Inf-2101 - Algoritmer
Graph Search

John Markus Bjgrndalen

2010-09-02

Some foils are adapted from the book and the book’s homepage.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02

1/25

John Markus Bjerndalen () Inf-2101 - Algoritl

Breadth-first search

Depth-first search . Put unvisited vertices on a stack.
Breadth-first search . Put unvisited vertices on a queue.

Shortest path . Find a path from s to t that uses fewest number of
edges.

BES (from source s to target t)

Put s onto a FIFO queue.

Repeat until the queue is empty;

* remove the least recently added vertex to v

+ add each of v’s unvisited neighbours to the queue,
and mark them as visited.

Property . BFS examines vertices in increasing distance from s.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 3/25

Time for some code again

John Markus Bjerndalen () Inf-2101 - Algoritmer

BFS application

* Facebook.
 Kevin Bacon humbers.

* Fewest number of hops in a communication network.

ARPANET LOGICAL MAP, MARCH 1977

=
=

[oviso5]

o) T
T R o e

— T
Weo) [T
faras [EER)

G3Es fromrl o

Gy

] [oecios0) b

AN

==

) oo T
p anEROEE
o A e
(360/40] e e
i i
iz e e o
[ror] eoea]
ome p romms e [essc

(PLEASE HOTE THAT Wi 1145 WAP SHOWS THE LOST POPULATION OF THE HE TWORK ACCOROING 10 THE BEST
G o O AINABL 0 CL Ak CAN B8 WABE FOR 115 ACCURREY |

HAMES SHOWN ARE M NAMES NOT NECESSARILY] HOST NAES

ARPANET

Inf-2101 - Algori

BFS application

* Facebook.
 Kevin Bacon humbers.

* Fewest number of hops in a communication network.

ano
Lllal= o) -

THE ORACLE

OF BACON

YMI‘MMI
mam&w.awsu
w-;s«-u
M‘S;‘W) |
PaaLomes)
Frosthoon 2008
Kev Bacon

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 6/25

Kevin Bacon graph

¢ Include vertex for each performer and movie.
* Connect movie to all performers that appear in movie.
» Compute shortest path from s = Kevin Bacon.

TebrmaT
of the
Tring

S

A tiny portion of the movie-performer relationship graph

Inf-2101 - Algoritmer 2010-09-02 7125

lterative Deepening Depth First Search

Breadth-first search returns a shortest path, but may require a lot of
edges to be put on the queue for dense, large graphs.

Depth-first search is efficient memory-wise, but returns the first path
found, not the shortest.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 8/25

lterative Deepening Depth First Search

Idea: use DFS, but limit the depth of the search.

A depth-limited search will stop adding edges to the fringe when it has
reached a depth limit.

By starting with a low depth limit and increasing by 1 until we find a
solution, we effectively end up with a shortest path.

Memory requirements are similar to DFS.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 9/25

lterative Deepening Depth First Search

Source code

John Markus Bjerndalen () Inf-2101 - Algoritmer

» connected components

John Markus Bjerndalen () Inf-2101 - Algoritl

Connectivity queries

Def. Vertices vand w are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?
in constant time

Vertex Component

0 0
1 1
2 1
3 0
4 0
5 0
6 2
7 0
8 2
9 1
10 0
11 0
12 1

Union-Find? Not quite.

51

John Markus Bjerndalen () Inf-2101 - Algoritl

Connected components

Goal: partition vertices into connected components.

Method:
@ Initialize all vertices v as

unmarked.

@ For each unmarked vertex, v, run DFS to identify all vertices
discovered as part of the same component.

preprocess time

query time

extra space

E+V

1

%

John Markus Bjerndalen ()

Inf-2101 - Algoritmer

2010-09-02

13/25

Depth-first search for connected components

public class CCFinder

{
private final static int UNMARKED = -1;
private int components;
private int[] cc;

public CCFinder (Graph G)
{ /* see next slide */ }

public int connected(int v, int w)
{ return cc[v] == cclw]; }

Bjorndalen () Inf-2101 - Algoritmer

component labels

constant-time
connectivity query

2010-09-02

14/25

Depth-first search for connected components

public CCFinder (Graph G)
{
cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)
cc[v] = UNMARKED;
for (int v = 0; v < G.V(); v++)
if (ce[v] == UNMARKED) <«——+— DFS for each component
{
dfs (G, v);
components++;

private void dfs(Graph G, int v)
{

cc[v] = components;
for (int w : G.adj(v)) <«———F— standard DFS

if (cc[w] == UNMARKED) dfs (G, w);

Inf-2101 - Algoritmer 2010-09-02 15/25

Connected components

John Markus Bjerndalen () Inf-2101 - Algoritmer

Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

assuming contiguous states

Input. Scanned image.
Output. Number of red and blue states.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 17/25

Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.

* Create grid graph.

* Connect each pixel to neighboring pixel if same color.
* Find connected components in resulting graph.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 18/25

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify “blobs."
* Vertex: pixel.
* Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels. N
black = 0

white = 255

Particle tracking. Track moving particles over time.

John Markus Bjerndalen () 2010-09-02 19/25

» challenges

John Markus Bjerndalen () Inf-2101 - Algoritl

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
. Hir-e an experﬂr. 0-1-2-3-4-2-0-6-4-5-0
¢ Intractable.

BB WNNEOOOO
AU AR WNO OGN R

* No one knows.
* Impossible.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 21/25

Bridges of Konigsberg
The Seven Bridges of Kénigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).

61

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 22/25

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert. 0-5-3-4-6-2-1-0

BB WWNE OO OO
aU AN OGN R

e Intractable.
* No one knows.
* Impossible.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 23/25

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

2o tuaooo
oA WWN o R

e Intractable.

1
* No one knows. ‘{

* Impossible. 2

>
AN WU NNN
()
A WO WU o R

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 24/25

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.

|
Aot s WwNN

(5
w
P
2
U WWNNKHEOo
T

e Intractable.
* No one knows.
* Impossible.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-09-02 25/25

