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Some foils are adapted from the book and the book’s homepage.
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What is a graph?

Set of objects (nodes/vertices) with pairwise connections (edges, arcs,
links).
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Why do we study graphs?
Routing (ex: GPS navigation for cars)
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http://en.wikipedia.org/wiki/Internet

Why do we study graphs?

@ Routing (ex: GPS navigation for cars)

@ Games

@ Atrtificial Intelligence and Knowledge representation
@ Scheduling

@ Networks and routing

@ Study and analyze structure of programs

@ Intellectual challenge

@ eftc.
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Some graph terms

Vertex : v
Edge:e=v—-w
Graph : G

V vertices, E edges. ﬂ\
Parallel edge, self loop 0‘9.-;9 e G
Directed, undirected w
Sparse, Dense °
Path, cycle Me
@ Cyclic path, tour °-w
@ Tree, forest

@ Subgraph

@ Connected, connected
component
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Some graph processing problems

Path |s there a path between s and t?
Shortest path What is the shortest path between s and t?

Cycle Is there a cycle in the path?
Euler tour Is there a cycle that uses each edge exactly once?

Hamilton tour Is there a cycle that uses each vertex exactly once?

Connectivity |s there a way to connect all of the vertices?
MST What is the best way to connect all of the vertices?

Biconnectivity Is there a vertex whose removal disconnects a graph?

Planarity Can you draw the graph in the plane with no crossing edges?

Graph isomorphism Do two adjacency matrices represent the same graph?
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How do we represent a graph in code?

You need to represent vertices and edges.

Two basic options: adjacency matrix and adjacency lists.

Adjacency matrix:

9101112

012345678
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How do we represent a graph in code?

You need to represent vertices and edges.
Two basic options: adjacency matrix and adjacency lists.

Adjacency list:
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How do we represent a graph in code?

Storage space?

Adjacency Matrix:
Dense graph: efficient

Sparse graph: inefficient (lots of
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Adjacency list:

Dense graph: inefficient (lots of

pointers)

Sparse graph: efficient
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How do we represent a graph in code?

Check for existing edges?

Adjacency list:

Adjacency Matrix:
matrix lookup

look up vertex, then search list
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How do we represent a graph in code?

Add edges?

Adjacency Matrix:

Adjacency list:

write 1 to two locations (undirected 2x look up vertex, then append to

graphs)

01234567809101112
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How do we represent a graph in code?

Remove edges?

Adjacency Matrix:

Adjacency list:

write 0 to two locations (undirected 2x look up vertex, then search list

graphs)

01234567809101112
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Adjacency list implementation in Python

class Graph (object) :
def _ init__ (self, vertices = None, edges = None):
"""Vertices is a list of the vertex ids or numbers.
Edges is a list of (vertex, vertex) tuples.
If both are None (or empty lists), the graph is empty.

mon

self.graph = {}

if vertices:
for v in vertices:
self.graphlv] = []
if edges:
for e in edges:
self.addEdge (e)
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Adjacency list implementation in Python

def

def

_addEdgeOneDir (self, v0, vl):
"just add the edge in one direction"
if v0 in self.graph:
if vl not in self.graph[v0]:
self.graph[v0].append(vl)
else:
self.graph[v0] = [v1l]

addEdge (self, edge):

"""Add an edge such that we can easily check for
both (v0,v1) and (v1,v0).

Will also add vertices if necessary."""

v0 = edge[0]

vl = edge[l]

# Undirected graph, just make sure it shows both
# directions.

self._addEdgeOneDir (v0, vl)
self._addEdgeOneDir (vl, vO0)
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Adjacency list implementation in Python

def removeEdge (self, edge):
v0 = edge[0]
vl = edge[l]
# No error checking, just let the default list type handl
self.graph[v0].remove (vl)
self.graph[vl].remove (v0)

def hasEdge(self, vO0, vl):

"returns true if there is an edge between v0 and v1"
return vl in self.graph[v0]
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Adjacency list implementation in Python

def show(self):
# Later, we will use graphviz to visualize graphs.

print "Graph"
print " Vertices", sorted(self.graph.keys())
print " Edges"
for v0 in sorted(self.graph.keys()):
print " "oov0, "->", \
", ".join([repr (x) for x in \
sorted(self.graph[v0])1)
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Adjacency list implementation in Python

if _ name_ == "_ _main__ ":
g = Graph([1,2,3]1, [(1,2), (2,1), (2,3), (3,4),
g.show ()

print "Adding edge (5,2)"
g.addEdge ( (5,2))

g.show ()

print "Removing edge (2,1)"
g.removeEdge ((2,1))

g.show ()

print "(1,2)? -> ", g.hasEdge(1l,2)
print "(5,2)? -> ", g.hasEdge(5,2)
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Adjacency list implementation in Python

Graph
Vertices [1, 2, 3, 4, 5]
Edges
1 —>2, 5
2 -> 1, 3
3 > 2, 4
4 -> 3
5 —>1
Adding edge (5,2)
Graph
Vertices [1, 2, 3, 4, 5]
Edges
1 ->2, 5
2 ->1, 3, 5
3 > 2, 4
4 —> 3
5 -—>1, 2
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Performance of our Python implementation?

As adjacency lists, but with one modification: dictionary of vertices
instead of list of vertices!
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Performance issues

Data/graph representation will often influence both performance (ex:
matrix vs. list), and results (searches).

Note that worst-case analysis may not be representative for the graphs
that you give your algorithms.

Knowing graph constraints and properties can lead to a more efficient
representation and algorithm than worst-case analysis would do.
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Classes of graph problems

@ Easy

@ Tractable

@ Intractable
@ Unknown
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