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Some foils are adapted from the book and the book’s homepage.
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Breadth-first search

Depth-first search . Put unvisited vertices on a stack.
Breadth-first search . Put unvisited vertices on a queue.

Shortest path . Find a path from s to t that uses fewest number of
edges.

BES (from source s to target t)

Put s onto a FIFO queue.

Repeat until the queue is empty;

* remove the least recently added vertex to v

+ add each of v’s unvisited neighbours to the queue,
and mark them as visited.

Property . BFS examines vertices in increasing distance from s.
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Time for some code again
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BFS application

* Facebook.
 Kevin Bacon humbers.

* Fewest number of hops in a communication network.

ARPANET LOGICAL MAP, MARCH 1977
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BFS application

* Facebook.
 Kevin Bacon humbers.

* Fewest number of hops in a communication network.
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Kevin Bacon graph

¢ Include vertex for each performer and movie.
* Connect movie to all performers that appear in movie.
» Compute shortest path from s = Kevin Bacon.

TebrmaT
of the
Tring

S

A tiny portion of the movie-performer relationship graph
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lterative Deepening Depth First Search

Breadth-first search returns a shortest path, but may require a lot of
edges to be put on the queue for dense, large graphs.

Depth-first search is efficient memory-wise, but returns the first path
found, not the shortest.
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lterative Deepening Depth First Search

Idea: use DFS, but limit the depth of the search.

A depth-limited search will stop adding edges to the fringe when it has
reached a depth limit.

By starting with a low depth limit and increasing by 1 until we find a
solution, we effectively end up with a shortest path.

Memory requirements are similar to DFS.
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lterative Deepening Depth First Search

Source code
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» connected components
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Connectivity queries

Def. Vertices vand w are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?
in constant time

Vertex Component

0 0
1 1
2 1
3 0
4 0
5 0
6 2
7 0
8 2
9 1
10 0
11 0
12 1

Union-Find? Not quite.

51
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Connected components

Goal: partition vertices into connected components.

Method:
@ Initialize all vertices v as

unmarked.

@ For each unmarked vertex, v, run DFS to identify all vertices
discovered as part of the same component.

preprocess time

query time

extra space

E+V

1

%
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Depth-first search for connected components

public class CCFinder

{
private final static int UNMARKED = -1;
private int components;
private int[] cc;

public CCFinder (Graph G)
{ /* see next slide */ }

public int connected(int v, int w)
{ return cc[v] == cclw]; }
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Depth-first search for connected components

public CCFinder (Graph G)
{
cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)
cc[v] = UNMARKED;
for (int v = 0; v < G.V(); v++)
if (ce[v] == UNMARKED) <«——+— DFS for each component
{
dfs (G, v);
components++;

private void dfs(Graph G, int v)
{

cc[v] = components;
for (int w : G.adj(v)) <«———F— standard DFS

if (cc[w] == UNMARKED) dfs (G, w);
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Connected components
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Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

assuming contiguous states

Input. Scanned image.
Output. Number of red and blue states.
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Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.

* Create grid graph.

* Connect each pixel to neighboring pixel if same color.
* Find connected components in resulting graph.
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Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify “blobs."
* Vertex: pixel.
* Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels. N
black = 0

white = 255

Particle tracking. Track moving particles over time.
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» challenges
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Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
. Hir-e an experﬂr. 0-1-2-3-4-2-0-6-4-5-0
¢ Intractable.

BB WNNEOOOO
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* No one knows.
* Impossible.
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Bridges of Konigsberg
The Seven Bridges of Kénigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).

61
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Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert. 0-5-3-4-6-2-1-0

BB WWNE OO OO
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e Intractable.
* No one knows.
* Impossible.
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Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.
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e Intractable.

1
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* Impossible. 2
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Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.
* Hire an expert.
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e Intractable.
* No one knows.
* Impossible.
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