
Inf-2101 - Algoritmer
Introduction

John Markus Bjørndalen

2010-08-16

Some foils are adapted from the book and the book’s homepage.

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 1 / 22



What is a graph?

Set of objects (nodes/vertices) with pairwise connections (edges, arcs,
links).

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 2 / 22



Why do we study graphs?
Routing (ex: GPS navigation for cars)

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 3 / 22



Why do we study graphs?

The internet

Based on foil from Sedgewick/Wayne,

Image from Opte Project http://en.wikipedia.org/wiki/Internet

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 4 / 22

http://en.wikipedia.org/wiki/Internet


Why do we study graphs?

Routing (ex: GPS navigation for cars)
Games
Artificial Intelligence and Knowledge representation
Scheduling
Networks and routing
Study and analyze structure of programs
Intellectual challenge
etc.

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 5 / 22



Some graph terms

Vertex : v
Edge : e = v − w
Graph : G
V vertices, E edges.
Parallel edge, self loop
Directed, undirected
Sparse, Dense
Path, cycle
Cyclic path, tour
Tree, forest
Subgraph
Connected, connected
component

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 6 / 22



Some graph processing problems

Path Is there a path between s and t?

Shortest path What is the shortest path between s and t?

Cycle Is there a cycle in the path?

Euler tour Is there a cycle that uses each edge exactly once?

Hamilton tour Is there a cycle that uses each vertex exactly once?

Connectivity Is there a way to connect all of the vertices?

MST What is the best way to connect all of the vertices?

Biconnectivity Is there a vertex whose removal disconnects a graph?

Planarity Can you draw the graph in the plane with no crossing edges?

Graph isomorphism Do two adjacency matrices represent the same graph?

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 7 / 22



How do we represent a graph in code?

You need to represent vertices and edges.
Two basic options: adjacency matrix and adjacency lists.

Adjacency matrix:

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 8 / 22



How do we represent a graph in code?

You need to represent vertices and edges.
Two basic options: adjacency matrix and adjacency lists.

Adjacency list:

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 9 / 22



How do we represent a graph in code?

Storage space?

Adjacency Matrix:
Dense graph: efficient
Sparse graph: inefficient (lots of
0s)

Adjacency list:
Dense graph: inefficient (lots of
pointers)
Sparse graph: efficient

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 10 / 22



How do we represent a graph in code?

Check for existing edges?

Adjacency Matrix:
matrix lookup

Adjacency list:
look up vertex, then search list

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 11 / 22



How do we represent a graph in code?

Add edges?

Adjacency Matrix:
write 1 to two locations (undirected
graphs)

Adjacency list:
2x look up vertex, then append to
list

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 12 / 22



How do we represent a graph in code?

Remove edges?

Adjacency Matrix:
write 0 to two locations (undirected
graphs)

Adjacency list:
2x look up vertex, then search list
and unlink

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 13 / 22



Adjacency list implementation in Python

class Graph(object):
def __init__(self, vertices = None, edges = None):

"""Vertices is a list of the vertex ids or numbers.
Edges is a list of (vertex, vertex) tuples.
If both are None (or empty lists), the graph is empty.
"""
self.graph = {}

if vertices:
for v in vertices:

self.graph[v] = []
if edges:

for e in edges:
self.addEdge(e)

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 14 / 22



Adjacency list implementation in Python

def _addEdgeOneDir(self, v0, v1):
"just add the edge in one direction"
if v0 in self.graph:

if v1 not in self.graph[v0]:
self.graph[v0].append(v1)

else:
self.graph[v0] = [v1]

def addEdge(self, edge):
"""Add an edge such that we can easily check for
both (v0,v1) and (v1,v0).
Will also add vertices if necessary."""
v0 = edge[0]
v1 = edge[1]
# Undirected graph, just make sure it shows both
# directions.
self._addEdgeOneDir(v0, v1)
self._addEdgeOneDir(v1, v0)

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 15 / 22



Adjacency list implementation in Python

def removeEdge(self, edge):
v0 = edge[0]
v1 = edge[1]
# No error checking, just let the default list type handle this
self.graph[v0].remove(v1)
self.graph[v1].remove(v0)

def hasEdge(self, v0, v1):
"returns true if there is an edge between v0 and v1"
return v1 in self.graph[v0]

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 16 / 22



Adjacency list implementation in Python

def show(self):
# Later, we will use graphviz to visualize graphs.

print "Graph"
print " Vertices", sorted(self.graph.keys())
print " Edges"
for v0 in sorted(self.graph.keys()):

print " ", v0, "->", \
", ".join([repr(x) for x in \

sorted(self.graph[v0])])

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 17 / 22



Adjacency list implementation in Python

if __name__ == "__main__":
g = Graph([1,2,3], [(1,2), (2,1), (2,3), (3,4), (5,1)])
g.show()
print "Adding edge (5,2)"
g.addEdge((5,2))
g.show()
print "Removing edge (2,1)"
g.removeEdge((2,1))
g.show()
print "(1,2)? -> ", g.hasEdge(1,2)
print "(5,2)? -> ", g.hasEdge(5,2)

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 18 / 22



Adjacency list implementation in Python

Graph
Vertices [1, 2, 3, 4, 5]
Edges

1 -> 2, 5
2 -> 1, 3
3 -> 2, 4
4 -> 3
5 -> 1

Adding edge (5,2)
Graph
Vertices [1, 2, 3, 4, 5]
Edges

1 -> 2, 5
2 -> 1, 3, 5
3 -> 2, 4
4 -> 3
5 -> 1, 2

Removing edge (2,1)
Graph
Vertices [1, 2, 3, 4, 5]
Edges

1 -> 5
2 -> 3, 5
3 -> 2, 4
4 -> 3
5 -> 1, 2

(1,2)? -> False
(5,2)? -> True

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 19 / 22



Performance of our Python implementation?

As adjacency lists, but with one modification: dictionary of vertices
instead of list of vertices!

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 20 / 22



Performance issues

Data/graph representation will often influence both performance (ex:
matrix vs. list), and results (searches).

Note that worst-case analysis may not be representative for the graphs
that you give your algorithms.

Knowing graph constraints and properties can lead to a more efficient
representation and algorithm than worst-case analysis would do.

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 21 / 22



Classes of graph problems

Easy
Tractable
Intractable
Unknown

John Markus Bjørndalen () Inf-2101 - Algoritmer 2010-08-16 22 / 22


	Classes of graph problems

