to the original requests are later created from the
reply to the combined request (at the switch). The combin-
ing technique has been implemented in the NYU Ultracom-
puter [22] and the IBM RP3 [41] machine and has been shown
to be a promising technique for large-scale multiprocessors
to alleviate the performance degradation due to synchroniza-
tion "hot spot". Although the single-valued CASa(x, b) [10],
which will atomically swap b to x if x equals a is combin-
able, the number of instructions CASa must be as many as
the number of integers a that can be stored in one memory
word (e.g. 264 CASa instructions for 64-bit words). This
fact makes the single-valued CASa unfeasible for hardware
implementation.

Another universal primitive called sticky bit has been sug-
gested in [42], but it has not been deployed so far due to its
usage complexity. To the best of our knowledge, the univer-
sal construction using the sticky bit [42] does not prevent a
delayed thread, even after being helped, from jamming the
sticky bits of a cell that has been re-initialized and reused.
Since the universal construction is built on a doubly-linked
list of cells, it is not obvious how an external garbage col-
lector (supported by the underlying system) can help solve
the problem. Moreover, the space complexity of the universal
construction for an object is as high as O(N2logN), where
N is the number of processes.

This paper suggests a novel synchronization primitive, called
NB-FEB, as a promising synchronization primitive for paral-
lel programming on many-core architectures. What makes
NB-FEB be a promising primitive is its following four main
properties. NB-FEB is:

Feasible : NB-FEB is a non-blocking variant of the conven-



tional full/empty bit that always returns the old value
of the variable instead of waiting for its conditional
flag to be set (or cleared). This simple modification
makes NB-FEB as feasible as the original (blocking)
full/empty bit, which has been implemented in many
computer systems like HEP [45], Tera [3], MDP [15],
Sparcle [2], M-Machine [31] and Eldorado [20]. The
space overhead of full/empty bits can be reduced using
the synchronization state buffer (SSB) [51].

Universal : This simple modification, however, significantly
increases the synchronization power of full/empty bits,
making NB-FEB as powerful as CAS or LL/SC. NB-
FEB, together with registers, can solve consensus prob-
lem for arbitrary number of processes, the essential prop-
erty for constructing non-blocking synchronization mech-
anisms (cf. Section 3.1).

Scalable : Like the original full/empty bit, NB-FEB is com-
binable: its memory requests to the same memory lo-
cation can be combined into only one memory request
(cf. Section 3.2). This empowers NB-FEB with the
ability to provide scalable thread synchronization for
large-scale many-core architectures.

Convenient to use : The original full/empty bit is well-known
as a special-purpose primitive for fast producer-consumer
synchronization and has been used extensively in the
specific domain of applications. In this paper, we show
that NB-FEB can be deployed easily as a general-purpose
primitive. Using NB-FEB, we construct a non-blocking
software transactional memory system called NBFEB-
STM, which can be used to handle concurrent threads
conveniently. NBFEB-STM is space efficient: the space
complexity of each object updated by N concurrent
threads/transactions is Θ(N), the optimal (cf. Section
4).

The rest of this paper is organized as follows. Section
2 presents the shared memory and interconnection network
models assumed in this paper. Sections 3 describes the NB-
FEB primitive in detail and proves its universality and com-
binability properties. Section 4 presents NBFEB-STM, the
obstruction-free multi-versioning STM constructed on the NB-
FEB primitive. Section 5 describes a garbage collector that
can be used as an external garbage collector for the NBFEB-
STM.

2 Models

As previous research on the synchronization power of syn-
chronization primitives [28], this paper assumes the lineariz-
able shared memory model [6]. Due to NB-FEB combinabil-
ity, as in [32] we assume that the processor-to-memory inter-
connection network is nonovertaking and that a reply mes-
sage is sent back on the same path followed by the request
message. The immediate nodes, on the communication path

Algorithm 1 TFAS(x: variable, v: value): Test-Flag-And-
Set, a non-blocking variant of the original Store-if-Clear-and-
Set primitive, which always returns the old value of x.

(o, flago) ← (x, flagx);
if flagx = false then

(x, flagx) ← (v, true);
end if
return (o, flago);

Algorithm 2 LOAD(x: variable)
return (x, flagx);

Algorithm 3 SAC(x: variable, v: value): Store-And-Clear
(o, flago) ← (x, flagx);
(x, flagx) ← (v, false);
return (o, flago);

Algorithm 4 SAS(x: variable, v: value): Store-And-Set
(o, flago) ← (x, flagx);
(x, flagx) ← (v, true);
return (o, flago);

from a processor to a global shared memory module (such
as switches of a multistage interconnection network or higher
memory modules of a multilevel memory hierarchy), can de-
tect requests destined for the same destination and maintain
the queues of requests. No memory coherent schemes are as-
sumed.

3 NB-FEB Primitives

The set of NB-FEB primitives consists of four sub-primitives:
TFAS (Algorithm 1), Load (Algorithm 2), SAC (Algorithm
3) and SAS (Algorithm 4). The last three primitives are sim-
ilar to those of the original full/empty bit. Regarding condi-
tional load primitives, a processor can check the flag value,
flagx, returned by the unconditional load primitive to deter-
mine if it was successful.

When the value of flagx returned is not needed, we just
write r ← TFAS(x, v) instead of (r, flagr) ← TFAS(x, v),
where r is x’s old value. The same applies to SAC and SAS.
For Load, we just write r ← x instead of r ← LOAD(x). In
this paper, the flag value returned is needed only for combin-
ing NB-FEB primitives.

3.1 TFAS: A Universal Primitive

Lemma 1. (Universality) The test-flag-and-set primitive (or
TFAS for short) is universal.

Proof. We will show that there is a wait-free1 consensus al-
gorithm, for arbitrary number of processes, that uses only the

1An implementation is wait-free if it guarantees that any process can com-



Algorithm 5 TFAS_CONSENSUS(proposal: value)
Decision: shared variable. The shared variable is initialized
to ⊥ with a clear flag (i.e. flagDecision = false).

Output: a value agreed by all processes.
1T: first ← TFAS(Decision, proposal);
2T: if first =⊥ then
3T: return proposal;
4T: else
5T: return first;
6T: end if

TFAS primitive and registers.
The wait-free consensus algorithm is shown in Algorithm

5. Processes share a variable called Decision, which is ini-
tialized to ⊥ with a false flag. Each process p proposes its
value (6=⊥) called proposal by calling TFAS_CONSENSUS(proposal).

The TFAS_CONSENSUS procedure is clearly wait-free since
it contains no loops. We need to prove that i) the procedure re-
turns the same value to all processes and ii) the value returned
is the value proposed by some process. Indeed, the procedure
will return the proposal of the first process executing TFAS
on the Decision variable to all processes. Let p be a process
calling the procedure.

• If p is the first process executing TFAS on the Decision
variable, since the Decision variable is initialized to⊥
with a false flag, p’s TFAS will successfully write p’s
proposal to Decision and return ⊥, the previous value
of Decision. Since the value returned is ⊥, the proce-
dure returns p’s proposal (line 3T), the proposal of the
first process executing TFAS.

• If p is not the first process executing TFAS on the
Decision variable, p’s TFAS will fail to write p’s
proposal to Decision since flagDecision has been set
to true by the first TFAS on Decision. p’s TFAS
will return the value, called first, written by the first
TFAS. The first value is the proposal of the first pro-
cess executing TFAS on the Decision variable. Since
first 6=⊥ (due to the hypothesis that proposals are not
⊥), the procedure will return first (line 5T).

3.2 Combinability

Lemma 2. (Combinability) NB-FEB primitives are combin-
able.

Proof. Table 1 summarizes the combining logic of NB-FEB
primitives on a memory location x. The first column is the
name of the first primitive request and the first row is the name

plete any operation on the implemented object in a finite number of steps,
regardless of the execution speeds on the other processes [28, 34].

(x, [v1]) The successive primitive with parameters (x, [v2])
Load SAC SAS TFAS

Load Load SAC(v2) SAS(v2) TFAS(v2)
(r, fr) (r, fr) (r, fr) (r, fr)
(r, fr) (r, fr) (r, fr) (r, fr)

SAC SAC(v1) SAC(v2) SAS(v2) SAS(v2)
(r, fr) (r, fr) (r, fr) (r, fr)
(v1, 0) (v1, 0) (v1, 0) (v1, 0)

SAS SAS(v1) SAC(v2) SAS(v2) SAS(v1)
(r, fr) (r, fr) (r, fr) (r, fr)
(v1, 1) (v1, 1) (v1, 1) (v1, 1)

TFAS TFAS(v1) SAC(v2) SAS(v2) TFAS(v1)
(r, fr) (r, fr) (r, fr) (r, fr)
Like 5th Like 5th Like 5th if fr=0: (v1, 1)
column column column else: (r, 1)

Figure 1. The combining logic of NB-FEB prim-
itives on a memory location x

of the successive primitive request. For instance, the cell
[SAS, TFAS] is the combining logic of SAS and TFAS
in which SAS is followed by TFAS. Let v1, v2, r and fr be
the value of the first primitive request, the value of the second
primitive request, the value returned and the flag returned, re-
spectively. In each cell, the first line is the combined request,
the second is the reply to the first primitive request and the
third (and forth) is the reply to the successive primitive re-
quest. The values 0 and 1 of fr in the reply represent false
and true, respectively.

Consider the cell [TFAS, TFAS] as an example. The
cell describes the case where request TFAS(x, v1) is fol-
lowed by request TFAS(x, v2), at a switch of the processor-
to-memory interconnection network. The two requests can be
combined into only one request TFAS(x, v1) (line 1), which
will be forwarded further to the corresponding memory con-
troller. When receiving a reply (r, fr) to the combined re-
quest, the switch at which the requests were combined, cre-
ates separate replies to the two original requests. The reply to
the first original request, TFAS(x, v1), is (r, fr) (line 2) as if
the request was executed by the memory controller. The reply
to the successive request, TFAS(x, v2), depends on whether
the combined request TFAS(x, v1) has successfully updated
the memory location x. If fr = 0, TFAS(x, v1) has suc-
cessfully updated x with its value v1. Therefore, the reply
to the successive request TFAS(x, v2) is (v1, 1) as if the re-
quest was executed right after the first request TFAS(x, v1).
If fr = 1, TFAS(x, v1) has failed to update the x variable.
Therefore, the reply to the successive request TFAS(x, v2)
is (r, 1).



4 NBFEB-STM: Obstruction-free Multi-versioning
STM

Like previous obstruction-free multi-versioning STM called
LSA-STM [43], the new software transactional memory called
NBFEB-STM, assumes that objects are only accessed and
modified within transactions. NBFEB-STM assumes that there
are no nested transactions, namely each thread executes only
one transaction at a time. NBFEB-STM, like other obstruction-
free STMs [30, 36, 43], is designed for garbage-collected pro-
gramming languages (e.g. Java). A variable reclaimed by
the garbage collector is assumed to have all bits 0 when it
is reused. Note that there are non-blocking garbage collec-
tion algorithms that do not require synchronization primitives
other than reads and writes while they still guarantee the non-
blocking property for application-threads. Such a garbage
collection algorithm is presented in Section 5.

Only two NB-FEB primitives, TFAS and SAC, are needed
for implementing NBFEB-STM.

4.1 Challenges and Key Ideas

Unlike the STMs using CAS [30, 36, 43], NBFEB-STM
using TFAS and SAC must handle the problem that SAC’s
interference with concurrent TFASes will violate the atom-
icity semantics expected on variable x. Overlapping TFAS1

and TFAS2 both may successfully write their new values to
x if SAC interference occurs.

The key idea is not to use the transactional memory ob-
ject TMObj [30, 36, 43] that needs to switch its pointer fre-
quently to a new locator (when a transaction commits). Such a
TMObj would need SAC in order to clear the pointer’s flag,
allowing the next transaction to switch the pointer. Instead,
NBFEB-STM keeps a linked-list of locators for each object
and integrates a write-once pointer next into each locator (cf.
Figure2). When opening an object O for write, a transaction
T tries to append its locator to O’s locator-list by changing the
next pointer of the head-locator of the list using TFAS. Due
to the semantics of TFAS, only one of the concurrent trans-
actions trying to append their locators succeeds. The other
transactions must retry in order to find the new head and then
append their locators to the new head. Using the locator-list,
each next pointer is changed only once and thus its flag does
not need to be cleared during the lifetime of the corresponding
locator. This prevents a SAC from interleaving with concur-
rent TFASes. The next pointer, together with its locator,
will be reclaimed by the garbage collector when the lifetime
of its locator is over. The garbage collector ensures that a
locator will not be recycled until no thread/transaction has a
reference to it.

Linking locators together creates another challenge on the
space complexity of NBFEB-STM. Unlike the STMs using
CAS, a delayed/halted transaction T in NBFEB-STM may
prevent all locators appended after its locator in a locator-list
from being reclaimed. As a result, T may make the system

run out of memory and thus prevent other transactions from
making progress, violating the obstruction-freedom property.
The key idea to solve the space challenge is to break the list
of obsolete locators into pieces so that a delayed transaction
T prevents from being reclaimed only the locator that T has a
direct reference as in the STMs using CAS. The idea is based
on the fact that only the head of O’s locator-list is needed for
further accesses to the O object.

However, breaking the list of an obsolete object O also cre-
ates another challenge on finding the head of O’s locator-list.
Obviously, we cannot use a head pointer as in non-blocking
linked-lists since modifying such a pointer requires CAS.
The key idea is to utilize the fact that there are no nested trans-
actions and thus each thread has at most one active locator2

in each locator list. Therefore, by recording the latest locator
of each thread appended to O’s locator-list, a transaction can
find the head of O’s locator list. The solution is elaborated
further in Section 4.2 and Section 4.3.

Based on the key ideas, we come up with the data structure
for a transactional memory object that is illustrated in Figure
2 and presented in Algorithm 6.

The transactional memory object in NBFEB-STM is an ar-
ray of N pairs (pointer, timestamp), where N is the num-
ber of concurrent threads/transactions as shown in Figure 2.
Item TMObj[i] is modified only by thread ti and can be
read by all threads. Pointer TMObj[i].loc points to the lo-
cator called Loci corresponding to the latest transaction com-
mitted/aborted by thread ti. Timestamp TMObj[i].ts is the
commit timestamp of the object referenced by Loci.old. Af-
ter successfully appending its locator Loci to the list by exe-
cuting TFAS(head.next, Loci), ti will update its own item
TMObj[i] with its new locator Loci. The TMObj array is
used to find the head of the list of locators Loc1, · · · , LocN .

For each locator Loci, in addition to fields Tx, old and
new that reference the corresponding transaction object, the
old data object and the new data object, respectively, as in
DSTM[30], there are two other fields cts and next. The cts
field records the commit timestamp of the object referenced
by old. The next field is the pointer to the next locator in
the locator list. The next pointer is modified by NB-FEB
primitives. In Figure 2, values {0, 1} in the next pointer de-
note the values {false, true} of its flag, respectively. The
next pointer of the head of the locator list, Loc3.next, has
its flag clear (i.e. 0), and the next pointers of previous loca-
tors (e.g. Loc1.next, Loc2.next) have their flags set (i.e. 1)
since their next pointers were changed. The next pointer of
a new locator (e.g. Loc4.next) is initialized to (⊥, 0). Due
to the garbage collector semantics, all locators Locj reachable
from the TMObj shared object by following their Locj .next
pointers, will not be reclaimed.

For each transaction object Txi, in addition to fields status,
readSet and writeSet corresponding to the status, the set
of objects opened for read, and the set of objects opened for

2An active locator is a locator that is still in use, opposite to an obsolete
locator.
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Figure 2. The data structure of a transactional
memory object TMObj in NBFEB-STM with
four threads.

write, respectively, there is a field cts recording Txi’s commit
timestamp (if Txi committed) as in LSA-STM [43].

4.2 Algorithm

A thread ti starts a transaction T by calling the STARTSTM(T )
procedure (Algorithm 6). The procedure sets T.status to
Active and clears its flag using SAC (cf. Algorithm 3). The
procedure then initializes the lazy snapshot algorithm (LSA)
[43] by calling LSA_START. NBFEB-STM utilizes LSA to
preclude inconsistent views by live transactions, an essential
aspect of transactional memory semantics [25]. The LSA has
been shown to be an efficient mechanism to construct consis-
tent snapshots for transactions [43]. Moreover, the LSA can
utilize up to (N +1) versions of an transactional memory ob-
ject TMObj recorded in N locators of TMObj’s locator list.
Note that the global counter CT in LSA can be implemented
by the fetch-and-increment primitive [22], a combinable (and
thus scalable) primitive [32]. Except for the global counter
CT , the LSA in NBFEB-STM does not need any strong syn-
chronization primitives other than TFAS. The ABORT(T )
operation in LSA, which is used to abort a transaction T , is re-
placed by TFAS(T.status,Aborted). Note that the status
field is the only field of a transaction object T that can be
modified by other transactions.

When a transaction T opens an object O for read, it in-
vokes the OPENR procedure (Algorithm 7). The procedure
simply calls the LSA_OPEN procedure of LSA [43] in the
Read mode to get the version of O that maintains a consistent
snapshot with the versions of other objects being accessed by
T . If no such a version of O exists, LSA_OPEN will abort T
and consequently OPENR will return⊥ (line 3R). That means
there is a conflicting transaction that makes T unable to main-
tain a consistent view of all the object being accessed by T .
Otherwise, OPENR returns the version of O that is selected
by LSA. This version is guaranteed by LSA to belong to a
consistent view of all the objects being accessed by T . Up to
(N + 1) versions are available for each object O in NBFEB-

Algorithm 6 STARTSTM(T : transaction)
TMObj: array[N ] of {ptr, ts}. Pointer TMObj[i].ptr
points to the locator called Loci corresponding to the
latest transaction committed/aborted by thread ti. Times-
tamp TMObj[i].ts is the commit timestamp of the object
referenced by Loci.old. N is the number of concurrent
threads/transactions. TMObj[i] is written only by thread ti.

Locator: record tx, new, old: pointer; cts: timestamp;
end. The cts timestamp is the commit timestamp of the old
version.

Transaction: record status :
{Active, Committed, Aborted}; cts: timestamp; end.
NBFEB-STM also keeps read/write sets as in LSA-STM, but
the sets are omitted from the pseudocode since managing the
sets in NBFEB-STM is similar to LSA-STM.

1S: SAC(T.status,Active); // Store-and-clear
2S: LSA_START(T ) // Lazy snapshot algorithm

Algorithm 7 OPENR(T : Transaction; Oi: TMObj): Open a
transactional onject for read
Output: reference to a data object if succeeds, or ⊥.
1R: LSA_OPEN(T, 0i, ”Read”); // LSA’s OPEN procedure
2R: if T.status = Aborted then
3R: return ⊥;
4R: else
5R: return the version chosen by LSA_OPEN;
6R: end if

STM (cf. Lemma 8). Since NBFEB-STM utilizes LSA, read-
accesses to an object O are invisible to other transactions and
thus do not change O’s locator list.

When a transaction T opens an object O for write, it in-
vokes the OPENW procedure (cf. Algorithm 8). The task of
the procedure is to append to the head of O’s locator list a
new locator L whose Tx and old fields reference to T and
O’s latest version, respectively. In order to find O’s latest
version, the procedure invokes FINDHEAD (cf. Algorithm 9)
to find the current head of O’s locator list (line 3W). When
the head called H is found, the procedure determines O’s lat-
est version based on the status of the corresponding transac-
tion H.Tx as in DSTM [30]. If the H.Tx transaction com-
mitted, O’s latest version is H.new with commit timestamp
H.Tx.cts (lines 5W-7W). A copy of O’s latest version is cre-
ated and referenced by L.new (line 8W) (cf. locators Loc2

and Loc3 in Figure 2 as H and L, respectively, for an illus-
tration). If the H.Tx transaction aborted, O’s latest version
is H.old with commit timestamp H.cts (lines 10W-12W) (cf.
locators Loc1 and Loc2 in Figure 2 as H and L, respectively,
for an illustration). If the H.Tx transaction is active, OPENW
consults the contention manager [24, 50] (line 16W) to solve
the conflict between the T and H.Tx transactions. If T must



abort, OPENW tries to change T.status to Aborted using
TFAS (line 18W) and returns ⊥. Note that other transac-
tions change T.status only to Aborted, and thus if TFAS
at line 18W fails, T.status has been changed to Aborted by
another transaction. If H.Tx must abort, OPENW changes
H.Tx.status to Aborted using TFAS (line 21W) and checks
H.Tx.status again.

The latest version of O is then checked to ensure that it, to-
gether with the versions of other objects being accessed by T ,
belongs to a consistent view using LSA_OPEN with "Write"
mode (line 28W). If it does, OPENW tries to append the new
locator L to O’s locator list by changing the H.next pointer
to L (line 32W). Note that the H.next pointer was initial-
ized to ⊥ with a clear flag, before H was successfully ap-
pended to O’s locator list (line 27W). If OPENW does not
succeed, another locator has been appended as a new head
and thus OPENW must retry to find the new head (line 33W).
Otherwise, it successfully appends the new locator L as the
new head of O’s locator list. OPENW, which is being exe-
cuted by a thread ti, then makes O[i].ptr reference to L and
records L.cts in O[i].ts (line 36W). This removes O’s refer-
ence to the previous locator oldLoc appended by ti, allow-
ing oldLoc to be reclaimed by the garbage collector. Since
oldLoc now becomes an obsolete locator, its next pointer is
reset (line 37W) to break possible chains of obsolete locators
reachable by a delayed/halted thread, helping oldLoc’s de-
scendant locators in the chains be reclaimed. For each item
j in the O array such that O[j].ts < O[i].ts, the O[j].ptr
locator now becomes obsolete in a sense that it no longer
keeps O’s latest version although it is still referenced by O[j]
(since only thread tj can modify O[j]). In order to break the
chains of obsolete locators, OPENW resets the next pointer
of the O[j].ptr locator so that O[j].ptr’s descendant locators
can be reclaimed by the garbage collector (lines 38W-39W).
This chain-breaking mechanism makes the space complexity
of an object updated by N concurrent transactions/threads in
NBFEB-STM be Θ(N), the optimal (cf. Theorem 1).

In order to find the head of O’s locator list as in OPENW, a
transaction invokes the FINDHEAD(O) procedure (cf. Algo-
rithm 9). The procedure atomically reads O into a local array
start (line 2F). Such a multi-word read operation is supported
by emerging multicore architectures like CUDA [39] and Cell
BE [23]. In the contemporary chips of these architectures, a
read operation can atomically read 128 bytes. In general, such
a multi-word read operation can be implemented as an atomic
snapshot using only single-word read and single-word write
primitives [1]. FINDHEAD finds the item startlatest with the
highest timestamp in start and searches for the head from
locator startlatest.ptr by following the next pointers until it
finds a locator H whose next pointer is⊥ (lines 3F-6F). Since
some locators may become obsolete and their next pointers
were reset to ⊥ by concurrent transactions (lines 37W and
39W in Algorithm 8), FINDHEAD needs to check H’s commit
timestamp against the highest timestamp of O at a moment
after H is found (lines 8F-10F). If H’s commit timestamp is

Algorithm 8 OPENW(T : Transaction; O: TMObj): Open a
transactional memory object for write by a thread pi

Output: reference to a data object if succeeds, or ⊥.
1W: newLoc ← new Locator;
2W: while true do
3W: head ← FINDHEAD(O); // Find the head of O’s list.
4W: for i = 0 to 1 do
5W: if head.tx.status = Committed then
6W: newLoc.old ← head.new;
7W: newLoc.cts ← head.tx.cts;
8W: newLoc.new ← COPY(head.new);// Create a

duplicate
9W: break;
10W: else if head.tx.status = Aborted then
11W: newLoc.old ← head.old;
12W: newLoc.cts ← head.cts;
13W: newLoc.new ← COPY(head.old);
14W: break;
15W: else
16W: myProgession ← CM(Oi, ”Write”)//

head.tx is active ⇒ Consult the contention
manager

17W: if myProgression = false then
18W: TFAS(T.status, Aborted); // If fails, an-

other has executed this TFAS.
19W: return ⊥;
20W: else
21W: TFAS(head.tx.status,Aborted);
22W: continue; // Transaction head.tx has com-

mitted/aborted ⇒ Check head.tx.status one
more time

23W: end if
24W: end if
25W: end for
26W: newLoc.tx ← T ;
27W: SAC(newLoc.next,⊥); // Store-and-clear
28W: LSA_OPEN(T, O, ”Write”); // LSA’s OPEN proce-

dure.
29W: if T.status = Aborted then
30W: return ⊥; // Performance (not correctness): Don’t

add newLoc to O if T has aborted due to, for in-
stance, LSA_OPEN.

31W: end if
32W: if TFAS(head.next, newLoc) 6=⊥ then
33W: continue; // Another locator has been appended⇒

Find the head again
34W: else
35W: oldLoc = O[i];
36W: O[i] ← (newLoc, newLoc.cts); // Atomic assign-

ment; pi’s old locator is unlinked from O.
37W: SAC(oldLoc.next,⊥); // oldLoc may be in the

chain of a sleeping thread ⇒ Stop the chain here
38W: for each item Lj in O such that Lj .ts < O[i].ts

do
39W: SAC(Lj .ptr.next,⊥) // Reset the next pointer

of the obsolete locator
40W: end for
41W: return newLoc.new;
42W: end if
43W: end while



Algorithm 9 FINDHEAD(O: TMObj): Find the head of the
locator list
Output: reference to the head of the locator list
1F: repeat
2F: start ← O; // Read O to a local array atomically.
3F: Let startlatest is the item with highest timestamp;
4F: tmp ← startlatest.ptr; // Find a locator whose next

pointer is ⊥
5F: while tmp.next 6=⊥ do
6F: tmp ← tmp.next;
7F: end while
8F: start′ ← O; // Check if tmp is the head.
9F: Let start′latest is the item with highest timestamp;
10F: until tmp.cts ≥ start′latest.ts;
11F: return tmp;

Algorithm 10 COMMITW(T : Transaction): Try to commit
an update transaction T by thread pi

1C: CTT ← LSA_COMMIT(T ); // Check consistent snap-
shot. CTT is T ’s unique commit timestamp from LSA.

2C: T.cts ← CTT ; // Commit timestamp of T if T manages
to commit.

3C: TFAS(T.status, Committed);

greater than or equal to the highest timestamp of O, H is the
head of O’s locator list (cf. Lemma 4). Otherwise, H is an
obsolete locator and FINDHEAD must retry (line 10F). The
FINDHEAD procedure is lock-free, namely it will certainly
return the head of O’s locator list after at most N iterations
unless a concurrent thread has completed a transaction and
subsequently has started a new one, where N is the number
of concurrent (updating) threads (cf. Lemma 5). Note that as
soon as a thread obtains head from FINDHEAD (line 3W of
OPENW, Algorithm 8), the locator referenced by head will
not be reclaimed by the garbage collector until the thread re-
turns from the OPENW procedure.

When committing, read-only transactions in NBFEB-STM
do nothing and always succeed in their commit phase as in
LSA-STM [43]. They can abort only when trying to open
an object for read (cf. Algorithm 7). Other transactions T ,
which have opened at least one object for write, invoke the
COMMITW procedure (Algorithm 10). The procedure calls
the LSA_COMMIT procedure to ensure that T still maintains
a consistent view of objects being accessed by T (line 1C).
T ’s commit timestamp is updated with the timestamp returned
from LSA_COMMIT (line 2C). Finally, COMMITW tries to
change T.status to Committed (line 3C). T.status will be
changed to Committed at this step if it has not been changed
to Aborted due to the semantics of TFAS.

4.3 Analysis

In this section, we prove that NBFEB-STM fulfills the
three essential aspects of transactional memory semantics [25]:

Instantaneous commit : Committed transactions must ap-
pear as if they executed instantaneously at some unique
point in time, and aborted transactions, as if they did
not execute at all.

Preserving real-time order : If a transaction Ti commits be-
fore a transaction Tj starts, then Ti must appear as if
it executed before Tj . Particularly, if a transaction T1

modifies an object O and commits, and then another
transaction T2 starts and reads O, then T2 must read the
value written by T1 and not an older value.

Preluding inconsistent views : The state (of shared objects)
accessed by live transactions must be consistent.

First, we prove some key properties of NBFEB-STM.

Lemma 3. A locator Li with timestamp ctsi does not have
any links/references to another locator Lj with a lower times-
tamp ctsj < ctsi.

Proof. There is only the next pointer to link between loca-
tors. The next pointer of locator Li points to a locator Lj only
if Lj .cts is not less than Li.cts (lines 7W and 12W, Algo-
rithm 8). Note that for each locator Li, the commit timestamp
Li.tx.cts of its corresponding transaction Li.tx (if Li.tx com-
mitted) is the commit timestamp of L’s new data and thus it is
always greater than the commit timestamp Li.cts of Li’s old
data.

Lemma 4. The locator returned by FINDHEAD(O) (Algo-
rithm 9) is the head H of O’s locator list at the time-point
FINDHEAD found H.next =⊥ (line 5F).

Proof. Let L be the locator returned by FINDHEAD. Since
the next pointer of a new locator is initialized to⊥ (line 27W,
Algorithm 8) before the locator is appended into the list by
TFAS (line 32W), FINDHEAD will find a locator L whose
next pointer is ⊥ at a time-point tp (line 5F). The L locator
is either the head at that time or a reset locator (due to lines
37W and 39W, Algorithm 8).

If L is a reset locator, start′latest.cts > L.cts holds (line
10F) since a locator is reset (e.g. oldLoc at line 37W or Lj

at line 39W) only after a locator with a higher timestamp
(e.g. newLoc) has been written into the O array (line 36W).
Since FINDHEAD atomically reads the O array after it found
L.next =⊥, it will observe the higher timestamp. This makes
FINDHEAD retry and discard L, a contradiction to the hypoth-
esis that L is returned by FINDHEAD. Therefore, the L loca-
tor returned by FINDHEAD must be the head at the time-point
FINDHEAD found L.next =⊥ (line 5F).

Since a thread must get a result from FINDHEAD (line
3W) before it can consult the contention manager (line 16W),



FINDHEAD must be lock-free (instead of being obstruction-
free) in order to guarantee the obstruction-freedom for trans-
actions.

Lemma 5. (Lock-freedom) FINDHEAD(O) will certainly re-
turn the head of O’s locator list after at most N repeat-until
iterations unless a concurrent thread has completed a trans-
action and subsequently has started a new one, where N is
the number of concurrent threads updating O.

Proof. From Lemma 4, any locator returned by FINDHEAD(O)
is the head of O’s locator list. Therefore, we only need to
prove that FINDHEAD(O) will certainly return a locator after
at most N iterations unless a concurrent thread has completed
a transaction and subsequently has started a new one.

We prove this by contradiction. Assume that FINDHEAD(O)
executed by thread ti, does not return after N iterations and
no thread has completed its transaction since FINDHEAD started.
Since each thread tj updates its own item O[j] only once
when opening O for update (line 36W, , Algorithm 8), at
most (N − 1) items j of O, j 6= i, have been updated since
FINDHEAD(O) started.

First we prove that FINDHEAD(O) will return in the iter-
ation during which no item of O is updated between the first
atomic read (line 2F) and the second atomic read of the O
array (line 8F).

Indeed, since each transaction successfully appends its own
locator to the head of O’s locator list only once when open-
ing O for update (line 32W), at most (N − 1) locators are
appended to O’s locator list after the first scan. Therefore,
FINDHEAD will certainly find a locator L such that L.next 6=⊥
(line 5F) in the current repeat-until iteration. Note that for
each next pointer, only the first transaction executing TFAS
on the pointer, manages to append its locator to the pointer.

Since (1) the next pointer of a locator Li points to a loca-
tor Lj only if Lj .cts ≥ Li.cts (cf. Lemma 3) and (2) FIND-
HEAD found L by following the next pointers starting from
startlatest.ptr (lines 3F-6F), we have L.cts ≥ startlatest.ptr.cts.
Note that startlatest.ptr.cts = startlatest.ts (line 36W). Since
no item of O is updated between the first scan (line 2F) and
the second scan of the O array (line 8F), the items with high-
est timestamp of both scans are the same, i.e. startlatest =
start′latest. Therefore, L.cts ≥ start′latest.ts holds (line
10F) and L is returned.

Since FINDHEAD executed by thread ti does not return af-
ter N iterations due to hypothesis, it follows that at least N
items have been updated since FINDHEAD started, a contra-
diction to the above argument that at most (N−1) items have
been updated since FINDHEAD started.

Lemma 6. (Instantaneous commit) TFAS-LSA guarantees that
committed transactions appear as if they executed instanta-
neously and aborted transactions appear as if they did not
execute at all.

Proof. Similar to the DSTM [30] and LSA-STM [43], the
NBFEB-STM uses the indirection technique that allows a trans-

action Tj to commit its modifications to all objects in its write-
set instantaneously by switching its status from Active to
Committed. Its committed status must no longer be changed.
NBFEB-STM uses the TFAS primitive (Algorithm 1) to achieve
the property (line 3C, Algorithm 10). Since the flag of the
Tj .status variable is false (or 0) when the transaction starts
(line 1S, Algorithm 6), only the first TFAS primitive can
change the variable. If Tj manages to change the Tj .status
variable to Committed, the variable is no longer able to be
changed using TFAS until the transaction object Tj is re-
claimed by the garbage collector. Note that even if thread tj
completed transaction Tj and has started another transaction
T ′j , the transaction object Tj will not be reclaimed until all the
locators keeping a reference to Tj are reclaimable.

Since active transactions Tj make all changes on their own
copy Tj .new of a shared object O before their status is changed
from Active to either Aborted or Committed, aborted trans-
actions do not affect the value of O.

The two other correctness criteria for transactional mem-
ory are precluding inconsistent views and preserving real-
time order [25]. Since TFAS use the lazy snapshot algorithm
LSA [43], the former will follow if we can prove that the
LSA algorithm is integrated correctly into NBFEB-STM.

Lemma 7. The versions kept in N locators O[j].ptr, 1 ≤
j ≤ N , for each object O is enough for checking the validity
of a transaction T using the LSA algorithm [43], from the
correctness point of view.

Proof. The LSA algorithm requires only the commit times-
tamp (i.e. bOCT c 3) of the most recent version (i.e. OCT

4) of each object O at a timestamp CT when it checks the
validity of a transaction T . The older versions of O are not
required for correctness - they only increase the chance that a
suitable object version is available.

We will prove that by atomically reading the O object/array
at the timestamp CT to a local variable V as at line 2F in Al-
gorithm 9, LSA will find the commit timestamp bOCT c.

A new version of O is created and becomes accessible by
all transactions when a transaction Tj commits its modifica-
tion Lj .new (stored in locator Lj) to O by changing its status
from Active to Committed (line 3C, Algorithm 10). Since
every transaction Tj writes its locator Lj to O[j].ptr when
opening O for update (line 36W, Algorithm 8) (i.e. before
committing), at least one of the locators O[j].ptr, 1 ≤ j ≤ N ,
must contain the most recent version of O at the timestamp
CT when O is read to V .

Since a transaction Tj updates O[j] with its new locator
Lj only after successfully appending Lj to the head of O’s
locator list, at most one of the locators O[j].ptr, 1 ≤ j ≤ N,
is the head of the list at the timestamp CT when the snapshot
V of O is taken. Other locators V [j].ptr that are not the head,
have their transactions committed/aborted before CT . Note

3Term bOtc denotes the time of most recent update of object O performed
no later than time t [43].

4Term Ot denotes the content/version of object O at time t [43].



that as soon as the transaction of a locator committed/aborted,
the locator’s versions together with their commit timestamp is
no longer changed. If transaction V [i].ptr.tx committed, the
version kept in locator V [j].ptr is V [j].ptr.new with com-
mit timestamp V [j].ptr.tx.cts, the commit timestamp of the
transaction. If transaction V [j].ptr.tx has been aborted or
is active, the version is V [j].ptr.old with commit timestamp
V [j].ptr.cts. The only possible version with commit times-
tamp higher than CT is V [h].ptr.new where V [h].ptr was
the head at the timestamp CT when V was taken and then
transaction V [h].ptr.tx committed. In this case, V [h].ptr.old
is the most recent version at CT and its commit timestamp is
V [h].ptr.cts.

Therefore, by checking the commit timestamps of the ver-
sions kept in each locator V [j].ptr, 1 ≤ j ≤ N, against CT ,
LSA will find the commit timestamp bOCT c of the most re-
cent update of object O performed no later than CT .

Lemma 8. The number of versions available for each object
in NBFEB-STM is up to (N + 1), where N is the number of
threads.

Proof. For each object O, each thread tj keeps a version of O
that has been accessed most recently by tj , in locator O[j].ptr
(or Lj for short). If tj’s latest transaction Tj committed ∀j ∈
[1, N ], the Lj .old is an old version of O with validity range
[Lj .cts, Lj .tx.cts) 5. Therefore, if every thread has its latest
transaction committed, each object O updated by N threads
will have N old versions with validity ranges, additional to its
latest version.

Lemma 9. (Consistent view) NBFEB-STM precludes incon-
sistent views of shared objects from live transactions.

Proof. Since the LSA lazy snapshot algorithm is correctly in-
tegrated into NBFEB-STM (Lemma 7), the lemma follows.

Definition 1. The value of a locator L is either L.new if
L.tx.status = Committed, or L.old otherwise.

Lemma 10. In each O’s locator list, the old value L′.old of
a locator L′ is not older than the value of its previous locator
6 L.

Proof. Let L′′ be the locator pointed by L.next. Since L.tx.status
must be either Committed or Aborted (but not Active) be-
fore L′′ is appended to L.next (lines 5W-24W, Algorithm 8),
L′′.old is L’s value, which is either L.new if L.tx.status =
Committed (line 6W) or L.old if L.tx.status = Aborted
(line 11W). That means L′′.old is not older than L’s value.
Arguing inductively for all locators on the directed path from
L to L′, the lemma follows.

5The validity range of a version vi of an object O is the interval from the
commit time of vi to the commit time of the next version vi+1 of O [43].

6A locator L is a previous locator of a locator L′ if starting from L we
can reach L′ by following next pointers.

Lemma 11. (Real-time order preservation) NBFEB-STM pre-
serves the real-time order of transactions.

Proof. We need to prove that if a transaction T1 modifies an
object O and commits and then another transaction T2 starts
and reads O, T2 must read the value written by T1 and not an
older value [25]. Namely, T1 is the most recent transaction
committing its modification to O before T2 reads O.

First we prove that T2 reads the value v1 written by T1 if
T2 opens O for read (cf. OPENR, Algorithm 7). In the proof
of Lemma 7, we have proven that the value of O read at a
timestamp CT by LSA is the most recent value of O at that
timestamp. Since T1 is the most recent transaction commit-
ting its modification to O before T2 reads O, v1 is in the set of
available versions of O read by LSA_OPEN (line 1R). Since
T1 commits before T2 starts and reads O, the commit times-
tamp of v1 is less than the upper bound of any validity range
RT2

7 chosen by the LSA_OPEN (i.e. bOCT c ≤ Tmax in
terminology used by LSA [43].) Therefore, the LSA_OPEN
in OPENR will return v1, which is subsequently returned by
OPENR (line 5R)

We now prove that T2 reads the value v1 written by T1 if
T2 opens O for read (cf. OPENW, Algorithm 8). Particularly,
we prove that the old value of T ’s new locator (lines 6W and
11W) is v1.

Let p1 and p2 be the threads executing T1 and T2, re-
spectively, L1 be the locator containing T1’s modification (in
L1.new) that is committed to O and v2 be the value of O read
by T2. The v2 value is the value of the head H of O’s locator
list returned from FINDHEAD executed by T2, which is either
H.new if H.ts.status = Committed or H.old otherwise
(line 6W or 11W).

Since T1 committed before T2 started, H is the head of O’s
locator list that includes L1 (cf. Lemma 4). Note that since T1

is the latest transaction committing its modification to O, all
locators L′ that have ever been reachable from L1 via next
pointers, have the most recent timestamp/value (cf. Lemma
10) and thus will not be reset (lines 38W-39W, Algorithm 8).
Since there is a directed path from L1 to H via next pointers,
it follows from Lemma 10 that the value of H is not older
than that of L1.

On other hand, since T1 is the latest transaction commit-
ting its modification to O before T2 reads O, there is no value
of O that is newer than that of L1. Therefore, the value of H
is the value of L1. That means T2 reads the v1 value written
by T1.

Finally, we need to prove that LSA_OPEN at line 28W
accepts v1. Indeed, since v1 is the most recent update of O
and T1 commits before T2 starts, the commit timestamp of v1

is less than the upper bound of any validity range RT2 chosen
by the LSA_OPEN (i.e. bOCT c ≤ Tmax). Therefore, the
LSA_OPEN at line 28W accepts v1.

7The validity range RT of a transaction T is the time range during which
each of the objects accessed by T is valid [43].



Lemma 12. For each object O, there are at most 4N locators
that cannot be reclaimed by the garbage collector at any time-
point, where N is the number of update threads.

Proof. Let Li be a locator created by a thread pi. A locator
Li cannot be reclaimed by the garbage collector if it is reach-
able by a thread. In NBFEB-STM, a locator Li is reachable if
it is i) pi’s new locator newLoc, ii) pi’s shared locator, which
is referenced directly by O[i].ptr, and iii) pi’s old locators
oldLoc that is reachable by other threads. pi’s shared loca-
tor will become one of pi’s old locators if O[i].ptr is updated
with pi’s new locator (line 36W, Algorithm 8). At that mo-
ment, pi’s new locator becomes pi’s shared locator. If there
is no thread keeping a direct/indirect reference to pi’s old lo-
cators, these locators are ready to be reclaimed (i.e. unreach-
able) when pi returns from the OPENW procedure.

Let Cp
i and Co

i be the chains of locators (linked by their
next pointers) that cannot be reclaimed due to thread pi and
O[i], respectively. The Cp

i chain starts at the locator that is
referenced directly by pi (not directly by O) and ends at either
the locator whose next pointer is⊥ or the locator whose next
locator is referenced directly by another thread or O. The
Co

i chain starts at the locator that is referenced directly by
O[i] and ends at either the locator whose next pointer is ⊥ or
the locator that is referenced directly by another thread or O.
Note that there are no two locators whose next pointers point
to the same locator Lj since pj successfully appends Lj into
the head of the locator list only once (line 32W, Algorithm 8).

At any time, each thread pi has at most one Cp
i and one Co

i .
The Cp

i starts either with pi’s new locator (before assignment
O[i] ← newLoc at line 36W, Algorithm 8) or with pi’s old
locator (after this assignment). Since pi has a unique item in
the O array, it has at most one Co

i . Therefore, there are at
most 2N chains.

We will prove that if pi has three locators participating in
chains (of arbitrary threads), at least one of the three locators
must be the end-locator of a chain. Indeed, during the execu-
tion of the OPENW procedure (Algorithm 8), pi creates only
one new locator (line 1W) in addition to its locator O[i].ptr,
if any. If pi has three locators that are participating in chains,
at least one of them is pi’s old locator Lo resulting from one
of pi’s previous executions E of OPENW. Since pi sets the
next pointer of its old locator oldLoc to ⊥ before returning
from E (line 37W), Lo’s next pointer is ⊥. That means Lo is
the end-locator of a chain.

It then follows that each thread has at most two non-end lo-
cators participating in all the chains. The number of non-end
locators in all the chains is at most 2N . Since there are at most
2N chains, there are at most 2N end-locators. Therefore, the
total number of locators in all the chains is 4N .

Theorem 1. (Space complexity) The space complexity of an
object updated by N threads in NBFEB-STM is Θ(N), the
optimal.

Proof. Since each object O in NBFEB-STM is an array of N
items (cf. Algorithm 6), the space complexity of an object is

Ω(N).
From Lemma 12, for each object O there are at most 4N

locators that cannot be reclaimed by the garbage collector at
any point in time. Since each locator L references to at most
one transaction object L.tx (cf. Figure 2), the space complex-
ity of an object is O(N).

Due to the instantaneous commit requirement of transac-
tional memory semantics [25], when opening an object for up-
date, each thread/transaction in any STM system must create
a copy of the original object. Therefore, the space complexity
of an object updated by N threads is O(N) for all STM sys-
tems. It follows that the space complexity Θ(N) of an object
updated by N threads in NBFEB-STM is optimal.

Definition 2. Contention level CLl,t of a memory location
l at a timestamp t is the number of requests that need to be
executed sequentially on the location by a memory controller
(i.e. the number of requests for l buffered at time t).

Definition 3. Contention level of a transaction T that starts
at timestamp sT and ends (i.e. commits or aborts) at times-
tamp eT is maxsT≤t≤eT

CLl,t for all memory locations l ac-
cessed by T

Lemma 13. (Contention reduction) Transactions using NBFEB-
STM have lower contention levels than those using CAS-
based STMs do.

Proof. (Sketch) Since CAS is not combinable [32, 10], M
conflicting CAS primitives on the same synchronization vari-
able, like TMObj pointer or a transaction’s status variable
in CAS-based STMs [30, 36, 43], issue M remote-memory
requests to the corresponding memory controller. Since TFAS
is combinable, the remote-memory requests from M conflict-
ing TFAS primitives to the same variable, like the next pointer
or a transaction’s status variable in NBFEB-STM, can be
combined into only one request to the corresponding mem-
ory controller. Therefore, the combinable primitive signifi-
cantly reduces the number of requests for each memory loca-
tion buffered at the memory controller.

5 Garbage Collectors

In this section, we present a non-blocking garbage collec-
tion algorithm called NB-GC that can be used in the context of
NBFEB-STM. The NB-GC algorithm does not requires syn-
chronization primitives other than reads and writes while it
still guarantees the obstruction-freedom property for appli-
cation threads (or mutators in the memory management ter-
minology). The obstruction-freedom here means that a halted
application-thread cannot prevent other application-threads from
making progress.

Like previous concurrent garbage collection algorithms for
multiprocessors [4, 7, 8, 11, 13, 16, 18, 17, 19, 33, 35, 44, 46,
47, 26], the new NB-GC algorithm is a priority-based garbage



collection algorithm in which the collector thread is a privi-
leged thread that may suspend and subsequently resume the
mutator threads. The NB-GC algorithm is an improvement
of the seminal on-the-fly garbage collector [16, 17, 18] using
the sliding view technique [35] called SV-GC. Unlike the SV-
GC algorithm, the NB-GC algorithm allows the collector to
suspend a mutator at any point in the mutator’s code (even
in the reference slot update and object allocation procedures).
This prevents a mutator from blocking the collector and con-
sequently from blocking other mutators.

In the concurrent garbage collection model, there are two
kind of threads: application threads (e.g. the mutators) that
perform user programs (error-prone codes), and privileged
threads with higher priority (e.g. the collector) that perform
system tasks (error-free codes). Whereas the application threads
can be delayed/preempted arbitrarily, the system threads when
running will not be preempted by the application threads. NB-
GC guarantees obstruction-freedom for application threads,
which usually perform users error-prone codes. Namely, a
halted application-thread will not prevent other application-
threads from making progress via blocking the garbage col-
lector. The model, in some sense, covers the non-blocking
garbage collection algorithms [29, 38] that, at the first look,
seem not to require privileged threads. In fact, the non-blocking
garbage collectors require strong synchronization primitives
like compare-and-swap whose atomicity is guaranteed by hard-
ware threads, a kind of privileged threads.

The SV-GC algorithm using the sliding view technique
[35] does not need synchronization primitives other than reads
and writes. However, it requires that the mutator be sus-
pended only at a safe point, particularly it requires that the
mutator not be stopped during the execution of a reference slot
update nor new object allocation. If a mutator M is preempted
during such an execution, the collector cannot progress since
it cannot suspend the mutator M . This would prevent the
other mutators from making progress due to lack of mem-
ory. Therefore, the SV-GC collector does not guarantee the
obstruction-freedom for mutators and must rely heavily on
the scheduler to avoid such a scenario. 8

The basic idea of the sliding view technique in the SV-
GC algorithm is as follows. At the beginning of a collection
cycle k, the collector takes an asynchronous heap snapshot
Sk of all (heap) reference slots s. By comparing snapshot
Sk−1 and Sk, the collector knows which objects have their
reference counter changed during the interval between the two
collections. For instance, if in the interval a reference slot s
is sequentially assigned references to objects o0, o1, · · · , on,
where (s, o1) is recorded in Sk−1 and (s, on) in Sk, the col-
lector only needs to execute two reference count updates for
o0 and on: RC(o0)−− and RC(on)++, instead of 2n refer-
ence count updates for o0, on and (n− 1) immediate objects
oi, 1 ≤ i ≤ (n − 1): RC(o0) − −, RC(o1) + +, RC(o1) −

8In order to reclaim unreachable cyclic structures of objects, the
reference-counting collectors use either a backup tracing collector [7] infre-
quently or a cycle collector [40]. Both the efficient backup tracing collector
[7] and cycle collector [40] use the sliding view technique.

Algorithm 11 GENERICCOLLECTOR: the main stages of a
collection cycle using the sliding view technique

1: Raise the Snoopi flag of each mutator;
2: Obtain a sliding view (concurrently with mutator’s com-

putation);
3: For each mutator Mi: 1) Suspend Mi; 2) Turn the Snoopi

flag off; 3) Mark as local objects O directly reachable
from Mi’s roots; 4) Resume Mi;

4: Update the reference counter O.rc of each object O;
5: Reclaim objects O that are not marked local and O.rc =

0; For each descendent D of a reclaimed object, D.rc −
−; D is checked for reclamation like O. This operation
continues recursively until there are no objects that can
be reclaimed.

−, · · · , RC(on) + +. The main stages of the generic sliding
view algorithm [35] are shown in Algorithm 11. The algo-
rithm is generic in the sense that it may use any mechanism
for obtaining the sliding view. Instead of using an atomic
snapshot algorithm [1] to obtain a consistent view of all heap
reference slots, the algorithm uses a much simpler mechanism
called snooping [16] to avoid wrong reference counts that re-
sult from an inconsistent view. For instance, if the only ref-
erence to an object O is moving from slot s1 to slot s2 when
the view is taken, the view may miss the reference in both
s1 (reading after modification) and s2 (reading before modi-
fication). To deal with the problem, the snooping mechanism
marks as local any object that is assigned a new reference in
the heap while the view is being read from the heap. The
marked objects are left to be collected in the next collection
cycle. The reader is referred to [35] for the complete SV-GC
algorithm.

We found that the SV-GC algorithm [35] can be easily im-
proved to provide obstruction-freedom for mutators using the
helping technique [9]. Basically, if the collector suspends a
mutator during its execution of a reference slot update or ob-
ject allocation procedure, the collector helps the mutator by
completing the procedure on behalf of the mutator and mov-
ing the mutator’s program counter (PC) to the end of the pro-
cedure before resuming the mutator. Note that in the con-
current garbage collection model there is only one collector
that can suspend a given mutator and the collector suspends
only one mutator at a time. The improved algorithm provides
obstruction-freedom for mutators (or application-threads) by
preventing mutators from blocking the collector and conse-
quently from blocking other mutators. It is obstruction-free
in the sense that progress is guaranteed for each active muta-
tor regardless of the status of the other mutators.
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