Abstract

Reactive diffracting trees are efficient distributed objects that support synchronization, by distributing sets of memory accesses to different memory banks in a coordinated manner. They adjust their size in order to retain their efficiency in the presence of different contention levels. Their adjustment is sensitive to parameters that have to be manually determined after experimentation. Since these parameters depend on the application as well as on the system configuration and load, determining their optimal values is difficult in practice. Moreover, the adjustments are done one level at a time, hence the cost of multi-level adjustments can be high.

This paper presents a new method for reactive diffracting trees, without the need of hand-tuned parameters. The new self-tuning trees (ST-trees) can balance, in an online manner, the trade-off between the tree-traversal latency and the latency due to contention on accessing the leaf nodes (i.e. the nodes where the desirable computation takes place). Moreover, the paper presents a data structure that enables the trees to grow or shrink by several levels in one adjustment step. The behavior of the reactive diffracting trees is illustrated in the paper via experiments performed on a well-known ccNUMA multiprocessor system. The experiments study the new self-tuning trees, also in connection with the original hand-tuned reactive diffracting trees. The experiments have showed that the new self-tuning trees are efficient, and that they react in the same way (i.e. select the same tree depth for the same contention level) as the hand-tuned trees, while they are able to adjust quicker than the latter (as they are able to grow or shrink by several levels in one adjustment step).

© 2007 Elsevier Inc. All rights reserved.

Keywords: Synchronization; Concurrent programming; Dynamic data structures; Distributed data structures; Trees

1. Introduction

It is hard to design distributed synchronization objects that perform efficiently over a wide range of contention conditions. Typically, simple centralized data structures are sufficient for low concurrency levels, for instance test-and-test-and-set locks with exponential backoff [1,3,12,17]; however, at higher levels of concurrency, sophisticated data structures are needed to reduce contention by distributing concurrent memory accesses to different banks, for instance queue-locks [3,12,21], combining trees [29,11], counting pyramids [27,28], combining funnels [25], counting networks [4,5] and diffracting trees [24,23].

Whereas queue-locks aim at reducing contention on locks generally, the other sophisticated data structures focus on specific problems such as counting and balancing. Combining trees [29,11] implement low-contention fetch-and-add operations by combining requests along paths upward to their root and subsequently distributing results downwards to their leaves. The idea has been developed to counting pyramids [27,28] that allow nodes to randomly forward their request to a node on the next higher level and also allow processors to select their initial level according to their request frequency. A similar idea has been used to develop combining funnels [25].

Opposite to the idea of combining requests, diffracting trees [24,23] reduce contention for counting problems by distributing requests (tokens) downward to the leaves; each leaf works as a counter, assigning numbers to the tokens that go through it, in a way such that the set of numbers received by all the tokens is the same as the set of numbers that would have been issued by a single counter. Another approach for counting problems is counting networks [4,5], which may have lower contention at each node, since they can have multiple entry points for the tokens. Linearizability [16] in counting networks with and without timing assumptions has been studied in [20,19].
Empirical studies using Proteus [7], a multiprocessor simulator, have showed that diffracting trees are superior to counting networks and combining trees under high-contention [24].

Diffracting trees essentially distribute concurrent memory accesses to different banks, in a coordinated manner. Each process accessing the tree can be considered as leading a *token* that follows a path with nodes from the root to a leaf. Each node receives tokens from its single input (coming from its parent node) and sends tokens to its outputs. The node is called a *balancer* and acts as a *toggle mechanism*, which, given a stream of input tokens, alternately forwards them to its outputs, from left to right (i.e. send them to the left and right child nodes, respectively). The result is an even distribution of tokens at the leaves. Diffracting trees have been introduced for *counting problems*, and hence the leaves are counters, which can be implemented by shared variables whose access is coordinated via, e.g. some queue-lock-based method. Yet the fixed-size diffracting tree is optimal only for a small range of contention levels. To solve this problem, Della-Libera and Shavit proposed reactive diffracting trees, where nodes can shrink (to a single counter/leaf) or grow (to subtrees with counters as leaves) according to their local contention [8]. The idea is to be able to have small traversal latencies (i.e. short paths of nodes from the root to the leaves) in low-load situations, and also larger throughput in high-load situations (by distributing the tokens among a larger set of leaf counters).

The reactive diffracting trees as proposed in [8], use a set of *hand-tuned* parameters to make the reactive decisions; these parameters are the folding/unfolding-thresholds and the time-interval for consecutive reactions. The parameter values depend on the multiprocessor system in use, the applications using the data structure and, in a multiprogramming environment, the system utilization by the other concurrent programs. The parameters must be manually tuned using experimentation and information that is not easily available (e.g. future contention characteristics). Besides, the tree can shrink or grow by only one level at a time, making multi-level adjustments costly.

The main challenge in designing reactive objects in multiprocessor/multiprogramming systems is to deal with unpredictable changes in the execution environment. Therefore, reactive schemes using *fixed* parameters cannot be an optimal approach in *dynamic* environments such as multiprogramming systems. An efficient reactive object should not rely on hand-tuned parameters and should react fast. As was also mentioned in [8], it is worth investigating other ways of making reaction-decisions, besides the hand-tuned parameter-based method presented in that article.

In this work we show that it is possible to construct such efficient reactive objects that are self-tuning. In particular, we present a tree-type distributed data object that has the same semantics as the reactive diffracting tree and can react without the need of manual tuning. The new self-tuning tree (ST-tree), like the former, hand-tuned tree, is aimed for applications which need such concurrent data objects, to distribute concurrent memory accesses to different memory- or computation-banks in a coordinated manner (i.e. the leaves can be computing some other function, instead of counting).

Since the latter has been introduced in the context of counting problems, the same context is kept in this paper. To circumvent the need of hand-tuned parameters, we analyze the problem of balancing the trade-off between the two key sources of latency for each token—namely latency due to traversal of the path of intermediate nodes (balancers) and latency due to contention to access a counter node (leaf)—as an online decision problem and subsequently design an efficient online solution. Moreover, we design a new data-structure that enables low-overhead multi-level adjustment: it can shrink and grow by multiple-levels at a single adjustment step, allowing for higher efficiency in performing the adjustments instructed by the reactive decisions. We also present here an extended experimental study on a commercial ccNUMA multiprocessor. The study showed that the new self-tuning trees are efficient, that they decide to react in the same way (i.e. select the same tree depth for the same contention levels) as the original hand-tuned trees, while they are able to adjust quicker than the latter, as they are able to grow or shrink by several levels in one adjustment step.

The rest of the paper is organized as follows. The next section provides the description of the problem and some background information on synchronization and online methods. Section 3 presents the data-structure and the algorithm for the coordination in the ST-trees. In Section 4 we describe the online method to make the reactive decisions in ST-trees, including the analysis that justifies the decision criteria. In Section 5 we give detailed pseudocode and description for the implementation of the ST-trees. Section 6 provides the correctness proof of the ST-trees construction. Section 7 presents an experimental study of the ST-trees, in connection with the original hand-tuned reactive diffracting tree on the SGI Origin2000 platform, and elaborates on a number of properties of the ST-trees. Finally, Section 8 concludes this paper.

2. Problem description and background

The definitions for (reactive) diffracting trees are well-known from the articles that introduced them [24,23,8]. For reasons of self-containment, we include here the definitions of the problems and the terms used throughout the paper.

2.1. Diffracting and reactive-diffracting trees

A (f_{in}, f_{out})-balancer is a computing element receiving tokens through its f_{in} input wires, and forwarding them to its f_{out} output wires; f_{in} and f_{out} are the fan-in and fan-out of the balancer, respectively. Intuitively, a balancer is like a toggle mechanism which, given a stream of input tokens (which may arrive on the balancer’s input wires at arbitrary times), alternately forwards them to its output wires, thus balancing the number of tokens that traverse the balancer. The *state* of a balancer at a given time is the collection of tokens on each one of its input and output wires. A balancing network [4,5], is a network of balancers, where pairs of balancers (B_i, B_j) are connected by having some output wire(s) of B_i connect with some input wire(s) of B_j. The input (rep. output) wires of balancers...
that are not connected with other balancers' wires form the input (resp. output) wires of the network. In a shared-memory system implementation, balancers typically are records, while wires are pointers from one record to another, having tokens (processes) visiting them asynchronously.

A balancing network satisfies the step property, if when there are no tokens present inside the network and if \(out_i \) denotes the number of tokens that have been output at the network's output wire \(i \), \(0 \leq out_i - out_j \leq 1 \) for any pair \(i \) and \(j \) of output wires such that \(i < j \) (i.e. if one draws the tokens that have exited from each output wire as a stack of boxes, the combined outcome will have the shape of a single step).

The counting tree [24,23] is a special type of a balancing network consisting of \((1, 2)\)-balancers, interconnected as follows: the input wire of the root balancer, which is the single balancer on level 0 of the tree, is the entry point for the tokens that enter the network; each one of the two output wires of the root is connected to the input wire of the corresponding child-balancer at level 1 of the tree; the above is repeated recursively, until the leaves of the tree. The output wires are enumerated from left to right so that the output wires extending from the left or 0 (resp. right, or 1) wire of the root form the even (resp. odd) output wires of the tree. It has been shown [24,23] that the counting tree satisfies the step property. Such a tree can compute a function on the tokens that have traversed it (e.g. enumerate the tokens), by attaching corresponding computing elements (e.g. counters) to each of its output wires; each of these counters associate numbers to tokens that exit from it, in a way such that the sequence of tokens that exit through output wire \(i \) of the tree receive numbers \(f(i), f(i + w_{out}), f(i + 2w_{out}), f(i + 3w_{out}), \ldots \), where \(w_{out} \) is the total number of output wires of the counting tree and \(f \) is an arbitrary function, which may be a time-consuming function. For counting problems, \(f(k) \) returns \(k \).

Diffracting trees [24,23] are an implementation of such trees, where the tokens entering each balancer make use of an elimination method [22], that has the potential to evenly balance each pair of incoming tokens (and direct them left and right) without accessing the (single) toggle-bit (that can otherwise be used in order to implement such a balancer). Diffracting trees have been introduced in the context of counting problems, and hence the leaves are counters, which can be implemented by shared variables whose access is coordinated via, e.g. some queue-lock-based method. The same context is kept in this paper.

Fig. 1(A) depicts a diffracting counting tree. In a general execution, leaves \(C4, C6, C5 \) and \(C7 \) return values \(f(4k) \), \(f(4k + 1) \), \(f(4k + 2) \) and \(f(4k + 3) \), respectively, where \(k \) is the number of processors that have visited the corresponding leaf and \(f \) in the counting problem context returns \(k \). Tokens passing one of these leaves receive integers \(i, i + 4, i + 2 \times 4, \ldots \), where \(i \) is the initial value of the leaf. An example execution is as follows. Assume that the toggle-bits of \(B1, B2 \) and \(B3 \) are 0 at the beginning. Assume also that tokens \(A, B, C, D, E, F \) arrive in that order. When visiting \(B1 \), token \(A \) switches \(B1 \)'s toggle-bit from 0 to 1 before going to \(B2 \) (branch 0 of \(B1 \)). Then, it switches \(B2 \)'s toggle-bit to 1 before going to \(C4 \) and getting value 0. Similarly, token \(B \), when visiting \(B1 \), switches \(B1 \)'s toggle-bit from 1 back to 0 before going to \(B3 \) (branch 1 of \(B1 \)). Then, it switches \(B3 \)'s toggle-bit to 1 before going to \(C6 \) and getting value 1. Consequently, tokens \(A, B, C, D, E \) and \(F \) receive integers 0, 1, 2, 3, 4 and 5, respectively.

Della-Libera and Shavit in [8] report, using a detailed experimental study, that (i) under low-load scenarios the throughput of diffracting trees is significantly higher when the tree is of lower depth (as the tokens do not need to traverse a long path of balancers from the root to the leaves before exiting); and that (ii) in high-load scenarios the throughput is significantly higher when the tree is deeper, as the tokens can exit concurrently via a larger number of leaves (i.e. they do not need to spend time competing with many other tokens for getting counted at the leaves). Having manifested this trade-off, they suggested to extend the trees into reactive diffracting trees, whose depth can be adjusted according to the load, aiming at balancing the trade-off, in order to maximize throughput by optimizing the tokens' latency which is due to (i) traversal of balancers and (ii) competition (contention) at the leaves/counters. Assuming that the maximum contention in the tree is bounded by the number of processors in the system \(P \), the maximum depth of the tree, in order to allow for minimum contention at the leaves, is bounded by \(\log P \). Similarly, for the case of minimum contention, the tree should better degenerate to a single counter.

Note that the object is distributed, hence, decisions for reaction are to be made locally: each leaf (i.e. the process/token

![Fig. 1. A diffracting tree (A) and a reactive diffracting tree (B).](image-url)
visiting it) should be able to decide to shrink or grow, according to its local contention, in order to attain optimized performance/throughput\(^1\) of the tree [8].

In response to a reactive decision the tree is adjusted. Such adjustments can cause situations when the tree is irregular (i.e. not all its leaves are at the same level). In order to count tokens correctly (i.e. to assign numbers to exiting tokens), the counters at the leaves of an irregular tree have to take into account their level at the tree. In particular, a counter/leaf \(C\) at level \(l\) with initial value \(\text{init}(C)\) must issue values \(\text{init}(C) + 2^l, \ldots, \text{init}(C) + i \cdot 2^l, \ldots\) for the tokens going through it.

As an example consider trees (A) and (B) in Fig. 1, which illustrate a shrinkage adjustment of a reactive diffracting tree. Assume at the beginning the tree has the shape of (A). If the contention on leaves \(C_4\) and \(C_5\) is low (e.g. due to long latency for a token to go from the root \(B_1\) to these leaves), as the nodes along the path can be stored in remote memory banks in a non-uniform-memory-access (NUMA) system, the subtree rooted at \(B_2\) decides to react and the adjustment causes that subtree to shrink into leaf \(C_2\), as depicted in tree (B). After that, if tokens \(A, B, C, D, E\) and \(F\) sequentially traverse the tree (B), three tokens, i.e. \(A, C\) and \(E\) will visit leaf \(C_2\), which issues numbers \(0, 2, 4, \ldots\).

To summarize, a counting/diffracting tree construction should provide processes/tokens with the guarantee that: for any \(k\), if \(k\) tokens enter the tree then when all the \(k\) tokens exit the tree, the tokens will receive sequential numbers, i.e. numbers in the sequence \(1, \ldots, k\), without “omissions” or “duplicates”. Furthermore, a dynamic tree construction must include a procedure for making reactive decisions—i.e. for deciding the tree size that is appropriate for the degree of contention—and a procedure to do the corresponding adjustments. The adjustments consist of (i) modifying the size of the tree, (ii) assigning proper \(\text{init}(C)\) values to the new counters/leaves in the adjusted tree, based on the reactive decisions, and (iii) providing the tokens that traverse the modified parts of the tree with a guarantee about the correctness of the received values.

The correctness of the returned values as well as of the procedure to do adjustments implies the need for proper coordination among processes. For the ST-tree construction we design a data structure that allows for efficient adjustments, and for the coordination we employ fine-grained locking (e.g. to protect access the leaves/counters), as well as lock-free synchronization procedures (e.g. to traverse the balancers). In the following Section 2.2 we elaborate on the terms related with the synchronization, while the algorithm itself is given in Section 3.

The requirement for a reaction–decision procedure involves resolving a problem where, if we had some information about the future, we could find an optimal solution, but it is impossible to obtain that kind of information. Such problems can be addressed with on-line algorithms and this is also the approach that we took in the ST-tree construction. In Section 2.3 we elaborate on the terms related with online methods, while our online reaction–decision making algorithm is explained in Section 4.

\(^1\)The terms “performance” and “throughput” are used interchangeably.

TAS(\(x\))

\[
\text{atompically}\{ \text{oldx} := x; x := 1; \text{return oldx}; \} /*\text{init: } x := 0 */
\]

CAS(\(x, \text{old, new}\))

\[
\text{atompically}\{ \text{oldx} := x; \text{if}(x = \text{old}) \text{then } \{x := \text{new}\}; \text{return oldx}; \}
\]

Fig. 2. The TAS and CAS synchronization primitives.

2.2. Lock-free synchronization

Lock-free methods allow multiple processes (or processors or threads) to access shared data at the same time, but without enforcing mutual exclusion [14,6]. They guarantee that regardless of the contention caused by concurrent operations and the interleaving of their steps, at each point in time there is at least one operation which is able to make progress. This is typically achieved with the use of fine-grained synchronization, with attempts to verify non-interfered access to small amounts of shared data and/or to commit updates using certain common synchronization primitives, like test-and-set and compare-and-swap (TAS, CAS; cf. Fig. 2, where \(x\) is a variable and \(\text{old}, \text{new}\) are values). If such an attempt fails, then that process/thread needs to retry. The above may happen due to preemption or due to interleaving by other threads/processes. A method proposed to reduce the fail-retry overhead is the helping-method: an operation that detects that it has interleaved steps with another operation, can help the latter operation to progress before proceeding with its own steps, so as to reduce the fail-retry overhead.

The system model considered in the paper is the shared-memory multiprocessor system. Processors may concurrently lead tokens via the tree, in which, as mentioned earlier in this section, balancers are records, while wires are pointers from one record to another, having tokens (processors) visiting them asynchronously. In each step a processor may read or write an atomic variable or execute a CAS or TAS atomic operation. No assumption on the relative speed between processors is made. The synchronization primitives used in the ST-tree construction, are comparable with those used in the original reactive diffracting tree, which are swap, TAS and CAS [8].

Linearizability [16] is a property that guarantees that although access to the shared data by different processes/processors takes place over a period of time and may be interleaved, the effect is the same as if each process accesses the data in an atomic time-instance and is sequential relative to the others.

2.3. Online algorithms

Online problems are optimization problems where both the input is received online and the output is produced online with the goal of minimizing the cost of processing the input or maximizing the outcome/profit. If we know the whole input in advance, we may find an optimal offline algorithm processing the
whole input with minimal cost or with maximal profit. In order to evaluate how good an online algorithm is, the concept of competitive ratio has been suggested.

Competitive ratio: An online algorithm ALG is considered competitive with a competitive ratio c (or c-competitive) if there exists a constant α so that for any finite input I [26]:

$$OPT(I) \leq c \cdot ALG(I) + \alpha,$$

where $ALG(I)$ and $OPT(I)$ are the profits of the online algorithm ALG and the optimal offline algorithm OPT on the input I, respectively. We focus on the profit-centric aspect, as this is the one of relevance to the goal of the reactive trees. (Note that smaller competitive ratio implies better performance for the online algorithm.)

A common way to analyze an online algorithm is to consider a game between an online player and a malicious adversary. In this game, (i) the online player applies the online algorithm on the input generated by the adversary and (ii) the adversary, with the knowledge of the online algorithm, tries to generate the worst possible input to maximize the competitive ratio c.

For distributed algorithms, besides the unpredictable input, there exists another source of non-determinism, namely the time uncertainty (or schedule), that includes interleaving of process steps [2,15]. It is possible to analyze against a powerful adversary who has knowledge of the global state of the system each time, but it has also been shown that in concurrent systems, a more precise characterization of the competitiveness can be reached when the analysis is done using an adversary who does not have this power [2].

Regarding the reactive decision making in the ST-trees, the point of interest is how good a profit is achieved by the decisions of the online player, namely the ST-tree reactive-decision-making procedure associated with each leaf. The analysis considers that the player has to make a decision based on the current and previous values of the contention at that leaf and it is “opposed” by an adversary who decides on the future input, i.e. adapts the contention in the future steps in a way that will be adverse to the leaf’s decision and incur a larger competitive ratio. The analysis refers to each leaf separately. We elaborate on the power of the adversary and why the above is a justified case, in Section 4, in connection with the presentation and analysis of the reaction-decision method for the ST-trees.

3. The ST-tree construction

In this section we focus on the data structure designed for the ST-trees and the coordination algorithm of the construction, namely the traversal procedure and the procedure to do the adjustments instructed by reactive decisions. The algorithm to make the reactive decisions is detailed in Section 4.

3.1. The tree structure

To adapt to contention variation efficiently, each leaf in the tree should be able to shrink and grow freely to any level suggested by the reactive decision and the adjustment should be able to complete in as small number of steps as possible. These are so because of efficiency reasons, as well as because the contention situation may change during an adjustment, causing conflicting adjustments to start. A complication during adjustments is due to the processors (tokens) concurrently traversing the parts of the tree that are being modified. These processors have to be taken into account in setting the initial values of the counters in the new subtrees. In [8] the problem is addressed by having these processors go back to higher levels of the tree and start traversing again. This, under unfortunate scenarios, may result in an unbounded number of traversals for these processors.

This motivated us to investigate the possibility of a different solution, which minimizes the adjustment (hence, obstruction) time. A basic component of this solution is a new data structure for the tree that uses other types of fine-grain synchronization to take these processors into account when setting the initial values of the counters.

Fig. 3 illustrates the data structure of the self-tuning tree. The squares in the figure are balancers and the circles are leaves. The numbers in the squares and circles are their labels. Each balancer has a matching leaf with the same label number. Symmetrically, each leaf that is not at the lowest level of the tree and start traversing again. This, under unfortunate scenarios, may result in an unbounded number of traversals for these processors.

In a system with n processors, the algorithm needs $n - 1$ balancer nodes and $2n - 1$ leaf nodes. Note that although the ST-tree introduces an auxiliary node (matching leaf) for each balancer, this does not require extra space compared with the original reactive diffracting tree (RD-tree). This is because the terms refer to virtual nodes, introduced only to split the functionality of each node in the RD-tree into two “roles” (or virtual nodes) in the ST-tree: one virtual node is enabled when

![Fig. 3. A self-tuning reactive tree.](image-url)
the node plays the role of a balancer and the other virtual node is enabled when the node plays the role of a leaf. The interplay and synchronization algorithm of “old” and “new” tokens (relative to the point when a node switches from a balancer to a leaf or vice versa) is explained with the algorithms of the expanding and shrinking adjustments in Sections 3.3 and 3.4, while cf. Sections 5.2 and 5.3 also provide pseudocode and implementation-level details.

3.2. The traversal procedure

To traverse the tree, a processor \(p_i \) first visits the tree at its root \(IN \) and then follows the root pointer to visit balancer 1. When visiting a balancer, \(p_i \) switches the balancer’s toggle-bit to the other position (i.e. from left to right and vice versa) and then follows the current direction of the corresponding pointer to visit the next node. Here it is possible to use the elimination method [24], which has the potential to evenly balance each pair of incoming tokens (and direct them left and right) without accessing the toggle-bit. When \(p_i \) visits a leaf \(L \), before taking an appropriate counting value and exiting, it executes a procedure that estimates which level is the best for \(L \) with the current contention. The outcome can imply that the leaf needs to grow into a subtree or to shrink (together with siblings in a subtree) or to stay as it is. An elaborate description of the algorithm to make the reactive decisions is deferred to Section 4.

3.3. The adjustment procedure: expanding a leaf into a subtree

If the recommended action resulting from the reactive scheme is to grow to a level \(l_{\text{lower}} \), i.e. the current contention on the leaf \(L \) is too high and \(L \) should grow to the level \(l_{\text{lower}} \), the processor \(p_i \) visiting the leaf must help \(L \) carry out the growth task before exiting the tree. The task consists of (i) constructing the corresponding subtree (if it did not already exist), (ii) assigning initial values to the counters of the new subtree, and (iii) switching the corresponding pointer from \(L \) to the matching balancer, which is the root of the subtree. For instance, assume that \(p_i \) is visiting leaf 3 in Fig. 3 and the recommendation is to grow to a subtree \(A \) with a depth of 3; \(p_i \) first constructs the subtree (while other processors may normally access leaf 3 and exit the tree without any disturbance) and then locks leaf 3 in order to (i) switch the pointer to balancer 3 and (ii) assign proper values to counters 12, 13, 14 and 15; then it releases leaf 3. At this point, the incoming processors following the left pointer of balancer 1 traverse the new subtree while the old processors that were already directed to leaf 3 continue to access leaf 3 and exit the tree. After completing the growth task, \(p_i \) increases the counting value of leaf 3 and exits the tree.

To assign proper initial values to the counters of the new subtree, the Grow procedure needs to take care of the tokens that are already waiting to traverse \(L \) itself, and the (old) tokens that may still be traversing the (new) subtree. Moreover, it needs to coordinate with possible concurrent Shrink procedure(s) that might have been initiated by some higher-level balancer(s) and with possible concurrent Grow procedures. In particular \(L \) gets locked by the Grow procedure (to ensure a closed set of processors contending for it). Similarly, the leaves of the new subtree get locked, in order to get assigned with new initial values. Note that all this locking is conditional, i.e. if a lock-attempt fails, the adjustment procedure aborts, as the failure to acquire the lock implies that a competing adjustment procedure is ongoing and is “winning”. (Complementary actions are taken by the Shrink procedure; cf. description below.) The exact synchronization order is given in Section 5.2, together with the pseudocode.

3.4. The adjustment procedure: shrinking a subtree into a leaf

If the recommended action is to shrink to a level \(l_{\text{higher}} \), i.e. the current contention on the leaf \(L \) is too low and \(L \) should shrink to the higher level \(l_{\text{higher}} \) so as to reduce the travel latency, the pointer to the ancestral balancer of \(L \) at level \(l_{\text{higher}} \) —let it be denoted by \(B \)—must switch to the matching leaf whose counting value must be set properly. Since the subtree rooted at \(B \) contains other leaves that may have not recommended to shrink to \(l_{\text{higher}} \), a method to coordinate them is needed. We propose an asynchronous vote-collecting scheme for this purpose. The leaf \(L \) votes for the level \(l_{\text{higher}} \) by adding its weighted vote to \(B \)'s “vote box”.

Definition 1. The weight of a leaf’s vote is the number of leaves at the lowest level in the subtree rooted at the matching balancer.

For instance, in Fig. 3 the weight of leaf 4’s vote is 2 since the vote represents two leaves at the lowest level, namely 8 and 9.

After voting, the leaf (i.e. the processor carrying out the task on its behalf) checks whether there is a majority in \(B \)'s subtree that has voted similarly (The leaf can require all the leaves, instead of a majority, in \(B \)'s subtree to vote if the contention on the minority is the main concern.). If so, the Shrink procedure is initiated. Similarly as the Grow procedure, the Shrink procedure locks the matching leaf and the leaves of the subtree \(B \) in order to (i) collect their counting values, (ii) compute the proper counting value for the new matching leaf and (iii) switch the pointer from \(B \) to its matching leaf. Note that all the leaves of the subtree \(B \) need to be locked only if the contention on the subtree is so low that the subtree should shrink to a leaf. Therefore, locking the subtree in this case affects performance as much as locking a leaf in the original reactive diffracting tree.

As an example, assume that a processor \(p_i \) visits leaf 10 in Fig. 3 and the recommendation is to shrink to level 1. Assume that leaf 4 has voted for balancer 2 too. The weight of leaf 4’s vote is two since the vote represents leaves 8 and 9 at the lowest level. Leaf 10’s vote has a weight of 1. Therefore, the sum of the vote weights at balancer 2 is 3. In this case, \(p_i \) helps balancer 2 execute the shrinkage task since three of four leaves at the lowest level, leaves 8, 9 and 10, have voted for the balancer. Subsequently, (i) \(p_i \) locks leaf 2 and all the leaves of the subtree rooted at balancer 2, (ii) collects their counting...
values, (iii) computes the next counting value for leaf 2 and (iv) finally switches the pointer from balancer 2 to leaf 2. After that, all the leaves of the subtree are released immediately so that other processors can continue to access them. As soon as leaf 2 is assigned the new value, new processors going along the right pointer of balancer 1 access the new leaf and exit the tree while old processors continue traversing the old subtree. After completing the shrinkage task, p_i increases the counting value of leaf 10 and exits the tree.

Both the growing and shrinking processes support high parallelism: incoming processors follow the new subtree/leaf while pending processors continue traversing the old leaf/subtree.

4. Online method for making reactive decisions in the ST-tree

4.1. Modeling the reactive-decision problem

In order to be self-tuning, each leaf of the new tree needs to be able to locally decide whether to shrink or grow depending on its current contention, without external help (e.g. without hand-tuned parameters).

As we have seen in Section 2.1, in order to maximize throughput the tree size must be appropriate for the current contention level, minimizing both the tokens’ latency due to the contention at the leaves and their latency due to traversal from the root to the leaves. However, these two latency-related factors are opposed to each other, i.e. if we want to decrease the contention at the leaf, we need to move the leaf to a lower level and thus the traversal costs increase.

In this section, we model the problem of balancing the trade-off between the two latency-related factors as an online problem and subsequently suggest a solution, which is inspired by the threat-based policy [10].

4.1.1. Estimating the contention

Let P denote the maximum number of processors that can access the tree simultaneously. Recall from Section 2.1 that P is assumed known. The assumption is feasible since P can be chosen as the number of processors in the system.

Each leaf L locally estimates the contention of the tree T via its own, local contention:

$$contention_T = contention_L \times 2^{level_L},$$

where $contention_L$ is measured by the number of processors that are trying to access L simultaneously and $level_L$ is the level of L. When the tree T degenerates to a single leaf or, in other words, L is at the highest level (i.e. level 0), the tree’s contention is the leaf’s contention. At the beginning, the tree degenerates to a single leaf, the root leaf, which considers expansion to a tree only if there is contention between at least two processors. Therefore,

$$2 \leq contention_T \leq P,$$

where $contention_T$ varies unpredictably.

4.1.2. Estimating the appropriate (sub)tree depth

Since the ideal contention on each leaf occurs when only one processor is accessing a leaf at a time, the number of leaves need not be more than P. Let $surplus$ denote the subtraction of the number of leaves from P. The tree adjusts the surplus (or changes its size) to control the contention on the leaves. However, since the tree is adjusted by the local decision at each leaf, each leaf L locally estimates the surplus:

$$surplus_L = P - 2^{level_L},$$

and then adjusts its level to change the estimated surplus. We have lower/upper bounds of $surplus_L$: $0 \leq surplus_L \leq P - 1$.

Let $tr_latency$ denote the latency due to token/processor’s traversal from the root to the leaf L. Intuitively, when L grows or moves to a lower level, $tr_latency$ will increase since tokens must traverse additional intermediate levels. However, the increased amount of $tr_latency$, $\Delta tr_latency$, depends on a complex combination of many factors: the memory-access latency from the tokens/processors to balancers at additional intermediate levels and the access delays due to the contention on the balancers. Therefore, the relation between $\Delta tr_latency$ and $\Delta surplus$ (the increase in size of the tree) is complicated for theoretical analysis. We simplify the relation by the following observation. When the tree increases its size by $\Delta surplus$ at its current contention $contention_T$, the product $\Delta surplus \cdot contention_T$ is a $tr_latency$-related value. The value can be accumulated as $tr_latency$-savings that can be converted back to $surplus$ to reduce the tree’s size when the tree’s contention $contention_T$ decreases. Since the tree’s growth is decided by its leaves, each leaf L locally accumulates its $tr_latency$-savings:

$$tr_latency_L = \sum_{adjustments} \Delta surplus_L \cdot contention_T,$$

where $tr_latency_L$ is 0 when the tree initially consists of only the root leaf.

Definition 2. A contention-rising (resp. contention-dropping) phase for a leaf L is a maximal sequence of subsequent visits to the leaf with a monotonic non-decreasing (resp. non-increasing) locally estimated $contention_T$. A contention-rising phase ends when a decrease in contention is observed; at that point a contention-dropping phase begins.

4.1.3. Contention-rising phases

Let us consider a contention-rising phase for a leaf L. The challenge is that the leaf must locally decide the new appropriate level to grow when observing an increase of $contention_T$. If L grows too much, it generates an unnecessarily long traversal latency for tokens. If L grows too little, it causes long access latency for tokens at the leaves due to their contention. Therefore, L needs to find the appropriate level, i.e. the level that can minimize the sum of these latencies for the tokens coming from the root.

We model the problem as an online problem in which the online player, representing the leaf L, is seeking an optimal level for each contention increase observed in a contention-rising
phase. The sequence of contention increases unfolds sequentially. When observing an increase, without knowledge of the future contention variation, the player must decide how much the leaf L should grow. On the other hand, the malicious adversary, with knowledge of the player's algorithm, generates the worst sequence of contention increases for the player, trying to make the player expand the leaf inappropriately. Here we are interested in designing a deterministic online algorithm. Randomized online algorithms for the problem can be a topic of future research.

Fig. 4 illustrates how the adversary could fool the player. Since the tree initially consists of only the root leaf, we have $\text{surplus}_L = P - 1$ and $\text{tr} _\text{latency}_L = 0$ at the beginning. Assume that the adversary knows A as the optimal contention-point for the leaf L to grow completely (i.e. $\text{surplus}_L = 0$) and B as the optimal contention-point for L to shrink completely (i.e. $\text{tr} _\text{latency}_L = 0$). Since the malicious adversary knows the deterministic algorithm used by the player, she can generate a sequence of contention increases $r_1 \leq r_2 \leq \cdots \leq r_i \leq \cdots \leq r_n = A$ that may fool the player to either never shrink the leaf L or shrink the leaf L to the minimum level too early. Assume that when the player observes a contention increase, she expands the leaf L according to the deterministic algorithm. The leaf eventually reaches its maximum level (i.e. $\text{surplus}_L = 0$) at a low-contention level, for instance, r_i before the contention reaches the point A. The adversary keeps the low-contention level unnecessarily long traversal latency for tokens coming from the root to L during the long interval $[r_i, r_{n-1}]$.

The goal of an algorithm for the problem of deciding how much to grow is to maximize the following function:

$$\mathcal{F} = \sum_{i \in T_k} \Delta \text{surplus}_{L,i} \cdot r_i,$$

for each contention-rising phase T_k, where $\Delta \text{surplus}_{L,i}$ is the amount of surplus at contention r_i that the player “spends” at contention r_i to expand the leaf L. For the malicious sequence of contention increases in Fig. 4, the player achieves a small \mathcal{F} since she spends all her surplus “budget” $P - 1$ at low-contention levels $r_1 \leq r_2 \leq \cdots \leq r_i$. The adversary, however, spends her surplus “budget” at the highest contention-point A in the contention-rising phase, achieving the largest \mathcal{F}.

4.1.4. Contention-dropping phases

Similarly, for the contention-dropping phase from A to B the adversary can generate a sequence of contention decreases $d_1 \geq d_2 \geq \cdots \geq d_i \geq \cdots \geq d_m = B$ that may fool the player to either never shrink the leaf L or shrink the leaf L to the minimum level too early. Assume that when the player observes a contention decrease, she shrinks the leaf L according to the deterministic algorithm. The leaf eventually may reach its minimum level (e.g. the root leaf) at a high-contention level, for instance, d_j before the contention reaches the point B. Consequently, the player may cause a high-contention on the leaf L, generating a long access latency for L’s incoming tokens during the long interval $[d_j, d_{m-1}]$. The goal of an algorithm for the problem of deciding how much to shrink is to maximize the following function:

$$\mathcal{F} = \sum_{i \in T_k} \Delta \text{tr} _\text{latency}_{L,i} \cdot \frac{1}{d_i}$$

for each contention-dropping phase T_k, where $\Delta \text{tr} _\text{latency}_{L,i}$ is the amount of $\text{tr} _\text{latency}_{L,i}$ that the player needs to convert back to surplus_L at contention d_i in order to shrink the leaf L to a higher level.

4.1.5. The goal of the decision-making algorithm

In summary, the problem of finding an appropriate level for a leaf L at a certain contention level contention_L can be modeled as an online problem. The sequence of contention values contention_L unfolds sequentially. When observing a new contention value, the online player, with knowledge of the contention lower-upper bounds $2 \leq \text{contention}_L \leq P$, must decide how much the leaf L should grow/shrink with respect to the current contention by converting either a fraction of surplus_L to $\text{tr} _\text{latency}_L$ (for growth) or a fraction of $\text{tr} _\text{latency}_L$ to surplus_L (for shrinkage). The goal is to maximize

$$\mathcal{F} = \sum_{i \in T_k} \Delta \text{surplus}_{L,i} \cdot r_i$$

for each contention-rising phase T_k: $r_1 \leq r_2 \leq \cdots \leq r_n$, or to maximize

$$\mathcal{F} = \sum_{i \in T_k} \Delta \text{tr} _\text{latency}_{L,i} \cdot \frac{1}{d_i}$$

for each contention-dropping phase T_k: $d_1 \geq d_2 \geq \cdots \geq d_m$.

4.1.6. The role of the adversary

In the algorithm and the analysis we treat the game between the adversary and each player/leaf independently from the game of the adversary with the other leaves. This is because the adversary, with its power to schedule the tokens (processors), i.e., to generate new traversal requests and to propagate them independently across each link with arbitrary speed, can adjust the level of contention at each leaf, independently from the levels of contention at the other leaves. Low contention can be achieved by the adversary by moving the tokens slowly...
toward the leaves. High contention is achievable by the adversary by inserting new tokens and scheduling them fast towards the preferred leaves. From the adversary’s point of view, this is like a resource allocation problem, where the number of resources (the maximum number of concurrent tokens P) is known and processes (leaves) place demands on the number of resources with a known maximum. The demands are contention levels desirable by the adversary at each leaf in order to fool the corresponding player. By acting using the Banker’s algorithm [9], the adversary is able to compete with each player independently.

4.2. The decision-making algorithm

Our algorithm for the online problem of reactively adjusting a leaf L is inspired by the threat-based policy, presented in [10].

Let us first consider a contention-rising phase (a contention-dropping phase is symmetric). The idea of our algorithm is to expand the leaf L just enough to guarantee a bounded competitive ratio (with respect to the outcome F) even if the contention suddenly drops to the minimum in the next observation. In particular, the algorithm follows the rules:

R1. The leaf L grows only when the contention c_T is the highest so far in the present contention-rising phase.

R2. (Considering the threat). When growing, it grows just enough to guarantee a competitive ratio c^* even if the contention drops to the minimum in the next observation.

Below follows an intuitive description of the exact decisions, together with a more formal analysis of the formulas, following the analysis of the threat-based policy [10].

Recall that we are considering a contention-rising phase with observed levels of contention $r_1 \leq r_2 \leq \cdots \leq r_i \ldots$. At the moment, assume that the online player knows a competitive ratio c^* that is achievable by a (deterministic) online algorithm. We will present below how the player can calculate c^* using P, the maximum number of processors that can access the tree simultaneously. Note that $c^* = \frac{\mathcal{F}_\text{Adversary}}{\mathcal{F}_\text{Player}}$ where $\mathcal{F}_\text{Adversary}$ and $\mathcal{F}_\text{Player}$ are the outcomes F (cf. Eq. (6)) of the adversary and the player, respectively. At the first contention observed, r_1, the player must expand the leaf L by converting an amount s_1 of surplus L such that the competitive ratio c^* is guaranteed even if the contention drops to the minimum in the remaining steps. Since c^* is achievable by a deterministic online algorithm, there exists such an s_1 value. Choosing such s_1 the player can ignore contention values not greater than r_1 in the remaining steps while still guaranteeing the competitive ratio c^*. This results in the first rule mentioned above (R1).

On the other hand, if s_1 is always chosen as much as the whole surplus L budget, the player will not be able to expand the leaf L further when the contention continues increasing. This consequently may cause the player being unable to guarantee the competitive ratio c^*. Therefore, s_1 should be the minimum amount that guarantees the competitive ratio c^*. This argument results in the second rule mentioned above (R2). The amounts s_i to be converted in the rest of the phase can be inductively justified using similar arguments.

Lemma 3. In a contention-rising phase, the formula for calculating the amount of surplus L to be converted to tr_{latency}_L when the contention observed is c_{T} and the highest preceding contention observation in the phase is c_{T}, is

$$ \Delta \text{surplus}_L = \text{baseSurplus}_L \cdot \frac{1}{c^*} \cdot \frac{c_{T} - c_{T} - 2}{c_{T} - c_{T} - 2}, $$

where baseSurplus L is surplus L at the beginning of the phase and c^* is a known competitive ratio that is achievable by a (deterministic) online algorithm. The new (lower) level of the leaf L is calculated using its remaining surplus L: level $L = \log_2(P - \text{surplus}_L)$.

Proof. Because of the first rule, the player considers only the contention sequence of successive maxima $2 \leq m_1 < m_2 < \cdots \leq P$ (cf. Eq. (3)) in the sequence of observed contention levels $r_1 \leq r_2 \leq \cdots \leq r_i \leq \cdots \leq r_n$. Consider a step i, in which a new maximum, m_i is observed. Let R_i and A_i be the amount of remaining surplus L and the amount of accumulated tr_{latency}_L right after the ith step, respectively. (At the beginning of the phase, $A_0 = 0$ and $R_0 = \text{baseSurplus}_L$.) From rule R2, we have

$$ \frac{R_0 - m_i}{R_i + A_i} \leq c^*, \tag{11} $$

where the denominator ($R_i + A_i$) is the player’s outcome in the case that the contention drops to the minimum (i.e. to 2), right after the ith step and stays there. Consequently, the remaining surplus R_i is calculated as it is converted at the minimum contention. The numerator is the adversary’s outcome in this case: she converts her surplus “budget” R_0 at the highest contention m_i in the sequence of contention increases created by her.

If $s_i = R_i - R_i$ denotes the amount of surplus L converted to tr_{latency}_L at step i, Eq. (11) becomes

$$ \frac{R_0 - m_i}{2R_i - A_i} \leq c^* \tag{12} $$

Since function $G(s_i) = \frac{R_0 - m_i}{2(R_i - s_i) + (A_i - s_i + m_i)}$ is decreasing with s_i due to $m_i \geq 2$, the minimum value for s_i is found when $G(s_i) = c^*$, i.e.

$$ \frac{R_0 - m_i}{2R_i + A_i} = \frac{R_0 - m_i}{2(R_i - s_i) + (A_i - s_i + m_i)} = c^*. \tag{13} $$

It follows that

$$ s_i = \frac{1}{m_i - 2} \left(\frac{R_0 - m_i}{c^*} - 2(R_i - A_i - 1) \right). \tag{14} $$
For the case $i = 1$:

$$s_1 = \frac{1}{m_1 - 2} \left(\frac{R_0.m_1}{c^*} - (2R_0 + A_0) \right) = \frac{R_0}{m_1 - 2c^*}.$$

(15)

For the case $i \geq 2$, it holds that $2R_{i-1} + A_{i-1} = \frac{R_0.m_{i-1}}{c^*}$ (Eq. (13)). Hence Eq. (14) becomes

$$s_i = \frac{1}{m_i - 2} \left(\frac{R_0.m_i}{c^*} - \frac{R_0.m_{i-1}}{c^*} \right) = \frac{R_0}{m_i - 2c^*} \cdot \frac{m_i - m_{i-1}}{m_i - 2}. \quad \square$$

(16)

The following shows how the player calculates the competitive ratio c^* using the available information.

Since the length of the contention sequence of successive maxima in the contention-rising phase is unknown to the player, she must consider an arbitrarily long contention sequence, i.e. a contention sequence with length $k \to \infty$. From the definition of s_i, we have

$$\lim_{k \to \infty} \sum_{i=1}^{k} s_i = \lim_{k \to \infty} (R_0 - R_k) \leq R_0. \quad (17)$$

The player should leave no remaining surplus at the end of the phase (i.e. $R_k = 0$) since the remaining amount R_k must be converted to tr_{latency}_L at the minimum exchange rate, which makes the player’s outcome worse. This results in

$$\lim_{k \to \infty} \sum_{i=1}^{k} s_i = R_0$$

$$\Leftrightarrow \frac{R_0}{c^*} \left(\frac{m_1 - 2c^*}{m_1 - 2} + \lim_{k \to \infty} \sum_{i=2}^{k} \frac{m_i - m_{i-1}}{m_i - 2} \right) = R_0$$

$$\Leftrightarrow c^* = 1 + \frac{m_1 - 2}{m_1} \lim_{k \to \infty} \sum_{i=2}^{k} \frac{m_i - m_{i-1}}{m_i - 2}.$$

Since the malicious adversary generates the contention sequence that makes c^* as large as possible, this implies

$$c^* = 1 + \max_{2 \leq m_1 < m_2 < \cdots < P} \left(\frac{m_1 - 2}{m_1} \lim_{k \to \infty} \sum_{i=2}^{k} \frac{m_i - m_{i-1}}{m_i - 2} \right). \quad (18)$$

We can prove that $c^* \leq \varphi - \frac{\varphi - 1}{\varphi^{1/(\varphi - 1)}}$, where $\varphi = \frac{P}{2}$, which implies that the online algorithm obeying the aforementioned rules with $c = \varphi - \frac{\varphi - 1}{\varphi^{1/(\varphi - 1)}}$ will achieve the competitive ratio c. The proof is rather tedious, following the proof in [10], to which the interested reader is referred for the details.

For a contention-dropping phase, the player can use a symmetric algorithm to shrink the leaf L to a higher level by converting the savings tr_{latency}_L back to $surplus_L$. This results in the following lemma:

Lemma 4. In each contention-rising/contention-dropping phase, the reactive adjustment method of ST-trees is competitive with competitive ratio $c = \varphi - \frac{\varphi - 1}{\varphi^{1/(\varphi - 1)}} = \Theta(\ln \varphi)$, where $\varphi = \frac{P}{2}$ and P is the maximum number of processors that can access the tree simultaneously.

5. Implementation of the ST-trees

Fig. 5 describes the basic data structure and shared variables used in the tree implementation.

5.1. Traversing self-tuning reactive trees

A processor Pid traverses the tree by calling the TraverseTree() function in Fig. 6. First, it visits Balancers[0] (the “IN” node in Fig. 3), whose left child points to either Balancers[1] or Leaves[1]. Before visiting a node on the next level, it updates its new location in Tracing[Pid] (line T0). It records to its private variable MyPath[Pid] the path along which it traverses the tree, where MyPath[i] is the node visited at level i. At each node, its behavior depends on the node type.

If the node is a balancer, the processor calls the TraverseB() procedure to follow an appropriate child link (line T2 in TraverseTree()) and subsequently updates its new location to Tracing[Pid] (lines B1, B2 in TraverseB()). In the TraverseB()
procedure, the toggle mechanism for toggle-bits can be implemented using either advanced techniques like the elimination technique [24] to alleviate the contention on toggle-bits or low-contention hardware primitives like the fetchop primitives in the SGI Origin2000 [18].

If the node is a leaf, in all cases the processor calls the TraverseL procedure to read and increase the leaf counter $L.count$ (line T8) and resets $Tracing[pid]$ to the tree root (line T10). If exiting the tree through a leaf whose state is $ACTIVE$, the processor must actively execute a reactive procedure. It

3 Meaning that its state is not OLD; intuitively, old leaves (and old balancers) are those that a new processor traveling from the root cannot visit at that time.
acquires the leaf TokenToReact and, if successful, it invokes the CheckCondition procedure (line T4). The procedure implements the new reactive scheme mentioned in Section 4. According to the CheckCondition procedure result, the processor invokes either the Grow procedure to expand the leaf (line T6) or the Elect2Shrink procedure to shrink the tree (line T5). The Grow and Elect2Shrink procedures are presented in Sections 5.2 and 5.3.

5.2. Implementing the grow procedure

An expansion of a leaf L to a subtree T whose root is L’s matching balancer B and depth is L’s $newLevel - L.level$ essentially needs to set proper counting values for the new leaves in T so as to ensure the counting property. Fig. 8 illustrates the steps taken in the Grow procedure whose pseudocode is in Fig. 7. The expansion occurs only if there are no pending
tokens in T (step G1). Otherwise, it will cause old tokens to get new values, which will consequently cause omissions in the sequence of numbers received by tokens at the end. When the condition for expansion is satisfied, the expansion will be activated by subsequent tokens visiting L since L is under high contention. Consistency is ensured by locking L (step G4) and by switching the pointer from L to B (step G5), which leaves a closed set of processors in L. The lock acquisition is conditional, i.e. if one of L's ancestors is holding a lock, L's attempt to acquire the lock will return Fail. In such a situation the expansion procedure aborts, since a failure to acquire the lock means that there is an overlapping shrinkage operation being executed by one of L's ancestors. Finally, the state of all balancers in the new subtree is set to ACTIVE for reactive adjustments (steps G9, G10). Note that overlapping growth operations by one of L's ancestors must abort due to the existence of the token/processor at L that is carrying out the growth procedure (step G1) (Figs. 7 and 8).

In order to minimize the adjustment delay for processors, we need to minimize locking intervals for working leaves (i.e. leaves which execute the grow procedure). Toward this, the Grow procedure acquires necessary leaves in decreasing order of their labels so as to acquire the working leaf L last, and the Shrink procedure acquires necessary leaves in increasing order of their labels so as to acquire the non-working leaf L last. Moreover, since the tree allows concurrent adjustments at any level, adjustments at high levels should have higher priorities than those at lower levels when there is collision between the adjustments. Deadlocks due to potential interferences between growth and shrinkage procedure are avoided by the conditional lock acquisition (cf. also the proof in Section 6): two such potentially interfering procedures will have to compete for the same conditional-lock; when this happens, one of them will win and proceed and the other will lose and back-off (thus releasing also the previously acquired locks).

5.2.1. Computing proper values for new leaves

Since toggle-bits of balancers in the new subtree are reset to 0, the first token traversing the new subtree will arrive at the rightmost leaf at level $L_{newLevel}$. Therefore, counting values for the new leaves (step G10) are computed as in Fig. 9.

L's current counting value $CurCount$ and the number of pending processors ppL are read at steps G7 and G6, respectively. The next_count_value variable is the next counting value after all the pending processors leave the leaf L. The field init of LeafType (Fig. 5) is the base to calculate counting values and is unchanged. For instance, in Fig. 1 the base init of leaf $C6$ is 1 and the nth counting value is $1 + n \times 4$.

Fig. 8. Illustrations for Grow and Shrink procedures.

Fig. 9. The NextCountG function in the Grow procedure.
5.3. Implementing the shrink procedure

A processor \(p \) visiting a leaf \(L_0 \), whose suggested reaction is to shrink to level \(L_{0,newLevel} \), adds \(L_0 \)'s vote \(^4\) to the vote boxes of all balancers on \(p \)'s path from level \(L_{0,newLevel} \) down to level \(L_{0,level} - 1 \). If \(L_0 \)'s new suggested level \(L_{0,newLevel} \) is lower than its old suggested level \(L_{0,oldLevel} \), which is updated to \(L_{0,level} \) after each shrinking adjustment, \(L_0 \) removes its old votes at levels above its new suggested level (step E1 in Fig. 7). If \(L_0 \)'s new suggested level is higher than its old suggested level, it adds its votes at levels from \(L_{0,newLevel} \) to \(L_{0,oldLevel} \) (steps E2, E3). In the vote-adding procedure, when reaching a balancer \(B \) with enough votes, the processor starts a shrink procedure at the balancer (step E5). The procedure is illustrated in Fig. 8 and its pseudocode is in Fig. 7.

Symmetrically to the growth procedure, the procedure of shrinking a subtree \(T \) rooted at balancer \(B \) to \(B \)'s matching leaf \(L \) needs to properly set \(L \)'s counting value so as to ensure the counting property. The shrinkage procedure occurs only if there are no pending tokens in \(L \). Otherwise, it will cause old tokens to get new values (step S1 in Shrink). The procedure locks \(L \) (step S2) and properly sets \(L \)'s counting value (step S9). The value is computed from a consistent measurement of the number of pending processors in \(T \) and the counting values of leaves \(L' \) in \(T \) (cf. Fig. 10). Consistency is ensured by locking leaves \(L' \) in \(T \) (step S4) and switching the pointer from \(B \) to \(L \), which leaves a closed set of processors in \(T \). Similarly to the Grow procedure, the lock acquisition is conditional. The leaves in \(T \) are locked in an increasing order of their labels, to keep the locking periods of working leaves minimal and to avoid deadlocks, as explained in the context of the Grow procedure. Note that an overlapping shrinkage procedure by one of \(L \)'s ancestors cannot cause any of the attempts to lock \(L' \) at step S4 to fail, since the overlapping procedure must first lock \(L \) successfully (if the overlapping procedure had succeeded, it would have caused the shrinkage from \(B \) to \(L \) to abort earlier, at step S2). We will prove that the lock and shrinkage procedure do not interfere with each other in Section 6. Finally, the shrinkage procedure sets state of balancers and leaves in \(T \) to OLD (steps S7, S8).

\(^4\) Recall that since the subtree rooted at \(L_0 \)'s ancestor at level \(L_{0,newLevel} \) contains other leaves that may have not recommended to shrink to \(L_{higher} \), our algorithm uses asynchronous voting to coordinate them.
Tracing array. Since p_1 reads an obsolete value of $Tracing[2]$, it does not count p_2. Then, p_2 follows the old value of ptr and visits the old branch. That means the number of pending processors in the old branch is higher than what p_1 has counted, causing the tree to compute incorrect values for the new leaves in the Grow and Shrink procedures (steps G10 and S9 in Fig. 7).

Intuitively, observe that if both $Read(ptr)$ and $Write(Tracing[2])$ on p_2 occur atomically to $Read(Tracing[2])$ on p_1, the problem is solved. This motivated us to design the operations called BasicAssign and Read (cf. Fig. 11). Each element $Tracing[i]$ can be updated by only one processor p_i via the BasicAssign operation and can be read by many other processors via the Read operation. The former reads the variable pointed by $child$ and then writes its value to the variable pointed by $trace[i]$. The latter reads the variable at $trace[i]$. The BasicAssign() and Read() operations are lock free [13] and linearizable [16].

Conditional lock-acquisition operation: During both the growth and shrinkage procedures, a processor acting on behalf of a node Nid must invoke AcquireLock_cond to acquire a leaf lock $lock$ by writing the node label Nid to the lock. If the lock is occupied by one of Nid’s ancestors, the procedure returns Fail (line AL1, Fig. 11). The procedure is built using the busy-waiting with exponential backoff technique instead of queue-lock because the contention on the leaves is kept low. In a low-contention environment, the busy-waiting with exponential backoff technique achieves better throughput than the queue-lock, which requires more complicated data structures [21].

5 The proof is given in Lemma 5.
For acquiring leaf locks to increase counting values (i.e. not to perform adjustment tasks), processors invoke the AcquireLock procedure without condition. The procedure is similar to AcquireLock_cond but does not check the ancestral condition (line AL1, Fig. 11). The AcquireLock procedure always returns Succed.

The way these locking mechanisms ensure safety and liveness for the tree accesses is explained in the descriptions of the Grow and Shrink procedures and is proven in Section 6.

6. Correctness proof

We first prove that the BasicAssign and Read operations (cf. Fig. 11) are lock free and linearizable [16,13] as mentioned in Section 5.4.

Lemma 5. The BasicAssign and Read operations are linearizable and lock-free.

Proof. In the BasicAssign operation, the variable pointed by trace_i is first locked by clearing the mask bit. If the mask bit of the *trace_i* variable is zero, the variable is locked and its value is the address of another variable whose value must be written to *trace_i*. After reading the expected value *child*, the operation sets the mask bit to 1 so as to unlock *trace_i*. If *trace_i* is still containing the pointer child, the primitive will successfully write the value to *trace_i*. Otherwise, another operation has helped the operation complete the assignment.

When reading the value of a variable *trace_i*, the Read operation checks if the variable is locked (line R2). If the mask bit of the variable is zero, the operation will help the corresponding BasicAssign operation to write the expected value to the variable before trying to read it again (lines R3–R5). The linearization point [16] of the Read operation is the point it reads a value with a non-zero mask bit (line R1); the linearization point of the BasicAssign() operation is the point it writes a pointer with a zero mask bit to *trace_i* (line A0).

The BasicAssign and Read operations are lock free since the Read operation retries only if there has been an operation with a successful CAS at line A3 or R5, which is progressing. □

In the implementation of the self-tuning tree on real computer systems, we can use the last bit of a pointer, which is unused because of word-alignment memory architecture, as the mask bit.

Second, since leaves are locked in decreasing order of leaf identities in the Grow procedure but in increasing order in the Shrink procedure, we need to prove that deadlock never occurs due to interferences between the Grow and Shrink procedures.

Lemma 6. The self-tuning tree is deadlock-free.

Proof. Interferences between two balancers that are trying to lock leaves\(^6\) occur only if one of the balancers is the other’s ancestor in the tree. Assume that there are two balancers \(b_i\) and \(b_j\), where \(b_i\) is \(b_j\)’s ancestor.

- **Case 1:** If both balancers \(b_i\) and \(b_j\) execute the Shrink procedures that shrink their subtrees to leaves, both will lock leaves in increasing order of leaf identities by using the AcquireLock_cond operation. If the leaf with smallest identity that \(b_j\) needs is locked by \(b_i\), the operation called by \(b_j\) will return Fail immediately. This is because the leaf is locked by an ancestor of \(b_j\). If the leaf is locked by \(b_j\), \(b_i\) must wait at the leaf until \(b_j\) completes its own work and then \(b_i\) continues locking necessary leaves. If there are no crashes of processors locking the leaves on behalf of a balancer, no deadlock will occur.

- **Case 2:** \(b_i\) executes the Shrink procedure, which shrinks its subtree to a leaf, and \(b_j\) executes the Grow procedure, which expands its matching leaf to a subtree. In this case, \(b_i\) tries to lock all necessary leaves in increasing order of leaf identities and \(b_j\) does that in decreasing order of leaf identities. Assume that \(b_i\) has locked leaf \(k\) successfully and is now trying to lock leaf \((k + 1)\) whereas \(b_j\) has locked leaf \((k + 1)\) successfully and is trying to lock leaf \(k\). Because \(b_i\) and \(b_j\) use the AcquireLock_cond procedure that conditionally acquires the locks, \(b_j\) will fail to lock leaf \(k\), which is being locked by its ancestor, and will release all the leaves it has locked so far (lines G3 and G4, Fig. 7). Eventually, \(b_i\) successfully locks leaf \(k + 1\) and continues locking other necessary leaves. That is, deadlock does not occur in this case either.

Note that \(b_i\) cannot execute the Grow procedure due to the step G1: there is a pending processor in \(b_i\)’s subtree that helps \(b_j\) execute its adjustment. □

Corollary 7. In the Shrink procedure, if the corresponding balancer has successfully locked the necessary leaf with smallest identity, it will successfully lock all the leaves it needs.

Therefore, the Shrink procedure returns Fail only if the matching leaf of the corresponding (active) balancer is being locked by an ancestor of the balancer.

Lemma 8. There is no interference between any two Grow procedures in the self-tuning tree.

Proof. Similarly to the proof of the previous lemma: (i) the interference between two balancers who are trying to lock leaves occurs only if one of the balancers is the other’s ancestor in the tree and (ii) there is no case that two expansion phases are executed at the same time and one of the two corresponding balancers is an ancestor of the other. □

Lemma 8 explains why the Grow procedure does not lock balancers before resetting their variables (line G2, Fig. 7).

Finally, we prove that the number of processors used to calculate counting values for new leaves in both Grow and Shrink procedures is calculated accurately via the global array Tracing.
Definition 9. Old balancers/leaves are the balancers/leaves whose state is OLD.

Definition 10. Effective processors/tokens are the processors/tokens that are visiting neither old balancers nor old leaves of a locked subtree.

Only the effective processors affect the next counting values calculated for new leaves. An illustration to enhance the understanding of this definition is given in Fig. 8—Shrink, where the token marked as “T” at the lower part of the figure is not effective.

Lemma 11. The number of effective processors that are pending in a locked subtree or visiting a locked leaf is calculated accurately in the Grow and Shrink procedures.

Proof. A processor p_i executing an adjustment task switches a pointer from one branch of the tree to the other before counting pending processors in the old branch (lines G5, G6 in Grow and lines S5, S6 in Shrink, Fig. 7). Since the BasicAssign and Read operations are linearizable (by Lemma 5), p_i counts the number of pending processors accurately. Recall that the old branch is locked as a whole so that no processor can leave the tree from the old branch as well as no other adjustment can concurrently take place in the old branch until the counting completes. The set of pending processors in the old branch consists of both effective and ineffective processors.

In the case of tree expansion, the number of pending processors at the locked leaf is the number of effective processors.

In the case of tree shrinkage, we lock both old and active leaves of the locked subtree so that no pending processor in the subtree can switch any pointers. Recall that to switch a pointer, a processor has to successfully lock the leaf corresponding to that pointer. On the other hand, (i) we set states of all balancers and leaves in a locked subtree/locked leaf to Old before releasing them (lines S7, S8 in Shrink and line G7 in Grow), and (ii) after locking necessary balancers and leaves, processors continue executing the corresponding Shrink/Grow procedures only if the switching balancers/leaves are still in an active state (line G4 in Grow and line S2 in Shrink). Corollary 7 implies, for the Shrink procedure, that checking the switching-balancer state after locking the necessary leaf with smallest identity (line S2) guarantees that no ancestor can change the switching-balancer state from Active to Old afterwards. Therefore, a pending processor in the locked subtree that has visited an Old balancer or an Old leaf will never visit an Active one in this locked subtree. Similarly, a pending processor in the locked subtree that has visited an Active balancer or an Active leaf will never visit an Old one in this locked subtree. Hence, by checking the state of the node that a pending processor p_j in the locked subtree is currently visiting, we can know whether the processor p_j is effective (line S6 in Shrink). In conclusion, the number of effective processors in a locked subtree is calculated accurately in the Shrink procedure in the case of tree shrinkage. \square

Since the number of effective pending processors is counted accurately (by Lemma 11), the counting values that are set for leaves after adjustment steps are correct.

Theorem 12. The ST-tree correctly implements a counting tree. It also provides an online algorithm to reactively decide on new sizes based on the observed contention, guaranteeing that: in each contention-rising/contention-dropping phase, the reactive decision is competitive with competitive ratio $c = \varphi - \frac{1}{\varphi^2} = \Theta(\ln \varphi)$, where $\varphi = \frac{P}{2}$ and P is the maximum number of processors that can access the tree simultaneously.

7. Experimental study

In this section, we study the behavior of the new self-tuning tree. We implemented two versions of the tree: the ST-tree(P), that uses the elimination technique [24,23] to alleviate contention on toggle-bits as the original reactive diffracting tree does, and the ST-tree, that uses a low-contention hardware primitive fetchop supported by the SGI Origin2000 [18] instead.

We used the original reactive diffracting tree [8] as a basis of comparison since it is one of the most efficient reactive counting constructions in the literature. The most difficult issue in implementing the tree is to find the best folding and unfolding thresholds as well as the number of consecutive timings called UNFOLDING_LIMIT, FOLDING_LIMIT and MINIMUM_HITS in [8]. Subsection Load Surge Benchmark in [8] described that the tree had a depth 3 when it was run for the index-distribution benchmark [24] with 32 processors, the highest possible load (work $= 0$) and the number of consecutive timings set to 10. Following the description, we tuned the thresholds for the tree on the ccNUMA Origin2000 system with 30 processors. The result is that the folding and unfolding thresholds are 3 and 10 μs, respectively. This selection of parameters did not only keep our experiments consistent with the ones presented in [8] but also gave the best performance for the reactive diffracting tree on our system. Regarding the prism size, the algorithmic construction to implement the elimination technique, each node has $c2^{(d-l)}$ prism locations, where $c = 0.5$, d is the average value of the tree depths estimated by processors traversing the tree and l is the level of the node [23,8]. The upper bound MAXSPIN for the adaptive spin is 128 as mentioned in [24].

We used a full-contention benchmark and a surge-load benchmark that are similar to the index-distribution benchmark with work $= 0$ and the surge-load benchmark in [8]. The benchmarks ran on a ccNUMA SGI Origin 2000 with 30 250 MHz MIPS R10000 processors running IRIX 6.5. In order to make these empirical results accessible to other researchers and practitioners, the C code for the tested algorithms is available at http://www.cs.chalmers.se/~phuong/satNov05.tar.gz.

Our primary interest has been to verify whether the self-tuned ST-tree (with or without the elimination) can make similar reactive decisions to the hand-optimized RD-tree. The study confirms that, as well as it shows that the above is achieved.
with at least as good performance as the RD-tree. Moreover, the study highlights other benefits of the ST-tree algorithm (with or without the elimination). These are explained in the subsequent sections.

7.1. Full contention benchmark

In the benchmark, each processor continuously traverses the respective tree and gets a counting value. The number of processors participating in the benchmark varied from 4 to 28, which simulates different contention levels on the tree. We ran the benchmark for 1 min and measured the average size of the tree as well as the average number of the TraverseTree operations (or the number of tokens passing the tree) in 1 s. The results are shown in Fig. 13, where the right chart shows the tree’s average depth and the left chart shows the proportion of the ST-tree’s throughput to that of the RD-tree. The tree with higher throughput is better.

In the left chart we observe that ST-tree(P) and ST-tree perform better. In the case of 28 processors, ST-tree(P), which uses the same elimination technique as RD-tree, is 36% faster than RD-tree and ST-tree is 10 times faster. Since each tree continuously adjusts its size around the average value due to contention variation on its leaves even in the case that the number of participating processors is fixed (cf. Fig. 14), the tree with more efficient adjustment will achieve better performance in the full-contention benchmark. The reactive adjustments of the ST-tree(P)/ST-tree and RD-tree have algorithmic differences:

- The former reacts to contention variation faster due to its low-overhead multi-level adjustment as described in Sections 3 and 5.4. In the latter, leaves shrink or grow only one level in one adjustment step and then have to wait for a given number of incoming processors before continuing shrinking or growing.
Another observation is that when the contention increases, the self-tuning ST-tree automatically adjusts its size close to that of the hand-tuned RD-tree (cf. the right chart). The result implies that the longer lock-based adjustment at the leaves of the RD-tree blocks more processors at the leaves, causing contention on them as high as that on the ST-tree’s leaves, whose throughput is 10 times higher. The size difference between ST-tree and ST-tree(P) implies that the elimination technique [24,23] which is a useful construction to alleviate contention on toggle-bits if other means are not available, may also delay processors at balancers, consequently reducing contention on leaves, but at the cost of lower throughput.

7.2. Surge load benchmark

The benchmark shows how fast the trees react to contention variation. In this benchmark, we measured the average depth of each tree in each interval of 400 μs. The measurement was done by a monitor processor. At interval 5000, the number of processors was changed from 4 to 28. The depth of each tree at the interval 5001 was measured after all the new processors were synchronized with the monitor processor, i.e. the period between the end of interval 5000 and the beginning of interval 5001 was not 400 μs.

Fig. 14 shows the depths from interval 4500 to 25 000. The left chart shows the fastest-reaction experiment for each tree over 15 experiments. It also shows the amplitude within which the tree size varied when the number of processors is fixed to 28. The RD-tree’s amplitude is shown to be the largest. The right chart shows the average reaction time for each tree over 15 experiments. In the case of 28 processors, the ST-tree reached depth 3 at interval 5009, i.e. only after 9 intervals since the time all 28 processors started to run. The ST-tree(P) reached a depth 2.2 at interval 5362 and the RD-tree reached level 2.4 at interval 17 770. The difference between the average reaction times of ST-tree and ST-tree(P) implies that the elimination technique delays processors at balancers when the load surges, making contention at leaves increase only gradually (at the cost of potentially lower throughput, though, as discussed earlier in this section).

The difference between ST-tree(P) and RD-tree reaction delays confirms the advantage of the fast multi-level adjustment scheme used in ST-tree/ST-tree(P). It is interesting to note that whatever load patterns are used, the adjustment interval between the time a tree makes an adjustment decision and the time the tree completes the adjustment should better be as short as possible. The reason for that was outlined in Section 3.1 and it is also illustrated in the following experiment, which studies the throughput of the trees when the load changes suddenly and frequently. We extended the benchmark so that the number of processors accessing the trees repeatedly changed from 4 to 28 or from 28 to 4 for each period of 0.1 s (i.e. every 25 intervals—recall that on average it takes the ST-tree some 9 intervals to adjust, the ST-tree(P) approximately 500 intervals to adjust and the RD-tree approximately 12 000 intervals to adjust). The benchmark was run in 1 min or in 600 cycles. We measured the average number of the TraverseTree operations, i.e. the number of tokens passing a tree, in 1 s. The result is shown in Fig. 15. As expected, the ratio of ST-tree/ST-tree(P)’s throughput to RD-tree’s throughput in the benchmark is higher than in the full-load benchmark in which contention on leaves varies slightly due to the number of processors being fixed. In the surge-load benchmark, the ST-tree(P)’s throughput is 2.4 times higher than that of RD-tree and ST-tree’s throughput is 15.3 times higher.

8. Conclusion

This paper has presented the new self-tuning reactive diffracting tree, a data object that distributes concurrent memory accesses to different banks in a coordinated manner. The tree extends the original hand-tuned reactive diffracting tree, a successful result in the area of reactive concurrent data structures, in several aspects. To circumvent the need of hand-tuned parameters, the trade-off between the tree depth and the contention on leaves has been analyzed as an online problem and subsequently an efficient online solution has been suggested. The solution, which was inspired by an optimal online algorithm for an online financial problem [10], helps the self-tuning tree make precise reactive decisions. A considerable factor for the ST-tree efficiency is the new data-structure that allows the self-tuning tree to freely grow and shrink by several levels in one adjustment step. The construction provides high parallelism, reducing the overhead of reactive adjustments. The construction has space complexity comparable with that of the original hand-tuned tree. It exploits low-contention occasions on subtrees to make its
locking process as efficient as in the original hand-tuned tree although the locking process locks more nodes at the same time. As a result, the new self-tuning tree reacts quickly to contention variation and offers better latency for the traversing tokens. The experimental studies on the SGI Origin2000, a commercial ccNUMA multiprocessor, confirm these results in the relative study of the self-tuning tree and the original hand-tuned tree.

The paper provides a starting point to design reactive distributed data structures using competitive analysis. The challenge of designing such a distributed data structure is that each of its components must be able to adaptively make appropriate decisions using only local information in unpredictable environments. To deal with the environmental uncertainty, competitive analysis seems to be a promising approach as demonstrated in this paper. An analysis that considers other aspects, such as reaction delays, monitoring periods and appropriate adversary models is open for further research.

References

Philippas Tsigas’ research interests include concurrent data structures for multiprocessor systems, communication and coordination in parallel systems, fault-tolerant computing, mobile computing. He received a BSc in Mathematics from the University of Patras, Greece and a Ph.D. in Computer Engineering and Informatics from the same University. Philippas was at the National Research Institute for Mathematics and Computer Science, Amsterdam, the Netherlands (CWI), and at the Max-Planck Institute for Computer Science, Saarbrücken, Germany, before. At present he is an associate professor at the Department of Computing Science at Chalmers University of Technology, Sweden (www.cs.chalmers.se/~tsigas).