Mandatory assignment 2 - inf-2202 - Fall 2013
Lars Ailo Bongo
larsab@cs.uit.no
Department of Computer Science, University of Tromsg.

Last updated: 20.09.2013.

Introduction

In this mandatory assignment you will implement a deduplication sender and receiver using Go.
Deduplication is a global compression technique that is often used by backup systems. It achieves very
high compression ratio by identifying redundancy over the entire dataset instead of just a local window.
Both sides maintain a big cache of previously sent data, and for redundant data a short fingerprint is
sent instead of the data content. Deduplication systems need to support high throughput.

Deduplication

I Input datastream I

l1.SpIitinto chunks

[Chunk || Chunk |[Chunk || Chunk || chunk] ..

¢ 2. SHA-1(Chunk)

[e || rp |[e || P || PP ..

l 3. Cache lookup(FP) i l é l4b. Cache miss

; i l E l 5. gzip(chunk)
| 4a. Cache hit ! i .

) ! \ 6. cache write
A4 ' l E l (chunk.gz)
. i i 7b. write

| 7a. Write(FP) v y v y (FP, chunk.g2)

[(FP), (FP, chunk.gz), (FP), (FP.chunk.gz), ... |

Figure 1: Sender side.

The sender should do the following to compress an input datastream (Figure 1):

Split the input data into chunks.
Calculate a SHA-1 fingerprint for each chunk.
Check if the cache contains a chunk with the calculated fingerprint.

P wnN e

If an entry was found, the chunk has been sent earlier and hence the chunk is also cached at the
receiver side. Only the fingerprint is therefore sent.

5. If an entry was not found, the chunk has not been sent earlier. It is therefore compressed using
for example gzip, the compressed data is written to the cache, and the fingerprint and
compressed data are sent to the receiver.

| (FP), (FP, chunk.g2), (FP), (FPchunk.gz), .. |

l 1. Read packets

[FP | = [(FP.Chunkg2)
l 2a. Cache read(FP) 2b. cache write
L (FP, chunk.gz)
lChunk.gzI IChunk.gzI
l 3.gunzip
(chunk.gz)

J 4.Write(Chunk)

I Output datastream

Figure 2: Receiver side.

If the receiver received a fingerprint from the sender it does the following:

1. Read the compressed chunk data from the cache, using the fingerprint as index.
2. Decompress the chunk data.
3. Write the chunk data to the output datastream

If the receiver received a fingerprint and compressed chunk data it does the following:

1. Write the compressed data to the cache using the fingerprint as index.
2. Decompress the chunk data.
3. Write the chunk data to the output datastream.

Input data
You will get access to 14 versions of the UniProt database. <MORE DETAILS>. These are available on:

ifilab102.stud.cs.uit.no:/data/inf2202

Note that each sport file is about 2.3GB, and that the Trembl/ files range in size from 30GB to 47GB. You
therefore need to make a model for how you will access the data and how much time this will take. This
model should take into account the dataset size, network bandwidth, and other students.

You may use an alternative dataset, or a synthetic dataset. If so, you report must discuss workload
selection and workload properties.

Note! You should not run your code on ifilab102.

Chunking
The UniProt data is structured into records. We will provide you with code that you can use to split the
file into these records.

Fingerprints
The fingerprints should be 160-bit SHA-1 hashes. Using such large hash values ensures that there will be
no collisions.

Cache

We assume that the cache can hold all non-redundant chunks and that it fits in DRAM. However, the
actual size of the cache may be too large for the computers you have available. If that is the case you
must simulate a cache.

The cache should be indexed using the SHA-1 fingerprint, and contain chunks. To reduce the memory
requirements for the cache we recommend compressing the chunks with for example gzip. However,
you may store uncompressed data, use a faster compression algorithm, or an algorithm with better
compression ratio.

The cache should support the following operations:

* Read(fp): read the chunk with fingerprint FP
* Write(fp, chunk): create a cache entry with FP as index and chunk as data
* Lookup(fp): check if the cache contains an entry for FP

The cache should support concurrent reads and writes.

Local compression
You should compress the data before sending over the network using a local compression algorithm
such as gzip, bzip2, or snappy.

Protocol
You need to design a protocol for sender-receiver communication. The protocol may send chunks out of
order, but it is expected that the input datastream and output datastream are identical.

Compression engine
You should implement a concurrent compression engine using Go.

Evaluation
You should do a performance evaluation of your system. To do this you must set goals, select metrics,
instrument the code, design the experiments, and report the results.

Summary
The following should be done, as discussed above:

Create a model for accessing the dataset on ifilab102.

Model, design, and either implement or simulate the chunk cache.
Implement deduplication using SHA-1 fingerprints and local compression.
Design a protocol for sending fingerpints and chunk data.

Implement a concurrent compression engine in Go.

o vk wNE

Conduct a performance evaluation of your system.

7. Write a report that discuss your models, design, simulation (if any), implementation, experiment
methodology, and experiment results.

Practicalities
The assignment will be done in groups of two. One student will build and evaluate the sender, and one
student the receiver. All students must submit an individual report.

Start date: 20.09.2013
Due date: 17.10.2013

Reports and code are handed in <Details>.

Related work

* Neil T. Spring and David Wetherall. 2000. A protocol-independent technique for eliminating
redundant network traffic. SIGCOMM Comput. Commun. Rev. 30, 4 (August 2000), 87-95.
DOI=10.1145/347057.347408 http://doi.acm.org/10.1145/347057.347408

¢ Athicha Muthitacharoen, Benjie Chen, and David Maziéres. 2001. A low-bandwidth network file
system. In Proceedings of the eighteenth ACM symposium on Operating systems principles
(SOSP '01). ACM, New York, NY, USA, 174-187. DOI=10.1145/502034.502052
http://doi.acm.org/10.1145/502034.502052

* Benjamin Zhu, Kai Li, and Hugo Patterson. 2008. Avoiding the disk bottleneck in the data domain
deduplication file system. In Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST'08), Mary Baker and Erik Riedel (Eds.). USENIX Association, Berkeley, CA,
USA, , Article 18, 14 pages.

