
INF-2202 (Fall 2013)

Assignment #1

Lars Ailo Bongo
larsab@cs.uit.no

Ibrahim Umar
ibrahim.umar@uit.no

22-08-2013

Abstract

For this assignment, you will work with the lego Mindstorms[1] robot. Each robots
consists of three (touch[2], ultrasonic[3], and gyro[4]) sensors and two motors. This robot is a
self-balancing robot, which means it needs to be programmed in order for it to stand straight
on its own. One can achieve this by coordinating the two motors based on information given
by the gyro sensor. The programming will be done in Python, which can interface directly
to the robot via a USB cable or Bluetooth connection. Your task is to develop and evaluate
thoroughly a program that will enables the robot to be able to self-balanced itself while
capable in receiving simultaneous movement instructions. The said robot should also able
to recover itself by backtracking those instructions whenever it encounters an obstacle that
renders itself as impossible to move further forward. The implementation MUST incorporate
efficient concurrent processing.

1 Expected Goals

Your task is to develop and evaluate thoroughly a program that will:

1. enables the robot to be able to self-balanced itself at any moments,

2. able to receive simultaneous movement instructions

3. able to recover itself by backtracking instructions whenever it encounters an obstacle that
renders itself as impossible to move further forward

It is important that the robot have to maintain its balance at any moment, while obeying to
user instructions. Use the gyro sensors effectively to achieve this.

The acceptable inputs are in a form of console-typed text using this format (FORWARD / BACK
/ LEFT / RIGHT, <x>). Variable x is the degree of rotation for LEFT / RIGHT instructions
and distance in cm for FORWARD / BACK instructions. For example if you want the robot to
move forward for 10cm, the command issued should be <FORWARD, 10>.

The input console is going to be non-blocking, which means that you can write as many in-
structions as you want and the console will not stop receiving any inputs while an operation is

1



currently taking place. Entered instructions shall be executed sequentially one after another in
the order that they are entered.

Issuing the command ”PAUSE” / pushing the sensor button on the robot will immediately stops
the currently running instruction. Pushing the sensor button again or issuing ”CONTINUE”
command will make the robot to resume the stored instructions. Be mind that PAUSE condition
will not prevent new instruction inputs from the console.

Ultrasonic sensors is useful for detecting obstacles. Your robot must be able to detect an obstacle
and re-trace back its way to the end-state of the last instruction whenever it encounters a blockage
on its way forward and immediately proceed to the preceeding instruction. For example a robot
is issued a sequence of: <FORWARD, 30>, <LEFT, 30>, <BACK, 10>instructions. However
after moving forward for 10cm the robot encounters an obstacle on its way. In this situation
the robot should respond by move backward for 10cm, returning its state to the end-state of
previous instruction and then proceed to execute the next waiting instruction, which is <LEFT,
30>, and so on.

The implementation MUST incorporate efficient concurrent processing. This is very useful for
further developing a much complex robotics system, especially one that utilise a much complex
computation on a multiple core system. For example robots that incorporate facial recognition,
gesture detection, etc.

Your assignment report must include a detailed analysis on the correctness of your implementa-
tion in approaching the outlined goals. Employed testing scenarios that leads to your conclusion
are also need to be described. You also need to outline on how concurrent processing will be
beneficial in this kind of robot operation as well as for more complex robotics operation.

You are also required to measure the response latency comparison between concurrent imple-
mentation of the Lego robot and non-concurrent (for example using a simple ”global” while loop
on the main procedure) implementation. Explain your findings in the same report.

NOTE: Due to our department request, you are NOT allowed to disassemble the robots.

2 Deadlines and Scoring Criteria

The assignment will commence on Thursday, 22 August 2013 and its resulting report (and codes)
shall be submitted by 19 September 2013, both at the end of the scheduled colloquium class
(at 14.00). Any late submission will not be accepted and a FAIL mark will be given as your
score.

Submit your report and code to this email: ibrahim.umar@uit.no by the deadline. If there
any discrepancies on the submission time, only the email receive timestamp will be taken into
consideration.

The PASS / FAIL mark for this assignment will be assessed based on these criteria (not in order
of preference):

1. The ability to demonstrate a program that performs the outlined goals

2. Originality of the implementation

3. The ability to develop an efficient and optimal concurrent program

2



4. The ability to write a good analysis and report

Those getting the FAIL marks will be given a second chance at the discretion of the responsible
lecturers.

3 Preliminaries

This is a group assignment. Form a group of 5 person to work together on this assignment.

3.1 System Setup

These are the things that you will need to get up and running:

1. A self-balancing Lego robot

2. Either Windows, Mac OS X or Linux (recommended) OS

3. Python 2.6 or later (But not 3.x)

4. The nxt-python package (https://code.google.com/p/nxt-python/)

5. USB cable or Bluetooth connection. For minimum latency, a USB connection is recom-
mended.

Refer to https://code.google.com/p/nxt-python/wiki/Installation for the installation guide
of the nxt-python. After installing, go ahead take a look at the /examples directory for various ex-
ample scripts. From there on you should be able to get started in programming the robot.

3.2 Programming References

Here are some of the programming references related to the self-balancing lego robots that we
are using:

1. http://www.hitechnic.com/blog/gyro-sensor/htway/

2. http://www.techbricks.nl/My-NXT-projects/nxt-self-balancing-segway-nxtway-robot.

html

The links above contains valuable information and example source codes (in C-like language)
that you can use as a starting point for implementing the self-balancing robot using nxt-python.
I have also prepare a code snippets that demonstrate a way to obtain information from the
available sensors:

import nxt . l o ca to r , time
from nxt . s enso r . h i t e c h n i c import ∗
from nxt . s enso r import ∗

b = nxt . l o c a t o r . f i n d o n e b r i c k ( ) # Find an NXT br i c k and connect

s1 = Touch (b , PORT 1) # Touch sensor , in por t 1
s2 = Ul t r a son i c (b , PORT 2) # Ul t ra son i c sensor , in por t 2

3



s4 = Gyro (b , PORT 4) # Gyro sensor , in por t 4

s4 . c a l i b r a t e ( ) ; #ca l i b r a t e the gyro sensor

for i in range ( 1 0 0 0 ) :
print ’ Accel : ’+ s t r ( s4 . get sample ( ) ) # acce l data from gyro
print ’ Touch Up: ’+ s t r ( s1 . get sample ( ) ) # touch data
print ’ U l t r a son i c : ’+ s t r ( s2 . get sample ( ) ) # ob s t a c l e data
time . s l e e p ( 0 . 2 )

b . sock . c l o s e ( ) #c l o s e b l u e t o o t h connect ion

Also take a look at /examples/cnc.py from the nxt-python package for an example of concurrent
motor control.

If you need a concise programming references on threading with Python, this particular site:
http://pymotw.com/2/threading/ might be come in handy.

- GOOD LUCK! -

References

[1] http://mindstorms.lego.com/en-us/default.aspx

[2] http://mindstorms.lego.com/en-us/products/default.aspx#9843

[3] http://mindstorms.lego.com/en-us/products/default.aspx#9846

[4] http://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NGY1044

4


