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ABSTRACT 

Many biological applications require computationally expensive 
high resolution visualizations. One such example is visual 
analysis of multiple gene expression datasets. Large desktop 
displays and display walls may provide the required resolution, 
and current multi- and many-core processors often have the 
required computational resources. However, it is still challenging 
to write programs that can utilize high resolution displays and 
multi-core processors. This extended abstract describes the bulk 
synchronous visualization (BSV) model for interactive parallel 
computation and visualizations. The data to be visualized is split 
into multiple visualizations, each shown in a separate window that 
is rendered by a separate plotter. The user controls the plotters 
through an interactive Python shell by calling functions to 
visualize, filter, and mange plotter windows. The system is 
designed to efficiently explore hundreds of small visualizations. It 
provides efficient window management, and it makes it easier to 
write parallel visualizations since process management, multi-
threading, and distribution is hidden from the user.  

Keywords: Python, bulk synchronous parallelism, biological 
visualization, display walls 
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1 INTRODUCTION 

Many biological applications require computationally expensive 
high resolution visualizations. One such example is visual 
analysis of multiple gene expression datasets, where simultaneous 
integrated display of many datasets can provide novel biological 
insights that are not apparent when displaying only one dataset at 
a time [1].  

High resolution displays are readily available either as large 
format monitors, multiple monitors connected to a computer, or as 
tiled display walls where multiple computers with one or more 
monitors or projectors are coordinated to provide one high 
resolution display [2]. In addition, current computers have very 
powerful multi-, or many-core processors. These therefore 
typically provide the required resources for biological 
visualization applications.  

However, writing a program that can utilize high resolution 
displays and multi-core processors is challenging. First, to utilize 
multiple processor cores requires writing either a multi-threaded 
program to be run on a shared memory computer, or a distributed 
program to be run on a distributed memory computer cluster. 

Second, to write a visualization program that performs well on a 
high resolution screen it may be necessary to use low-level 
graphics primitives to achieve required performance, or to do 
window management if there are multiple sub-visualizations. All 
of the above requires either advanced programming knowledge or 
many days of developer time, which often leads to 
underutilization of the available resolution and computational 
resources. 

The developer time is justified for visualization tools with many 
users such as business intelligence tools [3-5], omics visualization 
tools [1,6], or scientific parallel visualization tools [7]. But there 
are many cases where a single user needs to quickly visualize 
some data using an easy to use visualization environment such as 
MATLAB [8] or pyplot [9]. 

It is also possible to reduce the amount of data to be visualized 
by using techniques such as clustering or statistical analysis. 
However, many users do not have the knowledge required to use 
these techniques or they may want to do some simple 
visualizations to quickly look at the non-reduced data before using 
these advanced techniques. 

We propose the bulk synchronous visualization (BSV) model 
for interactive parallel computation and visualizations (inspired by 
the bulk synchronous programming model [10]). It assumes that 
the data to be visualized can be split into multiple parts that can be 
computed and visualized independently. Each part is displayed in 
a separate window and run in a separate process. The user controls 
the visualization through an interactive Python shell by calling 
functions that filter visible tasks, or show next set of tasks. The 
model provides several advantages: 

• The program is sequential. It is therefore not necessary to 
implement data synchronization and protection as would 
be necessary for multi-threaded programs. 

• The number of displays can easily be scaled. It is therefore 
easy to quickly write and test a function for visualizing one 
part of the data, and then viewing the rest of the data in 
bulk by running the function in parallel for all parts. 

• The program can be run on a distributed memory cluster 
without writing message passing or other synchronization 
code. 

• Low level process management is hidden from the user. 
• The system provides efficient window management and 

filtering such that an analyst can quickly iterate over 
hundreds of sub-graphs shown in hundreds of windows.  

 The system is work in progress. The rest of the extended 
abstract describes the programming model, the design and 
implementation of the BSV system, and a use case. 

2 PROGRAMMING MODEL 

A BSV program consists of a coordinator process that 
orchestrates computation and visualizations executed by multiple 
plotter processes that may run on multiple computers. The 
coordinator is an interactive Python script where the user can call 
the BSV API functions. The user can also write at runtime a 
visualization function to be executed by the plotters. 

The coordinator first initializes the data structures to be 
visualized, typically by reading and parsing data from input files. 
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It then splits the data into multiple parts and assigns each part to a 
plotter. A plotter process is created by forking the coordinator 
process, so each plotter contains a replica of the coordinator data 
structures in a separate address space. A modification by one 
plotter process is therefore not visible to other plotters. A plotter 
process first initializes a window and then executes visualization 
functions received from the coordinator. All running plotters are 
synchronized with respect to the visualization commands 
executed. To visualize different parts, the programmer provides a 
list with arguments to be sent to each plotter. A plotter may also 
receive a show or hide window command, a command to move or 
resize the window, or a kill command. The hide and kill 
commands may be sent in the form of a filter function that is 
evaluated to determine whether to hide the window of a plotter.  

The coordinator keeps a list of all executed commands, so it 
can kill a plotter process and later restart it by sending it the list of 
commands to be executed in order to synchronize the 
visualization with the other currently visible visualizations. 
[1]: matrix = readMatrixRows() 
[2]: rowIndxs = range(len(matrix)) 
[3]: def viz1(indx): 
       plot(matrix[indx]) 
[4]: coordinator = bsv.Coordinator(nWindows) 
[5]: coordinator.visualize(viz1, rowIndxs) 
[6]: coordinator.showRandom(nWindows) 
[7]: def filter1(indx): 
       for i in range(len(matrix[indx])): 
         if matrix[r][indx] < 0:  
           return False # hide window 
       return True 
[8]: coordinator.filter(filter1, rowIndxs) 
[9]: coordinator.showFirst(nWindows) 

Figure 1: A simplified BSV program for plotting rows of a matrix in 
separate windows, showing a random subset of plots, and then hiding all 
plots with negative values. 

3 DESIGN AND IMPLEMENTATION 

The BSV system is designed to provide efficient interactive 
exploration of large visualizations split into hundreds of windows. 
We take advantage of four properties of current computers and 
operating systems. First, there is enough DRAM to keep many 
visualization processes in memory at once. Second, if the 
operating system implements fork using copy-on-write the 
resident set size of the child processes will be small even for 
processes with large data structures that are mostly read only.  
Third, there are compute resources available for running 
computation on hidden windows. Fourth, the fork system call has 
low overhead. 

The BSV system therefore runs many visualization processes 
simultaneously, but only a few of these are visible at a given time. 
In addition the system predicts which visualizations are likely to 
be shown in the near future, and if needed starts these process in 
the background such that the visualizations are ready when 
requested by the user. The prediction is easy to implement if the 
user views the visualizations in an order specified at the time the 
data was split into multiple parts. Such an order can be based on 
for example indexes in a matrix, dataset names, or graph 
properties such as size. 

We have implemented the BSV system in Python. We use the 
multiprocessing module to fork child processes and use pipes for 
coordinator-child process communication.  

In Python, functions can be saved as objects and sent over a 
pipe or socket to another process. Simple functions can therefore 
be written by the user at run time. We use pylab [11] for 
numerical computation and graph plotting, and iPython [12] as the 

interactive shell and for parallel computing on a display wall 
cluster. 

4 USE CASE 

BSV was motivated by the need to understand the behavior of an 
algorithm we developed for removing overlapping samples from 
series downloaded from NCBI GEO. Overlap is removed by 
creating graphs with edges between all series that have one or 
more overlapping samples and then iteratively removing samples 
until the overlap between two series is less than a maximum 
specified as a parameter. The program outputs a log file with the 
graphs and lists of removed series and samples. 

The BSV coordinator reads in the log file and assigns each of 
the 1636 graphs to plotters that visualize these using the 
NetworkX Python package for drawing dot [13] graphs in pylab 
[11]. In the resulting visualizations, removed series are marked 
using different colors and styles, and the overlap is shown using 
edge labels. 

 We can fit about 30 windows on a 2560x1440 pixel screen, and 
about 100 windows on our 6144x2304 pixel display wall.  We 
first viewed the first tens of graphs, and then a few tens of 
randomly selected graphs to get a rough idea about how the 
algorithm removes overlap. We then studied significant details by 
writing filter functions to only show graphs with certain properties 
such as graphs that contains superset or duplicate series, graphs 
with at least N overlapping samples between a pair of series, or 
graphs that contains a series X or a sample Y.  

To parse the log file and create the graph data structures we 
wrote about 200 line of code (LOC). The final visualization 
function was about 60 LOC, mostly for specifying the node and 
edge styles to use in the graph. The filter functions were less than 
10 LOC. 

The use case demonstrates that BSV is useful to write and scale 
up simple visualizations that use the many visualization libraries 
available for Python. 
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