
Bulk Synchronous Visualization

Lars Ailo Bongo*

Department of Computer Science
University of Tromsø

Norway

ABSTRACT

Many biological applications require computationally expensive
high resolution visualizations. One such example is visual
analysis of multiple gene expression datasets. Large desktop
displays and display walls may provide the required resolution,
and current multi- and many-core processors often have the
required computational resources. However, it is still challenging
to write programs that can utilize high resolution displays and
multi-core processors. This extended abstract describes the bulk
synchronous visualization (BSV) model for interactive parallel
computation and visualizations. The data to be visualized is split
into multiple visualizations, each shown in a separate window that
is rendered by a separate plotter. The user controls the plotters
through an interactive Python shell by calling functions to
visualize, filter, and mange plotter windows. The system is
designed to efficiently explore hundreds of small visualizations. It
provides efficient window management, and it makes it easier to
write parallel visualizations since process management, multi-
threading, and distribution is hidden from the user.

Keywords: Python, bulk synchronous parallelism, biological
visualization, display walls

Index terms: D.1.3 [Programming Techniques]: Concurrent
Programming Distributed programming; D.2.13 [Software
Engineering]: Reusable Software--Reusable libraries

1 INTRODUCTION

Many biological applications require computationally expensive
high resolution visualizations. One such example is visual
analysis of multiple gene expression datasets, where simultaneous
integrated display of many datasets can provide novel biological
insights that are not apparent when displaying only one dataset at
a time [1].

High resolution displays are readily available either as large
format monitors, multiple monitors connected to a computer, or as
tiled display walls where multiple computers with one or more
monitors or projectors are coordinated to provide one high
resolution display [2]. In addition, current computers have very
powerful multi-, or many-core processors. These therefore
typically provide the required resources for biological
visualization applications.

However, writing a program that can utilize high resolution
displays and multi-core processors is challenging. First, to utilize
multiple processor cores requires writing either a multi-threaded
program to be run on a shared memory computer, or a distributed
program to be run on a distributed memory computer cluster.

Second, to write a visualization program that performs well on a
high resolution screen it may be necessary to use low-level
graphics primitives to achieve required performance, or to do
window management if there are multiple sub-visualizations. All
of the above requires either advanced programming knowledge or
many days of developer time, which often leads to
underutilization of the available resolution and computational
resources.

The developer time is justified for visualization tools with many
users such as business intelligence tools [3-5], omics visualization
tools [1,6], or scientific parallel visualization tools [7]. But there
are many cases where a single user needs to quickly visualize
some data using an easy to use visualization environment such as
MATLAB [8] or pyplot [9].

It is also possible to reduce the amount of data to be visualized
by using techniques such as clustering or statistical analysis.
However, many users do not have the knowledge required to use
these techniques or they may want to do some simple
visualizations to quickly look at the non-reduced data before using
these advanced techniques.

We propose the bulk synchronous visualization (BSV) model
for interactive parallel computation and visualizations (inspired by
the bulk synchronous programming model [10]). It assumes that
the data to be visualized can be split into multiple parts that can be
computed and visualized independently. Each part is displayed in
a separate window and run in a separate process. The user controls
the visualization through an interactive Python shell by calling
functions that filter visible tasks, or show next set of tasks. The
model provides several advantages:

• The program is sequential. It is therefore not necessary to
implement data synchronization and protection as would
be necessary for multi-threaded programs.

• The number of displays can easily be scaled. It is therefore
easy to quickly write and test a function for visualizing one
part of the data, and then viewing the rest of the data in
bulk by running the function in parallel for all parts.

• The program can be run on a distributed memory cluster
without writing message passing or other synchronization
code.

• Low level process management is hidden from the user.
• The system provides efficient window management and

filtering such that an analyst can quickly iterate over
hundreds of sub-graphs shown in hundreds of windows.

 The system is work in progress. The rest of the extended
abstract describes the programming model, the design and
implementation of the BSV system, and a use case.

2 PROGRAMMING MODEL

A BSV program consists of a coordinator process that
orchestrates computation and visualizations executed by multiple
plotter processes that may run on multiple computers. The
coordinator is an interactive Python script where the user can call
the BSV API functions. The user can also write at runtime a
visualization function to be executed by the plotters.

The coordinator first initializes the data structures to be
visualized, typically by reading and parsing data from input files.

* larsab@cs.uit.no

It then splits the data into multiple parts and assigns each part to a
plotter. A plotter process is created by forking the coordinator
process, so each plotter contains a replica of the coordinator data
structures in a separate address space. A modification by one
plotter process is therefore not visible to other plotters. A plotter
process first initializes a window and then executes visualization
functions received from the coordinator. All running plotters are
synchronized with respect to the visualization commands
executed. To visualize different parts, the programmer provides a
list with arguments to be sent to each plotter. A plotter may also
receive a show or hide window command, a command to move or
resize the window, or a kill command. The hide and kill
commands may be sent in the form of a filter function that is
evaluated to determine whether to hide the window of a plotter.

The coordinator keeps a list of all executed commands, so it
can kill a plotter process and later restart it by sending it the list of
commands to be executed in order to synchronize the
visualization with the other currently visible visualizations.
[1]: matrix = readMatrixRows()
[2]: rowIndxs = range(len(matrix))
[3]: def viz1(indx):
 plot(matrix[indx])
[4]: coordinator = bsv.Coordinator(nWindows)
[5]: coordinator.visualize(viz1, rowIndxs)
[6]: coordinator.showRandom(nWindows)
[7]: def filter1(indx):
 for i in range(len(matrix[indx])):
 if matrix[r][indx] < 0:
 return False # hide window
 return True
[8]: coordinator.filter(filter1, rowIndxs)
[9]: coordinator.showFirst(nWindows)

Figure 1: A simplified BSV program for plotting rows of a matrix in
separate windows, showing a random subset of plots, and then hiding all
plots with negative values.

3 DESIGN AND IMPLEMENTATION

The BSV system is designed to provide efficient interactive
exploration of large visualizations split into hundreds of windows.
We take advantage of four properties of current computers and
operating systems. First, there is enough DRAM to keep many
visualization processes in memory at once. Second, if the
operating system implements fork using copy-on-write the
resident set size of the child processes will be small even for
processes with large data structures that are mostly read only.
Third, there are compute resources available for running
computation on hidden windows. Fourth, the fork system call has
low overhead.

The BSV system therefore runs many visualization processes
simultaneously, but only a few of these are visible at a given time.
In addition the system predicts which visualizations are likely to
be shown in the near future, and if needed starts these process in
the background such that the visualizations are ready when
requested by the user. The prediction is easy to implement if the
user views the visualizations in an order specified at the time the
data was split into multiple parts. Such an order can be based on
for example indexes in a matrix, dataset names, or graph
properties such as size.

We have implemented the BSV system in Python. We use the
multiprocessing module to fork child processes and use pipes for
coordinator-child process communication.

In Python, functions can be saved as objects and sent over a
pipe or socket to another process. Simple functions can therefore
be written by the user at run time. We use pylab [11] for
numerical computation and graph plotting, and iPython [12] as the

interactive shell and for parallel computing on a display wall
cluster.

4 USE CASE

BSV was motivated by the need to understand the behavior of an
algorithm we developed for removing overlapping samples from
series downloaded from NCBI GEO. Overlap is removed by
creating graphs with edges between all series that have one or
more overlapping samples and then iteratively removing samples
until the overlap between two series is less than a maximum
specified as a parameter. The program outputs a log file with the
graphs and lists of removed series and samples.

The BSV coordinator reads in the log file and assigns each of
the 1636 graphs to plotters that visualize these using the
NetworkX Python package for drawing dot [13] graphs in pylab
[11]. In the resulting visualizations, removed series are marked
using different colors and styles, and the overlap is shown using
edge labels.

 We can fit about 30 windows on a 2560x1440 pixel screen, and
about 100 windows on our 6144x2304 pixel display wall. We
first viewed the first tens of graphs, and then a few tens of
randomly selected graphs to get a rough idea about how the
algorithm removes overlap. We then studied significant details by
writing filter functions to only show graphs with certain properties
such as graphs that contains superset or duplicate series, graphs
with at least N overlapping samples between a pair of series, or
graphs that contains a series X or a sample Y.

To parse the log file and create the graph data structures we
wrote about 200 line of code (LOC). The final visualization
function was about 60 LOC, mostly for specifying the node and
edge styles to use in the graph. The filter functions were less than
10 LOC.

The use case demonstrates that BSV is useful to write and scale
up simple visualizations that use the many visualization libraries
available for Python.

REFERENCES

[1] M. Hibbs, G. Wallace, M. Dunham, K. Li, O. Troyanskaya.
“Viewing the Larger Context of Genomic Data through Horizontal
Integration”. Proceedings of 11th International Conference
Information Visualization (IV '07). 2007. pp. 326-334

[2] K. Li, H. Chen, Y. Chen, D.W. Clark, P. Cook, S. Damianakis, G.
Essl, A. Finkelstein, T. Funkhouser, T. Housel, A. Klein, Z. Liu, E.
Praun, J.P. Singh, B. Shedd, J. Pal, G. Tzanetakis, J. “Zheng.
Building and using a scalable display wall system”. IEEE Computer
Graphics and Applications 20 (4). 2000. pp. 29-37

[3] http://www.qlikview.com/
[4] http://spotfire.tibco.com/
[5] http://www.tableausoftware.com/products/desktop
[6] N. Gehlenborg, S. I O'Donoghue, N.S. Baliga, Alexander Goesmann,

M. Hibbs, H. Kitano, O. Kohlbacher, H. Neuweger, R. Schneider, D.
Tenenbaum, A-C. Gavin. “Visualization of omics data for systems
biology”. Nature methods 7 (3 Suppl), 2010. pp. S56-68.

[7] http://www.paraview.org/
[8] www.mathworks.com/products/matlab/
[9] http://matplotlib.sourceforge.net/api/pyplot_api.html
[10] L. G. Valiant. “A Bridging Model for Parallel Computation”.

Communications of the ACM 33(8), 1990, pp. 103-111.
[11] http://www.scipy.org/PyLab
[12] http://ipython.org/
[13] E. Gansner, E. Koutsofios, S. North. “Drawing graphs with dot”.

http://www.graphviz.org/Documentation/dotguide.pdf. 2006

