Inf-2101 - Algoritmer

Introduction

John Markus Bjgrndalen

2010-08-16

Some foils are adapted from the book and the book’s homepage.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16

1/22



What is a graph?

Set of objects (nodes/vertices) with pairwise connections (edges, arcs,
links).

(&)

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 2/22



Why do we study graphs?
Routing (ex: GPS navigation for cars)

Get Directions. My Iaps. « 5 Pint () Send | o= Link

®
@ [Storgeta 4, 9291 Tromso, Nowway (@hallen as)
s s

Driving directions to Glhallen as

5 Suggested routes

Erling Kjeldsens veg/Route 862 and 10 mins
Langnestunnelen

sk

Route 862 ang Sentrumstangenien 11 mins

sokn

Universitetsvegen
9019 Tromse, Noway

1. Hoad southwest on Universitetsvegen tonard 500 11
Minnelundvelen

2. Tum right at Hansine Hansens veg som

3. ALthe foundabou, ake the st extontothe 54 1
Erling Kjeldsens veg/Route 862 ramp.

4. Merge onto Erling Kjeldsens veg/Route 862 2.4 k.

5. At the roundabout,take the 3rd exit onto 300m
Kvaloyvegen
6. At the roundabout, take the 2nd exi onto 19km
Langnestunnelen
7. At the roundabout, take the 1st exitonto. 15km
Sentrumstang:
Gothrough 1 foundabout
8 Tum loft at Strandvegen 1om
9. Continue onto Storgata Bm
Destination wil be on the fft
Ginalien as
Storgata 4

9201 Tromss, Noway

Blhallen Sponserod Liks

Fva sk
Sjokk Ditt Distrk(®
i ST/

& Universtetsvegen, Tromss, Norge. J A /52010 Google - Map Gata G2010 Tee At - T o e ]

hn Markus Bjerndalen () Inf-2101 - Algor




Image from Opte Project http://en. i

b.33.200.20

06

TOTST
——
o
207.205.2,

_—
35 ceeEisn110

07.205.280.163

07205250005
Bis2s0110 07 505 73
07.205/230.128

07205 230117
07205, 254

1 298330 10

e 207 205230474

e

e

20720



http://en.wikipedia.org/wiki/Internet

Why do we study graphs?

@ Routing (ex: GPS navigation for cars)

@ Games

@ Atrtificial Intelligence and Knowledge representation
@ Scheduling

@ Networks and routing

@ Study and analyze structure of programs

@ Intellectual challenge

@ eftc.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 5/22



Some graph terms

Vertex : v
Edge:e=v—-w
Graph : G

V vertices, E edges. ﬂ\
Parallel edge, self loop 0‘9.-;9 e G
Directed, undirected w
Sparse, Dense °
Path, cycle Me
@ Cyclic path, tour °-w
@ Tree, forest

@ Subgraph

@ Connected, connected
component

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 6/22



Some graph processing problems

Path |s there a path between s and t?
Shortest path What is the shortest path between s and t?

Cycle Is there a cycle in the path?
Euler tour Is there a cycle that uses each edge exactly once?

Hamilton tour Is there a cycle that uses each vertex exactly once?

Connectivity |s there a way to connect all of the vertices?
MST What is the best way to connect all of the vertices?

Biconnectivity Is there a vertex whose removal disconnects a graph?

Planarity Can you draw the graph in the plane with no crossing edges?

Graph isomorphism Do two adjacency matrices represent the same graph?

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 7/22



How do we represent a graph in code?

You need to represent vertices and edges.

Two basic options: adjacency matrix and adjacency lists.

Adjacency matrix:

9101112

012345678

OOOOOOOOOOOOO

ocHMHAmwmoO~oaOd
§ oo ~ g e

8/22

2010-08-16

Inf-2101 - Algoritmer

John Markus Bjerndalen ()



How do we represent a graph in code?

You need to represent vertices and edges.
Two basic options: adjacency matrix and adjacency lists.

Adjacency list:

}EE—-EE—E:——ED
|

b=

JERCs
3_'T-EE-'|IEI
“_'T’EEHEE-'EEI
5

6

{

_'T’EE'EE-—ED
_'T'EE-ED
[]

¢

:1 (20] ]
m_"—-IEEI
11_1HE:I

2 =

John Markus Bjerndalen () Inf-2101 - Algoritmer

4

2010-08-16

9/22



How do we represent a graph in code?

Storage space?

Adjacency Matrix:
Dense graph: efficient

Sparse graph: inefficient (lots of

John Markus Bjerndalen ()

Adjacency list:

Dense graph: inefficient (lots of

pointers)

Sparse graph: efficient

AT EIC  FIC AN

g RN

g RN

uEC V]
- Es-G
g ERC CIC K]
reI=-T]
(71]

]
g ERE|

EIC EN|

g ER g FFVH|

P R

"
3

"
B

LLLLL L LI L L LT T

"
5

Inf-2101 - Algoritmer

2010-08-16

10/22



How do we represent a graph in code?

Check for existing edges?

Adjacency list:

Adjacency Matrix:
matrix lookup

look up vertex, then search list

11/22

Inf-2101 - Algoritmer 2010-08-16

John Markus Bjerndalen ()



How do we represent a graph in code?

Add edges?

Adjacency Matrix:

Adjacency list:

write 1 to two locations (undirected 2x look up vertex, then append to

graphs)

01234567809101112

John Markus Bjerndalen ()

list
j-——EE-EE—EE—ED

{12]e>f11e310] ]

Inf-2101 - Algoritmer 2010-08-16

12/22



How do we represent a graph in code?

Remove edges?

Adjacency Matrix:

Adjacency list:

write 0 to two locations (undirected 2x look up vertex, then search list

graphs)

01234567809101112

John Markus Bjerndalen ()

and unlink
j-——EE-EE—EE—ED

{12]e>f11e310] ]

Inf-2101 - Algoritmer 2010-08-16 13/22



Adjacency list implementation in Python

class Graph (object) :
def _ init__ (self, vertices = None, edges = None):
"""Vertices is a list of the vertex ids or numbers.
Edges is a list of (vertex, vertex) tuples.
If both are None (or empty lists), the graph is empty.

mon

self.graph = {}

if vertices:
for v in vertices:
self.graphlv] = []
if edges:
for e in edges:
self.addEdge (e)

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 14 /22



Adjacency list implementation in Python

def

def

_addEdgeOneDir (self, v0, vl):
"just add the edge in one direction"
if v0 in self.graph:
if vl not in self.graph[v0]:
self.graph[v0].append(vl)
else:
self.graph[v0] = [v1l]

addEdge (self, edge):

"""Add an edge such that we can easily check for
both (v0,v1) and (v1,v0).

Will also add vertices if necessary."""

v0 = edge[0]

vl = edge[l]

# Undirected graph, just make sure it shows both
# directions.

self._addEdgeOneDir (v0, vl)
self._addEdgeOneDir (vl, vO0)

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16

15/22



Adjacency list implementation in Python

def removeEdge (self, edge):
v0 = edge[0]
vl = edge[l]
# No error checking, just let the default list type handl
self.graph[v0].remove (vl)
self.graph[vl].remove (v0)

def hasEdge(self, vO0, vl):

"returns true if there is an edge between v0 and v1"
return vl in self.graph[v0]

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 16/22



Adjacency list implementation in Python

def show(self):
# Later, we will use graphviz to visualize graphs.

print "Graph"
print " Vertices", sorted(self.graph.keys())
print " Edges"
for v0 in sorted(self.graph.keys()):
print " "oov0, "->", \
", ".join([repr (x) for x in \
sorted(self.graph[v0])1)

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16

17/22



Adjacency list implementation in Python

if _ name_ == "_ _main__ ":
g = Graph([1,2,3]1, [(1,2), (2,1), (2,3), (3,4),
g.show ()

print "Adding edge (5,2)"
g.addEdge ( (5,2))

g.show ()

print "Removing edge (2,1)"
g.removeEdge ((2,1))

g.show ()

print "(1,2)? -> ", g.hasEdge(1l,2)
print "(5,2)? -> ", g.hasEdge(5,2)

John Markus Bjerndalen () Inf-2101 - Algoritmer

(5,1)1)

2010-08-16

18/22



Adjacency list implementation in Python

Graph
Vertices [1, 2, 3, 4, 5]
Edges
1 —>2, 5
2 -> 1, 3
3 > 2, 4
4 -> 3
5 —>1
Adding edge (5,2)
Graph
Vertices [1, 2, 3, 4, 5]
Edges
1 ->2, 5
2 ->1, 3, 5
3 > 2, 4
4 —> 3
5 -—>1, 2

John Markus Bjerndalen ()

Removing
Graph
Vertices
Edges

1 —>
2 —>
3 -
4 —>
5 ->
)? >
y? >

u
~
NN

Inf-2101 - Algoritmer

edge (2,1)

[l’ 2’ 3’ 4’

Hw N w o
~ 0~
IS

, 2
False
True

2010-08-16

19/22



Performance of our Python implementation?

As adjacency lists, but with one modification: dictionary of vertices
instead of list of vertices!

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 20/22



Performance issues

Data/graph representation will often influence both performance (ex:
matrix vs. list), and results (searches).

Note that worst-case analysis may not be representative for the graphs
that you give your algorithms.

Knowing graph constraints and properties can lead to a more efficient
representation and algorithm than worst-case analysis would do.

John Markus Bjerndalen () Inf-2101 - Algoritmer 2010-08-16 21/22



Classes of graph problems

@ Easy

@ Tractable

@ Intractable
@ Unknown

John Markus Bjerndalen () Inf-2101 - Algoritmer



	Classes of graph problems

