
Improving the Speedup of
Parallel and Distributed Applications on

Clusters and Multi-Clusters

John Markus Bjørndalen

February 3, 2003

A dissertation submitted in partial fulfillment for the degree of Doctor Scientiarum

Department of Computer Science
Faculty of Science

University of Tromsø

2

To my wife Karen, and my children Christopher, Elisabeth, Rebecca and Miriam.

3

4

Abstract

In parallel and distributed computing, clusters are increasingly used for compute-
and I/O-intensive applications. As we add computing resources to a parallel applica-
tion, one of the fundamental questions is how well the application scales, both with
regards to speedup and to increasing the problem size.

This dissertation reports on two main issues impacting scaling. The first is the
end-to-end communication latency. The other is the configuration and mapping of the
application onto a cluster topology and architecture.

Several factors were studied to determine their impact on end-to-end latency, in-
cluding procotols, workload, and locating communication endpoints at user-, kernel-
and interrupt-level.

The dominating contribution to latency comes from complex protocols, such as
TCP/IP, which do not take advantage of properties in the interconnect to reduce the
amount of processing for communication. The latency reduction from choosing a pro-
tocol with lower overhead is approximately an order of magnitude larger than the re-
duction gained from moving communication endpoints from user-space to the operat-
ing system kernel.

When blocking communication is used, a hardware supported implementation of
Virtual Interface Architecture (VIA) using a 1.25 Gbit interconnect has approximately
the same latency for small messages as a software implementation of VIA using 100
Mbit Ethernet. The performance advantage of the hardware supported VIA implemen-
tation is masked by the operating system overhead for interrupt handling, suspending,
and resuming the communicating threads.

To avoid this overhead, polling communication can be used. This results in a sig-
nificant reduction of latency on the hardware supported gigabit VIA implementation.
Even in this case, hardware supported user-space communication reduces latency sig-
nificantly less than using simpler protocols.

To experiment with an applications configuration, an approach and an instrument,
PATHS, was developed. Using PATHS, a number of configurations were specified and
their performance measured, in order to identify significant behaviours impacting the
performance.

A number of benchmarks were used, including a simulation of the Colombia river
and estuary. The platform used for experiments was comprised of three clusters, each
with 32 processors. The clusters were used individually or together in a number of
multi-cluster configurations.

Tuning the performance of distributed and parallel applications is complex. Simple
and small changes to a configuration influence scaling and latency. It is hard to compute
good configurations. Instead, it is demonstrated that starting with what is believed to be
a good configuration, a number of experiments can be run to find configurations with
better performance.

The LAM-MPI implementation of the Message Passing Interface (MPI) standard is
documented to use configurations which do not scale well, and lacks mechanisms for
changing the configuration. A configuration mechanism has been added to LAM-MPI

5

and used to double the performance of the MPI Allreduce function.

6

Acknowledgements

The road to a doctorate degree is long and laborious, sprinkled with frustration,
despair and lack of sleep. But it is also a road filled with joy, satisfaction, curiosity,
and interesting challenges. During such a journey, the people around you become a
vital part of being able to finish. There are too many to include here, but these must be
mentioned by name:

I would like to thank my advisor, Otto Anshus, for his support and guidance. His
advice, and the discussions we have had during this project are greatly appreciated.

Brian Vinter and Tore Larsen for their support and input, and for the long hours we
spent writing papers. Brian: I certainly hope we can continue the tradition of setting
aside time for interesting hacks. They inspire, fuel creativity, and have even lead to
publications.

Otto, Brian, Tore, in addition, I would like to thank you for the discussions I had
with the three of you, and for your contribution to my education, not only in computer
science, but also in academic life.

Lars Ailo Bongo for input, forwarding interesting papers and asking questions.
Also, thanks for working on performance visualization and profiling tools for the
PATHS system.

My brother, Ole Martin, for reading and suggesting improvements to the disserta-
tion. Also for discussions, and for taking part in the group’s activities.

The other doctoral students and faculty at the computer science department in
Tromsø, too many to list them all, for providing an environment with interesting dis-
cussions. You were part of the reason I wanted to do this in the first place.

Our technical staff, especially Ken-Arne Jensen, but also Jon Kristiansen and Torfinn
Holand for their support over the years. As I understand, it is quite unique to have a
technical staff that is not only capable with the technology we use, but also one that
you can discuss research with.

Jan Fuglesteg and Svein Tore Jensen for practical help, and for their help in navi-
gating the local bureaucracy.

Antonio Batista and Jonathan Walpole at Oregon Graduate Institute for providing
us with ELCIRC, which turned out to be an interesting challenge.

The Department of Mathematics and Computer Science at the University of South-
ern Denmark, for access to one of their clusters.

Erik Naggum for getting me interested in Common Lisp, a language that put the
word ’fun’ back into programming when I was tired of C++.

Last, and most important, my parents, my wife Karen, and my children Christopher,
Elisabeth, Rebecca and Miriam for having patience with me, and for supporting me
over the years.

7

8

Contents

1 Introduction 17
1.1 Research issues .18
1.2 Limitations . 18
1.3 Methodology . 19
1.4 Main Contributions . 19

1.4.1 Latency . 19
1.4.2 Configuration . 20
1.4.3 PATHS . 20
1.4.4 ELCIRC . 21

1.5 Organization of the dissertation .21

2 Synthesis of Results 23
2.1 Reducing remote operation latency23

2.1.1 User-space Communication APIs23
2.1.2 Communication Protocols25
2.1.3 Thread models .25
2.1.4 User Level vs. Kernel Level26
2.1.5 Workload on the server host26

2.2 Mapping computation and communication27
2.2.1 Mapping applications to different clusters and multi-clusters .27
2.2.2 Adding configurable collective communication to LAM-MPI .29

2.3 Cluster Components .30

3 PATHS 31
3.1 The Path Specification .32

3.1.1 The Remote Operation Wrapper33
3.1.2 Path map example .33
3.1.3 Reasoning about “what”, “where” and “when”34

3.2 PATHS Architecture . 34
3.3 Using PATHS . 35

3.3.1 Path specification example36
3.4 Instrumentation .36
3.5 Performance data analysis .37
3.6 Debugging .37

9

CONTENTS

3.7 Summary .38

4 ELCIRC 39
4.1 Overview and terminology .40
4.2 Tuning . 41

4.2.1 Sequential code optimizations41
4.2.2 Compiler experiments .42

4.3 Parallelizing ELCIRC . 43
4.4 Implementation of Domain Decomposition44
4.5 Reducing the number of exchanged arrays44
4.6 Performance results .45

4.6.1 Speedup with 26 partitions45
4.7 Effect of domain decompositioning on the accuracy of ELCIRC output46

4.7.1 Comparing output of sequential ELCIRC using different com-
pilers . 46

4.7.2 Accuracy of the Parallel ELCIRC model48
4.7.3 Global or subdomain based solver51

4.8 Summary .51

5 ELCIRC and PATHS 53
5.1 Locating a performance bottleneck in the parallel ELCIRC53

5.1.1 Identifying the cause of the bottleneck57
5.1.2 Additional factors contributing to a partitions execution time .58
5.1.3 Communication overhead58

5.2 Partitioning bug .58
5.3 Controlling ghost region updates with PATHS60

5.3.1 Introducing new PATHS wrappers60
5.3.2 Experiences using new wrappers61

5.4 Summary .61

6 Additional related work 63
6.1 Configuration and adapting to cluster architectures63
6.2 Monitoring and profiling . 66

7 Conclusions 67

8 Future work 69

References 71

Bibliography 77

A Papers 89
A.1 Comparing the Performance of the PastSet Distributed Shared Memory

System using TCP/IP and M-VIA 91

10

CONTENTS

A.2 The Impact on Latency and Bandwidth for a Distributed Shared Mem-
ory System Using a Gigabit Network Supporting the Virtual Interface
Architecture .101

A.3 Using Two-, Four- and Eight- Way Multiprocessors as Cluster Compo-
nents .111

A.4 Extending the Applicability of software DSM by adding user redefin-
able memory semantics .133

A.5 PATHS - Integrating the Principles of Method-Combination and Re-
mote Procedure Calls for Run-Time Configuration and Tuning of High-
Performance Distributed Applications143

A.6 Scalable Processing and Communication Performance in a Multi-Media
Related Context .157

A.7 Configurable Collective Communication in LAM-MPI165
A.8 The Performance of Configurable Collective Communication for LAM-

MPI in Clusters and Multi-Clusters179
A.9 The latency of user-to-user, kernel-to-kernel and interrupt-to-interrupt

level communication .193
A.10 Cluster Monitoring with Steps: Making the Application Behaviour Vis-

ible .203

B PATHS Implementation 221
B.1 Implementation .221

B.1.1 PastSet servers .222
B.2 Size of implementation .222

11

CONTENTS

12

List of Figures

1.1 PastSet organization .18

3.1 A distributed system with multiple processes31
3.2 A mapping of the system from figure 3.132
3.3 A path map of the configuration from figure 3.2.34
3.4 Organization of a PATHS enabled client application35
3.5 Example path specification in Python36

4.1 ELCIRC sample visualization .39
4.2 Unstructured grid with elements, sides and nodes in ELCIRC40
4.3 Time spent in the stages of the ELCIRC simulation loop.42
4.4 Partitioning a small river in two subdomains.44
4.5 Maximum and average difference of output, ELCIRC sequential, dif-

ferent compilers . 47
4.6 Maximum and average difference of output, ELCIRC sequential and

parallel . 49
4.7 Comparison of elevation output files for parallel and sequential model50

5.1 Trace data for processes running on one of the 8-way nodes54
5.2 Delayed-by trees. .56
5.3 Average time for writing output data in an iteration for each process .57
5.4 Visualization of processes, paths and elements in the parallelized EL-

CIRC system. 59
5.5 ELCIRC using fork and subsample wrappers - sharingeta2 61

B.1 Organization of a PATHS enabled client application221

13

LIST OF FIGURES

14

List of Tables

4.1 Execution time (including initialization and exit) of ELCIRC when
simulating only 26 iterations using different compilers on the sequen-
tial code. 42

4.2 Execution time of 24 hours simulated time in the ELCIRC model (in-
cluding initialization time). 45

15

LIST OF TABLES

16

Chapter 1

Introduction

A current trend in parallel and distributed computing is that compute- and I/O-intensive
applications are increasingly run on cluster and multi-cluster architectures.

As we add computing resources to a parallel application, one of the fundamental
questions is how well the application scales. There are two main ways of scaling an
application when processors are added:speedup, where the goal is to solve a problem
faster, andscaling up the problem, where the goal is to solve a larger problem (or get
a more fine-grained solution to a given problem) in a fixed time by adding computing
resources (See also Amdahl [1] vs. Gustafson [24]).

One of the recognized factors in scaling parallel applications is end-point to end-
point communication latency.

Scaling an application when it is mapped onto different cluster and multi-cluster
architectures involves controlling factors such as balancing the workload between the
processes in the system, controlling inter-process communication latency, and man-
aging interaction between the processes. In doing so, one of the main questions is
understanding how an application is mapped to the given architecture. This requires an
understanding ofwhatcomputations are donewhere, where data is located, andwhen
control and data flow through the system.

Trying to understand this in a “black box” design, where the application program-
mer and profiler only sees a high-level API with object references and operations, is
difficult as information about what is happening inside the box is not available.

An example of this is the Message Passing Interface (MPI) [39] collective func-
tions, which have scaling problems if the algorithms of the functions are not mapped
properly to the cluster architecture. Understanding why the functions do not scale as
well in some configurations as in others is difficult without an exact knowledge of how
the functions are implemented and mapped to the cluster architecture.

Even if we discover the reason for the scaling problems, we may not be able to
remedy the problem without modifying the source code of the communication library,
as mechanisms intended to aid the mapping of the application to the cluster are either
insufficient or not implemented [53].

In other cases, implementations of a communication layer or middleware may not
have been tested on a cluster of the same size or configuration as the cluster an ap-

17

CHAPTER 1. INTRODUCTION

plication is deployed at. This may expose new problems which also require intimate
knowledge of the implementation to find and resolve [6].

1.1 Research issues

Problem definitions:

1. Investigate the architecture and implementation of communication abstractions
with the purpose of determining the end-point to end-point latencies.

2. Investigate the performance of different configurations of applications on clus-
ters with the purpose of determining the importance and sensitivity of the con-
figurations with regards to scaling.

To solve these two problems an approach and an instrument, PATHS, was devel-
oped. The approach is to try a subset of the possible configurations, searching for sig-
nificant behaviours impacting the performance. New configurations are created after
analyzing results.

The PATHS instrument was built to facilitate this approach in an experimental sit-
uation.

1.2 Limitations

This work started in the context of PastSet [5, 57], a structured distributed shared mem-
ory system in the tradition of Linda [15], and builds on local expertise with the PastSet
system.

Server
PastSet Local

Client

PastSet

ClientUser level

Kernel level

TCP/IP

Figure 1.1: PastSet organization: A local process accesses PastSet through a kernel
API. Remote processes use a stub-library to access PastSet data on a given node
through a user-level server on the node hosting the data.

Figure 1.1 shows the organization of a system using PastSet. PastSet, as imple-
mented in [57], is located in the operating system kernel. Processes access local data
through a kernel API. Remote clients access data through a stub library that forwards
operations to a user-level PastSet server on the node hosting the data.

Rather than changing the PastSet API by, for instance, introducing asynchronous
operations, the synchronous nature of the PastSet API is preserved. The focus is instead

18

1.3. METHODOLOGY

on factors that contribute to improving the performance of the synchronous operations.
One of the reasons for this is that a synchronous API is often simpler to use than an
asynchronous API.

The location of PastSet and the PastSet servers have not been restricted to the orig-
inal configuration from [57], which is shown in figure 1.1. Part of the motivation for
experimenting with user-level servers is that it is usually easier to deploy them in clus-
ters owned and managed by other organizations.

1.3 Methodology

The project has taken an experimental approach to studying scalability issues. Systems
have been built, instrumented and experimented with, and data based on executions of
the systems have been analyzed.

Most of the experiments used the following three clusters:

• 2W cluster - 16 * 2-Way (Dual) Pentium III 450 MHz, 256MB RAM. Location:
Odense, Denmark

• 4W cluster - 8 * 4-Way (Quad) Pentium Pro 166 MHz, 128MB RAM. Location:
Tromsø, Norway

• 8W cluster - 4 * 8-Way Pentium Pro 200 MHz, 2GB RAM. Location: Tromsø,
Norway

Most of the visualization and analysis of performance data used ad-hoc tools. Some
performance analysis is described in section 3.5 and also in the chapter about using
PATHS with ELCIRC in chapter 5.

1.4 Main Contributions

1.4.1 Latency

Several factors were studied to determine their impact on end-to-end latency, including
procotols, workload on the server host, and locating communication endpoints at user-,
kernel- and interrupt-level.

The dominating contribution to latency comes from complex protocols, such as
TCP/IP, which do not take advantage of properties in the interconnect to reduce the
amount of processing for communication. The latency reduction from choosing a pro-
tocol with lower overhead is approximately an order of magnitude larger than the re-
duction gained from moving communication endpoints from user-space to the operat-
ing system kernel.

There is also a significant potential for improvement by avoiding the operating
system through using hardware-supported implementations of API’s such as the Virtual
Interface Architecture (VIA) [56] for sending and receiving messages.

19

CHAPTER 1. INTRODUCTION

When blocking communication is used, a hardware supported implementation of
VIA using a 1.25 Gbit interconnect has approximately the same latency for small mes-
sages as a software implementation of VIA using 100 Mbit Ethernet. The performance
advantage of the hardware supported VIA implementation is masked by the operating
system overhead for interrupt handling, suspending, and resuming the communicating
threads.

To avoid this overhead, polling communication can be used. This results in a sig-
nificant reduction of latency on the hardware supported gigabit VIA implementation.
Even in this case, hardware supported user-space communication reduces latency sig-
nificantly less than using simpler protocols.

PastSet servers are located on the compute nodes in a cluster. It is shown that using
less complex protocols leaves more time for the workload on the compute nodes to
proceed with their computation. A benchmark with the communication endpoints at
kernel level exchanged 5.3 times as many messages as the benchmark using TCP/IP,
while at the same time it didn’t slow down the workload any more than the TCP/IP
benchmark.

When simpler protocols are used, the latency for remote clients is less influenced
by the workload on the server nodes. Kernel-based servers are hardly influenced by
workload on the server node.

1.4.2 Configuration

A number of benchmarks, including a simulation of the Colombia river and estuary
(see section 1.4.4), were mapped to different cluster and multi-cluster architectures,
and their sensitivity to the architectures and configurations were examined.

Small and simple changes to a configuration influence scaling and latency. It is hard
to find good configurations analytically or by computation. Instead, it is demonstrated
that by starting with what is believed to be a good configuration, one can run a number
of experiments to find configurations with better performance.

The LAM-MPI implementation [14] of the MPI standard is documented to use
configurations which do not scale well, and lacks mechanisms for changing the config-
uration. A configuration mechanism has been added to LAM-MPI and used to double
the performance of the MPI Allreduce function.

Thus, the ability to tune the configuration with knowledge about the application
and the cluster topology, as opposed to relying on the implementation to do important
optimization choices, is found to be important.

1.4.3 PATHS

The PATHS system provides a method of specifying how the application is mapped
onto clusters, focusing on the location of computations and data. The specification can
be changed by modifying meta-data and meta-code, allowing an applications mapping
to be studied, tuned, and remapped to a given cluster without recompiling the applica-
tion code.

PATHS allows the user to specify what type of instrumentation should be used
where. The user can also add new types of instrumentation to the system.

20

1.5. ORGANIZATION OF THE DISSERTATION

PATHS simplifies studying how different configurations influence the performance
of an application when it is mapped onto a cluster or multi-cluster. This simplifies
experimenting with multiple factors and configurations.

1.4.4 ELCIRC

A simulation model for river and estuary circulations, ELCIRC [20], has been paral-
lelized, and PATHS has been used to control and study the parallel program. Initial
experiments show how PATHS can be used to determine bottlenecks, study the appli-
cations behaviour, and configure some of the communication and computation.

1.5 Organization of the dissertation

This document is organized as a collection of papers, where the first part includes a syn-
thesis of the results from the papers, and some additional chapters with complimentary
work and information. The second part includes the papers.

Chapter 2 provides a synthesis of the results. Chapter 3 describes the PATHS sys-
tem. Chapter 4 presents ELCIRC, and the parallelization of ELCIRC. Chapter 5 de-
scribes experiences from using PATHS with ELCIRC. Chapter 6 presents additional
related work. Chapter 7 concludes, and chapter 8 describes future work.

The papers are included in appendix A. Additional information about the current
PATHS implementation is presented in appendix B.

21

CHAPTER 1. INTRODUCTION

22

Chapter 2

Synthesis of Results

The papers in this thesis focus on two classes of factors. The first class is factors that
contribute to the latency of remote operations (primarily in PastSet systems).

The second class is mapping applications to different cluster topologies by exper-
imenting with different parameters (such as communication protocols and data loca-
tion), and with controlling where computation is done in the PastSet subsystem, and
how communication is done.

The papers are included in appendix A.

2.1 Reducing remote operation latency

The PastSet servers are intended to be run on the same nodes as those that run the
application workloads. Thus, they must satisfy two main goals: minimizing latency
for servicing remote clients, and minimizing the impact on the application processes
running on the server’s host.

The first goal is important as PastSet has a synchronous API where the calling
thread is blocked until the operation returns. Reducing the latency results in less time
wasted while the client waits for remote requests to complete.

The second goal is important because servicing remote requests on a host will spend
resources which could have been used to execute the application processes on the host.
Thus, time spent servicing remote requests must be minimized, and the server should
generally be suspended while waiting for remote requests.

The papers presented in this section examine some of the design and implementa-
tion options for PastSet servers, and aim at determining which factors should be con-
sidered, and which factors contribute most to reducing latency in the design of PastSet
servers.

2.1.1 User-space Communication APIs

The main focus of user-space communication APIs is to remove the kernel from the
communication path when sending and receiving messages over the network interface.

23

CHAPTER 2. SYNTHESIS OF RESULTS

This removes the overhead of invoking the operating system for sending and receiving
messages, but also allows optimizations such as application specific buffer manage-
ment [58], which can be difficult to support in the kernel.

Early examples of userlevel communication APIs include UNET [58] and VMMC
[11]. The two research projects influenced the development of the Virtual Interface
Architecture (VIA) industry standard [13] which was backed by a consortium that in-
cludes, among others, Intel and Microsoft.

In paper 1 and paper 2, we compare the performance of PastSet remote operations
using TCP/IP over Fast Ethernet with two implementations of the VIA API: Giganet
cLan [22] and M-VIA [40]. The former is a gigabit (1.25 Gb/s full-duplex) hardware
supported VIA implementation. The latter provides a software implementation of VIA
on 100 Mbit/s Fast Ethernet. Since it has no hardware support, it uses a fast kernel trap
mechanism and a low-overhead driver for the Network Interface Card (NIC) to imple-
ment the API. Thus, it does not avoid invoking the kernel upon sending and receiving
messages, but the amount of kernel code executed for message passing is small.

Both VIA implementations provide a significant reduction in latency compared to
TCP/IP, but in comparing the two VIA implementations we observe that the hardware
implementation only provides a marginal improvement in latency for small packets,
and only shows an improvement in latency compared to the software VIA implemen-
tation when the packet size increases so much that the bandwidth of the network starts
to dominate the latency.

The main reason that we fail to see an improvement from userspace communication
is that to fully utilize hardware supported VIA, the application needs to use nonblock-
ing communication operations that can poll message queues directly from userlevel.

Blocking operations first poll for a short while to check whether the operation can
be completed in userspace, but once a decision is made to block the calling thread
the kernel is invoked to suspend the thread. The kernel also needs to enable inter-
rupts on the NIC to provide for waking up the blocked thread when an incoming mes-
sage arrives. Thus, unless a packet is already available, receiving messages involves
both interrupt handling and the operating systems scheduler. Tuning the amount of
polling before blocking the process may improve the performance of the server for
some conditions[19].

For sending operations, initiating the actual sending of the message can be done
from userspace, but the process is likely to block while waiting for the completion of
the send operation, or block while waiting for the next message to be received.

A weakness with these experiments was that we only used a single client process
for the benchmarks. This means that when a request had been serviced and a reply
message sent by the server, it would take a little while for the client to send a new
request. Thus, there would be no new request available in the incoming queue, and the
server would block, ensuring that the hardware supported VIA implementation does not
benefit from polling before blocking. Processing the interrupt and waking up the server
when a new request arrives would then add to the overhead of servicing a request.

On the other hand, if the common case is that a new request is available after a
request is serviced, it may be that a significant share of the hosts resources is used to
service remote clients. In that case, moving the server over to dedicated nodes in the
cluster should be considered to reduce the servers impact on the hosts workload.

24

2.1. REDUCING REMOTE OPERATION LATENCY

In conclusion, the overhead introduced by blocking operations masked any advan-
tages that hardware support for the VIA API provided.

2.1.2 Communication Protocols

In paper 2, we observed that since both TCP/IP and M-VIA invoked the kernel to send
and receive messages, there had to be other factors than user space vs. kernel space
protocols that explained the difference between the performance of the two protocols.
A number of factors contributing to the lower latency of M-VIA message passing was
found by studying the source code.

One of the more important factors was that the implementation made use of a low-
overhead Ethernet-optimized protocol. As such, it avoided most of the processing nec-
essary in Internet-protocols such as TCP/IP. M-VIA was also able to queue packets
directly to the network interface card, and provide hooks which allows the interrupt
handler to dispatch incoming VIA packets to the M-VIA system instead of sending
them to the ordinary Ethernet layer in the kernel.

Thus, comparing M-VIA to TCP/IP does little to evaluate the effect of using the
VIA API compared to the BSD socket API, or compare userlevel vs. kernel level
protocols.

This observation prompted the development of an experimental low-overhead pro-
tocol implemented in the kernel, which used the Linux /proc file system as an interface
for sending and receiving messages. The performance was measured to be comparable
to M-VIA for sending and receiving messages. This protocol implementation was later
used in paper 9, where we compare it with other protocols.

The experiments in paper 9 shows that by using a simpler protocol, we both reduce
the latency and the influence that a workload executing on the server host has on the
latency (see section 2.1.5).

2.1.3 Thread models

The PastSet server from [57] used a thread pool to service requests. Paper 1 compares
the effect of replacing the thread pool with a dedicated thread per client connection.
Not only is the latency of remote accesses over TCP/IP reduced, but the variance of the
latency is reduced as well.

We attributed this to two factors: firstly, for the thread pool implementation, we
iterate over the worker threads (round robin), which, among other things, result in a
new stack being used for every operation issued by a remote client. We suspected that
this might influence the cache footprint of the server.

Secondly, the thread pool implementation also executes more code than the ded-
icated thread implementation. The extra code was mainly in theselect()call used to
wait for incoming data on the client sockets, and the mutex protecting theselect()call1.

1An informal experiment on the same system showed that compared to thepoll() system call,select()had
both higher latency and higher variance.

25

CHAPTER 2. SYNTHESIS OF RESULTS

2.1.4 User Level vs. Kernel Level

One method of reducing server access time for remote clients is to move the server
or parts of the server into kernel space. Recent examples of doing this include HTTP
servers such as Tux, kHTTPd and Microsoft’s Scalable Web Cache (a comparison of
the performance of these three servers compared with user-level servers can be found
in Joubert et. al. [28]).

One of the motivations for locating the server in kernel space is to avoid copying
data from the file system buffers up to user level, and then back down to kernel space
to send the data through the TCP/IP stack. It also opens up for optimizations such as
coordination of disk and network buffering.

An alternative approach to this is to coordinate buffering at kernel level from user-
level applications through buffer management APIs. Examples of such functionality is
the Linux sendfile system call, IO Lite [41], and the zero-copy datapath in INSTANCE
[25].

In paper 9, we benchmark different locations of a simple server (and different pro-
tocols) to determine a base-line performance which different PastSet server implemen-
tations can be compared against, and to provide information about some of the design
choices for PastSet servers.

In addition to locating the server at user-level and kernel-level, we also measure the
latency of sending messages between simple servers located in the interrupt-handler.
The rationale behind the interrupt-handler server is that the basic PastSet operations
only include a very modest amount of computation (mostly lookups in a few data
structures) and copying of data in and out of the PastSet elements. This should be
comparable overhead to, or less than, the processing currently done in the interrupt
handler to allocate a message buffer, copy the incoming message into the buffer and
queue the buffer with the Ethernet layer in the kernel.

Compared to the improvements we see from choosing protocols specialized for
Ethernet communication (rather than Internet communication), the advantage of mov-
ing the server to kernel space is rather modest.

There are two main limitations to this paper: first, the experiments were only made
with a single client. It would be interesting to see the effect of adding multiple clients
to the experiment. The second limitation is that the experiments were run by moving
both endpoints of the benchmark from user-level down to kernel (and interrupt) level.
This is representative of a situation where two PastSet server communicate with each
other, but the paper should be extended with experiments where one of the endpoints
is kept at user-level, corresponding to a user-level client process accessing a server.

2.1.5 Workload on the server host

Paper 9 also introduces another aspect: the influence of protocol and server location on
the execution time of workload on the server node, and the influence of the workload
on the latency observed by the remote client.

By adding a workload (a matrix multiplication program) to the server end of the
benchmark, we observed that the protocols that executed less code were also less in-
fluenced by the workload on the computer. The kernel level benchmarks were hardly

26

2.2. MAPPING COMPUTATION AND COMMUNICATION

influenced by the workload on the computer.
By measuring the execution time of matrix multiplications while executing the

benchmarks, we find that the two benchmarks that influence the execution time the
least are the TCP/IP and interrupt-based benchmarks. The main reason for this is that
the TCP/IP benchmark sends fewer round-trip messages, and that it takes longer time
for the client side of the TCP/IP benchmark to receive an answer and send a new re-
quest. Thus, the matrix multiplication benchmark is allowed to execute for a longer
time between each message.

2.2 Mapping computation and communication

The PATHS system (introduced in paper 5 and described in chapter 3) is used to control
how a PastSet application is mapped onto a given cluster or multi-cluster architecture.
It allows a user to experiment with different mappings to tune an application to a given
architecture, and to study how different choices influence the scalability of a given
application. The system is described in more detail in chapter 3.

The PATHS system was first used in the PastSet benchmarks in the URMS (User
Redefinable Memory Semantics) paper (paper 4), where we compared the URMS-
version of PastSet with LAM-MPI. We found that we could create mappings which
allowed us to outperform LAM-MPI on a global reduction function (MPI Allreduce)
by a factor 1.83.

Having studied the mappings and verified that the reductions were computed cor-
rectly, we concluded that we were able to find a better mapping for the cluster than
LAM-MPI had done. An understanding of why LAM-MPI did not perform as well as
expected was found in paper 7.

The good results from the URMS paper and the flexibility we believe lies in the
PATHS approach prompted us to explore the PATHS idea further.

2.2.1 Mapping applications to different clusters and multi-clusters

Global reduction and Monte Carlo Pi

To experiment with the PATHS configuration system, we ran experiments with two
benchmarks: the global reduction benchmark (a benchmark of PastSet’s equivalent of
MPI Allreduce), and the Monte Carlo Pi benchmark (an emberassingly parallel bench-
mark).

The two benchmarks were mapped onto three different clusters, consisting of 2-,
4- and 8-way SMP nodes. We also ran a multi-cluster configuration where the PATHS
system was used to bind the three clusters together, as the nodes in each of the clusters
didn’t have direct connectivity to nodes in the other clusters.

Some of the main observations from these benchmarks were:

• Experimenting with multiple factors and configurations can help expose the fac-
tors that are most important in a particular cluster, and which combination of
factors lead to performance bottlenecks that should be avoided.

27

CHAPTER 2. SYNTHESIS OF RESULTS

An example was found in paper 5, where the sum wrapper was found to scale
badly and become a performance bottleneck once it was used by more than 3
or 4 threads. This resulted in more time spent in the sum wrapper than sending
messages between the 8-way nodes.

• Performance can be improved significantly without removing or modifying com-
ponents.

Instead of rewriting the sum-wrapper, sum-wrappers were arranged hierarchi-
cally, to allow groups of 3-4 threads to compute a partial sum which was then
forwarded down to a sum-wrapper further down in the hierarchy. This improved
the performance of summing partial sums from threads on a node significantly.

• For some configurations, sending more messages on the network than the min-
imum required may improve the performance. One of the reasons for this is
that there is sometimes a tradeoff between the number of messages sent and the
parallelism in handling these messages.

An example is found in paper 5, where sending more messages than the mini-
mum required to implement a global reduction sum reduced the latency by nearly
a factor 2 (on the 2W cluster) compared to sending the minimum number of mes-
sages.

• Different clusters may need different configuration strategies.

The results in paper 5 also shows that a strategy which performed best in one
cluster was not the best strategy for another cluster.

Wind Tunnel

TheWind tunnelapplication is a Lattice Gas Automaton particle simulation. The ap-
plication was parallelized by Lars Ailo Bongo, and used for paper 6 and for the Steps
paper (paper 10).

The application has a linear speedup for each of the 3 clusters, and for a multi-
cluster configuration using both Tromsø clusters. Combining the 2W cluster, which
is located in Odense, Denmark, with any of the Tromsø clusters gave us sub-linear
speedups. We tried a number of experiments and located some of the factors con-
tributing to the bottlenecks, but did not solve the problem. This was partly due to time
limitations, and partly because of a lack of support for variable size PastSet tuples at
the time, which limited our ability to experiment with mechanisms such as compression
and decompression wrappers.

Video distribution

TheVideo distributionapplication (paper 6) was an experiment to see whether we could
use PATHS and PastSet for real-time video distribution. One of the applications for this
is to use PastSet and PATHS for visualizing the output of simulations at run-time.

Feeding images from a frame-grabber into a PastSet element, and using a new
last-observewrapper, we scaled the application up to 2016 client processes located in

28

2.2. MAPPING COMPUTATION AND COMMUNICATION

Tromsø and Odense, Denmark. At that time, the processes closest to the sever started
dropping frames as the cluster computers in Tromsø started having problems coping
with the amount of data and processes. The processes furthest away from the server
(Odense) didn’t see any degradation in frame rate.

As we used a hierarchical approach, the video server host was not influenced by
increasing the number of clients.

ELCIRC

ELCIRC is a simulation of river and estuary water flows used for the Colombia river
system.

The application is parallelized, and PATHS is used to study the performance aspects
of the parallelized application. This project is not yet at a stage where any papers
have been written. ELCIRC and parallelization of ELCIRC is described in chapter 4.
Experiences with using PATHS on ELCIRC and on studying some of the performance
aspects of ELCIRC is described in chapter 5.

2.2.2 Adding configurable collective communication to LAM-MPI

In paper 7, we address the hypothesis that PATHS allowed PastSet to scale better than
LAM-MPI on a global reduction benchmark due to a better mapping to the cluster
architecture.

LAM-MPI implements the reduce and broadcast phase of the Allreduce operation
by organizing the processes into static operation trees. For the broadcast phase, the
root process in the tree sends messages to its direct children. Internal nodes in the tree
then forward messages to their children until all processes in the three have received a
message.

LAM-MPI uses different Broadcast and Reduce trees, neither of which are modified
to take into account the topology of the cluster. Figure 3 in paper 7 shows part of
the reason LAM-MPI did not scale well: the Reduce operation tree maps badly to
the topology of the 4W cluster, and ends up sending one message per client over the
network.

To verify that our understanding was correct, and to experiment with optimizations
of the trees, LAM-MPI was modified to allow the broadcast and reduce trees to be
configured at load time.

Using this configuration mechanism, we were first able to closely match the per-
formance of LAM-MPI when scaling the application (to verify that adding the config-
uration mechanism did not impact the performance). Secondly, we were able to close
the gap between LAM-MPI and PastSet on Allreduce by improving the performance of
LAM-MPI by a factor 1.79 (compared to the factor 1.83 difference between unmodified
LAM-MPI and PastSet with PATHS).

On the 8-way cluster, we showed that the best configuration does not always involve
minimizing the number of messages in the network. By sending twice as many mes-
sages on the network as strictly necessary, we improved the performance of Allreduce
on the 8-way cluster by a factor 1.98 compared to the native implementation.

29

CHAPTER 2. SYNTHESIS OF RESULTS

This result correspond to our experiences with PATHS that shows that as the appli-
cation is scaled, minimizing the use of what is intuitively considered the highest cost
factor (messages on the network) does not always minimize the latency.

None of these experiments were carried out to find the optimal configuration. Rather,
the goals were to see whether we could find better configurations than the unmodified
LAM-MPI, and whether we would replicate the performance of PastSet using PATHS.

Multi-cluster LAM-MPI

Paper 8 extends this work further by running experiments on a multi-cluster config-
uration, with two clusters over a WAN link between Odense, Denmark and Tromsø,
Norway. The WAN link has a round-trip latency for small messages (measured with
Unix ping) of 30-50 milliseconds. The clusters were connected by using an IP tunnel
between Odense and Tromsø.

These experiments showed that a bad configuration (all processes in one cluster
communicating directly with processes in the other cluster rather than minimizing the
number of messages across the WAN link to 1 per reduce or broadcast) can be masked
by properties of the WAN link. For a limited number of small messages, the WAN link
is working like a pipeline that is able to accept new messages while the first message
is in transit. Thus, the latency of the Allreduce operation is not influenced much when
scaling up the number of processes.

In these experiments, we did not make the same observations as in [32], where they
showed a reduction of latency by minimizing the number of messages across a WAN
link. One possible explanation for this is that their experiments were run on multi-
clusters where the clusters were of different sizes. Our experiences from experimenting
with mapping the LAM-MPI operations down to different multi-cluster configurations
show that it is easy to get configurations where a path from a leaf node in the operation
tree to the root node crosses the WAN link multiple times. The number of times such a
path crosses the WAN link will limit the latency of the operation more than the number
of messages crossing the WAN link.

The peak at the end of figure 8 in paper 8 shows a situation where we got such a
configuration by scaling up the number of processes beyond the number of processors
in the multi-cluster.

2.3 Cluster Components

In paper 3, 6 benchmark applications are used to examine properties of two-, four- and
eight-way multiprocessor hosts used as cluster components. For large problem sizes,
two of the applications favor large nodes, two of the applications are indifferent to node
sizes, and two favor small node sizes.

30

Chapter 3

PATHS

P0 P1 P2 P3 P4

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Node 1 Node 2 Node 3

Shared Data

Figure 3.1: A distributed system with multiple processes (circles) mapped onto three
nodes (rectangles). The processes communicate and share information using a com-
munication library or middleware (shaded box) that hides details about communica-
tion and location of objects. In this example, the processes access shared data.

A middleware system or communication library usually provides the user with an
API that abstracts away low-level details about how communication is implemented
and where objects and shared data is located. Figure 3.1 shows an example where a
number of processes located on three hosts access shared data. The location of the data
and how the data is accessed is transparent to the application programmer.

Although this simplifies programming distributed applications, it is difficult for the
programmer to determine why some of the functionality provided by the API does not
scale well, and where bottlenecks occur. Even if the user discovers a bottleneck or
the reason for scaling problems, which may require intimate understanding of the API
implementation [6], it may be difficult or impossible to solve the problems without
modifying the implementation.

The PATHS system allows a user to specify how the functionality behind an API is
implemented and mapped to a cluster by controllingwhatis computedwhereand where
data is stored. PATHS also provides instrumentation to identifywhencomputation and

31

CHAPTER 3. PATHS

communication occurs.
The user experiments with different specifications to study and tune performance

aspects of an applications mapping. This helps the user identify which factors are most
important for scaling the application.

The PATHS specification is used both for setting up the system and for inspecting
the system, reducing the chances of in-coherency between the specification used for
building and studying the system.

PATH specifications can be changed without modifying the application code.

3.1 The Path Specification

P0 P1 P2 P3 P4

Node 1 Node 2 Node 3

Cache

Shared Data

Figure 3.2: A mapping of the system from figure 3.1. The location of the shared data
is exposed, and process 0 an 1 share a cache of values read from the shared data.

Figure 3.2 shows a mapping of the processes and the shared data from figure 3.1
to the cluster. The data is located in node 2. In addition, the two processes on node 1
share a cache of values read from the shared data.

The path from process p0 to the shared data can be described as a sequence of
stages, where each stage identifies the computation done in that stage, and parameters
that control the execution of that computation. In this case, the path goes from p0,
through a cache and on to the shared data.

In PATHS, apath specificationis a sequence ofstages, where each stage identifies
aWrapper classand the parameters used to initialize the wrapper instance at that stage.
A process gains access to remote data by asking the PATHS system to build a path to
the data according to a path specification. The application can then invoke operations
through the topmost wrapper in the path.

Paths can be joined to share resources. An example in figure 3.2 is process p0 and
p1, which share the cache and thus the path from the cache to the shared data. The

32

3.1. THE PATH SPECIFICATION

PATHS system automatically joins paths by comparing path specifications1. Current
implementations compare the specifications from the last stage towards the first, shar-
ing only the last portion of the paths that have matching specifications.

By combining all path specifications in an application, a specification of how the
application is mapped to the cluster is created. This is called apath map.

3.1.1 The Remote Operation Wrapper

Remote operations are reified in the PATHS system withRemote operationwrappers.
The remote operation wrappers are specified with parameters identifying which proto-
cols to use and which server the next wrapper in the path is hosted by2.

The remote operation wrappers have two purposes in the path specifications: the
first is to provide a mechanism for calling operations on a remote server (using RPC).

The second purpose is to add the spatial (where) information to the path. By fol-
lowing the path from the process to the shared data and paying attention to the remote
operation wrappers, an analysis tool can deduce the server hosting each of the wrappers
in the path. Each time a remote operation wrapper is encountered, the tool knows that
the next wrapper in the path is located in the server that the remote operation wrap-
per points at. The location of this server can be found by inspecting the initialization
parameters of the remote operation wrapper.

An advantage of doing this is that the same information in the specification is used
both to deduce the location of the wrappers and to implement the RPC calls. This re-
duces the possibilities of inconsistencies between the application and the specification.

3.1.2 Path map example

Figure 3.3 shows a path map of the application from figure 3.2 when the remote oper-
ation wrappers are included in the paths. The two processes on node 1 access a cache,
which is located in a server on the node. The shared data is located in a server on node
2.

The path from process p0 to the shared data is comprised of the following stages:

• A remote operation wrapper. Parameters include which protocol to use and the
address to the server (in this case to the server on the same host).

• A cache wrapper, which caches values read from the shared data. Parameters
may be size of the cache, or caching policy.

• A remote operation wrapper, pointing to the server on node 2.

• The shared data.

1Unique tokens can be attached to stages to prevent this default behaviour whenever a process needs a
unique path

2Other parameters such as service requirements may be specified as well

33

CHAPTER 3. PATHS

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �

Node 1 Node 2 Node 3

Cache

Remote operation

Shared Data

P1P0 P2 P3 P4

Figure 3.3: A path map of the configuration from figure 3.2.

3.1.3 Reasoning about “what”, “where” and “when”

Using the path specification and paying attention to the remote operation wrappers, it
is possible to reason aboutwhat is donewherefor a given mapping.

To reason aboutwhenoperations are called and data flows through the system, we
need to add another factor in the PATHS system: instrumentation. Instead of adding
a specific tracing functionality to the PATHS runtime system, we use instrumentation
wrapper classes, which opens up for experimenting with different types of instrumen-
tation. The tracing wrappers are described in section 3.4.

3.2 PATHS Architecture

Figure 3.4 shows the organization of a client application using PATHS. The current
PATHS implementation is based on the PastSet3 system from [57], where PATHS is
used to orchestrate the mapping of a PastSet application to a cluster.

The PATHS-enabled PastSet implementation contains a library of wrappers and
PastSet Elements (the shared data entities in PastSet). The Remote operation wrappers
communicate with PastSet servers using a simple RPC library that supports the use of
multiple communication protocols, such as TCP/IP and VIA.

Paths are built by handing a path specification to thePath management library,
which uses the specification to instantiate the wrappers (and elements) and combine
the instances to form a path.

Remote operation wrappers are bound to the next stage in the path by handing the
path specification (minus the part up to and including the remote operation wrapper), to
the remote server. The remote server builds the rest of the path and returns an identifier

3PastSet is a structured distributed shared memory system in the tratidion of Linda[15]

34

3.3. USING PATHS

Path management
protocol

Remote operation library
and transport protocols

library
Path management

Application code

Wrappers and Elements

Element operation protocol.
Only the standard PastSet operations
(move, observe, first, last ++)

TCP/IP and VIA as transport protocols
Binary protocol − currently using ++

Path management protocol.
Create and release paths, query servers,
element operations,
Lisp and Python line oriented
protocols, XML−RPC

Figure 3.4: Organization of a PATHS enabled client application

to the first wrapper of the path in the remote server. This identifier is used by the remote
operation wrapper to invoke operations on the remote wrapper.

Path management is supported through apath management protocol, which is
mainly used to create and release paths, and to inspect the path specifications of exist-
ing paths in the system. The path management protocol also includes ordinary PastSet
operations, allowing tools without a full PastSet and PATHS implementation to create
and release paths, and execute operations on them.

3.3 Using PATHS

Setting up access from a thread to a PastSet element involves two steps: 1) retrieving a
path specification, and 2) building the path according to the specification.

For the PastSet PATHS system, an application can also choose to use the standard
PastSet API, which hides the retrieval and building of a path behind the PastSetEnter
function4. In this case, the use of the PATHS system is not visible in the application
source code.

Alternatively, a process can retrieve a path specification and ask the PATHS system
to build the path directly. There are currently three ways to retrieve path specifications:

• The application program can specify a path directly. This is rarely used, and has
for the most part been used in benchmarks.

• A path specification module is queried for a specification.

The path specification module is loaded when PATHS is initialized. Which mod-
ule to use can be specified by the user. The current implementation loads Python

4Enter is used to get a reference to a named PastSet Element

35

CHAPTER 3. PATHS

modules. Users may write their own modules to implement their own methods
of creating specifications.

• A path servercan be queried for a path specification. This is equivalent to query-
ing the specification module, but avoids having to distribute updated path speci-
fication modules to the nodes in the system when changes are made to the con-
figuration.

After retrieving a path specification, the path is built from the specification. This
involves creating wrappers with parameters from the specification and binding the cre-
ated wrappers together.

3.3.1 Path specification example

Process Path specification created in Python

p0

spec = make_path(stage("remote", proto=TCP),
stage("cache", size=64),
stage("remote", proto=TCP,

host="node2"),
stage("SharedData"))

p2

spec = make_path(stage("remote", proto=TCP),
stage("SharedData"))

p4

spec = make_path(stage("remote", proto=TCP,
host="node2"),

stage("SharedData"))

Figure 3.5: Example path specification in Python

Figure 3.5 shows how path specifications can be created manually for some of the
processes in figure 3.3. The path created by callingbuild_path with the specifica-
tion and the name of the PastSet Element:

path = build_path("Zebras", spec)

Operations can then be called on the reference returned bybuild_path .

3.4 Instrumentation

Instrumentation is supported in PATHS by adding instrumentation wrappers rather than
adding a special facility in the run-time system. Two trace-wrappers are included in the
current PATHS implementation:

36

3.5. PERFORMANCE DATA ANALYSIS

• A trace wrapper, which logs the start and completion time (using Pentium times-
tamp counters) of operations called through it, as well as the operation type.

Traces are recorded in memory, and stored to disk when the trace wrapper is not
used any more.

The overhead of calling operations through this wrapper has been measured to
be around 100-120 CPU clock cycles [9].

• A debug wrapper, which is a trace wrapper that has been extended to additionally
log arguments to operations and returned data.

An advantage of using wrappers to add instrumentation is that new types of instru-
mentation can be added without changing the PATHS system itself. An example of this
is the EventScope system [12], where new tracing and monitoring wrappers are added
to support run-time monitoring of PATHS applications.

3.5 Performance data analysis

By combining the path map with trace wrapper data, we have the information neces-
sary to implement profiling and performance analysis tools. An example use of the
performance data is shown in section 5.1, where trace data and the path specifications
were used to pinpoint bottlenecks in the ELCIRC application.

Further work on tools for analysing performance aspects of applications is in progress.
Visualization and profiling tools are presented in paper 10 and in [12].

3D visualization of performance data is created by drawing a 2D path map in the
XY plane and extending a time-line from each trace wrapper parallel to the Z axis.
Operations going down (start time) and up (completion time) are marked on the time-
lines. VRML files are generated, allowing a user with a standard VRML browser to fly
through the time history of the application, inspecting patterns in its behaviour.

Initial experiments suggest that this may be a useful method of visualizing an appli-
cation’s behaviour. We plan to experiment more with 3D-visualizations in the future.
More extensive 3D visualizations can be found in the Avatar system [42][43].

3.6 Debugging

The debug wrappers have, for the most part, only been used to debug other wrappers
by making use of the ability to inspect how the data flows and how data is modified
along the paths.

The path specifications also provide information that can be used for inspecting
some of the structural and communication properties of the system. As an example,
section 5.2 describes an experience where a configuration error was found by discov-
ering that a small island of two processes had no communication channels (or paths to
shared elements) with any of the other processes in the system.

37

CHAPTER 3. PATHS

3.7 Summary

The PATHS system allows a user to specify how the functionality behind an API is
implemented and mapped to a cluster by controllingwhatis computedwhereand where
data is stored. PATHS also provides instrumentation to identifywhencomputation and
communication occurs.

The user experiments with different specifications to study and tune performance
aspects of an applications mapping. This helps the user identify which factors are most
important for scaling the application and try alternative mappings which may resolve
the problems.

A path specificationis a sequence of stages, where each stage is a description of
the wrapper type used to implement that stage and the parameters used to initialize the
wrapper.

PATH specifications can be changed without modifying the application code. Thus,
the PATHS system is orthogonal to the API provided by the middleware or communi-
cation library.

Tracing and profiling is supported through trace wrappers rather than building trac-
ing within the PATHS system. This opens up for adding new types of tracing and
monitoring to the PATHS system (as has been done in [12]).

38

Chapter 4

ELCIRC

ELCIRC [20] is a finite volume model that is used to simulate the coastal and estuary
circulations for the Colombia River and the west coast of the USA. It can forecast
parameters such as water speeds, elevation, temperature, and salinity. The ELCIRC
model is used in the CORIE project [16], which is a pilot environmental observation
and forecasting system for the Columbia River. ELCIRC and CORIE are developed at
Oregon Graduate Institute (OGI).

Figure 4.1 shows an example visualization of one of the parameters, salinity, pro-
duced by ELCIRC. The color coding shows the salinity of the water for a given point in
time. The output of the model can be used for tasks such as studying habitat conditions
for wildlife in the region.

Figure 4.1: ELCIRC sample visualization: salinity in the Columbia River and coastal
waters outside the river estuary. The figure is copied with permission from the CORIE
homepage.

39

CHAPTER 4. ELCIRC

To reduce its execution time, ELCIRC was first tuned by experimenting with code
optimization techniques. The model was then parallelized to reduce the execution time
further. PATHS was used to implement and control the communication between the
processes in the parallel model. The PATHS instrumentation wrappers were used to
study some of the performance aspects of the application.

The parallelization experiments used version 3.10 of ELCIRC along with a sample
data set, both provided to us by OGI. The ELCIRC source code is written in Fortran 77
(with some GNU F77 extensions).

This chapter, and chapter 5, present some of the work done on parallelizing EL-
CIRC, and on some of the experiences from using PATHS with ELCIRC. Some alter-
native approaches and implementations have been left out since they didn’t provide any
extra insight into using PATHS.

4.1 Overview and terminology

Nodes

Sides

Element

Unstructured grid seen from above

Element seen from the side

One of the sides (shaded)

(indicated with dashed lines)
An element is divided into layers

Figure 4.2: Unstructured grid with elements, sides and nodes in ELCIRC

ELCIRC simulates the flow of water in a 3-dimensional grid which is unstructured
in the horizontal plane. In an unstructured grid, the control points are not required to
be positioned at regular intervals. The density can be different in different regions of
the grid, allowing higher density in important regions of the simulation. An example of
an unstructured grid is shown in figure 4.2. The grid in ELCIRC is divided vertically
in a number of layers that are defined globally.

The following terms are defined in ELCIRC (see figure 4.2):

40

4.2. TUNING

Element A column of water in the grid. The Element is described by a polygon in the
horizontal plane. In the current data set all polygons are 3-sided.

The element is divided vertically into a number oflayers. The vertical position
of each layer is the same for all elements in the data set.

A wetelement is an element with water in it.

Nodes are the vertices of the polygon defining the Element in the horizontal plane.

Sides are the edges of the polygon defining the Element in the horizontal plane. The
sides extend down vertically.

Water and currents as well as other parameters are introduced into the 3D model
with boundary conditions, which are tables and functions that reflect the change of a
parameter over time.

Boundary conditions are defined for sides and elements, and can be used for intro-
ducing parameters such as tidal waves.

Elements and sides which have defined boundary conditions are handled specially
at various points in the model, potentially overwriting values computed earlier in the
time step.

4.2 Tuning

4.2.1 Sequential code optimizations

The simulation loop was restructured into stages to simplify experimentation with the
application code.

The execution times of the stages change during the first few iterations of the model,
but stabilize within a few percent after a few iterations. The two exceptions to this is
the backtracking stage, which increases and decreases execution time slowly1, and the
output stage which stores output from the model only everynth round (the current
data set stores output every second round). Figure 4.3 shows an approximation of the
relative times taken in the sequential application during an iteration where ELCIRC
stores output data to disk.

Working with the ELCIRC source code, it was found that some of the terms com-
puted by the program could be removed when particular combinations of parameters
canceled out terms in the model. This suggests that specializing the program for a
given data set (using techniques such as dead code removal and partial evaluation) may
be worthwhile to investigate for future versions of the ELCIRC model.

The execution time of ELCIRC can also be reduced by improving cache utilization,
and by loop restructuring2.

1This is probably linked to the tidal waves, as the tops seems to come about 12 hours apart, but whether
this is the real cause has not been verified

2As an example, moving calls tosin andcosa few levels out from the inner loops and inverting a few
of the loops in thenodalvelfunction reduced the number of cycles spent in this function from 2607 million
cycles to 1336 million cycles. Some of this may be realized automatically by a good compiler.

41

CHAPTER 4. ELCIRC

Percent time used

0

5

10

15

20

25

30

35

40

45

Lo
op

-st
art

loo
p i

nit
iali

ze

Bac
ktr

ac
kin

g

tur
bu

len
ce

-clo
su

re-
sch

em
e

mom
en

tum
-an

d-w
av

e-e
q

ca
lc-

ve
loc

itie
s

tra
ns

po
rt e

qu
atio

ns

pa
ths

-ex
ch

an
ge

 (o
ve

rla
p)

so
lve

-fo
r-d

en
sity

Calli
ng

 le
ve

ls(
)

main
-ou

tpu
t

loo
p e

nd
-w

rite

Figure 4.3: Time spent in the stages of the ELCIRC simulation loop. The bars
reprecent the percentage of the total time spent in the simulation loop.

Compiler Execution time in
minutes:seconds

f2c + gcc 2.95.4 15:22
f77 (gcc 2.95.4) 13:54
f77 (gcc 3.2) 9:20
Intel FC 6:50

Table 4.1: Execution time (including initialization and exit) of ELCIRC when simu-
lating only 26 iterations using different compilers on the sequential code.

4.2.2 Compiler experiments

Table 4.1 shows the execution time of ELCIRC benchmarked with different versions
of GCC and with Intel’s Fortran compiler, version 6.0. In addition, the f2c (Fortran-to-
C) translator was used to convert the ELCIRC source code to C, and the C code was
compiled using one of the GCC versions.

The table shows that the execution time of ELCIRC can be improved significantly
by replacing GCC 2.95.4 with a newer GCC or with Intel’s Fortran compiler.

42

4.3. PARALLELIZING ELCIRC

4.3 Parallelizing ELCIRC

To create a parallel version of ELCIRC, the grid is partitioned geometrically and the
partitions assigned to processors in the cluster3. An advantage of this is that most of
the communication for any process in the system is communication with the processes
handling the neighbour geometry.

By studying the ELCIRC source code with respect to the data exchange needed
between partitions, three classifications of computations in the model were found:

basic Most of the expressions in the model only use information from the element it
currently computes for, or from the element and the immediate neighbour ele-
ments which it share an side with.

To support this type of computation, two neighbour partitions only need to share
information about elements which use any of the sides that divide the two parti-
tions.

backtracking The backtracking stage of ELCIRC determines where water that flowed
into a given element came from. An example use of this information is to de-
termine the temperature of the water within a given element by looking at the
temperature of the water that flowed into the element.

To run the backtracking algorithm, each partition needs information about the
grid in an area around the partition (called ghost region) which is large enough
to include the water that might flow into the partition during one iteration of
the model. Information about water speeds, and some other parameters (such
as water temperature and salinity) is also needed for the backtracking algorithm
and for later computations.

Figure 4.4 shows two partitions and the ghost regions for the two partitions.

solver During the momentum-wave phase of the application, a large matrix equation
of the formAx = b is built up and solved forx (which is a vector representing
the elevation of the water in each element). Each row in the equation represents
an element, and can be built up using information about the element and the
neighbours of the element (it is based on a relation between the element and the
elements that share sides with the element).

The equation can easily be built up in parallel, where each partition is responsible
for building up the rows for its local elements. The question then is just how to
run the solver (and which solver to use).

The ghost region that is exchanged between neighbour partitions thus corresponds
to the body of water which may flow between the partitions. We currently set an as-
sumed maximum water speed and multiply it with the length of the iteration time step
to determine how large the overlap regions must be.

3This technique is called Domain Decompositioning [18]. Using parallelized functions was evaluated,
but found to have a lower potential for scaling than Domain Decompositioning

43

CHAPTER 4. ELCIRC

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �� � �

� �� �� �� �� �
� �� �� �� �� �

Partition A Partition B

Ghost region for partition AGhost region for partition B

Figure 4.4: Partitioning a small river in two subdomains. The shaded areas are ghost
regions, which define bodies of water which may flow into the other partition during
one iteration of the model. The size of the ghost regions depend on the expected
maximum speed of the water in the region and length of the time step in the model.

4.4 Implementation of Domain Decomposition

The original data set was partitioned by generating, for each partition, a smaller data set
which only include the information necessary for the process computing for that par-
tition (including the ghost regions). The sequential source code, with modifications to
update ghost regions from neighbour partitions, was then run for each of the partitions.

The two main advantages of this approach are: first, that ELCIRC can be run nearly
unmodified. The main changes involves adding the code to update the ghost regions.
Second, less memory is required for each process since the processes only need to
allocate memory for the partition and ghost regions instead of the entire system. This
provides us with an option to scale to large data sets which may not fit in one computer.

A drawback with this approach is that we end up running the model for the ghost
regions of a partition since the model doesn’t differentiate between elements internal
in the partition and the ghost elements. The values computed for the ghost region are
then replaced when we update the ghost regions from the neighbour partitions.

Thus, the relative size of the ghost regions and the partitions limits the scalability
of the application since large ghost regions relative to small partitions may result in a
high communication to computation ratio. It may also limit scalability as the number of
wasted computations (ghost regions) relative to productive computations may be large.

4.5 Reducing the number of exchanged arrays

Some of the arrays in ELCIRC are computed based solely on other arrays computed
earlier in the loop. Recomputing these arrays in each partition instead of transmitting
them reduces the size of the updates transmitted for each ghost region. By arranging
the arrays changed in the main loop of ELCIRC in a dependency graph, the number of
arrays to transmit for ghost regions is reduced to 4.

One problem that may appear is that a partition does not have any information
about the geometry outside the ghost regions. Thus, some computations that are based

44

4.6. PERFORMANCE RESULTS

Experiment Execution time in Speedup Utilization
hours:minutes:seconds

8-way Pentium Pro, sequential 13:44:30
4 x 8-way Pentium Pro, parallel 58:50 14.01 0.539
2-way P4, sequential 2:24:04
11 x 2-way P4, parallel 9:54 14.55 0.661

Table 4.2: Execution time of 24 hours simulated time in the ELCIRC model (includ-
ing initialization time).

on backtracking and information about neighbour elements may result in less accurate
results close to the outer edges of the ghost regions.

Areas for future study is whether these inaccuracies are large enough to cause any
problems, and in that case, how to compensate for this.

4.6 Performance results

To measure the speedup using the parallelized ELCIRC application, we compared the
wall clock time (measured with the Unixtimecommand) of the processes running in
parallel. This time was compared to the wall clock time of running the sequential
version of the code. In both the parallel and sequential executions, the model was
simulating a 24-hour period.

26 partitions were created with a manual partitioning tool. The tool was too cum-
bersome to use to get the wanted number of partitions4, and to get a balanced number of
elements in each partition (the smallest partition had 689 elements, the largest partition
had 2779 elements, including ghost elements).

Thus, these experiments were run to get an initial understanding of how well the
parallel ELCIRC version scales. It also provided us with an opportunity to examine a
badly balanced application.

The manual tool has since been replaced by an automated tool which uses Metis
[29] to partition the grid.

4.6.1 Speedup with 26 partitions

Two scaling experiments were run. One experiment was run on a cluster of 4 8-way
HP Netserver nodes (Pentium Pro 200 MHz with 2 GB Ram each) interconnected with
100 MBit Ethernet. When partitions were assigned to nodes, care was taken to limit
the communication between each of the 8-way nodes. The speedup on this cluster was
approximately 14 (see table 4.2).

The second experiment was run on a cluster of 11 Dual Pentium 4 nodes5 inter-
connected with gigabit Ethernet. Since the cluster had fewer than 26 processors, and

4The goal was 32 partitions, assigning one partition to each of the 32 processors in the 8-way cluster
5This cluster is located at the computer science department at OGI, which kindly allowed us to use it for

benchmarking ELCIRC.

45

CHAPTER 4. ELCIRC

repartitioning with the manual tool was a cumbersome task, processes were placed such
that two of the nodes had 4 of the smallest partitions each, and the rest had 2 partitions
each. No attempt was made to place neighbour partitions close to each other in the
cluster.

The speedup on this cluster was approximately 14.6 (see table 4.2).

Utilization

The utilization column of table 4.2 is computed by dividing the gained speedup by
the number of processors used (26 in the 8-way cluster, and 22 in the P4 cluster).
A utilization of 1 means that an application computesN times faster when usingN
processors.

The numbers show that by mapping a badly balanced application to a cluster with
fewer processors than processes (the P4 cluster), we can overlap some of the waiting
time with computation, which utilizes the cluster better.

4.7 Effect of domain decompositioning on the accuracy
of ELCIRC output

4.7.1 Comparing output of sequential ELCIRC using different com-
pilers

Modifying the order that floating point operations are applied to numbers may affect
the result of those operations. As an example, summing a list of floating point numbers
head to tail may produce different results than summing the same list of numbers tail
to head.

This problem was observed when modifying the sequential ELCIRC code. Al-
though the differences were small and only in the least significant bits of a few floating
point numbers, the end result was that differences propagated throughout the model
after every iteration.

Knowing that our code restructuring and sequential code optimization may intro-
duce small differences in the output, it is interesting to see how much effect using
different optimizing compilers have on the output from the simulation, and whether
our changes to the code result in differences larger than the ones observed by using
different compilers and optimization flags.

The differences observed also serve as a baseline for comparing differences intro-
duced when a parallel implementation of ELCIRC is run.

Figure 4.5 show the maximum and average difference observed when comparing
every value over every dumped timestep of the sequential code compiled with a ref-
erence compiler with the output from other compilers. The compilers and flags used
were:

• The reference compiler, GNU Fortran 77, version 2.95.4, optimization flags -O5
-funroll-loops -fomit-frame-pointer

46

4.7. EFFECT OF DOMAIN DECOMPOSITIONING ON THE ACCURACY OF
ELCIRC OUTPUT

0,00E+00

2,00E-09

4,00E-09

6,00E-09

8,00E-09

1,00E-08

1,20E-08

1,40E-08

1,60E-08

f2c-gcc295 f77-gcc32 f77.gcc32-march ifc ifc.o3

elevation
salinity
vertw
Fort.64

(a) Maximum difference

0,00E+00

1,00E-14

2,00E-14

3,00E-14

4,00E-14

5,00E-14

6,00E-14

7,00E-14

f2c-gcc295 f77-gcc32 f77.gcc32-march ifc ifc.o3

elevation
salinity
vertw
Fort.64

(b) Average difference

Figure 4.5: Maximum and average difference between elevation, salinity and hori-
zontal/vertical speeds in output files from sequential model using different compilers
and compiler options. The reference compiler is the GNU Fortran 77 compiler, ver-
sion 2.95.4.

• f2c (Fortran to C translator), C code compiled with gcc 2.95.4, optimization flags
-O2 -funroll-loops

• Fortran 77 compiler, gcc 3.2, optimization flags -O5 -funroll-loops -fomit-frame-
pointer

• Fortran 77 compiler, gcc 3.2, optimization flags -O5 -funroll-loops -fomit-frame-
pointer -mcpu=pentium4 -msse2 -march=pentium4

47

CHAPTER 4. ELCIRC

• Intel Fortran compiler, version 6.0, optimization flags -tpp7 -xKW -ipo

• Intel Fortran compiler, version 6.0, optimization flags -tpp7 -xKW -ipo -O3

As seen in the figure, both the maximum and average differences introduced are
small. The maximum differences are less than 2.0E-8, while the average differences
are less than 7.0E-14. As an example, the elevation is given in meters, which means
that the largest difference in elevation is 3.7E-9 meters, or about 3.7 nanometers.

A limitation of the measurements presented in this and the next section is that they
are only the result of 29 iterations of the simulation. This corresponds to a simulated
time of approximately 3 hours 40 minutes, compared to the normal simulated time of
48 hours.

4.7.2 Accuracy of the Parallel ELCIRC model

Comparing the output of the parallel model using 4 partitions with the output from the
reference sequential model (see Figure 4.6), we see that the maximum and average dif-
ference is several orders of magnitude larger than with any of the compiler experiments
above. For example, the maximum difference in elevation for an element is 4.3cm, and
the average difference over all iterations and elements is about 0.8cm.

A simple visualization was created to study where differences occur, how large they
are, and how effects from these differences spread throughout the model over time.
Figure 4.7 shows a visualization, where each pixel in a 400 by 100 image represents an
element in the model. The color of each pixel ranges from black (no difference between
the elements in the reference sequential model and the parallel model), to white (the
absolute difference between the element in the sequential and parallel model is larger
than or equal to 4 cm).

The figure consists of 13 panels, where each panel is an image representing the dif-
ference between the sequential and parallel ELCIRC implementations in one dumped
iteration The uppermost panel is the first dumped iteration. Since the model only dumps
every second iteration, the panels below represent every second iteration of the simu-
lation.

The figure shows that the differences are introduced in a few localized regions, and
that these differences propagate throughout the system over time. By inspecting which
elements are included in the white bands, we should be able to find out what sets these
elements apart from other elements. This is work in progress.

Two of the main factors that are expected to potentially introduce errors in the
system are:

• In the sequential model, all elements, sides and nodes at the edges of the grid
are governed by boundary conditions. The tool that generates the partition data
files does not create any new boundary conditions along the grid edges that occur
where we cut the original grid to create the partitions.

ELCIRC may not properly handle grids with edges that are not controlled by
boundary conditions. This needs to be investigated further.

48

4.7. EFFECT OF DOMAIN DECOMPOSITIONING ON THE ACCURACY OF
ELCIRC OUTPUT

0

1

2

3

4

5

6

7

f2c-gcc295 f77-gcc32 f77.gcc32-march ifc ifc.o3 Parallel

elevation

salinity

vertw

Fort.64

(a) Maximum difference

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

f2c-gcc295 f77-gcc32 f77.gcc32-march ifc ifc.o3 Parallel

elevation

salinity

vertw

Fort.64

(b) Average difference

Figure 4.6: Maximum and average difference between elevation, salinity and hori-
zontal/vertical speeds in output from sequential model using different compilers and
compiler options, and parallel model

• One of the differences between the sequential model and the parallel model
shown above is that the solver was run only internally in each partition. Sec-
tion 4.7.3 describes experiments with running the solver for the entire grid in the
parallel model.

Another potential cause of errors lies in the comparison tool itself. The tool does
not yet distinguish between wet and dry elements for all parameters. The first indication
that this might be a problem came when we observed a maximum difference in salinity
of about 114. The reason for this was that the salinity output file tags dry elements

49

CHAPTER 4. ELCIRC

Figure 4.7: Comparison of elevation output files for parallel (with 4 partitions) vs.
sequential model. The absolute difference in elevation for each element is translated
to pixel intensities ranging from black (no difference) to white (a difference larger
than or equal to 4 cm). The maximum difference elevation over 29 iterations was 4.3
cm, the average difference for all elements over all iterations was 0.8 cm.

50

4.8. SUMMARY

with a salinity of -99. When comparing a dry element with a wet element (which has a
positive salinity), a large difference occurs. The differences shown above are the results
of omitting dry elements when comparing the salinity of elements.

4.7.3 Global or subdomain based solver

During the momentum-wave equation phase, a large matrix equation of the formAx =
b is set up, and the equation is solved forx using a Jacobi6 solver.

Each row inx represents the elevation of the water in an element in the model. The
entries for the same row inA andb are built up using information from that element
and the immediate neighbour elements.

Most of the experiments have been run with a separate solver for each partition
(including its ghost regions). This may result in some information not being transmitted
properly between the partitions as pressure waves may be traveling faster than the speed
of the water flowing between the partitions7.

To examine the sensitivity of the application to the region the solver is working on,
a “global solver” has been added. The global solver relies on the property that rows in
the equation can be set up in parallel (see section 4.3). Rows are forwarded from each
partition to a centralized process, which combines the rows, solves the equation for the
full grid, and forwards the result vector (x) back to each of the processes.

Initial experiments with the global solver shows that the accuracy of the parallel
version using the global solver was roughly an order of magnitude worse than the one
without the global solver.

A problem which complicates comparison between the parallel and sequential model
is that the Jacobi solver does not converge within the maximum specified (2000) itera-
tions in either of the sequential or parallel models. An interesting question is whether
running the solver for a smaller problem (a partition) produces a more accurate solution
to the equation than running the solver for the entire system.

4.8 Summary

ELCIRC has been parallelized using domain decompositioning. Initial measurements
have shown a speedup of a factor 14.5 using 22 processors for a configuration where
the workload was badly balanced. Additional factors have been identified which must
be considered to provide better balancing of the workload.

Current work on ELCIRC is focused on improving the accuracy of the parallel
model. Experiments have been conducted to compare the results of the parallel model
with the sequential model and locating regions where errors are introduced in the
model.

A “global solver” has also been introduced, and used to experiment with the size of
the geometric regions that a matrix equation in ELCIRC needs to be solved for. Initial
experiments have not shown an improvement by solving for a larger region.

6The type of solver used is configurable, but for the current data set, the Jacobi solver is used
7This concern was raised at a meeting at OGI in May 2001

51

CHAPTER 4. ELCIRC

52

Chapter 5

ELCIRC and PATHS

This chapter describes experiences with using PATHS with ELCIRC.
The parallel and sequential version of ELCIRC use the same source code. To create

a parallelized ELCIRC executable, annotations in the source code are expanded (by a
preprocessor) to call functions that read updates from neighbour partitions and apply
them to the ghost regions. Updates are sent to neighbour partitions by extracting, for
each neighbour, the values in the arrays that are used by the neighbour and storing these
values in a PastSet Element.

The paths created to send and receive updates are instrumented using trace wrap-
pers to inspect some of the performance aspects of the application.

5.1 Locating a performance bottleneck in the parallel
ELCIRC

Figure 5.1 shows a visualization of timestamp data from the processes running on one
of the nodes in the 8-way cluster. The visualization resembles a Gantt chart, with one
time line per trace wrapper. The tick lines represent the execution time for move or
observe operations.

Since some of the operations take a relatively short time and are difficult to see
in the graph, a small circle is drawn above the start timestamp for each operation.
Color coding (not visible in black and white prints) are used to separate read and write
operations.

The traces show that sending ghost region updates to the neighbour partitions does
not delay the processes much, as the thick lines of the write operations are generally
not visible in the graph.

Reading updates from the neighbours, though, severely delay some of the processes
after a few iterations. The reason for this delay is that the read operation is waiting for a
neighbour that either has a higher workload or is delayed by one of its other neighbours.

Knowing which process each of the processes are delayed by in an execution, we
can organize the processes in a dependency tree. A process that is not delayed by other
processes will be the root of the dependency tree. This root process dominates the

53

CHAPTER 5. ELCIRC AND PATHS

07−e−7−8−l2

08−e−7−8−l1

08−e−7−8−l2

08−e−8−7−l1

08−e−8−9−l1

08−e−8−9−l2

08−e−9−8−l1

08−e−9−8−l2

09−e−10−9−l1

09−e−10−9−l2

09−e−12−9−l1

09−e−12−9−l2

09−e−8−9−l1

09−e−8−9−l2

09−e−9−10−l1

09−e−9−10−l2

09−e−9−12−l1

09−e−9−12−l2

09−e−9−8−l1

09−e−9−8−l2

10−e−10−11−l1

10−e−10−11−l2

10−e−10−12−l1

10−e−10−12−l2

10−e−10−9−l1

10−e−10−9−l2

10−e−11−10−l1

10−e−11−10−l2

10−e−12−10−l1

10−e−12−10−l2

10−e−9−10−l1

10−e−9−10−l2

11−e−10−11−l1

11−e−10−11−l2

11−e−11−10−l1

11−e−11−10−l2

11−e−11−12−l1

11−e−11−12−l2

11−e−11−13−l1

11−e−11−13−l2

11−e−12−11−l1

11−e−12−11−l2

11−e−13−11−l1

11−e−13−11−l2

12−e−10−12−l1

12−e−10−12−l2

12−e−11−12−l1

12−e−11−12−l2

12−e−12−10−l1

12−e−12−10−l2

12−e−12−11−l1

12−e−12−11−l2

12−e−12−13−l1

12−e−12−13−l2

12−e−12−9−l1

12−e−12−9−l2

12−e−13−12−l1

12−e−13−12−l2

12−e−9−12−l1

12−e−9−12−l2

13−e−11−13−l1

13−e−11−13−l2

13−e−12−13−l1

13−e−12−13−l2

13−e−13−11−l1

13−e−13−11−l2

13−e−13−12−l1

13−e−13−12−l2

13−e−13−14−l1

13−e−13−14−l2

13−e−14−13−l1

13−e−14−13−l2

14−e−13−14−l1

14−e−13−14−l2

14−e−14−13−l1

14−e−14−13−l2

14−e−14−15−l1

14−e−15−14−l1

14−e−15−14−l2

15−e−15−14−l2

Figure 5.1: Trace data for processes running on one of the 8-way nodes. The text to
the left identifies the trace wrapper. The horizontal line is the time line from the start
of the first operation on the host. The thick lines represents read or write operations.
The figure only shows the first 21-23 iterations of the application.

execution time of the other processes in the tree. Figure 5.2 shows two dependency
trees described below.

Figure 5.2-(a) shows the dependency trees from an experiment on the P4 cluster

54

5.1. LOCATING A PERFORMANCE BOTTLENECK IN THE PARALLEL
ELCIRC

where we ran the parallel ELCIRC application using NFS for storing data files. One
of the nodes in the cluster was set up as an NFS server for the other nodes. The delay
graph shows that the execution time of the parallel application was dominated by a
single process in the system. This process (process 12) was also the partition which
had the largest number of elements.

55

CHAPTER 5. ELCIRC AND PATHS

p_03

p_01 p_02

p_04

p_05

p_06

p_07

p_08

p_09

p_12

p_10 p_11 p_13

p_14

p_15

p_16 p_26

p_17

p_18

p_19 p_22 p_21

p_25 p_20 p_23

p_24

(a) Original analysis with NFS traffic

p_03

p_01 p_02

p_04

p_05

p_06

p_07

p_08

p_09

p_12

p_10

p_13

p_11

p_14

p_15

p_26

p_16

p_17

p_18

p_21

p_22

p_19 p_20

p_25

p_23

p_24

(b) Analysis without NFS traffic

Figure 5.2: Delayed-by trees. The circles represent processes in the system. The
arrows point from a process to the processes that depend on this process.

56

5.1. LOCATING A PERFORMANCE BOTTLENECK IN THE PARALLEL
ELCIRC

Average number of cycles per write

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Process number

Figure 5.3: Average time for writing output data in an iteration for each process.
Process 12 and 13 are located on the node acting as NFS server for the other nodes.

5.1.1 Identifying the cause of the bottleneck

Using one of the cluster nodes as an NFS server creates an unbalanced configuration
of the nodes. Figure 5.3 shows that the two processes residing on the server node
(process 12 and 13) have a much higher overhead in writing to local disk than the other
processes that write to NFS.

Observing that the process that was the applications bottleneck (process 12) was
located on the NFS server, another experiment was set up to examine whether it was
the configuration of the system rather than the size of the partitions that was the cause
of the bottleneck.

The data files were mirrored out to local disks in each node and the experiment was
rerun using only local disks on each node. The times reported from the P4 cluster in
the previous chapter (table 4.2) are the results from this second execution.

The bottleneck analysis for the second run shows that the process which dominates
the execution time is now process 23 (see figure 5.2-(b)), which is only the 16th largest
partition (at 1789 elements). This suggests that the number of elements is not the only
factor that dominates the computation time of a partition.

This experiment emphasizes the importance of not only looking at the single factor
that one expects to dominate the performance. Other factors that may or may not
coincide with the expected dominating factor may be more important.

57

CHAPTER 5. ELCIRC AND PATHS

5.1.2 Additional factors contributing to a partitions execution time

The following factors were found by examining the source code, and should be exam-
ined further for their influence on the computation time:

• The number ofwetelements1 in the partitions grid. Most of the computation in
the model is done only on wet elements in the grid. Dry elements (such as land
elements) are only involved in some of the computations.

• The depth of the water in the wet elements. Elements with shallower water have
fewer wet layers, which results in less computation for the element.

• The density of the grid combined with the water speed in the region. One of
the largest contributions to run time in the simulation loop is the backtracking
stage. With a dense grid, high water speed and long time step, each water particle
may be tracked through several elements before finding the originating point.
Tracking particles through multiple elements increase the execution time of the
backtracking algorithm.

5.1.3 Communication overhead

Using the data from the trace-wrappers, the communication overhead of the dominating
process (process 23) was examined. The time spent communicating was less than 1%
of the execution time of each iteration.

5.2 Partitioning bug

The path maps can also be used to find some configuration-related bugs.
Figure 5.4-(a) shows a visualization of the communication topology of ELCIRC

that was created from the path specifications. This configuration has a bug where two
of the processes are only connected to each other, and not to any other processes in the
system (indicated by an arrow). The problem manifested itself as the two processes
finishing much earlier than the rest of the processes in the system.

The problem occurred due to a problem with the manual partitioning tool which
didn’t correctly handle the ghost regions in the coarsest areas of the grid, such as in the
ocean, resulting in ghost regions with no elements. The problem was fixed by changing
the rules for including elements in the ghost regions.

The new configuration after running the corrected partitioning tool is shown in
figure 5.4-(b).

1A wet element is an element that contains water.

58

5.2. PARTITIONING BUG

mc1

mc2

mc3

mc4

p_01

e_1_3

23248

p_02

e_2_3

100096

p_03

e_3_2

100096

e_3_1

23248

e_3_4

42152

p_04

e_4_5

114632

e_4_3

42152

p_05

e_5_6

141576

e_5_4

114632

p_06

e_6_7

181232

e_6_5

141576

p_07

e_7_6

181232

e_7_8

116808

e_8_7

p_08

116808

e_8_9

134800

p_09

e_9_8

134800

e_9_12

63832

e_9_10

317520

p_10

e_10_11

231144

e_10_9

317520

p_11

e_11_12

176336

e_11_10

231144

p_12

e_12_11

176336

e_12_13

180976

e_12_9

63832

p_13

e_13_14

262120

e_13_12

180976

p_14

e_14_13

262120

e_14_15

196136

e_15_14

p_15

196136

e_15_16

147200

e_15_26

172888

p_16

e_16_15

147200

e_16_17

165464

p_17

e_17_16

165464

e_17_18

136048

p_18

e_18_17

136048

e_18_20

55488

e_18_22

267704

p_19

e_19_20

624

e_19_21

7136

p_20

e_20_19

624

e_20_18

55488

p_21

e_21_19

7136

e_21_25

624

e_25_21

e_22_18

e_26_15

p_22

267704

p_23

e_23_24

32872

p_24

e_24_23

32872

p_25

624

p_26

172888

Bug !

(a) Original
configuration
with a bug

mc1

mc2

mc3

mc4

p_01

e_1_3

51128

p_02

e_2_3

122096

p_03

e_3_2

122096

e_3_1

51128

e_3_4

71584

p_04

e_4_5

161712

e_4_3

71584

p_05

e_5_6

174720

e_5_4

161712

p_06

e_6_7

228936

e_6_5

174720

p_07

e_7_6

228936

e_7_8

195176

e_8_7

p_08

195176

e_8_9

258376

p_09

e_9_8

258376

e_9_12

116176

e_9_10

432120

p_10

e_10_12

312

e_10_9

432120

e_10_11

404600

p_11

e_11_12

386960

e_11_10

404600

e_11_13

312

p_12

e_12_10

312

e_12_11

386960

e_12_13

363704

e_12_9

116176

p_13

e_13_11

312

e_13_14

448264

e_13_12

363704

p_14

e_14_13

448264

e_14_15

360296

e_15_14

p_15

360296

e_15_16

308256

e_15_26

295232

p_16

e_16_15

308256

e_16_17

310416

p_17

e_17_16

310416

e_17_18

283784

p_18

e_18_17

283784

e_18_19

12104

e_18_21

312

e_18_20

192112 e_18_22

507160

p_19

e_19_18

12104

e_19_20

102296

e_19_21

86472

e_19_25

936

e_19_22

11488

p_20

e_20_21

312

e_20_19

102296

e_20_18

192112

e_20_22

23888

p_21

e_21_18

312

e_21_19

86472

e_21_20

312

e_21_25

62608

e_25_21

e_22_20

e_22_19

e_22_18

e_25_19

e_26_15

p_22

23888

11488

507160

e_22_23

93584

p_23

e_23_24

109064

e_23_22

93584

p_24

e_24_23

109064

p_25

62608

936

p_26

295232

(b) Modified configuration

Figure 5.4: Visualization of processes, paths and elements in the parallelized EL-
CIRC system. Processes (circles) are mapped onto 4 8-way computers (shaded
boxes). Tuples are read and written to elements (rectangles) using paths (lines).

59

CHAPTER 5. ELCIRC AND PATHS

5.3 Controlling ghost region updates with PATHS

One of the problems with the parallel ELCIRC version described earlier was the amount
and complexity of the code added to ELCIRC to update the ghost regions. Additionally,
when new strategies for updating ghost regions were tried out, both the support tools
generating partition information and the support code in ELCIRC had to be changed.

Instead of implementing the necessary code for sending and receiving updates in
the ELCIRC application code, the responsibility for implementing what is essentially
a send_updateand receive_updatefunction is moved down into the PATHS system.
This corresponds to one of the goals of the PATHS system: using PATHS to control
how communication is done between processes, and to implement the functionality of
the communication subsystem.

This allows us to experiment with different update strategies and keep a record,
using the path specifications, of the strategies and configurations used when multiple
experiments are run.

5.3.1 Introducing new PATHS wrappers

Sending and receiving of updates can be implemented using two wrappers:

• The subsamplewrapper, which is used to extract a subset of the entries in the
array when the array is written to a path, and to apply updates to an array when
updates are read from a path.

Which entries to extract or apply are specified as parameters to the wrapper2.

• The fork wrapper, which has a list of paths that it applies an operation to. The
path list is provided as one of the parameters to the wrapper.

Once an operation is called on the fork wrapper, it applies the same operation
and parameters to each of the paths in the path list.

An example is shown in Figure 5.5. Processi sends an update to its neighbours
by sending the eta2 array3 down the path. The fork wrapper then sends the eta2 array
further down to each of its sub-paths. The subsample wrappers extract only the values
needed by the corresponding neighbour, and stores the extracted values in a location
shared with the neighbour.

To receive updates, processi−1 calls thereceive_updatefunction on the path using
its copy of eta2 as one of the arguments. The fork wrapper then callsreceive_update
on each of its sub-paths. The subsample wrappers retrieve the updates from the shared
locations, extracts the values and applies them to the eta2 array4.

2To make path descriptions more readable for humans, the index list is stored in a file and the wrapper is
handed the file name.

3eta2 is one of the arrays in ELCIRC
4The current subsample wrappers can also do some transformations on the values extracted and applied,

as some vectors need to be transformed before they can be copied between partitions

60

5.4. SUMMARY

Proxy
Wrapper

Subsample
Wrapper

Subsample
Wrapper

Fork wrapper

Proxy
Wrapper

Process i+1

Proxy
Wrapper

Subsample
Wrapper

Fork wrapper

Subsample
Wrapper

Proxy
Wrapper

Fork wrapper

Move eta2

E
le

m
en

t

E
le

m
en

t

Process i−1 Process i

Observe eta2 Observe eta2

Figure 5.5: ELCIRC using fork and subsample wrappers - sharingeta2

5.3.2 Experiences using new wrappers

An ELCIRC implementation using the new wrappers was used in some of the experi-
ments described in 4.7.2. Some of the initial observations are:

• We can experiment with different ways of updating ghost region simply by
changing path descriptions or introducing new wrapper types along the paths.

• The support tools used to generate partitions and path configurations are simpler
and the source code is shorter.

• This version needs less source code than any of the other versions. The support
code which is added to the ELCIRC application is about 120 lines of C code
including the initialization code.

• Which variables are updated are now selected by modifying one or a few isolated
places in the support tools rather than in the ELCIRC source codeandthe support
tools.

5.4 Summary

PATHS has been used to implement the communication between the processes in the
parallelized ELCIRC application.

PATHS was used to measure some of the performance aspects of the application
such as locating the process dominating the execution time of the simulation, and to
find a bug with the configuration which caused two of the processes to be isolated from
the rest.

PATHS was also used to simplify updating of ghost region data, as the functions
sending, receiving and applying updates to ghost regions were moved down to the
PATHS system. This allows us to experiment with different strategies for updating the

61

CHAPTER 5. ELCIRC AND PATHS

ghost regions without modifying or recompiling the ELCIRC source code, and to use
the PATHS system for logging and tracing updates applied to ghost regions.

62

Chapter 6

Additional related work

This chapter presents additional related work, and expands on some of the related work
presented in the papers.

6.1 Configuration and adapting to cluster architectures

MPI

The Message Passing Interface (MPI) [39] standard hides the architecture of the sys-
tem a distributed application runs on from the application programmer. It is up to the
implementation to provide efficient point-to-point and collective operations, allowing
the user to focus on these abstractions instead of concentrating on the under-laying ar-
chitecture. As an example, the MPICH [23] implementation allows clusters of SMP
nodes to use shared memory to optimize message passing internally on the nodes.

Efficient implementation of collective operations has been studied for various ar-
chitectures [27, 7, 32, 31, 26, 46, 49, 54]. A fixed strategy or operation tree is not
necessarily optimal for all architectures and topologies, however [54]. We have also
observed this in [8], where we found that in some situations, going against common
sense and doubling the amount of messages over the network improved the perfor-
mance of the Allreduce operation.

The MPI standard [39] includes Process Topologies, which is a mechanism for re-
mapping the ranks of processes according to a logical arrangement of communication
specified as a graph. The standard states that this may be used by the runtime system
to aid the mapping of processes onto hardware, and that it may be used as an advice for
implementing optimized communication.

We did not see any provision in the LAM-MPI [14, 35] implementation to optimize
the collective operations based on information in the Process Topologies1. According
to Träff [53], current MPI implementations seems to make little use of the Process

1In fact, since the reduce and broadcast operations used different trees for reduction and broadcast, it is
hard to see how any re-mapping of process ranks would succeed in optimizing one of the operations without
penalizing the other.

63

CHAPTER 6. ADDITIONAL RELATED WORK

Topology mechanism: “current MPI implementations rarely go beyond the most trivial
implementations, and simply performs no process re-mapping”.

Vadhiyar et. al [54] searches (using modified hill-descent heuristics) for an optimal
mapping of collective operation algorithms from a set of predefined algorithms. In con-
trast, we do not presuppose any particular algorithms, but allow free experimentation
with different tree structures in both the PATHS system and the MPI extensions. They
also experiment with tuning buffer sizes in the MPI implementation. We have not done
this.

Infopipes

Infopipes [10, 34] is an abstraction for information flow with particular focus on dis-
tributed streaming applications.

The abstraction models an application as a pipeline and focuses on how informa-
tion flows down the pipeline, and on the computations and manipulations done on the
information on the way. It provides components such as pipes, filters, buffers, and
pumps, which are combined to build a pipeline. The main flow of information is in
one direction, though they provide a control feedback mechanism which can be used
to control components earlier in the pipeline.

An example is a filter which receives information from a sensor further down in the
pipeline. The filter may use this information to control what is filtered (for instance, to
control the amount of data sent down the pipeline).

The infopipe abstraction also supports splitting and merging of information flows
(through components called tees), as we do with path merging and fork wrappers.

Our focus, however, is on the flow of anoperationthrough the middleware (and,
hence, also the flow of the return value from the operation), and on optimization of
computation along the path.

Reflective middleware

One of the key design points of PATHS was to allow inspection of a running systems
configuration through the path specifications. The system also allows run-time config-
uration by creating new path specifications and building new paths.

One of the goals behind Reflective Middleware (an overview of some current efforts
is available in [33]) is to allow the middleware to adapt to changing conditions. This
ability is introduced by adding reflection, the ability to inspect and adapt the behaviour
of objects [30]. [17] defines reflective middleware as:

“reflective middleware is simply a middleware system that provides in-
spection and adaptation of its behaviour through an appropriate CCSR.”

The current PATHS implementations do not support inspection of dynamic prop-
erties of wrappers, or changing of parameters to wrappers after the wrappers are ini-
tialized. Changing the configuration of a system is instead done by creating a new
path.

As such, we support some of the structural aspects [2] of reflective middleware.
Dynamic reconfiguration of the paths has been considered, but is left as future work.

64

6.1. CONFIGURATION AND ADAPTING TO CLUSTER ARCHITECTURES

Active networking and Overlay Networks

Active networking [51] introduces user-controlled customized computing in the switches
of a network. [50] describes two approaches to realization of active networks: In the
programmable switcha mechanism is provided to download programs to the switches
which may manipulate ordinary network packets. In thecapsuleapproach, a program
is sent along with each message. The program is executed in each switch, and may
modify the message.

Switches that can execute code may be interesting hosts for running PATHS wrap-
pers if wrappers can be instantiated and bound in the switch. Packets must be tagged
to identify which path they belong to.

Our current approach of using user-level servers on intermediate nodes in the clus-
ters is probably closer in that respect to Overlay Networks [45, 21, 52], which make use
of user-level routers to provide functionality such as Resilient Overlay Networks (de-
tecting and recovering from routing outages and periods of degraded performance) [3],
reliable multicasting of time-critical data [47], and emulation of dedicated networks.
The PATHS system also makes use of intermediate servers, but current experiments
have mostly used this to set up paths between hosts which do not have direct network
connectivity (an example is the 4-way cluster which is hidden behind a firewall – nodes
in the cluster can only be reached from nodes outside of the firewall by setting up a path
which goes through a PastSet server running on the firewall).

Scout

The Scout operating system [38] uses an abstraction calledrouters, where each router
implements functionality such as the IP protocol, an MPEG decompression algorithm,
or a driver for a particular SCSI adapter. Routers may use lower-level routers to imple-
ment their functionality. As an example, the IP router may need an ETH and an ARP
router2 to send or receive IP traffic over an Ethernet device. Routers are connected in a
graph, which is initialized at boot time.

To optimize communication in the operating system, apathcan be created where
each stage of the path corresponds to a router. Attributes specified when the path is
created can be used to associate optimized service implementations for each of the
involved routers with the path. As an example, given the right set of attributes (which
specify invariants of the traffic over the path), a path through multiple routers may share
buffers, avoiding copying of data.

As in the PATHS system, application specific information may be used to optimize
the communication path. Computations cannot be introduced along the paths however
(other than selecting paths through the existing routing tree). Furthermore, the Scout
paths do not extend beyond the operating system, which means that the Scout system
can only be used for internal optimization in the node.

Packets arriving at a network device cannot be associated with a Scout path im-
mediately. To resolve this, the scout system adds a demux operation to the routers.
The demux operation maps packets into a path which can be used to process that data.
Packets may need to traverse through multiple routers before the classification of the

2The ARP router uses the ETH router again

65

CHAPTER 6. ADDITIONAL RELATED WORK

packet is refined enough to find a unique path. In contrast, operations traveling along a
PATHS path contain information to uniquely identify the next stage in the path.

6.2 Monitoring and profiling

The PATHS system has no built-in profiling or monitoring system. Instead, profiling
and monitoring is implemented using PATHS wrappers, allowing different types of
instrumentation to be selected or added by a user.

Tracing and monitoring tools for distributed systems can generally be classified by
the following categories:

• Extending profilers that instrument sequential programs to work with parallel
and distributed applications.

• Monitoring communication events such as sending and receiving messages by
instrumenting the communication API or middleware API.

• Passive monitoring of messages in the network or in the network interfaces .

An example of the first form of profiling tools is Quartz [4]. The PATHS system is
only able to add instrumentation in the PATHS paths, and thus cannot capture events
that occur in code that does not make use of a path.

The second class of tracing and monitoring includes tracing of MPI messages and
operation calls [55]. Instrumentation in MPI can be added using the MPI profiling
interface [39]. Monitoring for PVM (Parallel Virtual Machine) [48] is also provided
through the XPVM graphical console and monitor.

An operation traveling down (invoke) or up (return) a path can be viewed as a
sequence of communication events where an invocation or a return value is a message.
This view resembles the use of the termsending messagesto refer to the activity of
calling methods on objects [44].

The PATHS trace wrappers are inserted along the path to time stamp these com-
munication events. As such, the PATHS trace wrappers resemble the communication
event monitors.

PATHS has an advantage that communication event systems generally don’t have:
the path specification makes some of the communication paths explicitly specified. The
operation sent through the path can also be followed through intermediate hops along
the path.

An example of the third class monitoring listed above, monitoring messages in a
network or in the network interfaces, can be found in [37, 36]. Current implementations
of the PATHS system do not support this type of monitoring.

66

Chapter 7

Conclusions

In parallel and distributed computing, clusters are increasingly used for compute- and
I/O-intensive applications. As we add computing resources to a parallel application,
one of the fundamental questions is how well the application scales, both with regards
to speedup and to increasing the problem size.

This dissertation is based on 10 papers reporting on two main issues influencing
scaling. The first is the end-to-end communication latency. The other is the configura-
tion and mapping of the application onto a cluster topology and architecture.

The project has taken an experimental approach to studying scalability issues. Sys-
tems have been built, instrumented and experimented with, and data based on execu-
tions of the systems have been analyzed.

A detailed synthesis of the papers (chapter 2) and the main contributions (section
1.4) has been presented.

In a “black box” design, it is hard to understand the performance impacts of an
application’s configuration and mapping to a cluster, as information about what is hap-
pening inside the box is not available.

Small and simple changes to a configuration influence scaling and latency. It is hard
to find good configurations analytically or by computation. Instead, it is demonstrated
that starting with what is believed to be a good configuration, a number of experiments
can be run to find configurations with better performance.

Thus, the ability to tune the configuration, and use knowledge about the application
and the cluster topology, is found to be important.

One of the key tools for finding good configurations is a specification focusing on
what is done where in the clusters, and where data is stored.

67

CHAPTER 7. CONCLUSIONS

68

Chapter 8

Future work

The complexity of creating PATHS specifications for large applications is currently
managed by using path-generation functions based on rules, or by using coarse-grained
path maps that are expanded to full path specifications using various “path expansion”
functions. An area of future study is how to make generalized higher level abstractions
for defining path maps which can then be translated into path specifications.

The current approach to adapting to changing conditions, is to replace an existing
path with a new path. Dynamic reconfiguration of existing paths has not been exam-
ined, and may be useful in some application settings.

The PATHS system has been used with PastSet, and a PATHS-inspired system was
used to configure LAM-MPI. The LAM-MPI project is currently in progress, and fur-
ther experiments with configuration mechanism for MPI will be examined. We also
plan to look at using PATHS-inspired configuration systems for other communication
APIs and middleware.

69

CHAPTER 8. FUTURE WORK

70

References

[1] AMDAHL , G. Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities. InProceedings of the AFIPS Spring Joint Com-
puter Conference, Atlantic City, New Jersey, USA(1967), AFIPS Press, Reston,
Virginia, USA, pp. 483–485.

[2] ANDERSEN, A. OOPP, A Reflective Middleware Platform including Quality of
Service Management. Dr. sci. thesis, Department of Computer Science, Univer-
sity of Tromsø, Tromsø, Norway, Feb. 2002.

[3] ANDERSEN, D., BALAKRISHNAN , H., KAASHOEK, F., AND MORRIS, R. Re-
silient overlay networks. InProceedings of the eighteenth ACM symposium on
Operating systems principles(2001), ACM Press, pp. 131–145.

[4] ANDERSON, T. E., AND LAZOWSKA, E. D. Quartz: a tool for tuning parallel
program performance. InProceedings of the 1990 ACM SIGMETRICS conference
on Measurement and modeling of computer systems(1990), ACM Press, pp. 115–
125.

[5] ANSHUS, O. J., AND LARSEN, T. MacroScope: The Abstractions of a Dis-
tributed Operating System.Norsk Informatikk Konferanse(Oct. 1992).

[6] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., CULLER, D. E.,
HELLERSTEIN, J. M., AND PATTERSON, D. A. Searching for the Sorting
Record: Experiences in Tuning NOW-Sort. InProceedings of the SIGMETRICS
symposium on Parallel and distributed tools (SPDT 98), USA(1998), pp. 124–
133.

[7] BERNASCHI, M., AND RICHELLI , G. MPI Collective Communication Oper-
ations on large Shared memory Systems.Proceedings of the Ninth Euromicro
Workshop on Parallel and Distributed Processing (EUROPDP.01)(2001).

[8] BJØRNDALEN, J. M., ANSHUS, O., LARSEN, T., BONGO, L. A., AND V IN-
TER, B. Scalable Processing and Communication Performance in a Multi-Media
Related Context.Euromicro 2002, Dortmund, Germany(September 2002).

[9] BJØRNDALEN, J. M., ANSHUS, O., LARSEN, T., AND V INTER, B. PATHS -
Integrating the Principles of Method-Combination and Remote Procedure Calls

71

REFERENCES

for Run-Time Configuration and Tuning of High-Performance Distributed Appli-
cation. InNorsk Informatikk Konferanse(Nov. 2001), pp. 164–175.

[10] BLACK , A. P., HUANG, J., KOSTER, R., WALPOLE, J.,AND PU, C. Infopipes:
An abstraction for multimedia streaming.Multimedia Systems, special issue on
multimedia middleware(2002). Volume 8 Issue 5 pp 406-419, Springer Verlag.

[11] BLUMRICH , M., L I , K., ALPERT, R., DUBNICKI , C., FELTEN, E., AND SAND-
BERG, J. A virtual memory mapped network interface for the SHRIMP multi-
computer. InProceedings of the 21st Annual Symposium on Computer Architec-
ture (April 1994), pp. 142–153.

[12] BONGO, L. A. EventScope: Configurable On-line Monitoring of Parallel and
Distributed Applications. Master’s thesis, Department of Computer Science, Uni-
versity of Tromsø, Dec. 2002.

[13] BUONADONNA, P. Implementation and Analysis of the Virtual Interface Archi-
tecture.Supercomputing ’98, Orlando, FL(Nov. 1998).

[14] BURNS, G., DAOUD, R., ,AND VAIGL , J. LAM: An Open Cluster Environment
for MPI. www.lam-mpi.org, 1994.

[15] CARRIERO, N., AND GELERNTER, D. Linda in Context.Commun. ACM 32, 4
(Apr. 1989), pp. 444–458.

[16] CORIE project homepage. http://www.ccalmr.ogi.edu/CORIE/.

[17] COULSON, G. What is reflective middleware?, Dec. 2001. See com-
puter.org/dsonline/middleware/RMarticle1.htm.

[18] CULLER, D. E.,AND SINGH, J. P.Parallel Computer Architecture - A hardware
/ software approach. Morgan Kaufmann, 1999.

[19] DAMIANAKIS , S. N., CHEN, Y., AND FELTEN, E. Reducing Waiting Costs in
User-Level Communication. In11th International Parallel Processing Sympo-
sium (IPPS ’97)(April 1997).

[20] ELCIRC homepage. http://www.ccalmr.ogi.edu/CORIE/modeling/elcirc.html.

[21] ERIKSSON, H. MBONE: The Multicast Backbone.Communications of the ACM,
Vol.37, No. 8(Aug. 1994).

[22] Giganet cLAN. http://www.giganet.com/products/.

[23] GROPP, W., AND LUSK, E. Installation Guide to MPICH, a Portable Implemen-
tation of MPI, Version 1.2.4.

[24] GUSTAFSON, J. L. Reevaluating Amdahl’s law.Communications of the ACM
31, 5 (1988), pp. 532–533.

[25] HALVORSEN, P. Improving I/O Performance of Multimedia Servers. PhD thesis,
University of Oslo, 2001.

72

REFERENCES

[26] HUSBANDS, P., AND HOE, J. C. MPI-StarT: delivering network performance
to numerical applications.Proceedings of the 1998 ACM/IEEE conference on
Supercomputing(1998). San Jose, CA.

[27] JACUNSKI, M., SADAYAPPAN , P., AND PANDA , D. All-to-All Broadcast on
Switch-based Clusters of Workstations.13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Processing(12 - 16
April 1999). San Juan, Puerto Rico.

[28] JOUBERT, P., KING, R., NEVES, R., RUSSINOVICH, M., AND TRACEY, J.
High-Performance Memory-Based Web Servers: Kernel and User-Space Perfor-
mance.Proceedings of the 2001 USENIX Annual Technical Conference(2001),
pp. 175–188.

[29] KARYPIS, G., AND KUMAR , V. MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0, 1995.

[30] K ICZALES, G., DES RIVIERES, J.,AND BOBROW, D. G. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

[31] K IELMANN , T., HOFMAN, R. F. H., BAL , H. E., PLAAT , A., AND BHOED-
JANG, R. A. F. MagPIe: MPI’s collective communication operations for clus-
tered wide area systems.Proceedings of the seventh ACM SIGPLAN symposium
on Principles and practice of parallel programming(1999). Atlanta, Georgia,
United States.

[32] K IELMANN , T., HOFMAN, R. F. H., BAL , H. E., PLAAT , A., AND BHOED-
JANG, R. A. F. MPI’s Reduction Operations in Clustered Wide Area Systems.
Proceedings of the seventh ACM SIGPLAN symposium on Principles and Prac-
tice of parallel programming(1999). Atlanta, Georgia, United States.

[33] KON, F., COSTA, F., BLAIR , G., AND CAMPBELL , R. H. The Case for Reflec-
tive Middleware.Communications of the ACM, Vol. 45, No. 6(June 2002).

[34] KOSTER, R., BLACK , A. P., HUANG, J., WALPOLE, J., ,AND PU, C. Thread
Transparency in Information Flow Middleware. InMiddleware 2001 – IFIP/ACM
International Conference on Distributed Systems Platforms, Heidelberg, Ger-
many(November 2001), pp. 121–140.

[35] LAM-MPI homepage. http://www.lam-mpi.org/.

[36] L IAO , C., MARTONOSI, M., AND CLARK , D. W. Performance monitoring in
a Myrinet-connected SHRIMP cluster. InProceedings of the SIGMETRICS sym-
posium on Parallel and distributed tools(1998), ACM Press, pp. 21–29.

[37] MARTONOSI, M., CLARK , D. W., AND MESARINA, M. The SHRIMP perfor-
mance monitor: design and applications. InProceedings of the SIGMETRICS
symposium on Parallel and distributed tools(1996), ACM Press, pp. 61–69.

73

REFERENCES

[38] MOSBERGER, D., AND PETERSON, L. L. Making Paths Explicit in the Scout
Operating System. InOperating Systems Design and Implementation(1996),
pp. 153–167.

[39] MPI: A Message-Passing Interface Standard.Message Passing Interface Forum
(Mar. 1994).

[40] M-VIA Home Page, NERSC center at Lawrence Berkeley National Laboratory,
http://www.nersc.gov/research/ftg/via/.

[41] PAI , V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. IO-Lite: A Unified I/O
Buffering and Caching System.Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation(1999).

[42] REED, D. A., MADHYASTHA , T. M., AYDT, R. A., ELFORD, C. L., SCULLIN ,
W. H., AND SMIRNI , E. I/O, Performance Analysis, and Performance Data
Immersion. InMASCOTS(1996), pp. 5–15.

[43] REED, D. A., SHIELDS, K. A., SCULLIN , W. H., TAWERA, L. F., AND

ELFORD, C. L. Virtual Reality and Parallel Systems Performance Analysis.IEEE
Computer 28, 11 (1995), 57–67.

[44] SEBESTA, R. W. Concepts of Programming Languages. Addison Wesley, 2002.
ISBN 0-201-75295-6.

[45] SIMPSON, W. IP in IP Tunneling, October 1995. Internet RFC 1853, Day-
dreamer.

[46] SISTARE, S., VANDEVAART, R., AND LOH, E. Optimization of MPI collec-
tives on clusters of large-scale SMP’s.Proceedings of the 1999 conference on
Supercomputing(1999). Portland, Oregon, United States.

[47] SNOEREN, A. C., CONLEY, K., AND GIFFORD, D. K. Mesh-based content rout-
ing using XML. InProceedings of the eighteenth ACM symposium on Operating
systems principles(2001), ACM Press, pp. 160–173.

[48] SUNDERAM, V. PVM: A Framework for Parallel Distributed Computing. In
Concurrency: Practice and Experience, Vol. 2, No. 4(Dec. 1990).

[49] TANG, H., AND YANG, T. Optimizing threaded MPI execution on SMP clus-
ters.Proceedings of the 15th international conference on Supercomputing(2001).
Sorrento, Italy.

[50] TENNENHOUSE, D. L., SMITH , J. M., SINCOSKIE, W. D., WETHERALL, D. J.,
AND M INDEN, G. J. A Survey of Active Network Research.IEEE Communica-
tions Magazine 35, 1 (1997), pp. 80–86.

[51] TENNENHOUSE, D. L., AND WETHERALL, D. J. Towards an Active Network
Architecture.Computer Communication Review 26, 2 (1996).

74

REFERENCES

[52] TOUCH, J., AND HOTZ, S. The X-Bone. Proc. Third Global Internet Mini-
Conference at Globecom ’98 Sydney, Australia Nov. 8-12(1998), pp 75–83 (listed
as pp. 44–52 of the miniconference).

[53] TRAFF, J. L. Implementing the MPI Process Topology Mechanism.Supercom-
puting 2002.

[54] VADHIYAR , S. S., FAGG, G. E., AND DONGARRA, J. Automatically Tuned
Collective Communications.SuperComputing(2000), pp. 46. Dallas, Texas.

[55] VETTER, J. Performance analysis of distributed applications using automatic
classification of communication inefficiencies. InInternational Conference on
Supercomputing(2000), pp. 245–254.

[56] Virtual Interface (VI) Architecture - Implementation Guide. Draft revision 0.6.,
February 1998. Intel Corporation.

[57] V INTER, B. PastSet a Structured Distributed Shared Memory System. PhD thesis,
Tromsø University, 1999.

[58] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-Net: A User-
Level Network Interface for Parallel and Distributed Computing.The 15th ACM
Symposium on Operating Systems Principles (SOSP)(December 1995).

[59] XML-RPC Home Page:. http://www.xml-rpc.com/.

75

REFERENCES

76

Bibliography

[60] ALNAES, K., KRISTIANSEN, E., GUSTAVSON, D., AND JAMES, D. Scalable
Coherent Interface. InIEEE CompEuro 90(1990).

[61] AMDAHL , G. Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities. InProceedings of the AFIPS Spring Joint Com-
puter Conference, Atlantic City, New Jersey, USA(1967), AFIPS Press, Reston,
Virginia, USA, pp. 483–485.

[62] ANDERSEN, A. OOPP, A Reflective Middleware Platform including Quality of
Service Management. Dr. sci. thesis, Department of Computer Science, Univer-
sity of Tromsø, Tromsø, Norway, Feb. 2002.

[63] ANDERSEN, D., BALAKRISHNAN , H., KAASHOEK, F., AND MORRIS, R. Re-
silient overlay networks. InProceedings of the eighteenth ACM symposium on
Operating systems principles(2001), ACM Press, pp. 131–145.

[64] ANDERSON, T. E., AND LAZOWSKA, E. D. Quartz: a tool for tuning parallel
program performance. InProceedings of the 1990 ACM SIGMETRICS confer-
ence on Measurement and modeling of computer systems(1990), ACM Press,
pp. 115–125.

[65] ANSHUS, O. J., AND LARSEN, T. MacroScope: The Abstractions of a Dis-
tributed Operating System.Norsk Informatikk Konferanse(Oct. 1992).

[66] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., CULLER, D. E.,
HELLERSTEIN, J. M., AND PATTERSON, D. A. Searching for the Sorting
Record: Experiences in Tuning NOW-Sort. InProceedings of the SIGMETRICS
symposium on Parallel and distributed tools (SPDT 98), USA(1998), pp. 124–
133.

[67] BAL , H., KAASHOEK, M., AND TANENBAUM , A. Orca: A Language For
Parallel ProgrammingOf Distributed Systems. InIEEE Computer 25(8). Aug.
1992, pp. 10–19.

[68] BAL , H. E., AND TANENBAUM , A. S. Orca: A Language for Distributed
Object-Based Programming. InSIGPLAN Notices(May 1990), vol. 25, pp. 17–
24.

77

BIBLIOGRAPHY

[69] BERNASCHI, M., AND RICHELLI , G. MPI Collective Communication Oper-
ations on large Shared memory Systems.Proceedings of the Ninth Euromicro
Workshop on Parallel and Distributed Processing (EUROPDP.01)(2001).

[70] BHOEDJANG, R., RUHL , T., AND BAL , H. E. Efficient Multicast On Myrinet
Using Link-Level Flow Control. InInternational Conference on Parallel Pro-
cessing(Minneapolis, MN, Aug. 1998), pp. 381–390.

[71] BILAS , A., IFTODE, L., AND SINGH, J. P. Evaluation of Hardware Support
for Automatic Update in Shared Virtual Memory Clusters. In12th ACM Inter-
national Conference on Supercomputing(July 1998).

[72] BIRREL, A. D., AND NELSON, B. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems(Feb. 1984), pp. 39–59.

[73] BIRRELL, A. D., AND NELSON, B. J. Implementing Remote Procedure Calls.
In Proceedings of the ninth ACM Symposium on Operating Systems Principles
(1983).

[74] BJØRNDALEN, J. M., ANSHUS, O., LARSEN, T., BONGO, L. A., AND V IN-
TER, B. Scalable Processing and Communication Performance in a Multi-Media
Related Context.Euromicro 2002, Dortmund, Germany(September 2002).

[75] BJØRNDALEN, J. M., ANSHUS, O., VINTER, B., AND LARSEN, T. Config-
urable Collective Communication in LAM-MPI.Proceedings of Communicat-
ing Process Architectures 2002, Reading, UK(September 2002).

[76] BJØRNDALEN, J. M., ANSHUS, O., VINTER, B., AND LARSEN, T. The la-
tency of user-to-user, kernel-to-kernel and interrupt-to-interrupt level commu-
nication. NIK 2002, Norsk Informatikk Konferanse, Kongsberg, Norway(Nov.
2002).

[77] BJØRNDALEN, J. M., ANSHUS, O., VINTER, B., AND LARSEN, T. The Per-
formance of Configurable Collective Communication for LAM-MPI in Clusters
and Multi-Clusters.NIK 2002, Norsk Informatikk Konferanse, Kongsberg, Nor-
way(November 2002).

[78] BJØRNDALEN, J. M., ANSHUS, O., LARSEN, T., AND V INTER, B. PATHS -
Integrating the Principles of Method-Combination and Remote Procedure Calls
for Run-Time Configuration and Tuning of High-Performance Distributed Ap-
plication. InNorsk Informatikk Konferanse(Nov. 2001), pp. 164–175.

[79] BJØRNDALEN, J. M., ANSHUS, O., VINTER, B., AND LARSEN, T. Compar-
ing the Performance of the PastSet Distributed Shared Memory System using
TCP/IP and M-VIA. InProceedings of WSDSM’00, Santa Fe, New Mexico
(May 2000).

[80] BJØRNDALEN, J. M., ANSHUS, O., VINTER, B., AND LARSEN, T. The Im-
pact on Latency and Bandwidth for a Distributed Shared Memory System Using
a Gigabit Network Supporting the Virtual Interface Architecture. InNorsk In-
formatikk Konferanse(Nov. 2000).

78

BIBLIOGRAPHY

[81] BLACK , A. P., HUANG, J., KOSTER, R., WALPOLE, J.,AND PU, C. Infopipes:
An abstraction for multimedia streaming.Multimedia Systems, special issue on
multimedia middleware(2002). Volume 8 Issue 5 pp 406-419, Springer Verlag.

[82] BLUMRICH , M., L I , K., ALPERT, R., DUBNICKI , C., FELTEN, E., AND

SANDBERG, J. A virtual memory mapped network interface for the SHRIMP
multicomputer. InProceedings of the 21st Annual Symposium on Computer
Architecture(April 1994), pp. 142–153.

[83] BODEN, N., COHEN, D., FELDERMAN, R., KULAWIK , A., SEITZ, C.,
SEIZOVIC, J., AND SU, W. Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro 15, 1 (Feb. 1995), pp. 29–38.

[84] BONGO, L. A. EventScope: Configurable On-line Monitoring of Parallel and
Distributed Applications. Master’s thesis, Department of Computer Science,
University of Tromsø, Dec. 2002.

[85] BONGO, L. A. Steps: A Performance Monitoring and Visualization Tool for
Multicluster Parallel Programs, June 2002. Large term project, Department of
Computer Science, University of Tromsø.

[86] BRADSHAW, M. K., WANG, B., SEN, S., GAO, L., KUROSE, J., SHENOY, P.,
AND TOWSLEY, D. Periodic Broadcast and Patching Services - Implementa-
tion, Measurement, and Analysis in an Internet Streaming Video Testbed. ACM
MM’01, Ottawa, Canada.

[87] BUONADONNA, P. Implementation and Analysis of the Virtual Interface Archi-
tecture.Supercomputing ’98, Orlando, FL(Nov. 1998).

[88] BURNS, G., DAOUD, R., , AND VAIGL , J. LAM: An Open Cluster Environ-
ment for MPI. www.lam-mpi.org, 1994.

[89] BURNS, G., AND DAOUD, R. Robust Message Delivery with Guaranteed Re-
sources. InProceedings, MPIDC’95(May 1995).

[90] BUTLER, R., AND LUSK, E. User’s guide to the p4 parallel programming
system. Tech. Rep. ANL-92/17, Argonne National Laboratory, October 1992.

[91] CARRIERO, N., AND GELERNTER, D. Linda in Context.Commun. ACM 32, 4
(Apr. 1989), pp. 444–458.

[92] CHEN, J. B., ENDO, Y., CHAN , K., MAZIERES, D., DIAS, A., SELTZER, M.,
AND SMITH , M. The Measured Performance of Personal Computer Operating
Systems.ACM Transactions on Computer Systems(February 1996).

[93] CHENG, D., AND HOOD, R. A portable debugger for parallel and distributed
programs. InProceedings of the 1994 conference on Supercomputing(1994),
IEEE Computer Society Press, pp. 723–732.

79

BIBLIOGRAPHY

[94] CHTCHELKANOVA , A., GUNNELS, J., MORROW, G., OVERFELT, J., AND

VAN DE GEIJN, R. A. Parallel Implementation of BLAS: General Techniques
for Level 3 BLAS. Tech. rep., The University of Texas at Austin. Austin, Texas
78712, 1995.

[95] CORIE project homepage. http://www.ccalmr.ogi.edu/CORIE/.

[96] COULSON, G. What is reflective middleware?, Dec. 2001. See com-
puter.org/dsonline/middleware/RMarticle1.htm.

[97] CULLER, D. E., AND SINGH, J. P. Parallel Computer Architecture - A hard-
ware / software approach. Morgan Kaufmann, 1999.

[98] DAMIANAKIS , S. N., CHEN, Y., AND FELTEN, E. Reducing Waiting Costs in
User-Level Communication. In11th International Parallel Processing Sympo-
sium (IPPS ’97)(April 1997).

[99] DEWDNEY, A. Computer Recreations.Scientific American 250(1984), pp.
22–34.

[100] DICKENS, P., HEIDELBERGER, P., AND NICOL, D. Parallel Direct Execu-
tion Simulation of Message-Passing Parallel Programs.IEEE Transactions on
Parallel and Distributed System(1996).

[101] DRUSCHEL, P.,AND PETERSON, L. L. Operating Systems and Network Inter-
faces. InFoster, Ian and Kesselman, Carl (Eds.), The Grid: Blueprint for a New
Computing Infrastructure(1999), Morgan Kaufmann.

[102] ELCIRC homepage. http://www.ccalmr.ogi.edu/CORIE/modeling/elcirc.html.

[103] ERIKSSON, H. MBONE: The Multicast Backbone.Communications of the
ACM, Vol.37, No. 8(Aug. 1994).

[104] FOSTER, I., AND KESSELMAN, C. Globus: A Metacomputing Infrastructure
Toolkit. The International Journal of Supercomputer Applications and High
Performance Computing 11, 2 (Summer 1997), pp. 115–128.

[105] FOSTER, I., AND KESSELMAN, C. Computational Grids. InThe Grid:
Blueprint for a New Computing Infrastructure, I. Foster and C. Kesselman, Eds.
Morgan Kaufmann, San Francisco, CA, 1999, pp. 15–51. Chap. 2.

[106] Allegro Common Lisp 6.2 documentation. Franz Inc. http://www.franz.com/.

[107] FREEMAN, E., AND GELERNTER, D. Lifestreams: A Storage Model for Per-
sonal Data.ACM SIGMOD Bulletin 2, 2 (March 1996).

[108] FREEMAN, E., HUPFER, S., AND ARNOLD, K. JavaSpaces(TM) Principles,
Patterns and Practice. Addison-Wesley, 1999.

[109] FREEMAN, E. T. The Lifestreams Software Architecture. PhD thesis, Yale
University, 1997.

80

BIBLIOGRAPHY

[110] 1,000-Pentium Beowulf-Style Cluster Computer for Genetic Programming.
http://www.genetic-programming.com/machine1000.html(1999).

[111] Gigabit Ethernet: Accelerating the Standard for Speed, May 1999. Gigabit Eth-
ernet Alliance. Technical report. White paper.

[112] Giganet cLAN. http://www.giganet.com/products/.

[113] GOVIL , K., TEODOSIU, D., AND YONGQIANG HUANG AND , M. R. Cellular
Disco: resource management using virtual clusters on shared-memory multi-
processors. InACM Symposium on Operating Systems Principles (SOSP’99),
published in Operating Systems Review 34(5)(December 1999), pp. 154–169.

[114] GROPP, W., AND LUSK, E. Installation Guide to MPICH, a Portable Imple-
mentation of MPI, Version 1.2.4.

[115] GROPP, W., LUSK, E., DOSS, N., AND SKJELLUM , A. A high-performance,
portable implementation of the MPI message passing interface standard.Paral-
lel Computing, Volume 22, Issue 6(September 1996).

[116] GUSTAFSON, J. L. Reevaluating Amdahl’s law.Communications of the ACM
31, 5 (1988), pp. 532–533.

[117] HALVORSEN, P. Improving I/O Performance of Multimedia Servers. PhD thesis,
University of Oslo, 2001.

[118] HELME, A. Scheduling of Processes in a Distributed System using a Multi
Dimensional Algorithm (in Norwegian). Master’s thesis, Dept. of Computer
Science, University of Tromsø, Tromsø, Norway, 1992.

[119] HENTY, D. S. Performance of Hybrid Message-Passing and Shared-Memory
Parallelism for Discrete Element Modeling. InSupercomputing(2000).

[120] HUSBANDS, P., AND HOE, J. C. MPI-StarT: delivering network performance
to numerical applications.Proceedings of the 1998 ACM/IEEE conference on
Supercomputing(1998). San Jose, CA.

[121] HWANG, K., AND XU, Z. Scalable Parallel Computing: Technology, Architec-
ture, programming. WCB/McGraw-Hill Co, 1998.

[122] MultiProcessor Specification version 1.4. Tech. rep., Intel Corp, 1997.

[123] JACUNSKI, M., SADAYAPPAN , P., AND PANDA , D. All-to-All Broadcast on
Switch-based Clusters of Workstations.13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Processing(12 -
16 April 1999). San Juan, Puerto Rico.

[124] JOHNSON, K. L., KAASHOEK, M. F., AND WALLACH , D. A. CRL: High-
Performance All-Software Distributed Shared Memory. InProceedings of the
15th Symposium on Operating Systems Principles (15th SOSP’95), Operating

81

BIBLIOGRAPHY

Systems Review(Copper Mountain, CO, Dec. 1995), ACM SIGOPS, pp. 213–
228. Published as Proceedings of the 15th Symposium on Operating Systems
Principles (15th SOSP’95), Operating Systems Review, volume 29, number 5.

[125] JOUBERT, P., KING, R., NEVES, R., RUSSINOVICH, M., AND TRACEY, J.
High-Performance Memory-Based Web Servers: Kernel and User-Space Perfor-
mance.Proceedings of the 2001 USENIX Annual Technical Conference(2001),
pp. 175–188.

[126] JUURLINK , B. H., AND WIJSHOFF, H. A. A Quantitative Comparison of Par-
allel Computation Models.ACM Transactions on Computer Systems Vol. 16,
No. 3 (August 1998), pp. 271–318.

[127] KARYPIS, G., AND KUMAR , V. MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0, 1995.

[128] KEENE, S. E. Object-Oriented Programming in Common Lisp: A Program-
mer’s Guide to CLOS. Addison Wesley, 1988. ISBN 0-201-17589-4.

[129] KELEHER, P., COX, A., DWARKADAS , S., AND ZWAENEPOEL, W. Tread-
Marks: Distributed shared memory on standard workstations and operating
systems. InProceedings of the Winter USENIX Conference(January 1994),
pp. 115–132.

[130] K ICZALES, G., DES RIVIERES, J., AND BOBROW, D. G. The Art of the
Metaobject Protocol. MIT Press, 1991.

[131] K IELMANN , T., HOFMAN, R. F. H., BAL , H. E., PLAAT , A., AND BHOED-
JANG, R. A. F. MagPIe: MPI’s collective communication operations for clus-
tered wide area systems.Proceedings of the seventh ACM SIGPLAN symposium
on Principles and practice of parallel programming(1999). Atlanta, Georgia,
United States.

[132] K IELMANN , T., HOFMAN, R. F. H., BAL , H. E., PLAAT , A., AND BHOED-
JANG, R. A. F. MPI’s Reduction Operations in Clustered Wide Area Systems.
Proceedings of the seventh ACM SIGPLAN symposium on Principles and Prac-
tice of parallel programming(1999). Atlanta, Georgia, United States.

[133] KOGGE, P. M. EXECUBE - A New Architecture for Scalable MPPs. InIn
1994 International Conference on Parallel Processing(Washington - Brussels -
Tokyo, Aug. 1994), IEEE, pp. I77–I84.

[134] KON, F., COSTA, F., BLAIR , G., AND CAMPBELL , R. H. The Case for Re-
flective Middleware.Communications of the ACM, Vol. 45, No. 6(June 2002).

[135] KOSTER, R., BLACK , A. P., HUANG, J., WALPOLE, J., , AND PU, C.
Thread Transparency in Information Flow Middleware. InMiddleware 2001
– IFIP/ACM International Conference on Distributed Systems Platforms, Hei-
delberg, Germany(November 2001), pp. 121–140.

82

BIBLIOGRAPHY

[136] LAM-MPI homepage. http://www.lam-mpi.org/.

[137] L I , K. Shared Virtual Memory on Loosely Coupled Multiprocessors. InProc.
IEEE CS 1986, Int. Conf. on Computer Languages(Miami, FL, Oct. 1986),
pp. 98–106. YALEU/DCS/RR-492 September 1986, Yale University, New
Haven, CT.

[138] L IAO , C., MARTONOSI, M., AND CLARK , D. W. Performance monitoring
in a Myrinet-connected SHRIMP cluster. InProceedings of the SIGMETRICS
symposium on Parallel and distributed tools(1998), ACM Press, pp. 21–29.

[139] LUMETTA , S. S., MAINWARING , A. M., AND CULLER, D. E. Multi-Protocol
Active Messages on a Cluster of SMP’s. InProceedings of the 1997 ACM/IEEE
SC97 Conference(San Jose California, USA., Nov. 1997), ACM Press and
IEEE, pp. 15–21.

[140] LUO, Y. MPI Performance Study on the SGI Origin 2000.Pacific Rim Confer-
ence on Communications, Computers and Signal Processing(1997), pp. 269–
272.

[141] MALY, K. J., GUPTA, A. K., AND MYNAM , S. BTU: A Host Communication
Benchmark. IEEE Computer, pp. 66-74, (May 1998).

[142] MARTONOSI, M., CLARK , D. W., AND MESARINA, M. The SHRIMP perfor-
mance monitor: design and applications. InProceedings of the SIGMETRICS
symposium on Parallel and distributed tools(1996), ACM Press, pp. 61–69.

[143] MEIER, M. S., MILLER , K. L., PAZEL , D. P., RAO, J. R., AND RUSSELL,
J. R. Experiences with building distributed debuggers. InProceedings of the
SIGMETRICS symposium on Parallel and distributed tools(1996), ACM Press,
pp. 70–79.

[144] M ILLER , B. P., CALLAGHAN , M. D., CARGILLE , J. M., HOLLINGSWORTH,
J. K., IRVIN , R. B., KARAVANIC , K. L., KUNCHITHAPADAM , K., AND

NEWHALL , T. The Paradyn Parallel Performance Measurement Tool.IEEE
Computer 28, 11 (1995), pp. 37–46.

[145] MOSBERGER, D., AND PETERSON, L. L. Making Paths Explicit in the Scout
Operating System. InOperating Systems Design and Implementation(1996),
pp. 153–167.

[146] MPI: A Message-Passing Interface Standard.Message Passing Interface Forum
(Mar. 1994).

[147] M-VIA Home Page, NERSC center at Lawrence Berkeley National Laboratory,
http://www.nersc.gov/research/ftg/via/.

[148] NEVIN , N. J. The Performance of LAM 6.0 and MPICH 1.0.12 on a Worksta-
tion Cluster. Tech. Rep. OSC-TR-1996-4, Ohio Supercomputing Center, Colum-
bus, Ohio, 1996.

83

BIBLIOGRAPHY

[149] NIEPLOCHA, J., HARRISON, R., AND L ITTLEFIELD , R. Global Arrays: A
Portable Shared-Memory Programming Model for Distributed Memory Com-
puters. In Proceedings of the conference on Supercomputing ’94(1994),
pp. 340–349.

[150] NORVIG, P. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, 1992. ISBN 1-55860-191-0.

[151] O’HALLARON , D. Spark98: Sparse matrix kernels for shared memory and
message passing systems, October 1997. Technical Report CMU-CS-97-178,
School of Computer Science, Carnegie Mellon University.

[152] PAI , V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. IO-Lite: A Unified I/O
Buffering and Caching System.Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation(1999).

[153] PANDA , D. Issues in Designing Efficient and Practical Algorithms for Col-
lective Communication in Wormhole-Routed Systems.Proc. ICPP Workshop
Challenges for Parallel processing(1995), pp. 8–15.

[154] PATTERSON, D., ANDERSON, T., CARDWELL , N., FROMM, R., KEETON, K.,
KOZYRAKIS, C., THOMAS, R., AND YELICK , K. Intelligent RAM (IRAM):
Chips that remember and compute. In1997 IEEE International Solids-State
Circuits Conference. Digest of Technical Papers(Washington - Brussels - Tokyo,
Feb. 1997), IEEE, pp. 224–225.

[155] PATTERSON, D., ASANOVIC, K., BROWN, A., FROMM, R., GOLBUS, J.,
GRIBSTAD, B., KEETON, K., KOZYRAKIS, C., MARTIN , D., PERISSAKIS,
S., THOMAS, R., TREUHAFT, N., AND YELICK , K. Intelligent RAM (IRAM):
the Industrial Setting, Applications, and Architectures. InInternational Con-
ference on Computer Design: VLSI in Computers and Processors (ICCD ’97)
(Washington - Brussels - Tokyo, Oct. 1997), IEEE, pp. 2–9.

[156] PATTERSON, D., CARDWELL , N., FROMM, R., KEETON, K., KOZYRAKIS,
C., THOMAS, R., AND YELICK , K. A case for intelligent RAM.IEEE Micro
2, 2 (March-April 1997), 34–44.

[157] RAMACHANDRAN , U., NIKHIL , R. S., HAREL, N., REHG, J. M., AND

KNOBE, K. Space-time memory: a parallel programming abstraction for inter-
active multimedia applications. InProceedings of the seventh ACM SIGPLAN
symposium on Principles and practice of parallel programming(1999), ACM
Press, pp. 183–192.

[158] RANGARAJAN, M., AND IFTODE, L. Software Distributed Shared Memory
over Virtual Interface Architecture: Implementation and Performance. Tech.
Rep. DCS-TR-413, Rutgers University, Department of Computer Science, April
2000. To appear in Proceedings of The Third Extreme Linux Workshop, October
10-12, Atlanta.

84

BIBLIOGRAPHY

[159] REED, D. A., MADHYASTHA , T. M., AYDT, R. A., ELFORD, C. L.,
SCULLIN , W. H., AND SMIRNI , E. I/O, Performance Analysis, and Perfor-
mance Data Immersion. InMASCOTS(1996), pp. 5–15.

[160] REED, D. A., SHIELDS, K. A., SCULLIN , W. H., TAWERA, L. F., AND

ELFORD, C. L. Virtual Reality and Parallel Systems Performance Analysis.
IEEE Computer 28, 11 (1995), 57–67.

[161] REINHARDT, S., HILL , M. D., LARUS, J., LEBECK, A., J.C, LEWIS, AND

WOOD, D. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Com-
puters.Proceedings of the 1993 ACM SIGMETRICS Conference(May 1993).

[162] RITCHIE, D. M. A Stream Input-Output System. Tech. Rep. 8, AT’&’T Bell
Laboratories Techical Journal, October 1984.

[163] ROSENBLUM, M., BUGNION, E., DEVINE, S., AND HERROD, S. Using the
SimOs Machine Simulator to Study Complex Computer Systems.ACM Trans.
On Modeling and Computer Simulation Vol. 7, No. 1 (January 1997), pp. 78–
103.

[164] SAMANTA , R., BILAS , A., IFTODE, L., AND SINGH, J. P. Home-based SVM
protocols for SMP clusters: Design and Performance. InProc. of the 4th IEEE
Symp. on High-Performance Computer Architecture (HPCA-4)(Feb. 1998).

[165] SCALES, D. J., AND GHARACHORLOO, K. Design and Performance of the
Shasta Distributed Shared Memory Protocol. InProceedings of the 11th Inter-
national Conference on Supercomputing (ICS-97)(New York, July 7–11 1997),
ACM Press, pp. 245–252.

[166] SEBESTA, R. W. Concepts of Programming Languages. Addison Wesley, 2002.
ISBN 0-201-75295-6.

[167] SIMPSON, W. IP in IP Tunneling, October 1995. Internet RFC 1853, Day-
dreamer.

[168] SINGH, J. P., WEBER, W.-D., AND GUPTA, A. SPLASH: Stanford Paral-
lel Applications for Shared-Memory.Computer Architecture News 20, 1 (Mar.
1992), 2–12. Technical Report CSL-TR-91-469 1991 FTP mojave.stanford.edu,
Computer Systems Laboratory, Stanford University.

[169] SISTARE, S., VANDEVAART, R., AND LOH, E. Optimization of MPI collec-
tives on clusters of large-scale SMP’s.Proceedings of the 1999 conference on
Supercomputing(1999). Portland, Oregon, United States.

[170] SNOEREN, A. C., CONLEY, K., AND GIFFORD, D. K. Mesh-based content
routing using XML. InProceedings of the eighteenth ACM symposium on Op-
erating systems principles(2001), ACM Press, pp. 160–173.

[171] SPEIGHT, E., ABDEL-SHAFI , H., AND BENNETT, K. Realizing the Perfor-
mance Potential of the Virtual Interface Architecture. InInternational Confer-
ence on Supercomputing(June 1999).

85

BIBLIOGRAPHY

[172] SQUYRES, J. M., LUMSDAINE, A., GEORGE, W. L., HAGEDORN, J. G.,AND

DEVANEY, J. E. The Interoperable Message Passing Interface (IMPI) Exten-
sions to LAM/MPI. InProceedings, MPIDC’2000(March 2000).

[173] STABELL -KULØ, T. A Partial Implementation of the MacroScope Distributed
Operating System (in Norwegian). Master’s thesis, Dept. of Computer Science,
University of Tromsø, Tromsø, Norway, 1992.

[174] STONE, H. S. A Logic-in-Memory Computer.IEEE Transactions on Comput-
ers 19, 1 (January 1970), pp. 73–78.

[175] SUNDERAM, V. PVM: A Framework for Parallel Distributed Computing. In
Concurrency: Practice and Experience, Vol. 2, No. 4(Dec. 1990).

[176] JavaSpaces Specification, revision 1.0, January 1999. Sun Microsystems.

[177] TAKAHASHI , T., O’CARROLL, F., TEZUKA , H., HORI, A., SUMIMOTO , S.,
HARADA , H., ISHIKAWA , Y., AND BECKMAN , P. H. Implementation and Eval-
uation of MPI on an SMP Cluster. InIPPS/SPDP Workshops(1999), pp. 1178–
1192.

[178] TANG, H., AND YANG, T. Optimizing threaded MPI execution on SMP
clusters.Proceedings of the 15th international conference on Supercomputing
(2001). Sorrento, Italy.

[179] TENNENHOUSE, D. L., SMITH , J. M., SINCOSKIE, W. D., WETHERALL,
D. J., AND M INDEN, G. J. A Survey of Active Network Research.IEEE
Communications Magazine 35, 1 (1997), pp. 80–86.

[180] TENNENHOUSE, D. L., AND WETHERALL, D. J. Towards an Active Network
Architecture.Computer Communication Review 26, 2 (1996).

[181] TOUCH, J., AND HOTZ, S. The X-Bone.Proc. Third Global Internet Mini-
Conference at Globecom ’98 Sydney, Australia Nov. 8-12(1998), pp 75–83
(listed as pp. 44–52 of the miniconference).

[182] TRAFF, J. L. Implementing the MPI Process Topology Mechanism.Supercom-
puting 2002.

[183] TSpaces homepage. http://www.almaden.ibm.com/cs/TSpaces/.

[184] VADHIYAR , S. S., FAGG, G. E., AND DONGARRA, J. Automatically Tuned
Collective Communications.SuperComputing(2000), pp. 46. Dallas, Texas.

[185] VAN RENESSE, R., BIRMAN , K. P., FRIEDMAN , R., HAYDEN , M., AND

KARR, D. A. A Framework for Protocol Composition in Horus. InProceed-
ings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing(Ottawa, Ontario, Canada, 2–23 1995), pp. 80–89.

86

BIBLIOGRAPHY

[186] VENUGOPAL, S., AND NAIK , V. K. Effects of Partitioning and Scheduling
Sparse Matrix Factorization on Communication and Load Balance.Proceedings
of the 1991 conference on Supercomputing(1991), pp. 866–875.

[187] VETTER, J. Performance analysis of distributed applications using automatic
classification of communication inefficiencies. InInternational Conference on
Supercomputing(2000), pp. 245–254.

[188] Virtual Interface (VI) Architecture - Implementation Guide. Draft revision 0.6.,
February 1998. Intel Corporation.

[189] V INTER, B. PastSet a Structured Distributed Shared Memory System. PhD
thesis, Tromsø University, 1999.

[190] V INTER, B., ANSHUS, O., AND LARSEN, T. Data Distribution Models for a
Structured Distributed Shared Memory System. InProc. Of the international
conference on Parallel and Distributed Programming Techniques and Applica-
tions, PDPTA 99(Las Vegas, June 1999).

[191] V INTER, B., ANSHUS, O. J.,AND LARSEN, T. PastSet - A Distributed Struc-
tured Shared Memory System. InProc. of High Performance Computers and
Networking(Amsterdam, April 1999).

[192] V INTER, B., ANSHUS, O. J., LARSEN, T., AND BJØRNDALEN, J. M. Extend-
ing the Applicability of Software DSM by Adding User Redefinable Memory
Semantics.Parallel Computing (ParCo) 2001, Naples, Italy(Sept. 2001).

[193] V INTER, B., ANSHUS, O. J., LARSEN, T., AND BJØRNDALEN, J. M. Us-
ing Two-, Four- and Eight-Way Multiprocessors as Cluster Components.CPA,
Communicating Process Architectures(September 2001).

[194] V INTER, B., LARSEN, T., AND ANSHUS, O. J. Improving Cluster Perfor-
mance using a Causally Ordered Structured Distributed Shared Memory System.
Norsk Informatik Konferense(1999).

[195] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-Net: A User-
Level Network Interface for Parallel and Distributed Computing.The 15th ACM
Symposium on Operating Systems Principles (SOSP)(December 1995).

[196] VON EICKEN, T., CULLER, D. E., GOLDSTEIN, S. C.,AND SCHAUSER, K. E.
Active messages: A mechanism for integrated communication and computa-
tion. In Proceedings of 19th International Symposium on Computer Architec-
ture, pages 256-266, May 1992.

[197] WALKER , D. W. The design of a standard message passing interface for dis-
tributed memory concurrent computers.Parallel Computing 20, 4 (Mar. 1994),
pp. 657–673.

[198] WILSON, L. F., AND NICOL, D. M. Experiments in Automated Load Balanc-
ing. Proceedings of the 10th Workshop on Parallel and Distributed Simulation
(PADS ’96)(1996).

87

BIBLIOGRAPHY

[199] WYCKOFF, P., MCLAUGHRY, S. W., LEHMAN , T. J., AND FORD, D. A. T
Spaces.IBM Systems Journal, 37(3):454474(1998).

[200] XML-RPC Home Page:. http://www.xml-rpc.com/.

88

Appendix A

Papers

2000

Paper 1 Comparing the Performance of the PastSet Distributed Shared Memory
System using TCP/IP and M-VIA
John Markus Bjørndalen, Otto Anshus, Brian Vinter, Tore Larsen
WSDSM’00, The Second International Workshop on Software Distributed
Shared Memory, Santa Fe, New Mexico, 2000-05-07

Paper 2 The Impact on Latency and Bandwidth for a Distributed Shared Memory
System Using a Gigabit Network Supporting the Virtual Interface Architecture
John Markus Bjørndalen, Otto Anshus, Brian Vinter, Tore Larsen
NIK 2000, Norsk Informatikk Konferanse, Bodø, Norway, Autumn 2000

2001

Paper 3 Using Two-, Four- and Eight- Way Multiprocessors as Cluster Components
Brian Vinter, Otto Anshus, Tore Larsen, John Markus Bjørndalen
CPA 2001, Communicating Process Architectures 2001, September 16-19,
Bristol, UK

Paper 4 Extending the Applicability of software DSM by adding user redefinable
memory semantics
Brian Vinter, Otto Anshus, Tore Larsen, John Markus Bjørndalen
ParCo 2001, Parallel Computing 2001, 4 - 7 September, Via Cintia, I-80126
NAPLES, Italy

89

APPENDIX A. PAPERS

Paper 5 PATHS - Integrating the Principles of Method-Combination and Remote
Procedure Calls for Run-Time Configuration and Tuning of High-Performance
Distributed Applications
John Markus Bjørndalen, Otto Anshus, Tore Larsen, Brian Vinter
NIK 2001, Norsk Informatikk Konferanse, Tromsø, Norway, 2001

2002

Paper 6 Scalable Processing and Communication Performance in a Multi-Media
Related Context
John Markus Bjørndalen, Otto Anshus, Tore Larsen, Lars Ailo Bongo, Brian
Vinter
Euromicro 2002, Dortmund, Germany, September 2002

Paper 7 Configurable Collective Communication in LAM-MPI
John Markus Bjørndalen, Otto Anshus, Brian Vinter, Tore Larsen
CPA 2002, Communicating Process Architectures 2002, September 2002,
Reading, UK

Paper 8 The Performance of Configurable Collective Communication for LAM-MPI
in Clusters and Multi-Clusters
John Markus Bjørndalen, Otto Anshus, Brian Vinter, Tore Larsen
NIK 2002, Norsk Informatikk Konferanse, Kongsberg, Norway, November
2002

Paper 9 The latency of user-to-user, kernel-to-kernel and interrupt-to-interrupt level
communication
John Markus Bjørndalen, Otto Anshus, Brian Vinter, Tore Larsen
NIK 2002, Norsk Informatikk Konferanse, Kongsberg, Norway, November 2002

Submitted

Paper 10 Cluster Monitoring with Steps: Making the Application Behaviour Visible
Lars Ailo Bongo, John Markus Bjørndalen, Otto J. Anshus

90

A.1 Comparing the Performance of the PastSet Distributed
Shared Memory System using TCP/IP and M-VIA

Paper 1 91 WSDSM 2000

Comparing the Performance of the PastSet Distributed Shared Memory System
using TCP/IP and M-VIA

John Markus Bjørndalen, Otto J. Anshus, Brian Vinter1, Tore Larsen
Department of Computer Science

University of Tromsø
1Department of Mathematics and Computer Science

University of Southern Denmark
johnm@cs.uit.no, otto@cs.uit.no, vinter@imada.sdu.dk, tore@cs.uit.no

Abstract

Using TCP/IP or M-VIA, the performance of the
structured distributed shared memory system PastSet is
measured and compared to a reference single-node im-
plementation (excluding all intra-node communication).
The latencies of PastSet-operations are measured using
several micro-benchmarks. For the experiment setup
used, M-VIA latencies are shown to be between 1.4 and
2.2 times lower than the comparable latencies using
TCP/IP. For a data size of 31KB, this corresponds to a
difference of more than one millisecond. Depending on
the thread-allocation policy applied in the PastSet server,
PastSet latencies using TCP/IP may exhibit increased
variance compared to the corresponding latencies using
M-VIA. The increased latency and variance may mask the
performance characteristics of the PastSet system.

1. Introduction

The application-to-application performance of a Dis-
tributed Shared Memory (DSM) system depends on the
performance and interaction of the DSM and the under-
lying network subsystems. The key challenge [16] is to
preserve the performance characteristics of the physical
network (bandwidth, latency, QoS) while making effec-
tive use of host resources. Network bandwidths have been
increasing and latencies through these networks have
been decreasing. Unfortunately, applications have not
been able to take full advantage of these performance
improvements due to the many layers of user level and
kernel level software required to use the network. A de-
tailed breakdown of hardware and software costs of re-
mote memory operations is discussed in [5]. The Virtual
Interface Architecture was developed to significantly re-
duce the software overhead between a high performance
CPU/memory subsystem and a high performance net-
work.

In this paper, we study the application-to-application
performance of the PastSet DSM system using either

M-VIA, a software VIA implementation for Linux [6], or
TCP/IP. The report describes the functionality of PastSet,
the organization of the implementation; and the interac-
tions between PastSet user-level components, M-VIA,
and a PastSet-modified Linux kernel. An experiment con-
figuration with micro-benchmarks and metrics is de-
scribed before presenting and analyzing benchmark re-
sults.

2. PastSet

2.1. Model

PastSet was first introduced as a structured shared
memory in [1]. Early partial implementations of PastSet
include [2, 3]. [4] develops and demonstrates an extended
PastSet programming model, shows how parallel applica-
tions are written using PastSet, and documents the per-
formance of these applications on the authors implemen-
tation of PastSet. The PastSet paradigm resembles that of
Linda [18], but with added structuring of the shared
memory and different functionality of the operations pro-
vided. Comparable, efforts within industry include IBM
TSpaces [15] and JavaSpaces [14].

All PastSet operations are synchronous, returning only
when the operation is completed, or an error has been
detected. Processes using PastSet dynamically generate
tuples based on tuple templates that may also be gener-
ated dynamically. A tuple template specifies a list of data
types. A tuple is a list of values matching the data types
specified in the template upon which the tuple is based.

The ‘elements’ of PastSet are lists of tuples; one list
per unique template used. The enter operator takes a
tuple template as parameter and establishes a binding
from that template to the associated element in PastSet. If
the template is unique (i.e. no identical template has been
specified for previously executed enter-operations), a
new element is created. If the template is not unique, the
binding is established with the element already associated
with the identical templates. As with Linda, PastSet sup-

APPENDIX A. PAPERS

Paper 1 92 WSDSM 2000

ports writing (called move) tuples into PastSet and read-
ing (called observe) tuples that reside in PastSet. A
tuple that is moved into PastSet is added to the associated
element in PastSet and remains in that element as a
unique tuple. For each element, tuples are added and ob-
served in FIFO or program-specified order as described in
[4]. Two identifiers First and Last are associated with
each element in PastSet. First refers to the elements
oldest unobserved tuple. Last refers to the tuple most
recently added to the element. A parameter, Delta-
Value, associated with each element in PastSet defines
the maximum number of tuples allowed between First
and Last for that element. A process may change Del-
taValue at any time. Move and observe update
First and Last, and obey the restrictions imposed by
DeltaValue for each element in PastSet. PastSet pre-
serves the sequential order among move and observe
operations on tuples based on identical templates. There
is no ordering among operations on tuples based on dif-
ferent templates.

A combined move-observe operation, mob, is pro-
vided to support efficiently the commonly used sequence
of a move immediately followed by an observe. Mob
takes two tuples as parameters and operates on two ele-
ments if the tuples are based on different templates; if not,
mob operates on one element.

Contrary to similar systems, PastSet observe does
not remove tuples from PastSet, observed tuples are
tagged ‘observed’ but remain in PastSet and may be ob-
served again later. A mechanism is provided to coarsely
truncate PastSet on a per element basis, permanently re-
moving all tuples that are older than a given tuple. There
is no mechanism to remove individual tuples from Past-
Set.

2.2. Organization

One or more nodes may host PastSet. Each hosting
node runs a PastSet kernel, a server, and an application
library (Fig. 1). Currently, each element in PastSet is
stored on one host only. There is no distribution, replica-
tion, or migration of individual elements. Nodes that use
PastSet without hosting it will run the application library
and TCP/IP or M-VIA only.

The organization supports PastSet operations on ele-
ments that are located on the same node as the initiating
process (local operations), as well as operations on ele-
ments that are located on other nodes (remote operations).
Remote operations are wrapped and communicated to the
PastSet server on a remote node. Mob operations work on
one or two elements, each of which may be local or re-
mote.

PastSet

PastSet Server Application

libPastSet

User-level

Kernel-level
TCP/IP VIA TCP/IP VIA

Fig. 1. Layout of a node that supports PastSet

THE PASTSET APPLICATION LIBRARY handles ac-
cess to PastSet, including multiplexing between local and
remote execution paths.

All PastSet operations check to determine whether the
element that is to be operated on is hosted locally or re-
motely. If the element is hosted locally, the operation is
executed using the local PastSet Kernel. If the element is
hosted remotely, the operation is redirected to the PastSet
Server on the appropriate host. The server, upon comple-
tion, returns the answer through the application library to
the initiating process.

New tuples with additional space for communication
headers are also allocated via the application library.

THE PASTSET SERVER executes remotely issued
PastSet operations on local elements using the local Past-
Set Kernel. Since operations are blocking, the server
must be able to service several operations concurrently.

THE PASTSET KERNEL is a modified Linux kernel
that stores PastSet elements and services operations is-
sued by the local PastSet Server or the application library.

3. Implementing the PastSet Server and Ap-
plication Library

Two approaches to handling communication were
used in the PastSet server. The Single Thread approach
spawns a new thread for each new client connection. The
thread is given a pointer to the new connection and han-
dles that connection exclusively.
The Thread Pool approach uses a pool of threads, which
multiplexes handling of multiple connections.

The synchronous nature of PastSet necessitates a reply
with the result of an operation before the client can issue
a new operation. Consequently, there are two messages
for each remote operation.

The current implementation of the PastSet Application
Library can not handle multithreaded clients.

Paper 1 93 WSDSM 2000

3.1. TCP/IP implementation

The client library uses ordinary TCP/IP connections to
remote servers. If an element is located on a remote node,
the operation and its parameters are sent over the TCP/IP
socket to the remote PastSet server. The client library
then blocks waiting for the reply from the server.

When using the Single Thread approach, the PastSet
server creates a new thread when a new socket arrives.
The newly created thread is given the file descriptor of
the socket and immediately tries to read data from the
socket. It blocks if there is no data available.

In the Thread Pool approach, when a connection is ac-
cepted, the file descriptor is added to the list of active
connections. A set of threads use the select() system call
to multiplex themselves between the active sockets. To
avoid race conditions, the select() call and the subsequent
read of a socket with data is protected with a mutex.

We disable the Nagle algorithm on all sockets to en-
sure that data is sent immediately.

3.2. M-VIA implementation

The PastSet server and the application library were
implemented using the M-VIA 1.0 [6] implementation of
the VIA API. We have used the message passing model
of VIA since the port from the TCP/IP implementation
was straightforward.

The NICs used do not support the doorbell mecha-
nism, and M-VIA has to emulate this in software. This
results in traps to the Linux kernel.

The Thread Pool model was implemented using VIA
Completion Queues. Because M-VIA is not thread safe
per VI we protected the calls to the Completion Queue
and the per VI operations using mutexes.

To reduce the CPU use of the PastSet server we used
blocking calls to wait for completed descriptors. M-VIA
implements these blocking calls by first spinning a few
times with the respective non-blocking functions to avoid
going to the kernel if the descriptor is already completed.

Tuples used in the application are allocated in memory
registered with the VIA NICs to reduce copying on send
and receive.

4. Methodology

This section documents the hardware and software
details of the experiments, how the timing measurements
were done, the micro-benchmarks, and the metrics used.

4.1. Hardware and Software

All experiments were done using one, two, or three HP
LX-Pro Net-servers, each having four 166MHz Pentium

Pro CPUs and 128MB main-memory, and dual peer
33MHz, 32 bit PCI buses. The level 2 cache size is 1MB
per processor. The computers were interconnected using
either Intel 82255 or Trendnet TE100-PCIA (with Tulip
chip set) NIC-cards connected to a hub. Both NICs, and
one 100VG NIC connected to the outside network, were
connected to PCI bus no. 0.

Linux v. 2.2.14 with PastSet functionality added to the
kernel was installed on each node participating in the ex-
periments. M-VIA version 1.0 with a minor patch to the
connection management was used. The benchmarks and
the PastSet Application Library were compiled with gcc
2.95.2 using optimization flags “-O6 -m486 -mjumps=2 -
malignloops=2 –malignfunctions=2.” M-VIA, The Past-
Set Server, the PastSet Kernel, and the Linux operating
system were compiled with egcs 1.1.2 using default flags.

For some experiments we could not get M-VIA run-
ning on the SMP-configurations. To circumvent this
problem, we had to resort to compiling the Linux kernel
to run as a single processor system rather than using all
four processors in a node.

4.2. Time Measurements

The Intel Pentium Pro RDTSC (read time-stamp
counter) instruction and the Linux gettimeofday system
call were used to determine PastSet operation latencies.

Using RDTSC, as in [17], the cycle count was re-
corded for every move and observe operation. Elapsed
time in microseconds was calculated by dividing the reg-
istered cycle count by the specified processor frequency
of 166 MHz. No attempts were made to verify the actual
frequency of each individual computer, leaving open the
possibility that the computed time may deviate slightly,
but consistently, from the performance measured in cycles
spent. Care was taken to avoid potential problems with
register overwrites and counter overflow.

The gettimeofday() system call was used for aggregate
measurements over many operation calls. Checks were
made to ensure that RDTSC and gettimeofday() meas-
urements were consistent.

Cache effects are not eliminated, but measurements are
averaged over 1000 iterations.

4.3. Micro-benchmarks and Metrics

Two micro-benchmarks that measure operation and
ping-pong latencies of the PastSet system were designed:

• Move latency (mvlat), observe la-
tency (oblat): Time to invoke, complete
and return from a move or observe operation.

• Ping-pong latency (pplat): Time to exchange
data between two processes using moveob-
serve.

APPENDIX A. PAPERS

Paper 1 94 WSDSM 2000

The benchmarks were executed inside client processes
running both on the same computer as PastSet (“Local
Latencies”) and on remote computers. When using more
than one computer TCP/IP or M-VIA were used for
communication.

When doing the performance measurements each node
supported no other workload except for the operating
system and its various artifacts.

5. Micro-benchmark Results

5.1. Operation Latency Experiment Design

PastSet “operation latency” is defined to be the time
elapsed from a move, observe, or mob operation is
called until it has completed and returned successfully.
For observe operations it is assumed that enough tuples
are available in PastSet to prevent the operations from
blocking for lack of tuples. All necessary initializations
are done before starting time- or cycle measurements.
for(i=0; i<1000; i++)
{

save_timestamp;
mv();

}
save_timestamp;

Fig. 2: The Mvlat benchmark

The client process executes move or observe op-
erations. Data size per operation call is varied from zero
to 31KB. The elapsed time is measured for each operation
call. Each call is repeated 1.000 times. This is repeated
five times, and the average is computed.

Due to space constraints, results are shown only for
the move operation. The observe operation exhibit
slightly different behavior, but is close in performance.

Three experiments were designed to measure the la-
tency of the move operation:

• Local Move Latency: The client process and
PastSet are on the same node.

• TCP/IP Move Latency: The client process and
PastSet are on different nodes. TCP/IP is used
for intra-node communication.

• M-VIA Move Latency: The client process and
PastSet are on different nodes. M-VIA is used
for intra-node communication.

The latency experiments were conducted on the fol-
lowing configurations, using both SMP and uniprocessor
versions of Linux:

• A pool of threads is used in the PastSet server to
serve all connections (“Thread Pool”).

• A single thread is used in the PastSet server per
connection (“Single Thread”).

Because of problems experienced with M-VIA, the M-
VIA Move Latency experiment was conducted only for
the “single thread” version .

The configurations used for the experiments are
summed up in table 1.

Table 1: Configurations
Local Using M-VIA Using TCP/IP

SMP (Fig. 3
& 4)

Intel NIC,
Thread Pool
(Fig.3 & 4)

Intel NIC,
Thread pool
(Fig. 3 & 4)

Uni-
proc
essor

(Not
shown)

TREN
Dnet
NIC,
Single
thread
(Fig. 5)

TREND-
net NIC,
Thread
Pool
(Not
done)

TREND-
net NIC,
Single
thread
(Fig. 5)

TREND-
net NIC,
Thread
pool
(Fig. 5)

5.2. Move Latency Results

Fig. 3 shows move latencies for local (one node only)
communication, and for intra-node communication using
TCP/IP or M-VIA. Tuple sizes are varied from one byte
to 31KB. The results are measured using Linux in SMP
mode, a thread pool in the PastSet Server for data in/out
servicing, and using the Intel NICs.

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

32768

1

10

100

1000

10000

M
ic

ro
se

co
nd

s

Tuple size (bytes)

 Ratio TCP/IP:M-VIA
 Local Move Latency
 M-VIA Move Latency
 TCP/IP Move Latency

Fig. 3. The mvlat benchmark: Operation latency for
move

Fig. 3 shows that local move latency (clients and
server on same node) changes from about two to one or-
der of magnitude better than M-VIA or TCP/IP as tuple
size is varied from 1 byte to 32 KB. The difference in
performance is due to the extra overhead caused by net-
work communication and using the PastSet Server.

Paper 1 95 WSDSM 2000

Fig. 4. The mvlat benchmark: move latency for
tuple size 4KB for 1000 measurements, SMP,

Thread

For small tuple sizes M-VIA move latency is less than
half the latency when using TCP/IP. With increasing tu-
ple size, the M-VIA advantage decreases to about 2/3 for
31 KB tuples. This is a large difference in absolute num-

bers. For one byte tuples, the difference between using
M-VIA and TCP/IP is 242 microseconds, while at 31KB
the difference is 1256 microseconds. We explain the ad-
vantage of M-VIA over TCP/IP partly by the user level
communication used by M-VIA and the faster traps to the
operating system. Other contributing factors are that M-
VIA does not compute checksums of the incoming pack-
ets, taking advantage of the properties of a local net.
However, TCP/IP uses the operating system much more
heavily, and does more copying than M-VIA. Fig. 4
shows the move latency of 1000 move operations for a
single tuple size, 4KB. The results are measured using
Linux in SMP mode, using a thread pool in the PastSet
Server for data in/out servicing, and using Intel NICs.

We have plotted three cases: local, TCP/IP and M-
VIA. The TCP/IP measurements include a few very high
(factor 10) values that we have removed from the plot.
We believe that these values are the result of 10ms time
slice events.

The results for the local move latency clearly show an
effect coming from the way PastSet implements receiving
and storing of tuples. The storage structure of PastSet
seeks to make it efficient to access the newest tuples.
Three levels of indirection are used to achieve this (“re-
verse I-nodes”). When a stream of tuples are sent to Past-
Set the cost of inserting them grows steadily until we are
at level three in the datastructure. This effect can be seen
in the local move latency plot, and to a lesser extent also
in the M-VIA plot.

The measurements show that M-VIA has a lower vari-
ance while TCP/IP gives a much more unpredictable la-
tency. We believe that the TCP/IP latency is long enough
to include relatively more events (including interrupts and
scheduling) happening in the total system resulting in a
high variance. Also, the thread pool in the PastSet Server
uses the select() system call when using TCP/IP. This
seems to be more expensive than using the VIA comple-
tion queue mechanism.

The results suggest that M-VIA and the way we use it,
even when using a slow 100Mbit network, is just fast
enough to let the basic behavior of the PastSet system
become visible in the measurements. This is due both to
the better latency of M-VIA and less variance.

TCP/IP does not reveal the behavior of PastSet, while
M-VIA does.

APPENDIX A. PAPERS

Paper 1 96 WSDSM 2000

Fig. 5: The mvlat benchmark: move latency for tuple
size 4KB for 1000 measurements, Uniprocessor and
SMP, Single Thread and Thread Pool, TRENDnet
NIC.

Fig. 5 shows the move latency of 1000 move opera-
tions for a single tuple size, 4KB. The results are meas-
ured using Linux in uniprocessor mode, and TRENDnet
NICs are used. The PastSet Server uses a single thread for

each connection for the M-VIA, and a single thread or a
thread pool for the TCP/IP. We have not been able to use
a thread pool for the M-VIA measurements using
TRENDnet NICs due to problems with M-VIA.

The results from fig. 5 show that TCP/IP improves
significantly when using a single thread to handle the
benchmark connection as compared to using a thread
pool. TCP/IP is still slower than M-VIA, but the variance
has improved, and is just slightly worse than for M-VIA.
We explain this with the way the PastSet server handles
TCP/IP connections. In the single thread per connection
configuration there will almost always be a thread ready
to read incoming data, and this thread will be the same
every time. In the thread pool configuration a new thread
will serve each incoming packet. We believe this has im-
pact on the cache footprint giving more variance and
worse results. Also, the thread pool configuration exe-
cutes more instructions.

We have not been able to measure the move latency
when using M-VIA, TRENDnet NICs, and a thread pool
on a Linux uniprocessor configuration. If we assume that
M-VIA will behave about the same or better than TCP/IP,
then we can conclude that M-VIA is less influenced than
TCP/IP on whether a single thread or a thread pool is
used in the PastSet server. TCP/IP is much more sensitive
to this as can be seen by comparing the two TCP/IP re-
sults in fig. 5. We explain this difference in sensitivity to
the M-VIAs better utilization of user level communica-
tion.

Generally, TRENDnet NICs are faster than the older
Intel NICs.

5.3. Ping pong latency

PastSet “ping pong latency” is the time period elapsed
between the repeated lock stepped exchanges of a value
between two processes. What we measure will include
potential waiting by the two processes for each other to
rendezvous. All initializations have been done before we
start counting time.

gettimeofday();
for(i=0; i<1000; i++){
 mob(); // Exchange a value with
the other process
}
gettimeofday();

Fig. 6. The PPlat Benchmark

For the ping-pong latency performance measurements,
we execute the micro-benchmark using two processes.
Both processes loops doing a given number of mob() op-
erations. One process moves data to element e1, and tries
to pick up data from element e2. The other process moves
data to element e2 and tries to get data from e1. In this
way, the processes exchange data in a lock step fashion.

Paper 1 97 WSDSM 2000

The data units range in size from zero to 31KB. The
elapsed time to exchange all data is measured, and the
time per exchange is computed. The step locked opera-
tions are repeated 1000 times to eliminate noise.

We did five ping-pong experiments (in the legend tag,
L means local, R means remote relative to the location of
PastSet):

• LL: The two processes and PastSet are on the
same computer.

• M-VIA LR: One process is on one computer, the
other process and PastSet are on another com-
puter. VIA is used for communication between
the two computers.

• TCP/IP LR: One process is on one computer, the
other process and PastSet are on another com-
puter. TCP/IP is used for communication be-
tween the two computers.

• M-VIA RR: The two processes and PastSet are
all on different computers. M-VIA is used for
communication between the three computers.

• TCP/IP RR: The two processes and PastSet are
all on different computers. M-VIA is used for
communication between the three computers.

The results presented in fig. 7 show that the ratio be-
tween using TCP/IP vs. M-VIA when the communication
processes are on two different nodes behaves as the same
ratio for the move latency. The advantage of using M-
VIA decreases when the tuple size increases. However,
M-VIA has a significantly better latency at all tuple sizes,
and especially for tuple sizes between 0-256 bytes.

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

32768

1

10

100

1000

10000

M
ic

ro
se

co
nd

s

Tiple size (bytes)

 Ratio TCP/IP RR : M-VIA RR
 LL Latency
 M-VIA LR Ping Pong Latency
 TCP/IP LR Ping Pong Latency
 M-VIA RR Ping Pong Latency
 TCP/IP RR Ping Pong Latency

Fig. 7. The Pplat Benchmark

Fig. 7 also shows that for tuple sizes up to 2KB, using
M-VIA on a three-node configuration (RR) gives about
the same latency as when using TCP/IP on a two-node

configuration (LR). Thus, M-VIA is fast enough to make
up for the extra communication taking place.

6. Related work

Much effort has been put into cluster communication
using either a shared memory model or an explicit com-
munication model.

When comparing our results with the results reported
in [19] we find that the ratio between TCP/IP vs. M-VIA
latency is about the same and around 2.25-2.26.

Distributed Shared Memory implementations include
Princeton Shrimp SVM [8] and Rice TreadMarks [9].
Object based Distributed Shared Memory systems include
Orca [10]. Noteworthy examples of message-passing
systems include Message Passing Interface, MPI [11],
and Parallel Virtual Machines, PVM [12]. Less work has
been done using Structured Distributed Shared Memory.
The most well known systems include Linda [18], and
more recently, Global Arrays [13].

7. Conclusions

Porting PastSet from TCP/IP to M-VIA proved
straightforward. However, we have identified several
bugs or limitations of the M-VIA implementation we
used, and we still do not have a stabile system available.
When using a DSM system a predictable performance is desir-
able, and in addition to being faster, the latency of M-VIA is
more predictable than the latency of TCP/IP. Operations on
tuples of 256 or fewer bytes are twice as fast when using M-
VIA.

By using a standard API such as VIA, system design-
ers can achieve the benefits of user-level communication,
while still maintaining portability.

8. Acknowledgements

Ken Arne Jensen and Jon Ivar Kristiansen provided in-
valuable support under the preparation of this paper.

9. References

[1] Anshus, O.J., Larsen, T.: “MacroScope: The Abstractions of
a Distributed Operating System”. Norsk Informatikk Konferanse
1992, October 1992.
[2] Helme, A., “Scheduling of Processes in a Distributed System
using a Multi Dimensional Algorithm” (in Norwegian), Master
Thesis, Dept. of Computer Science, University of Tromsø,
Tromsø, Norway, 1992.
[3] Stabell-Kulø, T., “A Partial Implementation of the Macro-
Scope Distributed Operating System (in Norwegian)”, Master
Thesis, Dept. of Computer Science, University of Tromsø,
Tromsø, Norway, 1992.
[4] Brian Vinter, “PastSet a Structured Distributed Shared
Memory System”, Dr. Scient. Thesis, Tromsø University, 1999.

APPENDIX A. PAPERS

Paper 1 98 WSDSM 2000

[5] Bilas, A., Iftode, L., Singh, J. P., “Evaluation of Hardware
Support for Automatic Update in Shared Virtual Memory Clus-
ters”. 12th ACM International Conference on Supercomputing,
July, 1998
[6] http://www.nersc.gov/research/ftg/via/
[7] Brian Vinter, Tore Larsen and Otto J. Anshus, “Improving
Cluster Performance using a Causally Ordered Structured Dis-
tributed Shared Memory System”, Norsk Informatik Konferense
‘.99, 1999.
[8] Blumrich, M., Li, K., Alpert, R., Dubnicki, C., Felten, E.,
Sandberg, J.: “A virtual memory mapped network interface for
the shrimp multicomputer”. In Proceedings of the 21st Annual
Symposium on Computer Architecture, pages 142–153, Apr.
1994.
[9] Keleher, P., Cox, A., Dwarkadas, S., Zwaenepoel, W.:
“TreadMarks: Distributed shared memory on standard worksta-
tions and operating systems”. In Proceedings of the Winter
USENIX Conference, pages 115–132, Jan.1994.
[10] Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S.: ‘Orca: A
Language For Parallel ProgrammingOf Distributed Systems”.
IEEE Computer 25(8), pp. 10-19, Aug. 1992.
[11] Walker, D.W.: “The Design of a Standard Message-Passing
Interface for Distributed Memory Concurrent Computers”. Par-
allel Computing, Vol. 20, No. 4, pages 657-673, April 1994
[12] Sunderam, V.S.: “PVM: A Framework for Parallel Distrib-
uted Computing”. Concurrency: Practice and Experience, Vol.
2, No. 4, Dec. 1990.
[13] Nieplocha, J., Harrison, R.J., Littlefield, R.J.: “Global Ar-
rays: A Portable Shared-Memory Programming Model for Dis-
tributed Memory Computers”. Proceedings of the conference on
Supercomputing ‘94, pages 340-ff., 1994
[14] Eric Freeman, Susanne Hupfer, Ken Arnold,
“JavaSpaces(TM) Principles, Patterns and Practice”, SUN Mi-
croSystems
[15] http://www.almaden.ibm.com/cs/TSpaces/
[16] Druschel, Peter and Peterson, Larry L. “Operating Systems
and Network Interfaces,” In Foster, Ian and Kesselman, Carl
(Eds.), The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999
[17] Chen, J. B., Endo, Y., Chan, K. Mazieres, D., Dias, A.,
Seltzer, M., Smith, M.D.: “The Measured Performance of Per-
sonal Computer Operating Systems”. ACM Transactions on
Computer Systems, February 1996.
[18] Carriero, N., Gelernter, D., “Linda in Context”, Commun.
ACM, (April 1989), Vol. 32, No. 4, pp. 444-458]
[19] Speight, E., Abdel-Shafi, H., Bennett, K., “Realizing the
Performance Potential of the Virtual Interface Architecture”,
International Conference on Supercomputing, June 1999
[20] Vinter, B., Anshus, O.J., Larsen, T., “Data Distribution
Models for a Structured Distributed Shared Memory System”,
Proc. Of the international conference on Parallel and Distributed
Programming Techniques and Applications, PDPTA 99, Las
Vegas June 1999

Paper 1 99 WSDSM 2000

APPENDIX A. PAPERS

Paper 1 100 WSDSM 2000

A.2 The Impact on Latency and Bandwidth for a Dis-
tributed Shared Memory System Using a Gigabit
Network Supporting the Virtual Interface Archi-
tecture

Paper 2 101 NIK 2000, pages 139-146

TheImpacton Latency andBandwidthfor a
DistributedSharedMemorySystemUsinga

Gigabit Network SupportingtheVirtual Interface
Architecture

JohnMarkusBjørndalen
�
, OttoJ.Anshus

�
, Brian Vinter

��� �
, ToreLarsen

�

Departmentof ComputerScience
�

Universityof Tromsø

Departmentof MathematicsandComputerScience
�

Universityof SouthernDenmark

Abstract

Previous studies have shown signifi-
cantperformanceadvantagesin usingVir-
tual InterfaceArchitecture (VIA) insteadof
TCP/IP for handlingnetworkcommunica-
tion in the structured distributed shared
memorysystem,PastSet.With theavailabil-
ity of networkhardware that supportsVIA,
wewishto examinewhether, andto whatex-
tend,an availablehardware supportedVIA
implementationoutperformsthe software-
only implementationfor PastSetDSM. To
do this, PastSethas been ported to two
VIA implementations:M-VIA, which is a
software implementationthat we useon a
100Mbit FastEthernet,andGiganetcLAN,
which usesdedicatedVIA hardware. The
twoimplementationsare tested,andperfor-
manceresultsare compared with the ref-
erenceTCP/IP implementationon the 100
Mbit FastEthernet.

For the experimentsetupsused,M-VIA
latenciesare between1.1 and 2.6 times
faster than correspondinglatenciesusing

TCP/IP.
For large packets, GiganetcLAN laten-

ciesare about2.7 timesfaster than corre-
spondingM-VIA latencies. However, for
small packets, cLAN latencies are only
about1.04timesfasterthancorresponding
M-VIA latencies,indicatingthat thecurrent
software designand implementationdoes
not fully benefitfrom the improvedperfor-
manceof GiganetcLANoverFastEthernet.
Further experimentsdemonstrate that sig-
nificantly improved small-packet latencies
oncLANarepossible, andmaybeachieved
througha software redesigncarefully con-
sideringtheuseof polling versusinterrupts.

1 Introduction

The latency andbandwidthperformanceof
a DistributedSharedMemory (DSM) sys-
temdependson theperformanceandinter-
actionof theDSM andthe underlyingnet-
work subsystems.The key challenge[8]
is to preserve the performancecharacteris-

APPENDIX A. PAPERS

Paper 2 102 NIK 2000, pages 139-146

ticsof thephysicalnetwork (bandwidth,la-
tency, QoS)while makingeffective useof
hostresources.Network bandwidthsandla-
tenciesareconstantlyimproving. Unfortu-
nately, applicationshave not beenable to
take full advantageof theseperformance
improvementsdueto theinteractionsof lay-
ers of user and kernel level software. A
detailedbreakdown of hardware and soft-
ware costsof remote memory operations
is discussedin [3]. The Virtual Interface
Architecture(VIA) was developedto sig-
nificantly reducethesoftwareoverheadbe-
tween a high performanceCPU/memory
subsystemandahighperformancenetwork.

In this paper, we study the latency and
bandwidthperformanceof PastSetDSMus-
ing eitherM-VIA[10], a softwareVIA im-
plementationfor Linux; GiganetcLAN[9],
a VIA implementationwith hardwareVIA
support; or TCP/IP. The paperbriefly de-
scribesthe functionality of PastSet,the or-
ganizationof theimplementation,theinter-
actionsbetweenPastSetcomponents,and
the VIA implementations. Experiment
configurationswith micro-benchmarksand
metricsaredescribedbeforepresentingand
analyzingbenchmarkresults.

2 Implementing the PastSet
Server and Application Li-
brary

PastSetis a structureddistributed shared
memorysystem. PastSetmemoryobjects
are tuples. Operationsexist to createtu-
ples,copy tuplesto DSM,andreadtuplesin
DSM. TheDSM is structuredin thattuples
areorganizedin disjoint elements,andthat
an orderingof tuplesis maintainedwithin
eachelement.Operationsexist to createel-
ementsanddefineorderingcriteriafor each

element. A synchronizationmechanismis
includedin the memorymodel,anda syn-
chronizationcriterion may be set for each
element. Operationsare provided to set
synchronizationcriteria.

All PastSetoperationsareblocking. The
PastSetmemorymodel complieswith se-
quentialconsistency.

For this paper, the PastSet operation
move is usedin determiningPastSetlaten-
cies. Move takesa tuple asparameterand
copiesthe contentof the tuple into a spec-
ified element in DSM, maintaining tuple
order and synchronizationcriterion. The
move operationblocks in the sensethat it
returnsonly afterconfirmationhasbeenre-
ceived from the PastSetserver that the op-
erationis completed.

The design, applicability, and perfor-
manceof PastSetDSM is demonstratedin
[1] and[12].

Thesynchronousnatureof PastSetoper-
ations implies that eachoperationrequest
requiresa reply messagewith the resultof
theoperationbeforetheclientmaycontinue
execution;consequently, two messagesare
requiredfor eachremoteoperation.

The version of the PastSetserver used
for the experimentsreportedon in this pa-
percreatesanew threadfor eachnew client
connection.Eachthreadis exclusively re-
sponsiblefor servicingit’ s associatedcon-
nection. The threads loop, reading re-
quests,performingoperationson behalfof
theclientandreturningresultsto thecaller.

This is asimpleapproach,with low over-
head for a small numberof connections.
However, the single-thread-per-connection
approach is not well suited for multi-
threadedclientswhereseveralclientthreads
mayneedto sharethesameconnection.We
have developedalternativesto usinga sin-

Paper 2 103 NIK 2000, pages 139-146

gle threadper connection,but we will not
reporton thesein this paper.

2.1 TCP/IP implementation

When a PastSetoperation requestsnon-
local data, the operationand its parame-
ters are sent via a TCP/IP connectionto
the remotePastSetserver, andthe caller is
blockedawaiting thereply from thePastSet
server.

All connectionsdisablethe Nagle algo-
rithm to ensurethatevensmalldatapackets
aresentimmediately.

2.2 M-VIA implementation

The PastSetserver and the applicationli-
brary were implementedusing the M-VIA
1.0[10] implementationof theVIA API. By
using the messagepassingmodel of VIA,
we got a simpleport from the TCP/IPim-
plementation.Thealternative,usingremote
DMA, is complicatedby the way PastSet
operationscanmanipulateandaddressPast-
Setdistributedsharedmemory.

ThePastSetserverandtheapplicationli-
braryuseblockingcalls to M-VIA in order
to reducetheprocessorusage.M-VIA first
checkto seeif thedataalreadyhasarrived.
If not,ablock is done.

The 100Mbit network interface cards
(NICs) we useddo not supportthe "door-
bell" mechanismof theVIA. Instead,this is
donein softwarein M-VIA, makingtrapsto
theLinux kernelnecessary.

The tuples that are used by the micro
benchmarkswe useare allocatedin parts
of the memorythat areregisteredwith the
M-VIA NICs in orderto reducecopying on
sendand receive. However, M-VIA first
copiesthedatafrom theNIC to kernellevel

memory, and then from kernelmemoryto
theuserlevel applicationmemory.

2.3 cLAN implementation

With hardware support, VIA is intended
to enableapplicationsto sendand receive
packets over a Virtual Interface without
trapping to the operating system kernel.
Thekernelis basicallyonly involvedin set-
ting up andtearingdown connections,and
in otherbook-keepingtasks. In particular,
the incomingdatais directly written to the
userlevel applicationmemory.

The PastSetserver and the application
library using hardware supportedVIA are
otherwisebasicallyidenticalto theoneus-
ing M-VIA. In particular, blockingcallsare
useddoinga little spinningto checkif data
alreadyhavearrivedbeforedoingtheactual
blocking.

3 Methodology and Experiment
Design

This section describesthe hardware and
softwaredetailsof theexperiments,how the
timing measurementsweredone,themicro-
benchmarks,andthemetricsused.

3.1 Hardware and Software

All experiments reported on in this pa-
per weredoneusing two HP LX-Pro Net-
servers,eachhaving four 166MHzPentium
Pro CPUs. Each computerhad 128MB
main-memory, anddualpeer33MHz,32bit
PCI buses. The level 2 cachesize is 1MB
perprocessor.

For theexperiments,thecomputerswere
interconnectedusingeitherGiganetcLAN
1.25Gb/s [9] or Trendnet TE100-PCIA

APPENDIX A. PAPERS

Paper 2 104 NIK 2000, pages 139-146

(DEC Tulip 21143chip set)100Mb/s net-
work interfacecards(NIC) connectedto a
hub. Both NICs wereon PCI busno. 0 on
eachserver. In addition,a 100VG 100Mb/s
NIC, also on PCI bus no. 0, was usedto
connectto thelocalareanetwork of theDe-
partmentof ComputerScience. This net-
work wasusedto managethe experiments
andtheservers.

Linux v. 2.2.14with PastSetfunctional-
ity addedto thekernelwasinstalledoneach
nodeparticipatingin the experiments.We
usedM-VIA version1.0with aminorpatch
to theconnectionmanagement.

WecompiledM-VIA, cLAN, thePastSet
Server, thePastSetKernel,thePastSetAp-
plication Library, the Linux operatingsys-
tem,andthebenchmarksusingegcs1.1.2.

Default compilerflagswereusedfor M-
VIA, cLAN, ThePastSetServer, thePastSet
Kernel,andtheLinux operatingsystem.We
usedthe optimizationflags “-O6 -m486
-mjumps=2 -malignloops=2 -
malignfunctions=2.” for the bench-
marksandthePastSetlibrary.

Becausewe experiencedproblemswith
M-VIA whenusingfour processors,we re-
designedthe experimentsto useonly one
processorperserver, andwerecompiledthe
Linux kernel to run as a single processor
system.

3.2 Micro benchmarks and Metrics

To measurethelatency of thePastSetoper-
ations,we usedseveralmicro benchmarks.
In this paperwe will only report on the
move latency, that is, the time to invoke,
completeand return from a move opera-
tion. The move operationblocks when
waiting for an acknowledgementmessage
from PastSet.

Theclientprocesscallsmove operations.

for (i = 0; i < 1000; i++) {
save_timestamp;
mv();

}
save_timestamp;

Figure1: Themove latency (Mvlat) bench-
mark

The client processrunning the benchmark
andthe PastSetserver areon two different
computers.

To determinetheeffectof usingblocking
vs. spinningwhenwaitingfor data,weused
the vnettest micro benchmarktaken
from theM-VIA 1.0 distribution. This mi-
crobenchmarkisalow level roundtripping-
pongof data. We modifiedvnettest so
we could chooseto useeitherblocking or
spinningwhenwaiting for data.

To determinetheeffectof theunderlying
network technology, eachmicrobenchmark
usedTCP/IP, softwaresupportedVIA (M-
VIA), and hardware supportedVIA (Gi-
ganetcLan).

Data size for the messageswas varied
from one to 31KB. The elapsedtime for
1000 transmissionsis measuredfor each
packet sizeandthendividedby 2000to get
the averagelatency of a messagefrom ad-
dressspaceto addressspace.We repeated
eachrun of 1000transmissionsfive times.

When doing the performancemeasure-
mentseachnodesupportedno otherwork-
loadexceptfor theoperatingsystemandits
variousartifacts.

All necessaryinitializations were done
before starting time- or cycle measure-
ments.

Paper 2 105 NIK 2000, pages 139-146

3.3 Time Measurements

The Intel PentiumPro RDTSC(readtime-
stampcounter) instruction and the Linux
gettimeofday()systemcall wereusedto de-
terminePastSetoperationlatencies.

UsingRDTSC,asin [6], thecycle count
was recordedfor every move operation.
Elapsedtime in microsecondswas calcu-
latedby dividing theregisteredcycle count
by thespecifiedprocessorfrequency of 166
MHz. We did not verify the actual fre-
quency of eachindividual computer, leav-
ing openthe possibility that the computed
time may deviate slightly, but consistently,
from the performancemeasuredin cycles
spent. Care was taken to avoid poten-
tial problemswith register overwritesand
counteroverflow.

Thegettimeofday()systemcall wasused
for aggregatemeasurementsover many op-
erationcalls. Checksweremadeto ensure
that RDTSC and gettimeofday()measure-
mentswereconsistent.

Cache effects are not eliminated, but
measurementsare averagedover five runs
of one-thousanditerations each, and no
otherworkloadis present.

4 Micro-benchmark Results

4.1 Move Latency Results

Figure2 shows move latenciesand band-
width for intra-nodecommunicationusing
TCP/IP, M-VIA andcLan. Tuplesizesare
varied from onebyte to 31KB. The band-
with is computedfrom the latency since
PastSetrequiresoneoperationto complete
beforethenext canbeinitiated.

For small tuple sizesmove latency us-
ing M-VIA is about2.6 times fasterthan
TCP/IP. M-VIA latency is about1.1 times

10

100

1000

10000

1 10 100 1000 10000 100000

O
pe

ra
tio

nl
at

en
cy

in
m

ic
ro

se
co

nd
s

Tuplesizein bytes

movewith cLAN (blocking)
movewith M-VIA (blocking)

movewith TCP

(a) latency

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000

B
an

dw
id

th
of

m
ov

e
in

M
bi

t/s
ec

on
d

Tuplesizein bytes

movewith cLAN (blocking)
movewith M-VIA (blocking)

movewith TCP

(b) bandwith

Figure2: TheMvlat benchmarkresults:op-
erationlatency andbandwidthof the Past-
Setmove operation

fasterthan TCP/IP for 31 KB tuples. For
onebyte tuples,thedifferencebetweenus-
ing M-VIA and TCP/IP is 152 microsec-
onds,while at 31KB the differenceis 330
microseconds.

cLan performs slightly better than M-
VIA on small tuplesizes(about1.04times
fasterthan M-VIA). At larger tuple sizes,
theperformanceof cLanis 2.7 timesfaster
thanM-VIA and3 timesfasterthanTCP/IP.

The observed bandwithusingM-VIA is
about70percentof thepotential100Mbit/s
that the hardwarecansupport,while using
cLanweachieveabout18percentof thepo-
tential1.25Gbit/s.

APPENDIX A. PAPERS

Paper 2 106 NIK 2000, pages 139-146

Mostof theperformanceimprovementof
M-VIA over TCP/IP comesfrom the im-
plementationdrawing advantageof local
network properties.M-VIA skipsethernet
checksums(donein hardware)andhandles
muchof theprotocolin theinterrupthandler
while TCP/IPhasto sendthe datathrough
several layersandcomputechecksumsfor
ethernetframes,IP headersandTCPpack-
ets.M-VIA alsousesfastertrapsto theker-
nel thanTCP/IP.

Theperformanceadvantagewith cLanis
first visible at larger tuple sizeswherethe
higher bandwith (1.25 Gbit vs 100 Mbit)
becomesmoreimportant.At smallerpacket
sizes,the benefitfrom hardwaresupportis
maskedby theoverheadin themanagement
of the blocking calls. As such, the cur-
rentPastSetimplementationdoesnot show
much of a performancebenefitdue to the
hardwareimplementationof VIA.

4.2 Latencies of Polling and Blocking
Message Passing

Figure 3 shows messagepassinglatencies
of cLanandM-VIA measuredwith vnettest
usingspinning(polling) andblockingVIA
calls.

10

100

1000

10000

1 10 100 1000 10000 100000

O
ne

-w
ay

la
te

nc
y

in
m

ic
ro

se
co

nd
s

Packet sizein bytes

cLAN blocking
cLAN polling

M-VIA blocking
M-VIA polling

Figure3: One-way latency over cLAN and
M-VIA measuredwith vnettest

For basic ping-pong communication

there is little difference in latency be-
tweenspinningand blocking communica-
tion when using M-VIA, resulting in the
graphsoverlappingin the figure. This ef-
fect comesfrom the fact that the software
M-VIA implementationhasto handleinter-
ruptsandprotocolimplementationbothfor
polling andblockingoperations.

Theextra overheadfrom thekerneltraps
(up to 2 ioctl callspersendor receiveoper-
ation)areoverlappedwith thepysicaltrans-
missionof data. This might hurt the per-
formanceof M-VIA duringhigh load from
multiple clients.

Usingpolling on cLAN givesa clearad-
vantage,reducing the latency with 20-30
microsecondsover all testedpacket sizes
comparedto theblockingversion.

4.3 Implications for PastSet imple-
mentation

For small tuple sizesthe latency of Past-
Setmoveoperationsis about100microsec-
onds. Using spinningon cLan achieves a
one-way latency improvementof 20-30mi-
crosecondsascomparedto blocking. This
translatesinto a potentialmove latency im-
provementof 40-60microseconds.

Achieving this requiresmodificationsto
the PastSetserver and applicationlibrary.
The useof spinningmust be carefully ap-
plied dueto its CPUusage[7].

5 Related work

How to reducewaiting costsin user-level
communicationhasbeenreportedonin sev-
eral papers,including [7]. This paperde-
scribesa mechanismfor reducingthe cost
of waitingfor messagesin architecturesthat
allow user-level communicationlibraries.

Paper 2 107 NIK 2000, pages 139-146

They documenthow blockingandspinning
can affect the performance,and correlates
well with our results.

VIA is currently being introduced for
variousmessagepassingsub-systems.Sys-
temsthatarebasedon thep4[5] communi-
cationlibrary arecandidatesfor porting to
the VIA API, e.g. the M-VIA teamhave
portedMPICH to useM-VIA instead.Dis-
tributedsharedmemorysystemswhichuses
VIA includesthe pagebasedHLRC DSM
system[11].

Work onbuilding DSM systemsontopof
userlevel communicationlibrariesincludes
the Virtual Memory MappedCommunica-
tion system,VMMC [4].

The Orca object based DSM system
has an associatedcommunicationlibrary,
PANDA, which also provides a high per-
formancecommunicationsystemthat runs
on Myrinet. PANDA is specifically de-
signedfor Orcawhich is highly dependent
onmulticast[2].

6 Conclusions

Basedon the performanceresultswe can
concludethat:

� HardwaresupportedVIA givesa non-
significantimprovementin PastSetop-
eration latency over software M-VIA
for small tuple sizes. This is because
the PastSetoperationis blocking, and
the cost of blocking is much higher
than the advantageof the small pro-
tocol overheadin hardwaresupported
VIA

� HardwaresupportedVIA givesa sig-
nificant improvementin PastSetoper-
ationlatency oversoftwareM-VIA for
large tuple sizes. This is becausethe

hardware supportedVIA is a gigabit
network versusthe megabit network
usedby thesoftwareM-VIA

� HardwaresupportedVIA benefitssig-
nificantly from usingspinninginstead
of blocking when waiting for data.
This is becausethecostof blocking is
avoided

� Software supportedM-VIA doesnot
benefitsignificantly from using spin-
ning insteadof blocking. This is be-
causetheprotocolimpliesseveraltraps
to thekernelperdatatransfer, andthis
is muchmoreexpensivethanthebene-
fit comingfrom spinning

� By usingspinningandhardwaresup-
portedVIA, the PastSetmove latency
may be cut in half. However, care-
fully combiningspinningandblocking
seemsto beneededto benefitfrom gi-
gabit networks with hardwaresupport
for VIA while at thesametimenot us-
ing toomuchprocessorcycles

7 Acknowledgements

GiganetInc. kindly provideduswith acLan
environment.KenArneJensenandJonIvar
Kristiansenprovidedinvaluablesupportun-
derthepreparationof this paper.

References

[1] ANSHUS, O. J., AND LARSEN,
T. Macroscope: The abstractions
of a distributed operating system.
Norsk InformatikkKonferanse(Octo-
ber1992).

[2] BHOEDJANG, R., RUHL , T., AND

BAL , H. E. Efficient multicast on

APPENDIX A. PAPERS

Paper 2 108 NIK 2000, pages 139-146

myrinet using link-level flow control.
In InternationalConferenceon Paral-
lel Processing(Minneapolis,MN, Au-
gust1998),pp.381–390.

[3] BILAS, A., IFTODE, L., AND SINGH,
J. P. Evaluationof hardwaresupport
for automaticupdatein sharedvirtual
memoryclusters.In 12thACM Inter-
nationalConferenceon Supercomput-
ing (July1998).

[4] BLUMRICH, M., L I , K., ALPERT,
R., DUBNICKI , C., FELTEN, E.,
AND SANDBERG, J. A virtual mem-
ory mappednetwork interfacefor the
shrimp multicomputer. In Proceed-
ingsof the21stAnnualSymposiumon
ComputerArchitecture (April 1994),
pp.142–153.

[5] BUTLER, R., AND LUSK , E. User’s
guideto the p4 parallelprogramming
system. Tech.Rep.ANL-92/17, Ar-
gonne National Laboratory, October
1992.

[6] CHEN, J. B., ENDO, Y., CHAN, K.,
MAZIERES, D., DIAS, A., SELTZER,
M., AND SMITH, M. The measured
performanceof personalcomputerop-
eratingsystems.ACMTransactionson
ComputerSystems(February1996).

[7] DAMIANAKIS, S. N., CHEN, Y.,
AND FELTEN, E. Reducingwaiting
costsin user-level communication.In
11thInternationalParallel Processing
Symposium(IPPS’97) (April 1997).

[8] DRUSCHEL , P., AND PETERSON,
L. L. Operatingsystemsandnetwork
interfaces. In Foster, Ian and Kessel-
man,Carl (Eds.),TheGrid: Blueprint

for a New ComputingInfrastructure
(1999),MorganKaufmann.

[9] http://www.giganet.com/.

[10] http://www.nersc.gov/research/ftg/via/.

[11] RANGARAJAN, M., AND IFTODE, L.
Software distributed sharedmemory
overvirtual interfacearchitecture:Im-
plementationandperformance.Tech.
Rep. DCS-TR-413, RutgersUniver-
sity, Departmentof Computer Sci-
ence,April 2000. To appearin Pro-
ceedingsof TheThird ExtremeLinux
Workshop,October10-12,Atlanta.

[12] V INTER, B. PastSeta StructuredDis-
tributedSharedMemorySystem. PhD
thesis,TromsøUniversity, 1999.

Paper 2 109 NIK 2000, pages 139-146

APPENDIX A. PAPERS

Paper 2 110 NIK 2000, pages 139-146

A.3 Using Two-, Four- and Eight- Way Multiprocessors
as Cluster Components

Paper 3 111 CPA 2001, pages 129-147

Communicating Process Architectures – 2001
Alan Chalmers, Majid Mirmehdi and Henk Muller (Eds.)
IOS Press, 2001

129

Using Two-, Four- and Eight-Way
Multiprocessors as Cluster Components

Brian Vinter
��� �

, Otto J. Anshus
�
, Tore Larsen

�
, John M. Bjørndalen

�

�
University of Southern Denmark,

�
Tromsø University

Abstract. This work considers the pros and cons of different size SMPs as nodes in
clusters. We investigate the Intel SMP architecture and consider the potential of and
some problems with larger node-sizes in clusters of multiprocessors. Six applications
that represent different classes of parallel applications are developed in versions that
support both shared and distributed memory. Performance measurements are done on
three different clusters of multiprocessors, with the purpose of identifying how the
number of processors in each SMP node impacts the cluster performance. Our results
show that clusters using higher order SMPs do not give a clear performance benefit
compared to clusters using two-way SMPs. Off the benchmark-suite of six applica-
tions, the performance of two turn out to be independent of node-size, two show an
advantage of larger node-sizes, as much as 34% improvement of eight-way nodes over
a dual-system, while the remaining two show an advantage of dual-processor nodes as
big as 11% over an eight-way cluster.

1 Introduction

There is currently an unprecedented proliferation of low cost, mass market; small-scale
shared memory multiprocessors (SMPs). Dual processor PCs are used as engineering work-
stations, four processor systems are applied as departmental servers, and low-cost six- to
eight-way systems using PC-type processors are used for database applications. It remains
to be seen if mass-market, small-scale shared-memory multiprocessors will remain commer-
cially and technically viable. Current speculations go both ways, using both technical and
commercial arguments. For research on clusters, the mix of shared memory communica-
tion within SMPs and network-based communication among SMPs raises a set of interesting
questions.

In this work, we characterize the performance of clusters using two-, four- and eight-way
SMP nodes respectively. Six CPU-bound applications are implemented using a combination
of shared memory and Message Passing Interface, MPI. We describe how the applications are
parallelized and measure their relative performance on clusters of two-, four- and eight-way
SMPs respectively. The purpose is to investigate and compare performance characteristics of
clusters with a the same number of processors using two-way, four-way or eight-way SMP
nodes.

1.1 Clusters of Multiprocessors

Loosely coupled clusters of computers are being investigated both in academia and in indus-
try. Currently these ”poor man’s supercomputers” typically uses from eight to 64 CPU’s,
while some employ as many as 1000 CPUs[1]. The interest in Commercial Of The Shelf,
COTS, clusters as alternative multicomputers has been stimulated by several developments
in addition to the obvious price advantages. Most fundamental are the recent advancements

APPENDIX A. PAPERS

Paper 3 112 CPA 2001, pages 129-147

130 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

in high-speed, low-cost interconnects, i.e. 100Mb Ethernet at the low end, Myrinet[2] and
SCI-bus[3] at the high-end, and, more recently, cLan[4] and Gigabit Ethernet[5] in between.

High-performance inter-process communication mechanisms for loosely coupled clus-
ters, mainly the standardized Message Passing Interface, MPI[6], have come of age in stable
and efficient implementations. The source-code compatibility of MPI applications between
architectures has made it possible to use shrink-wrap software and public domain applications
on clusters, independent of the specific cluster architecture. The latter has promoted clusters
heavily in fields of science outside computer science. Computer scientists have been attracted
by cluster architectures for a series of reasons, including application, operating-system and
distributed shared memory research.

Most research on clusters has been on platforms using a high number of uniprocessor
workstations, or very few servers, typically sharing secondary storage. Shared memory mul-
tiprocessors (SMPs), are currently at price points that make them very attractive as nodes in
clusters, these are often refered to as CLUMPS, Cluster of Multiprocessors[7]. Dual proces-
sor workstations cost only marginally more than similar uniprocessor systems plus the cost
of the extra CPU. Each dual processor workstation is typically cheaper than two similarly
equipped uniprocessors, with the same amount of memory and disk capacity. Entry-level
servers using four CPUs also add other attractive features like redundant power supplies and
RAID-disks. Eight-way SMPs currently carry a price premium that is explained partly by
expensive vendor-specific implementations and partly by lack of competition in the market-
place.

One interesting aspect of using multiprocessor cluster nodes is to determine how the tra-
ditional multicomputer programming models perform when running on clusters of SMPs
rather than on clusters of uniprocessors. Traditionally shared memory application program-
ming interfaces (API), and distributed memory APIs has been quite different in both syntax
and semantics. Shared memory APIs, such as Sys V Interprocess Communication (Sys V
IPC) and APIs found in thread packages such as POSIX threads (Pthreads), are kept simple
to support both flexibility and good performance for most common cases. Distributed APIs,
such as MPI and Remote Procedure Calls (RPC)[8], have more complex and powerful func-
tionalities freeing the programmer from building his own operations using simpler ones. The
question remains how the two classes of programming API will work together.

From here we go on to briefly investigate the Intel SMP architecture in section 2 and the
MPI API in section 3, section 4 motivate and describe the applications we have chosen to test
the impact of node-size on the scalability of the application. The results from our experiments
are discussed in section 5. We take a brief look at related work in section 6 and finally we
draw our conclusions in section 7.

2 SMP node architecture

The Intel multiprocessor architecture is one of the most widely available multiprocessors,
and most of the control hardware that is needed to implement symmetrical-multi-processing
is placed on the CPU itself, with the result that a dual-processor Intel machine is only
marginally more expensive than the cost of a uni-processor and the additional CPU. As one
can imagine this makes these machines attractive from a cluster point-of-view since a 32
CPU cluster made up of 16 dual-processor machines is notably less expensive than a simi-
lar cluster made from 32 standard PCs. Beyond two CPUs the Intel Standard High Volume,
SHV, program has made four- and eight-way SMP machines fairly cheap too. However, these
are marketed only for the server segment of the market and thus never becomes truly com-
modity and as a consequence they don’t become quite as cheap, on a per CPU basis, as the

Paper 3 113 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 131

Processor Memory Bus

CPU

$

CPU

$

Memory

CPU

$

CPU

$

Processor Memory Bus

CPU

$

CPU

$

Memory

CPU

$

CPU

$

Processor Memory Bus

CPU

$

CPU

$

Memory

CPU

$

CPU

$

P
M

X

Processor Memory Bus

CPU

$

CPU

$

Memory

(a)

(b)

(c)

Processor Memory Bus

Figure 1: The Intel MP architecture in (a) two, (b) four and (c) eight CPU versions

dual-processor setup.
Intel’s SMP architecture is a shared bus architecture, which is one reason why the ma-

chines are fairly cheap, but this is also the reason why the machines only scale to very few
processors in each machine. Each CPU has two levels of cache and both levels are kept
coherent in compliance with the MESI protocol. The Intel MP Specification as of revision
1.4[9] supports at most four CPU on the same bus. Thus to scale to eight CPUs, a system
needs to use two busses and add extra hardware support to cache coherence of the two busses.

The purpose of using fewer nodes with more CPUs is to lower the average communication
time between processors and limit the load on the cluster interconnect. These advantages
should result in a better CPU utilization when running parallel applications on the cluster.
On the downside, more processors on the same bus also means less available bandwidth per
processor. Table 3 in section 5 shows the consequences of this for the three clusters used in
this investigation.

If clusters of multiprocessors are intended to be ’poor-mans-supercomputers’, a more
serious problem is the premium cost that is associated with higher degree SMP servers. The
higher cost of larger servers may be attributed to several issues; first and foremost is the
lower volume in sales of these systems, which automatically increases the price per unit. In
addition the higher degree servers require more hardware, larger casing, etc.

The fairly high price of four and eight way Intel based machines has resulted in a scenario
where these architectures are only interesting to the segments of the market that heavily
depend on the higher degree of multi-processing, e.g. the server market. Thus, four and
eight CPU nodes are only available as servers with the associated high performance I/O
subsystems and redundant power supplies, all of which add to the price of the machines.
In addition the available four and eight way servers all seek to compensate for the limited
memory bandwidth by using processors with large high-performance cache systems (Intel’s
Xenon class processors). The result is that it is very hard to compare the price of clusters
based on different SMP sizes without ending up comparing apples to oranges. Figure 2 show
the prices of a number of clusters all with 32 CPUs and 4GB memory, based on a variety of
node types. While none of the two CPU per node clusters compares directly in configuration
to the four and eight way versions, it is obvious that there is a significant premium associated

APPENDIX A. PAPERS

Paper 3 114 CPA 2001, pages 129-147

132 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

PIII
800MHz
256KB

PIII
800MHz
256KB

PIII
Xenon

933MHz
256KB

PIII
Xenon

933MHz
256KB

PIII
Xenon

700MHz
1MB

PIII
Xenon

700MHz
1MB

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Dual Low-End
Workstat ion

Dual Low End
Server

Dual High-End
Workstat ion

Dual Server Quad Server Oct Server

P
ric

e
($

)

Figure 2: Price of a 32 CPU cluster using various machines as nodes

with using higher degree SMPs as cluster nodes.
It is clear that a 32 CPU cluster with 4GB RAM cluster made up of four eight-way ma-

chines is close to five times more costly than the cheapest dual-processor solution (700MHz
/ 1MB PIII Xenon vs. 800MHz / 256KB PIII) and 50% more expensive than the most expen-
sive dual solution (700MHz / 1MB PIII Xenon vs. 933MHz / 256KB PIII Xenon). All the
configurations in figure 2 are machines from the same brand-name producer. If the cheapest
dual processor configuration were made up from home-assembled nodes, the price would be
approximately 50% lower still.

The prices in figure 2 make it evident that for CLUMPS of node-size larger than two, the
performance of these systems should out-perform the dual-systems in a ratio similar to the
50%-500% difference in price.

3 Message Passing Interface

The Message Passing Interface, MPI[6], is a controlled API standard for programming a wide
array of parallel architectures. Though MPI was originally intended for classic distributed
memory architectures, it is used on various architectures from networks of PCs via large
shared memory systems, such as the SGI Origin 2000, to massive parallel architectures, such
as Cray T3D and Intel paragon. The complete MPI API offers 186 operations, which makes
this is a rather complex programming API. However, most MPI applications use only six to
ten of the available operations.

MPI is intended for Single Program Multiple Data, SPMD programming paradigm, e.g.
all nodes run the same application-code. The SPMD paradigm is efficient and easy to use
for a large set of scientific applications with a regular execution pattern. Other, less regular,
applications are far less suited to the MPI programming model and implementation in MPI
is tedious.

MPI’s point-to-point communication comes in four shapes, standard, ready, synchronous
and buffered. A standard-send operation does not return until the send buffer has been copied,
either to another buffer below the MPI layer or to the network interface, (NIC). The ready-
send operations are not initiated until the addressed process has initiated a corresponding
receive. The synchronous call sends the message, but does not return until the receiver has
initiated a read of the message. The fourth model, the buffered send, copies the message to a
buffer in the MPI-layer and then allows the application to continue. Each of the four models
also comes in asynchronous, in MPI called non-blocking, modes. The non-blocking calls
return immediately, and it is the programmer’s responsibility to check that the send has com-

Paper 3 115 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 133

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Package size (B)

Dual Sync
Quad Sync
Oct Sync
Dual Async
Quad Async
Oct Async

0

2000

4000

6000

8000

10000

12000

T
im

e
(u

s)

0

10000

20000

30000

40000

50000

60000

T
im

e (us)

Synchronous Asynchronous

Figure 3: Point-to-point latency of synchronous and asynchronous messages in us

pleted before overwriting the buffer. Likewise a non-blocking receive exist, which returns
immediately and the programmer needs to ensure that the receive operation has finished be-
fore using the data.

MPI supports both group broadcasting and global reductions. Being SPMD, all nodes
have to meet at a group operation, i.e. a broadcast operation blocks until all the processes
in the context have issued the broadcast operation. This is important because it turns all
group-operations into synchronization points in the application. The MPI API also supports
scatter-gather for easy exchange of large data-structures and virtual architecture topologies,
which allow source-code compatible MPI applications to execute efficiently across different
platforms.

3.1 Micro-benchmarks

Since the performance of the interconnect and the MPI layer dictates the scalability of the
applications we will investigate in this work, we first identify the basic cost of synchronous
(blocking) and asynchronous (non-blocking) point to point operations and of the inherently
synchronous group operations, broadcast and global reductions. The MPI implementation we
use here is the LAM-MPI distribution[10], version 6.5, which is commonly used in cluster-
computing.

Figure 31 shows the latency of both synchronous and asynchronous point-to-point com-
munication. In the applications we seek to use asynchronous messages as much as possible
since these provides latency-hiding, in the cases where the application is able to do other
work while the communication takes place.

It is obvious from figure 3 that the synchronous operation performance is dictated by the
interconnect, while the performance of the asynchronous operations differ much more. The
specifications of the clusters are listed in table 3, and it is evident that the performance of the
asynchronous operations is heavily dependent on the processor speed. This is even clearer if
we look at some of the raw numbers, listed in table 1. The specifications for the clusters are
found in table 3 in section 5.

The broadcast latency of the dual-processor cluster with varying number of nodes and
varying package size is shown in figure 4. The graph show that the latency of broadcasts
depend heavily on both package size and the number of nodes. It is quite interesting that the

1Notice different scales for synchronous and asynchronous messages.

APPENDIX A. PAPERS

Paper 3 116 CPA 2001, pages 129-147

134 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

Dual Quad Oct
1B 356 436 396
1KB 13236 24333 15136
64KB 29728 56949 51113

Table 1: Asynchronous message-latency in � s, on three different platforms

1 2 4 8

16 32 64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

1
2
4
8
16

0

20000

40000

60000

80000

100000

120000

140000

160000

time (us)

Package size

Nodes

Figure 4: Broadcast latency of the dual-CPU cluster.

number of nodes has such a significant impact on performance, given that the interconnect2

supports broadcast at the media layer.
Table 2 lists the broadcast latency for all three clusters in figure 3, and shows that while

the eight-way cluster, with its faster CPUs, is faster than the four-way cluster at asynchronous
operations, the four-way cluster is faster at synchronous operations. This is also visible in
figure 3. Whether this is due to differences in the node architecture or due to the different
100Mb networks is unknown, though the different network-technology is the most likely
reason.

Global reductions performance is very similar to the broadcast performance, though the
latency is slightly higher. We chose not to present the graph and numbers here since the
pattern is almost identical to that of the broadcast benchmark.

4 Applications

All the applications we present here are chosen to represent different classes of processor-
bound hard-to-compute problems. The problems are chosen because they are well known
and thus should allow the reader to focus on the performance characteristics that we observe,
similar or close to identical performance behavior should be observed on other, more realistic,
applications in the same classes.

The included applications are, an embarrassingly parallel Monte Carlo simulation; a
global optimization problem, the Traveling Salesman Problem; a grid application, Succes-
sive Over Relaxation; a simple linear algebra problem, matrix multiplication; an automaton
model, WATOR; and finally the classic super-computer benchmark, Gaussian elimination.

2Switched Ethernet

Paper 3 117 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 135

Nodes Dual Quad Oct

1
2
4
8

16

1 1k 64k
0,5 0,5 0,5
151 676 30497
213 988 77504
302 1589 125511
377 2028 159971

1 1k 64k
1,2 1,2 1,2

205 798 40987
280 1202 97817
546 1767 156712

1 1k 64k
1,0 1,0 1,0

202 835 44551
260 1429 102916

Table 2: Broadcast-latency in � s with varying nodesize, number of nodes and packagesize

π

Figure 5: Monte Carlo Estimation of �

4.1 Monte Carlo Estimate of �

Monte Carlo methods are a widely used group of numerical methods, which involve sampling
from random numbers. The Monte Carlo method can be used to solve otherwise intractable
problems. Since Monte Carlo applications are based on random events a large number of
such events must typically be processed to ensure a realistic result. The Monte Carlo method
we use here, Monte Carlo � , is utterly uninteresting in and of itself but exhibits the same
behavior as real world Monte Carlo applications as well as the related Las Vegas methods
and random walks, all of which are frequently used in physics, biology and finance.

The Monte Carlo method of estimating � uses a unitary circle, inscribed inside a square.
The application repeatedly picks a random point within the square, the fraction of the points
that are inside the unitary circle then represents �

���
, this is sketched in figure 5.

The Monte Carlo approach depends heavily on a good random number generator and
a large number of guesses, still it will never provide a particular good estimate of � . The
sequential solution picks all the numbers and estimates � using a single processor. The
parallel solution distributes the required samples amongst the nodes. Each node spawns one
thread per processor and each thread test a fraction of the tests that the node is responsible
for.

The Monte Carlo estimation of � is embarrassingly parallel, and is included as a sanity-
check, if we do not get perfect speedup on this application there is an error somewhere3. Since
the problem is embarrassingly parallel it only include one protected function call amongst the
threads in a single node to collect the total circle hits on the node and a single synchronous
MPI operation to collect the global number of circle hits.

4.2 Traveling Salesman Problem

The Traveling Salesman Problem, TSP, is a classic representative for the class of global
optimization problems. The TSP solution we use in this work is a depth-first branch-and-
bound algorithm which makes the parallel version different from the other applications we
use by the fact that a static division of the work would result in a highly unbalanced execution.

3The Monte Carlo � test actually detected various problem during the testing

APPENDIX A. PAPERS

Paper 3 118 CPA 2001, pages 129-147

136 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

1

2

3 4

34

3

2 4

24

4

2 3

23

Figure 6: A complete TSP search-tree for a four city problem

Red Point

Black Point

Figure 7: Red-Black Successive Over-Relaxation

Thus the parallel TSP is implemented as a bag-of-tasks application, a paradigm that does not
come natural to the SPMD programming paradigm that MPI is designed around.

The parallel TSP is implemented as a global master process and set of worker-threads
on each node, each thread communicates with the master to retrieve jobs and submit results.
A job is represented as a set of cities that have already been placed and a set that need
to be placed, i.e. a sub-tree. Each job that is sent from the master has the length of the
shortest known route piggy-backed and each node maintains one shared instance of the bound
value. Since the application is so highly unbalanced in the workload this application use
synchronous messages for communication. A scheme for applying asynchronous messages
could be developed, but two things talk against it, first of all an asynchronous scheme would
place an extra job at each node, which is likely to increase the load-unbalance. The second
reason why asynchronous messages are unfavorable is that the messages a quite small and
the additional overhead of asynchronous messages, as show in figure 3, are very likely to be
bigger that the potential gain from asynchronicity.

4.3 SOR

Successive Over-Relaxation, SOR, is a frequently used technique for solving very large sys-
tems of partial differential equations by successive approximations. The general idea is to
approximate each element in a matrix to its neighbors until the sum of all changes within one
iteration converges below a given value.

The Red-Black checker pointing version of SOR, shown in figure 7, returns identical re-
sults for the same system of equations; independent of the actual computing environment,
while at the same time providing sufficient parallelism that real speedup can be achieved.
With Red-Black checker pointing, the equation system is divided into alternating red and
black points in a chess-board fashion. Updating a red point depends only on black neigh-
boring points and vice versa. Using this, an algorithm is derived where each worker-process
updates all its red points and then exchanges red border point values with its neighbors. Each
worker then updates its black points and repeats the communication for the black points.
At the end of each iteration the global change in the system is calculated and the process

Paper 3 119 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 137

do {
if THREAD_ID=0 then {
ASYNC_SEND(top and bottom black rows)
ASYNC_RECV(top and bottom neighbor black rows)

}
UPDATE(red points)
if THREAD_ID=0 then {
ASYNC_SEND_FINISH
ASYNC_RECV_FINISH
UPDATE(top and bottom red points)

}
thread_barrier() //All threads must have finished red-update
if THREAD_ID=0 then {
ASYNC_SEND(top and bottom red rows)
ASYNC_RECV(top and bottom neighbor red rows)

}
UPDATE(black points)
if THREAD_ID=0 then {
ASYNC_SEND_FINISH
ASYNC_RECV_FINISH
UPDATE(top and bottom black points)

}
thread_sum(change) //Collect the change from all threads
if THREAD_ID=0 then MPI_SUM(change) //Find the global change
thread_update(change) //Tell all threads the global change

} while (change>epsilon)

Figure 8: CLUMPS version of Red-Black Successive Over-Relaxation

Worker
 1

W
or

ke
r

1

W

 0

=

Worker
 0

Worker
 2

Worker
 3

W

 1

W

 2

W

 3

Figure 9: Matrix tiling

continues until the change in the system is below a given threshold.
The CLUMPS version divides the system into a set of static blocks which are divided

amongst the nodes, each node subsequently divides its dataset between the CPUs on the
node. Since LAM-MPI is not thread-safe one thread is responsible for communication and
updating the upper-most and lower-most data-rows in the dataset, in addition to a portion
of the dataset similar to the other threads, this thread also represents the node in the global
reduction to find the total change in the system, see pseudo-code in figure 8. An iteration
then includes two asynchronous send operations and two asynchronous receives as well as
one synchronous global reduction operation.

4.4 Matrix Multiplication

Matrix multiplication is frequently used in scientific applications. Although several concur-
rent and parallel algorithms exist that requires extensive communication during the calcu-
lation, an alternative approach is to coarsely distribute the matrixes amongst the nodes and
broadcast one matrix to all nodes one block at a time as shown figure 9. This approach is

APPENDIX A. PAPERS

Paper 3 120 CPA 2001, pages 129-147

138 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

in parallel C = 0
for i = 0;N-1{

broadcast A*i within rows
broadcast Bi* within columns
in parallel C = C + (A*i)(Bi*)

}

Figure 10: PBLAS Matrix multiplication

similar to the one used in PBLAS [11]. The generic solution in [11] is based on the following
matrix decomposition:

��� ������
���	��

�
�

...��

���
��� �

����������� �	� � � ������� � �
���� �����
 ������

���
��
���

...�!
����
��� �

������� ��� �
� � ���"�#��� � �

���
���$� (1)

 �#���
 ������

� �
����
����

�

����

���
...�
����
���

��� ���

������� � �
���� ��� � �

��� ��� �"����� �
���� ���

��� ���$�
We have chosen a less generic, but more efficient algorithm where we maintain both A and

B in distributed state and thus only need to broadcast one matrix amongst the other processes.
In addition the matrix is not broadcast column by column, but the entire block at once. Each
node uses an efficient sub-blocked matrix-multiplication to take advantage of cache-memory.
The MPI solution results in one synchronous broadcast per node in the overall execution. The
broadcasts are rather large however and will stress the MPI layer significantly.

4.5 WATOR

The WAter TORus world, WATOR, is a classic discrete event simulation[12], and while it
provides valuable information in itself we chose to introduce it here for reasons similar to
the Monte Carlo � example, namely that it is simple and easy to understand, while still being
typical for the class of applications that it represents. Discrete event simulations are widely
used to model everything from digital systems to financial forecasts, logistics and traffic
simulations.

WATOR is the simulation of a very special world, first of all the planet is not a sphere as
most planets we know, rather the planet is shaped as a doughnut, or a torus, which greatly
simplifies mapping the world into discrete blocks. As the whole surface of WATOR is cov-
ered with water there are only two types of life, which we are interested in, fish and sharks.

Fish are simple organisms that move around at random, and at some point when a fish
comes of age is will have two children and die itself. A fish can move into any of its neighbor-
ing eight squares, given that the square is empty, if all eight neighboring squares are occupied

Paper 3 121 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 139

zero'ed Z
er

o

B

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

Figure 11: Gaussian Elimination

the fish remains in place. At any discrete time step a fish becomes one time-unit older, and
once it has come of age it will split into two fish, one of which will go to a neighbor cell
while the other stays in the cell where it was born, both new fish is age zero.

Sharks are similar simple creatures, however sharks also need to eat fish in order to sur-
vive. At each time-step a shark moves to a random neighboring cell which holds a fish, if
there are no fish which neighbors the shark it moves to a random neighboring cell and in-
creases its hunger index, if the hunger index reaches a starvation limit the shark dies, when
the shark eats it resets the hunger index to zero. Similar to fish, sharks will at some point get
old enough to breed and once this age is reached the shark is replaces by two new sharks,
both with age and hunger index zero.

Thus the simulation of one time-step consists of two steps, first all fish are moved, then
the sharks, each step issues four asynchronous MPI operations, two send and tworeceive.
The randomness of the application allows us to ignore further synchronization issues.

4.6 Gaussian Elimination

Gaussian elimination seek to solve large systems of linear equations, by performing a LU
(Lower Upper) restructuring of the system matrix and back-substitution of the parameters
that were used for achieving the LU version of the system-matrix. Figure 11 show how each
line is transformed into its LU shape by zeroing the left-most entry and dividing all lower
rows by the row that was finished. There is a twist however, since the limited numerical
representation in the processor can destroy the data if the divisor is close to zero. Because of
this we need to perform a partial pivot on the remaining rows for each iteration such that the
largest possible divisor is used.

To perform the LU decomposition in parallel we basically have two choices, either divide
the matrix by rows or by columns. If we divide the system by columns then one processor
alone can decide the pivot row and broadcast the pivot to all processors. After this an all-
to-all communication phase is needed to create a copy of the active row at all nodes. If the
matrix is distributed row-wise then an actual election of the best pivot value is needed. After
the election the process that won the election broadcasts its row.

We chose the row-wise solution in order to reduce the large messages to a one-to-all
broadcast. Including the partial pivot this means that each iteration use two synchronous
group operations, one election of the best divisor and a broadcast of the ’winning’ row.

5 Performance

To compare the performance of 2, 4, and 8 way SMPs, we have run the application from
section 4 on three different clusters that all have a total of 32 CPUs, distributed over six-

APPENDIX A. PAPERS

Paper 3 122 CPA 2001, pages 129-147

140 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

Dual Quad Oct
CPUs per node 2 4 8
Bus width 8B 8B 8B
Mem. Busses 1 1 2
CPU type PIII PPro PPro
2’ level cache 512KB 512KB 1MB
CPU speed 450MHz 166MHz 200MHz
Memory per node 256MB 128MB 2048MB
Bus Speed 100MHz 66MHz 66MHz
Eff. Bandwidth 0.89B/cycle 0.80B/cycle See figure 12
Interconnect Fast Ether Fast Ether 100VG

Table 3: Architectural specifications of the three clusters used for the experiments

teen, eight and four nodes respectively. 100Mb networks interconnect the nodes in all three
clusters.

Since our primary concern in this work is scalability we present performance as speedup,
which will be presented as CPU utilization. The use of speedup as a measure of success is
heavily debated but while the information that can be extracted from speedup numbers may
be limited, it fits our purpose well. First of all, since the cluster-nodes differ in more ways
than simply SMP-size other measures than relative scalability are unachievable. Secondly,
since scalability is the primary topic of investigation in our work, achieved speedup is the
parameter we are interested in.

5.1 Experiment Design

All experiments reported on in this paper were done using three clusters. The first cluster,
Dual, is comprised of sixteen ”no name” PCs, all equipped with two 450MHz Pentium III
processors and the Intel BX chipset. Each PC has 256MB main memory, and a single 33MHz,
32-bit PCI bus. The second level cache-size is 512KB per processor.

The second cluster, Quad, is comprised of four HP LX-Pro Net-servers, each with four
166MHz Pentium Pro processors. Each server has 128MB main memory, and dual peer
33MHz, 32 bit PCI buses. The level 2 cache size is 512KB per processor. These machines
belong to the first generation of Intel’s SHV machines.

The third cluster, Oct, is comprised of four HP Netserver LXr Pro 8 servers, that all have
eight 200MHz Pentium Pro processors. Each server has 2GB RAM and dual peer 33MHz,
32 bit PCI buses. The 2. level cache size is 1MB.

The Dual and Quad clusters used the Trendnet TE100-PCIA (DEC4 Tulip 21143 chip set)
100 Mb/s network interface cards (NIC) connected to a switch. The network interface cards
(NIC) were on PCI bus no. 0 on the Quad cluster. The Oct cluster is interconnected with a
HP 100VG 100Mb/s network, also on PCI bus no. 0. The 100VG network is connected via a
100VG hub. The complete specifications for all three clusters are summarized in table 3.

The operating system on all clusters is Linux v. 2.2.14, and LAM-MPI 6.5 is used as the
MPI layer. All the applications were compiled with gcc 2.96.2 and optimization-flag ’-O3’.
Time is measured with the Linux gettimeofday system call.

In order to test the performance under varying problem sizes, the applications have been
run with three different datasets; tiny, medium and large. The datasets corresponds to 10, 100

4Now Intel, but most literature references work with the original DEC chipset

Paper 3 123 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 141

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 10 20 30 40 50 60 70 80 90 100

%Cross bus access

E
ffe

ct
iv

e
ba

nd
w

id
th

 p
er

 C
P

U
 c

yc
le

 (
B

)

Figure 12: Effective available bandwidth per CPU per cycle in an eight CPU machine as a function of cross-bus
accesses

MC- � Mat. Mul. SOR TSP WATOR Gauss
Tiny 25E6 darts 640x640 1000 14 cities 250x250, 100 itt 900
Medium 25E7 darts 1536x1536 3000 16 cities 800x800, 100 itt 1900
Large 25E8 darts 3072x3072 5000 17 cities 2600x2600, 100 itt 4000

Table 4: Applications and problem sizes used to measure the performance of 2-4-8 way SMPs

and 10005 seconds sequential runtime on the fastest CPUs, the 450MHz PIII processors in
the dual-CPU cluster. Table 4 sums up the applications and the dataset parameters that have
been chosen for each.

5.2 Monte Carlo �

The performance of the Monte Carlo application in figure 13 does not provide much infor-
mation to us. All systems achieve close to perfect speedup even with the tiny problem-size.
This was expected and the result validates that all the processors do in fact provide identical
performance. The conclusion one may draw from the experiment is that if an application is
embarrassingly parallel, there is no reason to invest in expensive SMP hardware; this conclu-
sion is hardly surprising.

In order to achieve the expected result however, we had to replace the libc random
function by a custom pseudo-random generator, since the use of the library version elimi-
nated all parallelism within one node. In fact even a single threaded version is significantly
slower than a standard sequential version, due to mutual-exclusion protection of the random
function.

5.3 TSP

The TSP application was rather hard to fit into the timing parameters and required manual
layout of the sequence of cities in the list to fit the desired runtime. While this dictates the
execution time of the application it does not influence the parallelism in the execution.

Since TSP is both threaded and tasked, there are two features in the implementation that
work against each other; on one hand more CPUs mean that the bound variable on any node
is updated faster and thus reduces the work that need to be executed on that node. However,

5The large problem for SOR is not really 1000 seconds, but the largest we can do in 128MB

APPENDIX A. PAPERS

Paper 3 124 CPA 2001, pages 129-147

142 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

0,98

0,99

1,00

1,01

2 4 8 16 32

CPUs

U
til

iz
at

io
n

Tiny/Dual
Tiny/Quad
Tiny/Oct
Mid/Dual
Mid/Quad
Mid/Oct
Large/Dual
Large/Quad
Large/Oct

Figure 13: Performance of the Embarrassingly Parallel Application Monte Carlo �

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

2 4 8 16 32
CPUs

U
til

iz
at

io
n

Tiny/Dual Tiny/Quad Tiny/Oct
Mid/Dual Mid/Quad Mid/Oct
Large/Dual Large/Quad Large/Oct

Figure 14: Performance of the Traveling Salesman Problem

more CPUs also increase the probability for contention on access to the MPI layer. The
impact of the two elements is clearly seen in figure 14. The tiny portion benefits from faster
updates of the bound variable, e.g. more CPUs per node, while the larger problems benefit
more from lower contention on the network interface and favor the dual-processor cluster
over the four- and eight-way systems.

5.4 SOR

The four-way servers are quite old and as a result have very little memory, which limits the
size of the SOR application to a maximum of 5000x5000, floats in the large dataset. This
results in a sequential execution time of only 250 seconds on the dual nodes, far from the
target of 1000 seconds. Thus, this is not really a huge data-set per se.

SOR performance is quite similar on all three architectures as shown in figure 15. The
dual-processor cluster has similar performance to the others up until 8 nodes while at 16
nodes it is 15% slower with the tiny test-set and 5% slower on the largest problem. The
difference in effective bandwidth does not shine through because SOR is so regular that
out-of-order execution, memory perfecting and cache locality is quite effective at hiding the
memory latency. As figure 4 show the number of nodes is a significant parameter in the time
a global reduction takes and this becomes obvious as the dual cluster falls behind the other
two. The cross bus exchange of data in the eight-way nodes is visible too. The result is that
the eight-way cluster is slightly slower than the four-way although the measurements in table

Paper 3 125 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 143

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

2 4 8 16 32

CPUs

U
til

iz
at

io
n

Tiny/Dual
Tiny/Quad
Tiny/Oct
Mid/Dual
Mid/Quad
Mid/Oct
Large/Dual
Large/Quad
Large/Oct

Figure 15: Performance of Successive Over Relaxation

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

2 4 8 16 32

CPUs

U
til

iz
at

io
n

Tiny/Dual
Tiny/Quad
Tiny/Oct
Mid/Dual
Mid/Quad
Mid/Oct
Large/Dual
Large/Quad
Large/Oct

Figure 16: Performance of Matrix Multiplication

2 would indicate that it should be vice versa.

5.5 Matrix Multiplication

Since the matrix-multiplication algorithm we use is based on large broadcasts, it is not sur-
prising that we see a clear advantage of larger node-sizes, that is, fewer nodes in the system.
The pattern is clear over all problem-sizes and numbers of CPUs in the cluster. The result is
that using 32 CPUs on the huge problem-set, as shown in figure 16, the eight-way CLUMPS
is 34% faster than the two-way system.

The advantage of eight-way nodes over four-way nodes is not as large as table 2 would
indicate. This is because once the data-block is received on the node, it still need to be
communicated across the memory-bus connection, in effect making the cross bus rate close
to 50%, which corresponds to an effective bandwidth of 0.5B/cycle. The success of the cache-
efficient block-multiplication algorithm is evident in that the higher effective bandwidth of
the two-way system does not outweigh the higher cost of broadcasting with more nodes.

5.6 WATOR

The WATOR application is the application that provides the highest level of asynchrony, since
this application only uses non-blocking communication. The consequence of the asynchrony
is that with the medium and large datasets the communication cost can be hidden quite well

APPENDIX A. PAPERS

Paper 3 126 CPA 2001, pages 129-147

144 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

2 4 8 16 32

CPUs

U
til

iz
at

io
n

Tiny/Dual
Tiny/Quad
Tiny/Oct
Mid/Dual
Mid/Quad
Mid/Oct
Large/Dual
Large/Quad
Large/Oct

Figure 17: Performance of the WAter TORus simulation

and we achieve close to linear speedup and similar performance for all three systems. The
small problem-set is not enough to hide the latency when we use more than a few nodes.

The performance of WATOR on our CLUMPS in figure 17 includes an interesting point
on the choice of nodes size, since the four-way system consistently outperforms the eight-
way CLUMP. While the difference is small, ranging from 10% on the small data-set to only
1% on the large set, it is consistent and except on the large data-set, it is also statistically
significant. This behavior is the result of data-pushing vs. -pulling. Between nodes data is
exchanged via MPI, which is slow but executes asynchronously, i.e. when the thread needs
the data, it is likely to be ready. Within nodes the exchange scenario is vice versa; here the
threads wait for the neighboring thread to finish, and only after the data is ready can the
receiver start reading the data. In the eight-way system this means crossing the inter bus
connection for two of the processors. While the waiting period is likely to be zero,6 the data
transfer still cannot begin before the data is needed.

A similar pattern is also seen in the SOR application, which is similar to the WATOR
access pattern. However the global reduction in the SOR code favors the eight-way system
and returns in less clear results.

5.7 Gausssian Elimination

Overall the Gaussian elimination provides much worse speedup than the other applications.
This is no surprise since the parallel version is based on two synchronous MPI operations
per iteration. It is interesting to see though that with 32 CPUs and solving the largest sys-
tem, the higher available bandwidth provides better performance for the dual-processor based
CLUMPS, which is 11% faster than the eight-way system and 33% faster then the four-way.
Since there is little cross-bus communication the eight-way system does not suffer from low-
ered bandwidth and instead benefits from fewer nodes when performing the rather costly
synchronous operations.

The implementation of the Gaussian elimination is simple and the performance could
be improved by adding an extra thread, which performs the MPI operations while the other
threads perform the calculations. This kind of hand-coded asynchrony would only increase
the advantage of the two-processor CLUMPS since this is the architecture that suffers the
most under the high cost of group operations.

6Almost certainly in fact, however the race-condition is handled in the code

Paper 3 127 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 145

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

2 4 8 16 32

CPUs

U
til

iz
at

io
n

Tiny/Dual
Tiny/Quad
Tiny/Oct
Mid/Dual
Mid/Quad
Mid/Oct
Large/Dual
Large/Quad
Large/Oct

Figure 18: Performance of Gaussian Elimination

Favors small nodes Favors large nodes Indifferent
MC- � X
Mat. Mul. X
SOR X
TSP X
WATOR X
Gauss X

Table 5: Summary of the applications and their favored node-size with 32 CPUs and the large data-set

5.8 Performance Summary

There is no one truth as to whether CLUMPS should use small or large nodes, as table 5
shows. It is clear, however, that there are applications that clearly favor larger nodes, such as
the chosen matrix multiplication algorithm, and some that favor smaller nodes, most signif-
icantly the Gaussian elimination. Since the matrix multiplication is the strongest argument
for large nodes, and given that the chosen algorithm is quite naive, the arguments for large
nodes are quite weak.

6 Related Work

CLUMP architectures have been around for a while, but few in-depth investigations have
been published.

In [13] Takahashi et al. design and implement a special CLUMP version of MPI, MPICH-
PM/CLUMP. The MPI version uses Myrinet [2] and implements a full zero-copy protocol.
The work compares the performance of the NAS benchmark suite on a uni-processor and a
dual-processor cluster and concludes that the CLUMP machine is as much as 30% slower
than, and never better than, the uni-processor version. Since the goal of this work is to build
an efficient SMP MPI implementation, the dual-cluster is treated as uni-processors, e.g. the
applications them-selves are not threaded.

Another angle is found in [14], where the authors investigate the performance of sparse
matrix systems on shared memory, distributed memory and hybrid architectures. Here the
authors find a small advantage of mixing shared memory and message passing programming.

More recently [15] compares Discrete Element Modelling code on a CLUMP using MPI

APPENDIX A. PAPERS

Paper 3 128 CPA 2001, pages 129-147

146 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

and OpenMP and concludes that MPI is favorable to OpenMP on a CLUMPS, but not on a
single SMP node.

7 Conclusions

Comparing CLUMPS architectures is not straightforward, since we cannot compare systems
that differ only in the number of CPUs per node. However, it is still evident that increased
node-size comes at a price, and that this price is closer to 500% than to 50% extra cost per
CPU, when comparing dual and eight-way nodes.

Initial micro-benchmarks show a huge difference between synchronous and asynchronous
point-to-point operations. More surprisingly, a significant dependence on the number of
nodes in the system is seen in group-operations such as broadcasts. This is interesting given
that the nodes are interconnected by a media that supports broadcasts.

Our experiments show that the benefit of higher order nodes depends heavily on the
application nature; embarrassingly parallel applications like the Monte Carlo � and highly
asynchronous applications like WATOR shows no performance difference at all, while appli-
cations that depend on synchronous MPI operations such as SOR and Matrix Multiplication
show an advantage of more CPUs per node, i.e. fewer nodes in the system. A global opti-
mization problem, TSP, shows an expected advantage of larger node-size with small prob-
lems since these are not bandwidth dependent and more threads may lower the total work
that has been performed. With large problem-sets the dual-processor system outperforms the
four- and eight-way systems because of the lower contention on the network interface. The
most significant advantage of smaller node-size is in applications that require more processor-
memory bandwidth, such as Gaussian elimination, where we see as much as a 33% advantage
of two-way nodes over four-way, and 11% over the eight-way system, with large problems.
This is in spite of the fact that Gaussian elimination is based purely on synchronous MPI
operations. Small equation-systems show an advantage of fewer nodes, with a 65% perfor-
mance advantage of the eight-way system over the cluster based on dual-processors.

If we focus on the large problem sets, which after all are the main target for high-
performance clusters, the results show two applications that favor large nodes, two that fa-
vors small nodes and two that are neutral towards node-size. Considering the price-premium
on larger CLUMPS the straightforward conclusion is that larger nodes are not worthwhile,
though there are advantages to be had on certain applications and for small problem-sets.

Acknowledgements

The authors would like to thank Dr. Joan Boyar for valuable input for the final version of this
paper.

References

[1] Genetic-Programming.com. 1,000-pentium beowulf-style cluster computer for genetic programming.
http://www.genetic-programming.com/machine1000.html, 1999.

[2] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su. Myrinet: A gigabit-per-
second local area network. IEEE Micro, 15(1):29–38, Feb 1995.

[3] K. Alnaes, E.H. Kristiansen, D.B. Gustavson, and D.V. James. Scalable coherent interface. In CompEuro
90, 1990.

[4] Giganet. Giganet clan.

Paper 3 129 CPA 2001, pages 129-147

B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components 147

[5] G. Ethernliance. Gigabit ethernet: Accelerating the standard for speed, 1999.

[6] David W. Walker. The design of a standard message passing interface for distributed memory concurrent
computers. Parallel Computing, 20(4):657–673, March 1994.

[7] Steven S. Lumetta, Alan M. Mainwaring, and David E. Culler. Multi-protocol active messages on a cluster
of smp’s. In Proceedings of the 1997 ACM/IEEE SC97 Conference, pages 15–21, San Jose California,
USA., November 1997. ACM Press and IEEE.

[8] A. D. Birrel and B. Nelson. Implementing remote procedure calls. ACM Transactions on Computer
Systems, pages 39–59, Feb 1984.

[9] Multiprocessor specification version 1.4. Technical report, Intel Corp, 1997.

[10] G. Burns, R. Daoud, , and J. Vaigl. LAM: An Open Cluster Environment for MPI. www.lam-mpi.org,
1994.

[11] Almadena Chtchelkanova, John Gunnels, Greg Morrow, James Overfelt, and Robert A. van de Geijn.
Parallel implementation of blas: General techniques for level 3 blas. Technical report, The University of
Texas at Austin Austin, Texas 78712, 1995.

[12] A.K. Dewdney. Computer recreations. Scientific American, 250:22–34, 1984.

[13] Toshiyuki Takahashi, Francis O’Carroll, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Horoshi Harada,
Yutaka Ishikawa, and Peter H. Beckman. Implementation and evaluation of MPI on an SMP cluster. In
IPPS/SPDP Workshops, pages 1178–1192, 1999.

[14] D. O’Hallaron. Spark98: Sparse matrix kernels for shared memory and message passing systems, 1997.

[15] D. S. Henty. Performance of hybrid message-passing and shared-memory parallelism for discrete element
modeling. In Supercomputing, 2000.

APPENDIX A. PAPERS

Paper 3 130 CPA 2001, pages 129-147

148 B. Vinter et al. / Using Two-, Four- and Eight-Way Multiprocessors as Cluster Components

Paper 3 131 CPA 2001, pages 129-147

APPENDIX A. PAPERS

Paper 3 132 CPA 2001, pages 129-147

A.4 Extending the Applicability of software DSM by
adding user redefinable memory semantics

Paper 4 133 ParCo 2001, pages 518-525

EXTENDING THE APPLICABILITY OF SOFTWARE DSM BY ADDING
USER REDEFINABLE MEMORY SEMANTICS

B VINTER
��� �

, O J ANSHUS
�
,T LARSEN

�
, J M BJØRNDALEN

�

Department of Mathematics and Computer Science
��� �

,
University of Southern Denmark

Department of Computer Science
�
,

University of Tromsø

This work seeks to extend the applicability of distributed shared memory (DSM) systems
by suggesting and testing an extended functionality "User Redefinable Memory Semantics"
(URMS) that may be added to most DSM systems. We show how URMS is included with one
DSM system, PastSet, and sketch the applicability and ease of use of URMS for a set of current
applications. Finally, a micro-benchmark of URMS on PastSet, show performance gains of 79
times over a naive DSM model, 48 times over a tuple based DSM model and 83% over MPI.

1 Introduction

Software distributed shared memory (SW-DSM) systems have existed for about 15
years, but have yet to achieve widespread application by programmers outside of the
DSM research community. One reason contributing to this may be that DSM systems
are usually demonstrated and tested only for a limited set of high-performance com-
puting test applications; typically a subset of the SPLASH

�
benchmark suite. These

test applications provide a thorough test of specific performance limits of DSM sys-
tems, but fails to demonstrate the applicability of DSM outside high-performance
computing.

This work proposes an extended DSM functionality, User Redefinable Memory
Semantics (URMS), to simplify the use of DSM by programmers. We demonstrate
how URMS is added to one SW-DSM system, PastSet, as well as the performance
impact of URMS on PastSet, and show how URMS may be added to other types of
SW-DSM.

2 User Redefinable Memory Semantics

To address some of the performance problems for DSM systems, we propose the
concept of "User Redefinable Memory Semantics" (URMS). The principle behind
URMS is to offer users the opportunity to redefine the semantics of any or all mem-
ory operations for memory areas that are specified by the user. The redefined seman-
tics are specified by providing code that should be executed instead of the memory

URMS: submitted to ParCo on October 2, 2002 1

APPENDIX A. PAPERS

Paper 4 134 ParCo 2001, pages 518-525

operation. The specification of the redefinition may also include initialization code
that is applied once to initialize the specified memory area. In effect, the redefined
memory operation semantics will be applied for memory operations on the specified
areas only.

For example, a memory location may be redefined to accumulate a global sum
of partial sums that are produced by independent processes. For that location, the
STORE operation would be redefined according to code that stores the aggregate
sum, and keeps track of a complition criterion that may be realized as an access
count, process list, or by other means. The LOAD operation is redefined to return
the aggregate sum only after the reduction has completed, in effect blocking until
the termination criterion used for the STORE operation is satisfied. This approach
makes it very simple for programmers to overlap communication and calculation if
there is any work that may be done between the partial sum is ready and the global
sum is needed. For the variations of this example that are to follow, we will consider
only the limited case where a given number of contributions define the completion
of an operation.

Basically URMS may provide a way to introduce well known message-passing
techniques to DSM systems, while preserving the illusion that the programmer is us-
ing a shared memory computer. We hope that URMS based systems will be simpler
to program and at the same time provide superior performance because the URMS
memory cells may be handled in an optimized way by the runtime environment.

2.1 Adding URMS functionality to DSM systems

In this section we sketch how URMS functionality may be added to different vari-
ations of distributed shared memory: Region Based DSM, Shared Virtual Memory
based systems, Object based DSM, and Structured DSM systems.

Region Based DSM systems provide differing memory models, e.g. whether
a region constitutes a single variable, a fixed size block, or a variable size
block. Further, the transparency of the systems varies from full transparency to
no transparency. We will illustrate how URMS may be implemented for a vari-
able region size system with little transparency, such as CRL

�

. C Region Li-
brary, CRL, is based on program information to maintain the distributed shared
memory. Programmers explicitly associate a region with a block of memory,
and state when this memory is used with the instructions, rgn_start_read,
rgn_end_read, rgn_start_write and rgn_end_write. Before regions
can be addressed they must be created, and it is straightforward to add URMS
functionality at this stage. Instead of a rgn_create(size) a program-
mer could use a rgn_create(size, operation, parameters)., e.g.
rgn_create(sizeof(double), REDUCE_SUM, WORKERS) would create

URMS: submitted to ParCo on October 2, 2002 2

Paper 4 135 ParCo 2001, pages 518-525

a new region which is a global sum from WORKERS processes. When a pro-
cess issues a rgn_start_write on the created region, the value that is writ-
ten is automatically added to a global sum, and a rgn_start_read will simply
block until all WORKERS processes has issued their rgn_end_write on the re-
gion. Further, the global sum can be distributed to all participants before they issue
rgn_start_read operations, which will remove the overhead on fetching the
data.

Shared Virtual Memory (SVM) systems, such as Shrimp-SVM
�

, base the DSM
system on the page size of the native architecture, and use the paging mechanism to
trap memory operations that cannot be serviced, e.g. a read to an address that is not
present in local memory, or a write to a memory cell that is either replicated on other
nodes or not present. The handling of URMS may be easily added to the exception
handling of SVM page faults. For a global reduction operation, a SVM system can
incorporate a specific data type for reduction variables. STORE to variables of this
type causes exceptions that the runtime system may capture and add to the reduc-
tion. Loads from reduction variables are stalled if the reduction is not yet finished;
otherwise the result is available and the application may continue un-delayed. If the
SVM system supports shared writes by multiple processes, the URMS functionality
may easily be added to the write assembly process.

Object Based DSM, like Orca
�

is perhaps the least obvious candidate for URMS,
since similar functionality may be achieved on user level, via a carefully considered
library. Adding URMS to the runtime system is extremely easy however, and may
result in improved performance compared to a user level implementation. Since most
object based DSM systems are closely integrated with the programming language, it
is straightforward to add keywords to identify URMS data: e.g. double sum = new
GLOBAL_SUM(WORKERS), will associate the variable sum with a global sum
reduction among WORKERS. Rather than maintaining coherent replicas of sum,
writes to sum are identified at compile time and converted into a global reduction
participation call. During execution, reads of sum may be blocked until the reduction
has completed.

Structured DSM cover a set of slightly similar DSM models that model memory
in some structured way, such as Linda

�

. Linda models memory as an associatively
addressed tuple space. Processes can add, read or retract process tuples and data tu-
ples from tuple space. Adding URMS to a tuple space model is simple and probably
represents the system with least intrusion to the given DSM model. A generic tuple
is made up of a flag followed by a set of data entities, e.g. ("P", double). The model
can easily be extended by a set of flags, which relates to memory semantics. In
this manner the global reduction can be handled by issuing out("GLOBAL_SUM",
"group-flag", int WORKERS, double data), which is captured by the runtime system.
Only as WORKERS tuples matching the group-flag are placed in tuple space, will

URMS: submitted to ParCo on October 2, 2002 3

APPENDIX A. PAPERS

Paper 4 136 ParCo 2001, pages 518-525

the runtime system make available WORKERS tuples of the template ("group-flag",
double data) where the data is the resulting sum.

3 Applications

Identifying useful URMS functionalities will be an application driven investigation;
we have identified several potentially useful functions. One class can be taken di-
rectly from the reductions that are supported by MPI, such as global-sum, -product,
-min and -max.

The appearance of very high performance WAN’s have spawned a large interest
in meta- computing, i.e. the idea of a large computational grid

�

. A common feature
in the grid-middleware projects is the ability to read a file from a remote server. How-
ever, scientific datasets are often very large, from multiple terabytes to pentabytes of
data. Most often the user does not wish, nor possess the computing power, to pro-
cess all the data. Instead, the application work only on data that fit a predefined
criterion, thus transferring the complete dataset over a WAN, only to filter the data
locally. If we replace the standard grid-model with DSM, the natural solution is to
spawn a thread that runs on the data-server, which then filters the data at the source
and only transfers the specific data the user is actually going to use. However, while
any meta-computing middleware requires the servers to place some trust in verified
clients, the full flexibility that comes with allowing remote clients to start threads, is
unlikely to be accepted by those that hold the servers. Alternatively a DSM system,
which supports URMS, may provide a solution that is just as simple to use for the
programmer while preserving the control at the server-side. Data may be mapped in
the users memory as available, and then accessed using the underlying DSM system.
The filtering of data may be done by a URMS function that processes a logic-based
query, which the user specifies. This way the server maintains full control over both
the instructions that are executed and the compute-time a user may consume.

In general URMS may prove to be a convenient abstraction to eliminate explicit
communication in applications that use streams of data, such as streaming video, net-
chat applications etc. URMS can eliminate stream operations by basically replacing
sockets with URMS memory cells, thus reading from a stream becomes reading from
an address and vice versa for writing. In many ways this translates into the difference
between accessing port-mapped and memory mapped devices in a computer system,
anybody that have written operating systems knows that memory mapped devices
are far easier to program than port-mapped devices.

This approach could ease programming in many distributed fields and given a
sensible naming convention within the DSM system, could hide most of the distribu-
tion aspects altogether. Servers for mobile agents can provide a single address where
incoming agents are copied to for migration, which reduces the migration problem

URMS: submitted to ParCo on October 2, 2002 4

Paper 4 137 ParCo 2001, pages 518-525

to a memory move.
URMS may also allow large server applications, such as web servers or database

servers to execute on DSM based clusters, by modeling request queues as URMS
memory cells, e.g. adding a request to the queue is done by writing the request to
an address. The URMS functionality can do simple load-balancing, or it may keep a
history of the requests passed to the individual nodes and attempt to achieve a better
utilization of cached data.

4 Adding URMS to a DSM system

To demonstrate our idea we have added URMS to our own structured DSM system,
PastSet

�

. PastSet is similar to Linda in its perception of memory, but has a distinctly
different execution model. Tuples can be stored, read, and manipulated in PastSet
memory. Tuples are generated dynamically based on tuple templates that may also
be generated dynamically. The collection of all tuples in PastSet based on a unique
template is denoted an element of PastSet. Elements are unique, each corresponding
to a unique template. A move operator (Mv) writes tuples to PastSet memory and an
observe operation (Ob) specifies a template and reads a matching tuple.

URMS functionality has been added to PastSet, we call the URMS framework
X-functions, which are pairs of functions, one associated with writing and one with
reading. In this way tuples may be manipulated as they are stored and read. In
the current implementation only one X-function pair can be associated with each
element at any time.

We have implemented X-functions that do generic pattern matching as well as
global operations as used in MPI

�

. A global reduction works as follows, the first time
the element is accessed the desired global reduction, e.g. sum, and the number of par-
ticipants in the reduction is specified. When the reduction takes place all processes
will simply write(Mv) their tuple to the element and read(Ob) the resulting sum, the
reads automatically block until all participants have written their contribution to the
global sum. We are experimenting with more advanced X-functions, including an
X-function that compresses bitmaps on write and decompresses on read.

4.1 Micro benchmark

To illustrate that one may achieve performance improvement of URMS over conven-
tional DSM solutions we show the time taken for a global reduction of an integer for
a set of DSM approaches. To further emphasize on scalability we show the progres-
sive performance on one through 32 participants. Our test bench is a cluster of eight
four-way Pentium Pro nodes interconnected by a 100 Mb/sec switched FastEther net-
work. We choose a global reduction over a full application, even though the usability

URMS: submitted to ParCo on October 2, 2002 5

APPENDIX A. PAPERS

Paper 4 138 ParCo 2001, pages 518-525

Ob(semaphore);
Ob(counter); counter++;
Ob(value); value+=local;
if(counter==workers){

result=value;
Mv(result);
counter=0;
Mv(counter);
value=0;
Mv(value);
Mv(semaphore);

} else {
Mv(value);
Mv(counter);
Mv(semaphore);
Ob(result);

}

Ob(counter, value);
counter++;
value+=local;
if(counter==workers){

result=value;
Mv(result);
counter=0;
value=0;
Mv(counter, value);

} else {
Mv(counter, value);
Ob(result);

}

Mv(local);
Ob(result);

Figure 1. Global reduction using std. memory model, tuples and URMS.

of global reductions is limited to dusty-deck type applications, which is not neces-
sarily the most likely use of URMS. However the global reduction is simple, widely
known and allows us to perform simple performance comparisons. The global re-
duction is implemented in three versions, one that treats memory in a conventional
way, one that utilizes the tuple nature of PastSet and finally one that use an URMS
implementation of global reductions, all three reduction-codes are listed in figure 1.

The first implementation models a standard memory. Because PastSet is built
on blocking tuple operations there are no other synchronization mechanisms. Instead
memory operations are used as replacements for semaphores and signals. Thus in the
code a tuple called semaphore is used for achieving mutual exclusion, and the signal
to show that the result is ready is replaced by a blocking read of the result. The
second version is the natural way to perform a global reduction with a tuple based
memory model. The reduction is performed with a tuple containing the partial sum
and a counter. This tuple migrates between all processes, the last process to add its
partial sum writes a global result, which all others read. The final version is based on
a URMS function, which performs the reduction. The URMS function simply treats
writes to this tuple as partial sums and reads as reading the global sum, thus all reads
are blocked until the global sum is ready.

The three versions have been tested on one through 32 CPUs, measurements are
taken as average over 1000 reductions and each experiment is repeated five times
for each number of processes, the resulting numbers are quite stable with a standard
derivation less than 1% at 32 processors. Figure 2 shows the latency of a global
reduction. In addition to the three memory versions we have added the time used by
LAM-MPI to perform MPI_Allreduce.

The improvement that is gained with the use of URMS is significant. With 32

URMS: submitted to ParCo on October 2, 2002 6

Paper 4 139 ParCo 2001, pages 518-525

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Processors

m
ic

ro
-s

ec
on

ds

DSM
Tuple
URMS
MPI

Figure 2. Global reduction performance using the algorithms in figure 1.

processors the URMS solution is 79 times faster than the standard memory model
and 48 times faster than the more natural tuple version. The MPI version is 83%
slower than the DSM version using URMS, since the global reduction is a generic
MPI operation this is a significant proof-of-concept for URMS.

5 Conclusions

In this work we have introduced the concept of User Redefinable Memory Semantics,
URMS. We believe that URMS is easy to use for programmers, and solves efficiently
some operations that have been documented to be costly to perform. We have shown
the benefit of adding URMS to a structured DSM system, PastSet, and have argued
why other DSM models may have even greater advantages from URMS. We are
working to identify which functionalities are useful in URMS systems. We wish
to test the URMS concept on other types of DSM, particularly region based and
page based systems, in order to test potential performance benefits with other DSM
models than the structured DSM. Using a micro-benchmark that performs a global
reduction of an integer value, we have shown that there may be as big a performance
advantage of URMS over conventional memory as 79 times and 48 times over the
natural PastSet approach. The fact that a DSM system using URMS is 83% faster
than LAM-MPI, on a global reduction micro-benchmark, indicates that future work
on URMS could be very rewarding.

URMS: submitted to ParCo on October 2, 2002 7

APPENDIX A. PAPERS

Paper 4 140 ParCo 2001, pages 518-525

References

1. Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stan-
ford parallel applications for shared-memory. Computer Architecture News,
20(1):2–12, March 1992.

2. Kirk L. Johnson, M. Frans Kaashoek, and Debroah A. Wallach. Crl: High-
performance all-software distributed shared memory. In Proceedings of the
15th SOSP, pages 213–228, December 1995.

3. R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based svm protocols for
smp clusters: Design and performance. In Proc. of the 4th IEEE Symp. on
High-Performance Computer Architecture, February 1998.

4. H. E. Bal and A. S. Tanenbaum. Orca: A language for distributed object-based
programming. SIGPLAN Notices, 25(5):17–24, May 1990.

5. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–
458, April 1989.

6. Ian Foster and Carl Kesselman. Computational grids. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure,
pages 15–51. Morgan Kaufmann, San Francisco, CA, 1999.

7. Brian Vinter, Otto J. Anshus, and Tore Larsen. Pastset - a distributed struc-
tured shared memory system. In Proc. of High Performance Computers and
Networking, Amsterdam, April 1999.

8. David W. Walker. The design of a standard message passing interface for dis-
tributed memory concurrent computers. Parallel Computing, 20(4):657–673,
March 1994.

URMS: submitted to ParCo on October 2, 2002 8

Paper 4 141 ParCo 2001, pages 518-525

APPENDIX A. PAPERS

Paper 4 142 ParCo 2001, pages 518-525

A.5 PATHS - Integrating the Principles of Method-Combination
and Remote Procedure Calls for Run-Time Con-
figuration and Tuning of High-Performance Dis-
tributed Applications

Paper 5 143 NIK 2001, pages 164-175

PATHS- IntegratingthePrinciplesof
Method-CombinationandRemoteProcedureCalls

for Run-Time ConfigurationandTuningof
High-PerformanceDistributedApplications

JohnMarkusBjørndalen
�
, OttoAnshus

�
, ToreLarsen

�
, BrianVinter

�

Departmentof ComputerScience
�

Universityof Tromsø

Departmentof MathematicsandComputerScience
�

Universityof SouthernDenmark

Abstract

A “path” basedon the idea of method-
combination and remote procedure calls
to provide run-time configurable networks
of computationalcommunicationpathsbe-
tweenthreadsanddata in distributed,high
performanceapplicationsis proposed.An
initial designis implemented,testedandan-
alyzed.

We usea “wr apper” to provide a level
of indirection to the actual run-time loca-
tion of databy forwarding functioncalls to
servers holding thetarget data. A wrapper
specifywhere data is located, how to get
there, and which protocolsto use. Wrap-
pers are also usedto add or modifymeth-
odsaccessingdata. Wrappersare specified
dynamically. A “path” is comprisedof one
or more wrappers. Sectionsof a path can
be shared amongtwo or more paths. Es-
tablishinga path is a two-phaseprocessof
specifyingthe path, and then (recursively)
settingup the path basedon the specifica-
tion.

A test systemusing the proposedarchi-
tecture is implemented,demonstrated and
performancemeasured using two bench-
markson threedifferent clusters. We show
that the proposedarchitecture can be used
for mapping and improving the perfor-

manceof applicationson different topolo-
gies including a wide-area multi cluster
configuration, and how wrappers can be
usedto distributecomputationalload off of
heavilyloadedtargetservers. Wealsoshow
howthreaddistributionscanbechangedat
run-timewithoutaltering applicationcode.

We believe that the proposed semi-
manual approach will prove useful in
debugging and coarse-tuning distributed
high-performanceapplications,and that it
will provide valuableinsightsfor develop-
ing later, more automated,middleware sys-
tems.

1 Intr oduction

A key challengewhen running distributed
high performanceapplicationsis to main-
tain thread-to-hostmappingsthat achieve
high performanceor efficient execution.
Attackingthis challengerequiresbalancing
thepotentiallyconflictinggoalsof distribut-
ing threadsfor improvedloadbalancingand
for reducedcommunicationoverhead.

In reality, high scalability cannot be
achieved unlessthe systemis fine-tunedto
balancecomputation,communication,and
synchronizationrequirements. Unfortu-
nately, high performanceis often achieved

APPENDIX A. PAPERS

Paper 5 144 NIK 2001, pages 164-175

only after rigorous manualfine-tuning to
obtain an efficient mappingof threadsto
hosts.

Efficientthread-to-hostmappingsmaybe
achieved by directives in the application
source-code,reflectingthe topologyof the
hostarchitecturein the applicationsource-
code. Alternatively, mappingsmay be ob-
tained by communicationlibraries or by
middleware. Static or dynamicmappings
may be useddependingon applicationdy-
namics,thehomogeneityof theunderlying
architecture,or the regularity of the inter-
connectiontopology. Dynamic mappings
accommodatechangingneedsover the ap-
plication lifetime by use of costly thread
migrations.In this case,theoriginal place-
mentproblemis transformedinto aproblem
of determiningwhereandwhenany thread
shouldbemigrated.

One alternative to compile-time static
placementandruntimedynamicplacement
is to implementa staticplacementon anir-
regular architectureby decidingon a map-
ping at load-time.A “manual” approachto
the load-time solution is to allow the ap-
plication programmerto instruct the mid-
dlewareasto the distribution andcommu-
nicationpatterns,specifiedeitherexplicitly
by the programmeror chosenfrom a li-
braryof algorithms.We havecombinedthe
static load-timeand the dynamicrun-time
approaches.We allow for run-timeplace-
ment,but we do this typically at thestartup
of the applicationby usinga configuration
maploadedwith theapplication.However,
theapplicationcanchangethis mappingat
will if it sowishes.

This paper describesour initial work
on a middleware extension inspired by
methodcombination[8] and remoteproce-
dure calls[3] which allows the communi-
cation topology to be directedby specify-
ing meta-codeandmeta-data,withoutintro-
ducingany modificationsto theapplication
code.Theextendedmiddlewarealsoallows
computationsto beplacedalongtheaccess
pathsto data.For now, we assumethat the

applicationunderstudyis alonein usingthe
underlyingarchitecture;thereareno other
applicationscompetingfor resources.The
goalof themappingthen,is to achievehigh
performancefor onesingleapplicationrun-
ning alone.

We show how onemay experimentwith
differentmappingsof threadsandtheir in-
tercommunication,and demonstratesthat
this can identify flexible location policies
which are independentof the application
codeandstill supplyeffectiveplacements.

Section 2 describeshow wrappersare
usedandcombinedto specifyandidentify
accesspaths. Section3 describesour ex-
perimentsusing threedifferentclusterslo-
catedat theUniversityof Tromsø,Norway
and the University of SouthernDenmark,
Odense. Section4 presentsand analyzes
the experimentresults,section5 presents
relatedwork, while section6 presentsour
conclutions.

2 The configurable path frame-
work

Our research platform uses the
PastSet[1][13], a structured distributed
sharedmemorysystemin the tradition of
Linda[4]. A PastSetElement is a tuple
spacewith tuples of the sameor equiv-
alent types, and is globally addressable
with a name and the type of the tuples
residingwithin it. PastSetalsosupportsX-
functions[14], whichcanbeusedto modify
the behavior of the PastSetoperations(to
implement functionality such as, but not
limited to, globalreductionsandcaches).

A commonway to implementremoteac-
cessto sharedobjectssuchasa PastSetEl-
ementis to give theaccessingthreada stub
whichforwardstheoperationsto theremote
server. Thestubsinterfaceis identicalto the
interfaceof theacessedelement,providing
transparentaccessto bothlocal andremote
elements.

Paper 5 145 NIK 2001, pages 164-175

Thread Element

Thread Stub Element

A stub doesnot necessarilyhave to be
limited to implementremoteaccessthough.
It can just aseasilybe usedto modify the
semanticsof anelementsoperationsby im-
plementingoneof the PastSetX-functions
(suchastheglobalreductionsum).If stubs
can be combined,we can easily set up a
remoteelementwhich is usedto compute
globalsumsasfollows:

Thread Stub GlobalSum Element

We call the combinationof the stubsa
path to the remoteelement.The combina-
tionof all existingpathsto anelementforms
a treewith threadsasthe leavesandtheel-
ementastheroot.

As long as the application only uses
the referenceto the topmoststub, it can
bemappedto anotherclusterconfiguration
without changingtheapplicationcode.Fit-
ting andoptimizingtheapplicationto apar-
ticular configurationcan insteadbe done
by changingthepath-building metadataand
code.

Thread Thread Thread Thread

GlobalSum

Remoteaccess

GlobalSum

Remoteaccess

GlobalSum

Element

Node1 Node2

Server

Figure1: Threadsin two nodesaccessing
a sharedglobal sum element. Eachnode
computesa partial sum beforeforwarding
it to theglobalsumwrapperin theserver.

2.1 Building and specifyingpaths

Settingupaccessfrom athreadto aPastSet
elementinvolvesthefollowing two stages:

1. Specifythethepath.This involvesex-
amininginformationaboutthe cluster
topologies,the location of threadsin
the cluster and where the target ele-
mentis located.

2. Build the path from the description.
This involvescreatingandbindingthe
wrapperswith parametersspecifiedin
thepathdescription.

To allow configurabilityof thewrappers,
we includeparametersfor eachwrapperin
thepathdescription.Someof theseparame-
tersarecommonfor all wrappertypes(such
aswhetherthe wrapperneedto usethread
synchronizationmechanisms),or typespe-
cific (suchastheprotocolto use,remotead-
dressandservicerequirementsin a remote
accesswrapper). Parametersnot specified
areassigneddefault values.

An examplepathdescriptionusedby one
of thenodesin Figure1 is includedin Fig-
ure2. build_path builds thegivenpath
andreturnsareferenceto thetoplevelwrap-
perin thepath.

Eachthreadcreates(or is given) its own
path descriptionand calls build_path
to get its own reference to the path.
Build_path takescareof merging paths
when the pathdescriptionsallow for shar-
ing partsof thepath.

2.2 Curr ent implementations

The currentimplementationsuseCommon
Lisp andPythonfor managementof paths,
while thePastSetapplicationsandwrappers
areimplementedin C.

Thisallowsustheflexibility of high level
dynamiclanguagesfor experimentingwith
pathbuilding code,while keepingthehigh-
level languagesoutof theloopwhenbench-
markingthedifferentconfigurations.

APPENDIX A. PAPERS

Paper 5 146 NIK 2001, pages 164-175

path = make_path(stage("reduce-sum", num_threads=2),
stage("remote", proto=TCP, host="p0"),
stage("reduce-sum", num_threads=2),
stage("core", name="PI-SUM1"))

elm = build_path(path)

Figure2: Examplepathdescription

Thework reportedin this paperis based
onexperimentswith thePythonframework,
whichallows thepathframework to bepro-
vided andextendedeither throughembed-
ded Python (by overloading two default
functionsfor acquiringandreleasingapath
to an element)or, as we did, by hand-
ing path referencesto C algorithmswrit-
ten asPythonextensionmodules.The lat-
ter methodallows different Pythonscripts
to experimentwith pathbuilding andthread
spawning usingthe samecompiledC code
for all experiments.

The wrapperscan also be useddirectly
from thehigh-level languagesallowing, for
instance,Pythonscriptsdirectaccessto tu-
plesandelements.

Simpleprofiling of PastSetoperationsis
provided with two trace wrappers. The
“timestamp”tracewrappersimplyforwards
the operationto the next stagein the path
and usesthe Pentium timestampcounter
to timestampthestartandcompletiontime
for eachoperationinvoked. Thetimestamp
datais loggedto an array in memoryand
written to disk when the tracewrapperis
deleted(referencecounting is usedto de-
terminewhenwrappersshouldbedeleted).
Theoverheadof thiswrapperis around100-
120clock cycles.

The “operation” tracewrapperis an ex-
tension of the timestamp trace wrapper
which additionallylogs the contentsof the
tuplesprovidedto or returnedfromthePast-
Setoperations.

Any numberof tracewrapperscanbein-
sertedanywherein thepathtrees.

3 Experiments

To show how the framework can be used
for mappingandoptimizingan application
to different topologies,we devisedexperi-
mentsto maptwo benchmarksto different
path treesand two different threadalloca-
tion policies.We usedtheseexperimentsto
examinesomechoiceswhich canbe made
whenmappinganapplicationto aclusteror
multi-clusterenvironment.

We believe that changingthe mapping
will produceperformancebenefitsbecause
of the different emphasisput upon local-
ity, load balancing and communication.
Also, thepotentialmismatchesbetweenthe
collective data accesspatternsby all the
threads, and each processor’s individual
datacachewill be influencedby different
mappings. Of course,the applicationwill
play a role in how successfula mapping
is. For instance,frequentuseof synchro-
nizationusinglocks, andespeciallyglobal
locks, will play a role in the resultingper-
formanceandtheeffectof amapping.

Two basicbenchmarkcodeswereused:

� The Global Sum benchmark
(GSum), which measures the av-
erageexecutiontime of a global sum
operation. The numberof valuesto
sumis equalto the numberof threads
usedin theexperiment.

� Monte Carlo Pi (MCPi), which com-
putesan approximationof Pi by ran-
domly throwing a numberof dartsand
countingthosehitting insidea circle.

A total numberof
�

dartsarethrown
by the threads, splitting the darts

Paper 5 147 NIK 2001, pages 164-175

evenlybetweenthethreads.

The time of throwing the
�

dartsand
runninga global sumwith the results
is measured.

�
was 10 million for

the cluster tests,and 100 million for
multi-cluster tests. The problem is
large enoughthat the communication
latency shouldbe masked by the time
spentin thecomputation.

Figure 3 shows pseudocodefor the
benchmarks.The TS() macrosamplesthe
pentiumtimestampcounter, andstoresthe
timestampin anarray. gettimeofday()sam-
ples the real-timeclock on the host com-
puter with microsecondresolution. The
gsumbenchmarkwas run with “iters” set
to 1000. For both tests,the averageof 5
benchmarkrunsareplottedin thegraphs.

Basedon the two benchmarks,we de-
vicedthefollowing experiments:

� Scalingononenode.Measuretheexe-
cutiontimeof aglobalreductionwhen
we vary thenumberof threadsfrom 1
to 16 onasinglenode.

� Threadplacementand topology opti-
mization. Two different threaddistri-
bution algorithmsare usedto assign
threadsto nodesin theclusters.

The pathtreeswerealsovariedto ex-
perimentwith computingpartial sums
within partitionsof the clustersto re-
ducethe work andcommunicationon
thenodehostingthetargetelement.

� Monte Carlo Pi in clusterand multi-
clusterconfigurations.Verify that the
applicationcanbemappedandscaled
to the three clustersand when using
the threeclusterstogetherin a multi-
clusterconfiguration.

� Multicluster global sum. Measurethe
execution time of global sum using
all threeclusterswith 3 to 96 threads.
Threadsareassignedevenlyamongthe
clusters.

The benchmark code was unchanged
during the experiments,we only changed
parametersand metadatafor the Python
framework codeusedto mapthreadsandset
up thepaths.

Available for the experimentswere 3
clusterswith 32 processorsin each,orga-
nizedasfollows:

� 2W cluster- 16 * 2-Way (Dual) Pen-
tium III 450MHz, 256MB RAM, Lo-
cation:Odense,Denmark.

� 4W cluster- 8 * 4-Way (Quad)Pen-
tium Pro166MHz, 128MB RAM, lo-
cation:Tromsø,Norway

� 8W cluster - 4 * 8-Way Pentium
Pro 200 Mhz, 1GB RAM, location:
Tromsø,Norway

In addition, the root nodefor the multi-
clusterexperimentswasa dual PentiumII
300 MHz machinewith 256MB RAM lo-
catedin Tromsø.Oneexperimentwasalso
run on a 650 Mhz PentiumIII notebook
(Dell Latitude CPx, 256MB RAM) to get
resultsfor asingle-processornode.

For the current experiments, we only
used TCP/IP over 100MBit ethernet for
intra-clustercommunication.The4W clus-
ter wasconnectedto theroot nodethrough
a HP 100VG anylan switch,while the8W
clusterwasconnectedto the root nodeus-
ing thedepartmentslocalareanetwork. The
intra-clusterfor the8W clusterwasaswitch
connectedto thedepartmentsLAN.

The connection between Tromsø and
Odensewasthedepartmentsinternetback-
bone.

4 Results

Figure 4 show the differencein execution
time of thetwo differentthreaddistribution
algorithms.Theevendistributionalgorithm
distributesthreadsevenly amongthenodes
in the cluster. It startswith the first node
andaddsonethreadto eachnodebeforeit

APPENDIX A. PAPERS

Paper 5 148 NIK 2001, pages 164-175

barrier_sync();
gettimeofday();
TS(0);
for (i = 1; i= < iters; i++) {

sum = gsum(i);
TS(i);

}
gettimeofday();

(a)gsum

barrier_sync();
gettimeofday();
TS(0);
n_inside = mcpi(to_throw);
total = gsum(n_inside);
TS(1);
gettimeofday();

(b) mcpi

Figure3: Pseudocodefor theGlobalSumandMonteCarloPi benchmarks.Only oneof
thethreadsrunsthetimestampcode.Theothersrun thesamecodewithout thetimestamp
codein it.

goesbackto thefirstnodeagain.Thebucket
algorithm fills up one node with threads
(numberof threadsequalto the numberof
CPUsin thenode)beforeproceedingto the
next.

As expected,oncewe reach32 threads
andthetwodistributionalgorithmsgenerate
thesamenumberof threadsonall nodes,we
endup with the sameexecutiontime with
bothalgorithms.

For the 4-way and 2-way cluster, the
bucket distribution algorithmperformsbet-
ter in the rangebetween1 to 32 threads.
Thisis becauseweonly needto paythecost
of bringing in a new nodewhenthebucket
algorithmhasfilled up thelastnode.

The8-way clustershows a differentpat-
tern though.After 4 threads,thebucket al-
gorithm performsworsethanthe even dis-
tribution algorithm.Thereasonfor this can
be found in figure 5, in which the “Non-
partitioned”graphsshow theexecutiontime
of global sumswith 1-16 threadson single
nodes.

As the numberof threadsincrease,we
observe a suddenjump in execution time
around3-5 threadsfor the different SMP
nodes. For the 8-way nodes,this execu-
tion timequickly growsover800microsec-
ondswhenthenumberof threadsequalthe
numberof CPUsin the node. This shows
thattheinternalsynchronizationcostfor the
globalsumis higherthanthenode-to-node

communicationcosts.
The curiousjump in latency between12

and 13 nodesfor the even distribution al-
gorithm on the 8-way nodescan also be
explained from figure 5. At 12 threads,
we have 3 threadsrunning on eachnode.
Whenwe addonemorethread,oneof the
nodeswill increaseto 4 threads,which cor-
respondsto the point in the figure 5 where
we geta suddenjump for the8-way nodes.
This jump is reflectedin theclustergraphs
sincethe executiontime of the global sum
is dictatedby theslowestnode.

Sinceall the multiprocessornodesshow
a distinct increasein latency oncethenode
holds more that 3-4 threads,a naturalas-
sumptionis that using partial sumsmight
improve the execution time. The “parti-
tioned” graphsin figure5 shows anexperi-
mentwherewe limit thenumberof threads
per sum wrapper to 4 by arranging the
threadsand wrappersin a hiearchialsum
(seefigure6).

The graph shows that by limiting the
numberof threadsto the rangewherethe
wrapperhas the bestperformance,and at
thesametimeincreasingthepotentialparal-
lelism, theexecutiontime canbeimproved
by roughlyafactortwo. Theextraoverhead
of contributing throughtwo layersof sums
is lessthanthe overheadreducedby parti-
tioning theproblem.

The above resultssuggestthat partition-

Paper 5 149 NIK 2001, pages 164-175

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

8W cluster- evendistr
8W cluster- bucket

(a)8-Waycluster

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

4W cluster- evendistr
4W cluster- bucket

(b) 4-Waycluster

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

2W cluster- evendistr
2W cluster- bucket

(c) 2-Waycluster

Figure4: Executiontime of global sumin
eachclusterusingtwo differentthreadallo-
cationalgorithms

ing the the clusterssuch that groups of
nodeswithin theclustercontributeto apar-
tial sumbeforethepartialsumsareaddedin
arootnodemight improvethelatency of the
cluster, notonly becauseof thehigherlevel
of parallelismin thecluster, but alsodueto
abetterresourceusagein in thewrappers.

Figures7 and8 show experimentswhere
we partitionedthe path treesfor the even

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize)

Nonpartitioned
Partitioned

(a)Single8-waynode

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize)

Nonpartitioned
Partitioned

(b) Single4-waynode

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize)

Nonpartitioned
Partitioned

(c) Single2-waynode

Figure 5: Partitioning on single nodes.
Single process,increasingthe numberof
threadsfrom 1 to 16. “Partitioned” usesa
maximumof 4 threadsper global sum,or-
ganizingthe sumwrappersin a hierarchial
partialsumtree.

distribution and bucket threaddistribution
algorithms. The path tree was first parti-
tionedsuchthatno sumwrapperhadmore
than4 contributing threads.Thesumwrap-
persfor thepartitionswereplacedonnodes
such that no node had more than one of
the partial sum wrappers. This increased
thenetwork traffic from 16 to 20 roundtrip

APPENDIX A. PAPERS

Paper 5 150 NIK 2001, pages 164-175

0
�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sum Sum Sum Sum

Sum

Element

Figure6: Hierarchialglobal reductionsum
tree. The numbersrepresentthreads. The
upperlayerof sumwrapperscomputespar-
tial sumsusedin the lowermostsumwrap-
per.

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

Part 4
Part 3

Non part

(a)4-Waycluster

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

Part 4
Part 3

Non part

(b) 2-Waycluster

Figure7: Clusterpartition tests- evendis-
tribution

messagespersumin the2-way cluster, and
from 8 to 10 in the4-waycluster.

Once the 4-split tests were made, we
spentanoter10-15minutesmakinga map
which reducedthe numberof threadsper
wrapperto 3. This addedanotherlevel in
the sum hiearchyand increasedthe num-
berof roundtripmessagesto 23persumfor

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

Part 4
Part 3

Nonpart

(a)4-Waycluster

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Numberof threads(= problemsize= numberof CPUs)

Part 4
Part 3

Nonpart

(b) 2-Waycluster

Figure8: Clusterpartitiontests- bucket

the2-way cluster. The4-way clusterdidn’t
needanotherlevel, but increasedthe num-
berof roundtripmessagesto 11.

No testsfor the8-wayclusterweremade
since the mechanismfor partitioning the
leafthreadswithin anodearenotreadyyet.

Both the 4-split and3-split graphsshow
animprovedoperationexecutiontimecom-
paredto thenon-splitgraphs.For theeven
distribution graphs,we get a brakeoff at
the point wherethe whole partial sumtree
hasbeenexpanded,andonly thenumberof
threadsat thetoplevel is increased.

4.1 Multicluster results

Figure 9 shows the minimum, maximum
and averageoperationexecutiontime of a
global reductionin a multi-clusterenviron-
ment, going from 3 to 96 threads,at each
stepaddingonethreadto eachcluster.

The figure show a signifiantvariancein
latency, rangingfrom 34to 53milliseconds,

Paper 5 151 NIK 2001, pages 164-175

35000
36000
37000
38000
39000
40000
41000
42000
43000
44000
45000
46000
47000
48000
49000
50000
51000
52000
53000
54000
55000

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93

Threads

us
ec

Min
Max
Avg

Figure9: Multiclusterglobalreduction

which is dueto variationin thenetwork la-
tency betweentheOdenseandTromsøclus-
ter.

ThePath-framework allowedaneasyhi-
erarchicalmapping of the threadsin the
global sumpath trees,thuseachreduction
only generatesoneroundtripmessage(con-
tributesumandretrieve result)betweenthe
Odenseand Tromsøclusters,independent
of the number of threadsin the system.
The intra-clusterlatenciesof the sumsare
so small, that they are not visible due to
thehigh variationin latency in theOdense-
Tromsøconnection.

0.1

1

10

100

1 10 100

S
ec

on
ds

Numberof threads(= problemsize)

2W
4W
8W

Multicluster

Figure10: MonteCarloPi in clusters(10M
darts)andmulticluster(100Mdarts).

Figure 10 shows Monte Carlo Pi exe-
cutedon the threeclustersandon themul-
ticluster. We observe the expectedlinear
scalingfor all instances.The multicluster
problem is 10 times bigger than the one
run on theindividualclusters,andthework

is divided evenly amongstthe threadsin
the multicluster. Becausethe work is dis-
tributed evenly performanceof the multi-
cluster is dictatedby the slowestCPUsin
the system,which is the onesin the 4W
cluster, asa resultperfectspeedupmustbe
definedas the multiclustersetupbeing 10
timesslower thanthe4W cluster, thegraph
clearlyshow this to betrue.

5 Relatedwork

Accurate and efficient performancepre-
diction of existing distributed and paral-
lel applications on target configurations
with potentiallythousandsof processorsis
hard. Analytical solutionsare difficult to
develop, and many complex systemscan
be intractable. Simulation is a widely
used tool, but its major limitation is its,
often extremely, long execution time for
large-scalesystems.A numberof simula-
tors have beendeveloped,including Paral-
lel Proteus[9],LAPSE[5], SimOS[11],and
WisconsinWind Tunnel[10]. Thesesimu-
latorstypically arethemselvesparalleland
usedirectexecutionof portionsof thecode
to reducethe cost. The slowdowns range
from 2 to 100. Few simulatorssimulate
both computationand I/O operations. In
contrast to simulators, our approachex-
ecute the actual application code several
times,eachtime with a differentmapping.
Of course,runningan application,say, 10
timesbeforedecidingon a configurationto
use,will give a slowdown of 10. However,
theflexibility andsimplicity is high.

In [7] it is shown that the three paral-
lel computationmodels BSP, E-BSP and
BPRAM in several situationsdo not pre-
cisely predict the actualruntimebehaviour
of an algorithm implementation.They re-
port performancedeviations between25-
200%. This is explainedby the different
approachesto communicationand routing
usedby the models. Cachingeffects are
also possiblecauses. Also, the efficiency
of animplementationderivedfrom thethree

APPENDIX A. PAPERS

Paper 5 152 NIK 2001, pages 164-175

modelsdid notmatchtheperformancepos-
sibleby usinghandtunedimplementations.
Theseresultscanbeusedto makeacasefor
a systemlike ours wherethe programmer
cantry a few configurationsandselectthe
onegiving the bestperformance.This can
prove to bemuchsimplerthanhandcoding
an algorithm to utilize the hardware plat-
form. Theresultingperformancewill most
likely not be optimal, but it can be better
thannotdoinganything.

In [6] both processorand memoryload
balancing are used to support low con-
tentionandgoodscalingto hundredsof pro-
cessors.Gang-schedulingis usedto avoid
wastingcyclesspinningfor a lock held by
a descheduledprocess(actually, a virtual
CPU).In contrast,our systemis muchsim-
pler andprovidesfor muchlessor no auto-
maticsupportat thepresenttime.

In [12] it is shown thatthereis acommu-
nication and load bralancetrade-off when
partitioning and schedulingsparsematrix
factorization on distributed memory sys-
tems. Block based methods result in
lower communicationcostsandworseload
balancing,whereasa "round robin"-based
schemewhere all threadsare distributed
over the processorsgives better load bal-
ancebut highercommunicationcosts.

In [16] an approachto load balancing
for general-purposesimulationsis reported
in with little modificationis neededto the
user’s code. Their approachuses run-
time measurementsand demonstratesbet-
ter load-balancingthanapproacheswithout
suchmeasurements.Threedifferent load-
balancing mapping algorithms are used.
Thisapproachis similar to oursin thatlittle
modificationof the user’s codeis needed.
As they do,we alsousedifferentmappings
and leave it to the application to control
them. Our approachdiffer in that we can
both try different mappingsand add arbi-
trary code along the accesspath to data.
Also, we differ in that we do a prerunof
a few mappings,andthenwe choosea sin-
gle oneandwe let the applicationusethe

selectedmappingwithout incurring further
overhead.Of course,we take all the over-
headwhenchoosinga mapping. For clus-
terswherethey canbededicatedto applica-
tionsrunningoften,thisconfigurationhunt-
ing overheadwill beamortizisedover time.

In [2] three categories of useful tools
were found when tuning the performance
of NOW-Sort, a parallel disk-to-disksort-
ing algorithm on a cluster system: tools
thathelpsetexpectationsandconfigurethe
applicationto different hardware parame-
ters,visualizationtoolsthatanimateperfor-
mancecounters,andsearchtools that track
down performanceanomalies.

We believe that our systemcan,by sim-
ple meanspresentlycontrolledby the pro-
grammer, improve performanceby find-
ing a configurationwherethe resourceus-
age better avoids hot spots, bottlenecks,
andexpensive waiting timesfor processor,
memory, cache,and I/O by compromising
betweenload sharingand communication.
The flexibility of using maps, paths and
wrappersalso make it possibleto monitor
theapplicationandprovide datafor visual-
izationof bothbehaviour andperformance.
At thepresenttimewehavenotinvestigated
approachesto sharingclustersamongsev-
eralconcurrentcomputations.

6 Conclusion

Fine-tuning the performance of high-
performance distributed applications
through analytical means or simulation
is hard, requiring detailed insights into
the tradeoffs and effects of caching,syn-
chronization,locality, load balancing,and
communicationdemands.

We have proposedan approachand de-
velopeda middlewareextentionwheredif-
ferentmappingsof anapplicationscommu-
nication and computationscan quickly be
tried out without changingthe application
code.

Experimentsshowed how we usedthis
systemto discoversomeof thefactorscon-

Paper 5 153 NIK 2001, pages 164-175

tributing negatively to the applicationper-
formance,and then remappedthe applica-
tion to avoid configurationswherecompo-
nentsin the applicationdid not scalewell.
We alsoshowedhow theapplicationcould
beremappedto a multiclusterenvironment
withoutchangingtheapplicationcode.

The resultsfrom this work was usedin
[14] to benchmarkPastSetusing the path
framework againstMPI[15] (LAM-MPI),
where we showed that PastSetwas 83%
fasterthanLAM-MPI onglobalreductions.

We believe the framework can be use-
ful both for developing analytical models
by providing information on factorsrele-
vant for analysis,and for tuning of an ap-
plication wherea fine-grainedanalysiscan
bedifficult to attain.

By analyzingtheperformanceresultsus-
ing different mappings,we have also ex-
posedsomebugsin the implementationof
the application. Our approachcanbe use-
ful both whendebuggingan applicationas
well as finding configurationsthat offers
improvedperformance.

References

[1] ANSHUS, O. J., AND LARSEN,
T. Macroscope: The abstractions
of a distributed operating system.
Norsk InformatikkKonferanse(Octo-
ber1992).

[2] ARPACI-DUSSEAU , A. C., ARPACI-
DUSSEAU , R. H., CULLER, D. E.,
HELLERSTEIN, J. M., AND PAT-
TERSON, D. A. Searchingfor the
sorting record: Experiencesin tun-
ing NOW-Sort. Proceedingsof the
SIGMETRICSsymposiumon Parallel
anddistributedtools(SPDT98),USA
(1998),pp.124–133.

[3] BIRRELL , A. D., AND NELSON,
B. J. Implementingremote proce-
durecalls. In Proceedingsof theninth
ACM Symposiumon Operating Sys-
temsPrinciples(1983).

[4] CARRIERO, N., AND GELERNTER,
D. Linda in context. Commun.ACM
32, 4 (April 1989),444–458.

[5] DICKENS, P., HEIDELBERGER, P.,
AND NICOL , D. Parallel direct exe-
cution simulationof message-passing
parallelprograms.IEEE Transactions
on Parallel and Distributed System
(1996).

[6] GOVIL , K., TEODOSIU, D., AND

YONGQIANG HUANG AND, M. R.
Cellular disco: resource manage-
mentusingvirtual clusterson shared-
memorymultiprocessors.ACM Sym-
posiumon Operating SystemsPrinci-
ples(SOSP’99),publishedin Operat-
ing SystemsReview 34(5) (December
1999),pp 154–169.

[7] JUURLINK , B. H., AND WIJSHOFF,
H. A. A quantitative comparisonof
parallel computationmodels. ACM
Transactionson Computer Systems
Vol. 16, No.3 (August1998),pp.271–
318.

[8] K ICZALES, G., DES RIVIERES, J.,
AND BOBROW, D. G. The Art of
the MetaobjectProtocol. MIT Press,
1991.

[9] LUO, Y. Mpi performancestudy on
thesgi origin 2000. Pacific RimCon-
ferenceon Communications,Comput-
ers and SignalProcessing(1997),pp
269–272.

[10] REINHARDT, S., HILL , M. D.,
LARUS, J., LEBECK , A., J.C,
LEWIS, AND WOOD, D. Thewiscon-
sin wind tunnel: Virtual prototyping
of parallelcomputers.Proceedingsof
the1993ACM SIGMETRICSConfer-
ence(May 1993).

[11] ROSENBLUM , M., BUGNION, E.,
DEVINE, S., AND HERROD, S. Using
the simosmachinesimulatorto study
complex computer systems. ACM

APPENDIX A. PAPERS

Paper 5 154 NIK 2001, pages 164-175

Trans. On Modeling and Computer
Simulation Vol. 7, No. 1 (January
1997),pp.78–103.

[12] VENUGOPAL , S., AND NAIK , V. K.
Effectsof partitioningandscheduling
sparsematrix factorizationon com-
munication and load balance. Pro-
ceedingsof the 1991 conference on
Supercomputing(1991),pp.866–875.

[13] V INTER, B. PastSeta StructuredDis-
tributedSharedMemorySystem. PhD
thesis,TromsøUniversity, 1999.

[14] V INTER, B., ANSHUS, O. J.,
LARSEN, T., AND BJØRNDALEN,
J. M. Extendingthe applicability of
software dsm by adding user rede-
finable memory semantics. Parallel
Computing (ParCo) 2001, Naples,
Italy (September2001).

[15] WALKER, D. W. Thedesignof astan-
dard message-passinginterface for
distributed memory concurrentcom-
puters.In Parallel Computing, Vol. 20.
April 1994,pp.657–673.

[16] WILSON, L. F., AND NICOL , D. M.
Experimentsin automatedload bal-
ancing.Proceedingsof the10thWork-
shopon Parallel andDistributedSim-
ulation (PADS’96) (1996).

Paper 5 155 NIK 2001, pages 164-175

APPENDIX A. PAPERS

Paper 5 156 NIK 2001, pages 164-175

A.6 Scalable Processing and Communication Performance
in a Multi-Media Related Context

Paper 6 157 Euromicro 2002, pages 200-206

Scalable Processing and Communication Performance in a Multi-Media Related
Context

John Markus Bjørndalen
�
, Otto J. Anshus

�

Tore Larsen
�
, Lars Ailo Bongo

�
, Brian Vinter

�

���
Department of Computer Science

University of Tromsø

���
Department of Mathematics and Computer Science

University of Southern Denmark

Abstract

The PATHS system for configuring an application on one
or multiple clusters in a GRID is described and then used on
three applications to demonstrate scalability with regards to
processing and communication.

The PATHS system use a “wrapper” to provide a level
of indirection to the actual run-time location of data. A
wrapper specify where data is located, how to get there,
and which protocols to use. Wrappers are also used to add
or modify methods accessing data. Wrappers are specified
dynamically. A “path” is comprised of one or more wrap-
pers. Sections of a path can be shared among two or more
paths.

The PATHS system is used to configure a global sum, a
wind tunnel, and a video distribution application with the
purpose of scaling processing performance when the num-
ber of processors increase, and scaling data distribution
performance when the number of clients increase.

The performance measurements show that the PATHS
system can be used to both scale the processing and com-
munication performance.

1 Introduction

A key challenge when running distributed high perfor-
mance applications is to establish mappings of processes to
hosts that achieve high performance or efficient execution.
Attacking this challenge requires balancing the conflicting
goals of distributing threads for improved load balancing,
while reducing communication and synchronization over-
heads. High performance and good scalability with respect
to processing and communication typically requires manual

fine-tuning of the mapping in order to balance the factors
significantly influencing the performance.

Mappings may be specified by directives in the appli-
cation source-code, or determined by communication li-
braries, middleware or the operating system. For the pur-
pose of this paper, and due to space restrictions, we will
focus on static mappings given to the application by the pro-
grammer.

In [2] three categories of useful tools were found when
tuning the performance of NOW-Sort, a parallel disk-to-
disk sorting algorithm on a cluster system: tools that help
set expectations and configure the application to different
hardware parameters, visualization tools that animate per-
formance counters, and search tools that track down perfor-
mance anomalies. We are developing similar tools.

This paper describes some components on our work on a
middleware extension inspired by method combination[10]
and remote procedure calls[3] which allows the commu-
nication topology to be directed by specifying meta-code
and meta-data, without introducing any modifications to
the application code. The extended middleware also allows
computations to be specified and executed along the access
paths to data. For now, we assume that the application under
study runs alone on all hosts in the system; i.e. there are no
other applications competing for host resources. The goal
of the mapping is to achieve high performance for a partic-
ular application having exclusive access to all resources.

We provide tools for specifying and experimenting with
load-time mappings, and demonstrate how one through
a few experiments may identify flexible location policies
achieving high performance and good scalability.

Section 2 describes how wrappers are used and com-
bined to specify and identify access paths. Section 3 present
the applications we have used to experiment with, section

APPENDIX A. PAPERS

Paper 6 158 Euromicro 2002, pages 200-206

4 describes our experiments using three different clusters
located at the University of Tromsø, Norway and the Uni-
versity of Southern Denmark, Odense. Section 5 presents
related work, and section 6 presents our conclusions.

2 PATHS: Configurable Orchestration and
Mapping

Our research platform is PastSet[1][15], a structured dis-
tributed shared memory system in the tradition of Linda[7].
A PastSet element is a sequence of tuples that are of the
same or equivalent type. Tuples can be read from and writ-
ten to the element using the move and observe operations.
Each element is globally accessible by specifying the ele-
ment’s name.

PATHS[4], is an extension of PastSet that allows for
mapping of processes to hosts at load time, selection of
physical communication paths to each element, and distri-
bution of computations along the path. Figure 1 shows an
example where a path is created between a thread and an
element. A thread only references the toplevel stage in the
path, and invokes operations through that stage.

Paths can be joined (forming a tree structure) to amortize
communication overhead. As an example, figure 2 shows
partial sums being computed in each node before being for-
warded to the server containing the element.

A thread may use multiple paths to the same element,
each of which can be specified and built dynamically. Each
stage in the path is implemented using a Wrapper of a given
type.

Since only leaf wrappers are referenced in the applica-
tion source code, applications can be mapped onto arbi-
trary cluster configurations without changing source code
or recompiling. Fitting and optimizing applications to any
particular configuration is instead done by changing path-
specifying meta-data and code.

The wrappers are partly inspired by the PastSet X-
functions[16], which are operation modifiers specified by
the programmer and associated with specific elements to
modify the semantics of the elements operations.

Thread

Element

Remote access
Remote access

Server 1 Server 2

Figure 1. A path between a thread and an ele-
ment

Thread Thread Thread Thread

Global Sum

Remote access

Global Sum

Remote access

Global Sum

Element

Node 1 Node 2

Server

Figure 2. Four threads on two hosts access-
ing a shared global sum element on a sep-
arate server. Each host computes a partial
sum that is forwarded to the global-sum wrap-
per on the server.

2.1 Building and specifying paths

After deciding on a mapping of processes onto hosts, set-
ting up access from one thread to a PastSet element involves
the following two stages:

Specify the path. This involves examining information
such as process mappings, cluster topologies, and lo-
cation of target elements.

Build the path from the description. This involves creat-
ing and binding wrappers with parameters specified in
the path description.

Each wrapper in the path description is parameterized.
Some parameters are common among all wrappers (such
as whether the wrapper need to use thread synchronization
mechanisms), whereas others are provided only for specific
wrapper types (i.e. what protocol to use, server address, and
service requirements for remote access wrappers).

An example path description used by one of the nodes in
Figure 2 is included in Figure 3.

Each thread creates (or is given) its path description, be-
fore calling build_path which returns reference to the
top-level wrapper in the path. Build_path checks path
descriptions, and merges paths when it is feasible to share
portions of the paths.

Profiling is provided via trace wrappers that log the start
and completion times of operations that are invoked through
each wrapper. The trace wrappers may also be used to
store information about operation parameters, and tuples
provided and returned in the operation. Any number of trace
wrappers may be inserted anywhere in the path trees.

Paper 6 159 Euromicro 2002, pages 200-206

path = make_path(stage("reduce-sum", num_threads=2),
stage("remote", proto=TCP, host="p0"),
stage("reduce-sum", num_threads=2),
stage("core", name="PI-SUM1"))

elm = build_path(path)

Figure 3. Example path specifictation and building in Python

Traces stored with the corresponding path specifications
are later read by specialized tools to examine the perfor-
mance aspects of an application.

3 Applications

The applicability of PATHS is tested using three parallel
applications, Global sum, Wind tunnel, and Video.

Global sum computes a global sum that is aggregated
from parallel threads providing partial sums. The algorithm
works essentially as the MPI Allreduce function. Global
Sum is used in experimenting with the effects of thread
mappings, communication parameters, and hierarchal re-
duction of the latencies of global reductions. In Section 4.2
we report our findings from experimenting with a hierarchal
global reduction to reduce latencies. Earlier experiments
using Global sum can be found in [4].

The Wind tunnel application is a Lattice Gas Automa-
ton doing particle simulation. It uses eight matrices in
which particles are shifted around to simulate the flow of
air. The parallel version splits each matrix into slices, which
are then assigned to threads. When running, each thread
exchanges the border entries of its slices with threads com-
puting on neighboring slices. We demonstrate how we can
map the application to different cluster configurations and
change the mapping to improve the scaling and performance
of the system.

The Video application demonstrates parallel distribution
of one video feed. A feeder application captures images
from a frame grabber, converts each image into a jpeg, and
stores each jpeg as a tuple in a PastSet element. Each video
client uses the last-observe wrapper to retrieve the latest
available new jpeg. If no jpeg exists that is newer than
the ones already observed, last-observe blocks until one ar-
rives. A client program decompresses the images and dis-
plays them in a TKinter window.

Organizing the PastSet servers and paths hierarchically,
we demonstrate that no jpeg image needs to be transmitted
more than once down any wire, that clients which cannot
consume images at full speed only retrieves the latest avail-
able image (and skip older images), and that faster clients
pre-fetch images for the slower clients; essentially turning
the last-observe wrapper into a cache.

4 Experiments

Experiments were done using Global sum and Wind tun-
nel, to study the ability of PATHS to improve processing
performance by re-configuring applications at load time.
Additional experiments were done using the Video appli-
cation to study the ability of PATHS to provide scalable dis-
tribution of one video-feed.

Wrappers were used to extract performance data which
were visualized using our prototype performance data
tools[5].

We are now experimenting with the Video Distribution
system using the Wind Tunnel application output with the
purpose of prototyping a multimedia application scaling
well both with regards to computation and data distribution.

4.1 Hardware Platform

The hardware platform consists of three geographically
dispersed clusters, each with 32 processors:

� 2W: 16*2-Way Pentium III 450 MHz, 256MB RAM
(Odense, Denmark).

� 4W: 8*4-Way Pentium Pro 166 MHz, 128MB RAM,
(Tromsø, Norway).

� 8W: 4*8-Way Pentium Pro 200 MHz, 2GB RAM,
(Tromsø, Norway).

All clusters run intra-cluster communication using
TCP/IP over 100 Mbps Ethernet. 4W has an additional in-
ternal 100 Mbps 100 VG-AnyLAN connection that is used
for some experiments. Communication between 4W and
8W used a 100 Mbps 100 VG AnyLan connection. All
communication between the cluster in Odense (2W) and the
two clusters in Tromsø (4W and 8W), uses institutional re-
sources at the respective sites, each country’s national re-
search and educational backbone, and the Nordic intercon-
nection of national research networks (NORDUnet). Us-
ing the PastSet system, the latency between two threads on
different nodes using the 100 Mbps networks is typically
around 100-250 microseconds depending on the systems
and protocols used. Using the network between Tromsø and
Odense, the latency is typically around 40 milliseconds.

APPENDIX A. PAPERS

Paper 6 160 Euromicro 2002, pages 200-206

4.2 Global Sum Experiments

In the Global sum experiment we measured the average
execution time of a global sum computation. The number
of threads applied is equal to the number of values to be
added. The Global sum experiment is run on 2W only.

barrier_sync();
gettimeofday();
TS(0);
for (i = 1; i= < iters; i++)
{

sum = gsum(i);
TS(i);

}
gettimeofday();

Figure 4. Pseudocode for the Global Sum
benchmark. Only one thread runs the times-
tamp code, all other threads run the same
code with the timestamp code removed.

Figure 4 shows pseudocode for the Global sum bench-
mark. The TS() macro samples the Pentium Pro timestamp
counter, and stores the timestamp in an array. Gettimeof-
day() samples the real-time clock on the host computer with
microsecond resolution. The gsum benchmark was run with
an “iters” of 1.000. For each test, the average execution time
of five runs is plotted on the graphs.

In one experiment we measured the performance us-
ing the even distribution algorithm. Using this algorithm,
threads are distributed as evenly as possible among all hosts
in the cluster; i.e. the number of threads on any two hosts
differs by at most one. One single thread computes the ag-
gregate of the partial sums computed by every other thread.
More elaborate algorithms are investigated in[4].

In [4] we observed that increasing the number of threads
per host beyond three or four would reduce the computa-
tional efficiency of each host. This observation suggests
that using four threads per sum wrapper and arranging the
threads and wrappers hierarchically as shown in 5 gives an
organization that maps easily onto the cluster, while limit-
ing the number of threads per wrapper to four. Compared to
a flat organization, the hierarchical organization offers po-
tential performance improvements due to a higher degree of
parallelism.

Figure 6 shows a plot of the execution times using the hi-
erarchical and even organizations as the number of threads
increases from one up to the number of CPUs in the cluster.
The number of values to be added is increased linearly for
each thread added.

Using hierarchical organization, we measure double or

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sum Sum Sum Sum

Sum

Element

Figure 5. Hierarchial global reduction sum
tree. The numbers represent threads. The
upper layer of sum wrappers computes par-
tial sums used in the lowermost sum wrapper.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

M
ic

ro
se

co
nd

s

Number of threads (= problem size = number of CPUs)

Part 4
Non part

(a) 2-Way cluster

Figure 6. Global sum, cluster partition, even
distribution

better performance for twelve or more threads, compared to
the even distribution algorithm. Observations from [4] were
applied in [16] when comparing the performance character-
istics of PastSet using the path framework with MPI[17]
(LAM-MPI). Results demonstrated that PastSet was 1.83
times faster than LAM-MPI on global reductions. We are
currently experimenting with a PATHS-inspired configu-
ration mechanism for LAM-MPI, and preliminary results
show that we are able to significantly improve some group
operations.

4.3 Wind Tunnel Experiments

We used the Wind Tunnel benchmark to evaluate
whether PATHS could be used effectively to experiment
with different mappings and identify mappings that scaled
well.

Using an even distribution of threads to CPUs, we expe-
rienced linear speedups for this application on every cluster
by itself, and when combining both clusters in Tromsø (4W

Paper 6 161 Euromicro 2002, pages 200-206

and 8W). Combining the Odense cluster (2W) with any of
the Tromsø clusters gave us less than linear speedups.

From an initial even mapping of one thread per 80th
Mhz, we used PATHS to quickly set up several variant map-
pings that we experimented with. For these experiments,
each thread carries the same effective workload regardless
of mapping.

� Increasing the relative workload at 2W by evenly in-
creasing the number of threads from 12 to 14, reduced
the performance.

� Decreasing the relative workload at 2W by evenly de-
creasing the number of threads from 12 to 10, had no
performance effect.

� Decreasing the relative workload at 2W further, by
evenly decreasing the number of threads to eight re-
duced the performance.

� Reducing the load on the single node on 2W that han-
dled all communication external to the cluster, slightly
improved the performance.

� Reducing the number of sequential remote operations
by moving data to 2W had no performance effect.

� Increasing the problem size to get a higher processing
to communication ratio, resulted in improved perfor-
mance. Effectively scaling our experiments along this
approach was limited by the memory size (128 MB) of
each host in 4W.

Using a prototype PATHS performance data visualiza-
tion tool revealed that after some time, the progression of
every thread in the clusters was effectively reigned in by the
progression of the 2W inter cluster communication node.
This phenomenon will be investigated further.

4.4 Video Distribution System

The Video Distribution experiment was designed to in-
vestigate if PastSet and PATHS could be applied in quickly
developing a video broadcast system where each client that
requests to receive the broadcast, receives its feed at a rate it
can process, and without loading the server and network by
delivering frames that would otherwise be skipped by the
client.

The video broadcast system was configured to have one
dedicated root node on each cluster. (see Figure 8). Ev-
ery participating client thread has a path that goes through a
host-local PastSet server, on through the root node in the
cluster, and finally to the broadcast server that holds the
original video data.

The last-observe wrapper is used to cache frames pulled
down from a server further up in the hiearchy. A new frame

Video Encoder Video Element

Last Observe

Last Observe

Proxy

Th 0 Th n

Last Observe

Proxy

... C
luster

N
-1

Video Server

Root node

Node 0

...

...

N
ode

N
-1

Cluster 0

Figure 8. Hierarchial Video Application

is only requested from a server further up when the last-
observe wrapper does not have a frame as new as, or newer
than the one being requested by a client further down. Only
the latest available frame will be returned by the wrapper.
Older frames are dropped.

To test the scalability of this design, we started with
one client per processor in the clusters and dynamically in-
creased the number of clients while monitoring the frame
rate at the server process and at every client process. The
server process load was also monitored. The broadcast
server was located in Tromsø, but external to 4W and 8W.
The stream of jpegs consisted of 320x240 pixel images,
delivered at 12.5 Hz. The client processes were evenly
mapped across 2W, 4W, and 8W.

At 960 clients there was no noticeable degradation on the
server or any client. Every client, including the 320 at 2W
in Odense, ran at the full frame rate at 12.5 Hz.

At 2016 client processes, there was still no noticeable
degradation of the server or of the processes on 2W in
Odense. At this load however, the clients running on the
clusters in Tromsø (next room to the video server) did ex-
hibit slight degradation, dropping the frame rate to about 12
Hz on 4W, and about 10-11 Hz on 8W.

We observe that of the two clusters in Tromsø, processes
at 4W (166MHz four-way nodes) perform better than pro-
cesses at 8W (200MHz eight-way nodes) when the number

APPENDIX A. PAPERS

Paper 6 162 Euromicro 2002, pages 200-206

... TH 0TH 1TH 8TH 9...

C �

D �

C �

D �

C �

D �

C �

D �

C ���

D ���

......

C ���

D ���

TH ...

C ���

D ���

TH ...

Node 0Node 1Node N-1

Cluster 0

Cluster 1 Cluster 2

Figure 7. Multi-cluster Wind tunnel Experiment

of client processes is increased beyond a threshold level. We
suspect this indicates processor-memory bus contention on
the eight-way systems due to the high communication load
of this benchmark. Processes at the faster 2W cluster per-
form best, and are not hindered by the slow Tromsø-Odense
connection.

5 Related work

Accurate and efficient performance prediction of exist-
ing distributed and parallel applications on target configu-
rations with potentially thousands of processors is hard. A
number of simulators have been developed, including Par-
allel Proteus[11], LAPSE[8], SimOS[13], and Wisconsin
Wind Tunnel[12]. The slowdowns range from 2 to 100.
Few simulators simulate both computation and I/O opera-
tions. In contrast to simulators, our approach execute the
actual application code several times, each time with a dif-
ferent mapping.

In [9] both processor and memory load balancing are
used to support low contention and good scaling to hun-
dreds of processors. Gang-scheduling is used to avoid wast-
ing cycles spinning for a lock held by a descheduled pro-
cess. In contrast, our system is much simpler and provides
for much less or no automatic support at the present time.

In [14] it is shown that there is a communication and
load balance trade-off when partitioning and scheduling
sparse matrix factorization on distributed memory systems.
Block based methods result in lower communication costs
and worse load balancing, whereas a "round robin"-based
scheme where all threads are distributed over the processors

gives better load balance but higher communication costs.
In [18] an approach to load balancing for general-

purpose simulations is reported in which little modification
is needed to the user’s code. Their approach uses run-time
measurements and demonstrates better load-balancing than
approaches without such measurements. This approach is
similar to ours in that little modification of the user’s code
is needed. As they do, we also use different mappings and
leave it to the application to control them. Our approach
differ in that we can both try different mappings and add ar-
bitrary code along the access path to data. Also, we differ in
that we do a prerun of a few mappings, and then we choose
a single one and we let the application use the selected map-
ping without incurring further overhead. Of course, we take
all the overhead when choosing a mapping. For clusters
where they can be dedicated to applications running often,
this configuration hunting overhead will be amortizised over
time.

In [6] it is shown that dramatic reductions in the band-
width demand on the underlying server operating system
can be gained via application-level data caching. This is in
accordance with our work.

6 Conclusion

Fine-tuning the performance of high-performance dis-
tributed applications through analytical means or simulation
is hard, requiring detailed insights into complicated factors
including the tradeoffs and effects of caching, synchroniza-
tion, locality, load balancing, communication demands, and
how network protocols and synchronization mechanisms

Paper 6 163 Euromicro 2002, pages 200-206

have been implemented. Using the PATHS system different
mappings of an applications communication and computa-
tions can quickly be tried out without changing the applica-
tion code.

Through several experiments we discovered some of the
factors contributing negatively to the performance of a set
of applications, and then we remapped the applications to
find configurations with better performance.

We believe that our system can improve performance
by finding a configuration where the resource usage better
avoids hot spots, bottlenecks, and expensive waiting times
for processor, memory, cache, and I/O by trading between
load sharing and communication. The flexibility of using
maps, paths and wrappers also make it possible to monitor
the application and provide data for visualization of both
behaviour and performance.

References

[1] ANSHUS, O. J., AND LARSEN, T. Macroscope: The
abstractions of a distributed operating system. Norsk
Informatikk Konferanse (October 1992).

[2] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., CULLER, D. E., HELLERSTEIN, J. M., AND

PATTERSON, D. A. Searching for the sorting record:
Experiences in tuning NOW-Sort. Proceedings of the
SIGMETRICS symposium on Parallel and distributed
tools (SPDT 98), USA (1998), pp. 124–133.

[3] BIRRELL, A. D., AND NELSON, B. J. Implement-
ing remote procedure calls. In Proceedings of the
ninth ACM Symposium on Operating Systems Princi-
ples (1983).

[4] BJØRNDALEN, J. M., ANSHUS, O., LARSEN, T.,
AND VINTER, B. Paths - integrating the princi-
ples of method-combination and remote procedure
calls for run-time configuration and tuning of high-
performance distributed application. Norsk Infor-
matikk Konferanse (November 2001), 164–175.

[5] BONGO, L. A. Steps: A performance monitoring and
visualization tool for multicluster parallel programs,
June 2002. Large term project, Department of Com-
puter Science, University of Tromsø.

[6] BRADSHAW, M. K., WANG, B., SEN, S., GAO, L.,
KUROSE, J., SHENOY, P., AND TOWSLEY, D. Pe-
riodic broadcast and patching services - implementa-
tion, measurement, and analysis in an internet stream-
ing video testbed*. ACM MM’01, Ottawa, Canada.

[7] CARRIERO, N., AND GELERNTER, D. Linda in con-
text. Commun. ACM 32, 4 (April 1989), 444–458.

[8] DICKENS, P., HEIDELBERGER, P., AND NICOL,
D. Parallel direct execution simulation of message-
passing parallel programs. IEEE Transactions on Par-
allel and Distributed System (1996).

[9] GOVIL, K., TEODOSIU, D., AND YONGQIANG

HUANG AND, M. R. Cellular disco: resource man-
agement using virtual clusters on shared-memory mul-
tiprocessors. ACM Symposium on Operating Systems
Principles (SOSP’99), published in Operating Sys-
tems Review 34(5) (December 1999), pp 154–169.

[10] KICZALES, G., DES RIVIERES, J., AND BOBROW,
D. G. The Art of the Metaobject Protocol. MIT Press,
1991.

[11] LUO, Y. Mpi performance study on the sgi origin
2000. Pacific Rim Conference on Communications,
Computers and Signal Processing (1997), pp 269–
272.

[12] REINHARDT, S., HILL, M. D., LARUS, J., LEBECK,
A., J.C, LEWIS, AND WOOD, D. The wisconsin wind
tunnel: Virtual prototyping of parallel computers. Pro-
ceedings of the 1993 ACM SIGMETRICS Conference
(May 1993).

[13] ROSENBLUM, M., BUGNION, E., DEVINE, S., AND

HERROD, S. Using the simos machine simulator to
study complex computer systems. ACM Trans. On
Modeling and Computer Simulation Vol. 7, No. 1 (Jan-
uary 1997), pp. 78–103.

[14] VENUGOPAL, S., AND NAIK, V. K. Effects of parti-
tioning and scheduling sparse matrix factorization on
communication and load balance. Proceedings of the
1991 conference on Supercomputing (1991), pp. 866–
875.

[15] VINTER, B. PastSet a Structured Distributed Shared
Memory System. PhD thesis, Tromsø University,
1999.

[16] VINTER, B., ANSHUS, O. J., LARSEN, T., AND

BJØRNDALEN, J. M. Extending the applicability of
software dsm by adding user redefinable memory se-
mantics. Parallel Computing (ParCo) 2001, Naples,
Italy (September 2001).

[17] WALKER, D. W. The design of a standard message-
passing interface for distributed memory concurrent
computers. In Parallel Computing, Vol. 20. April
1994, pp. 657–673.

[18] WILSON, L. F., AND NICOL, D. M. Experiments
in automated load balancing. Proceedings of the
10th Workshop on Parallel and Distributed Simulation
(PADS ’96) (1996).

APPENDIX A. PAPERS

Paper 6 164 Euromicro 2002, pages 200-206

A.7 Configurable Collective Communication in LAM-
MPI

Paper 7 165 CPA 2002, pages 123-134

Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

133

Configurable collective communication in
LAM-MPI

John Markus Bjørndalen
�
, Otto J. Anshus

�

Brian Vinter
�
, Tore Larsen

�

���
Department of Computer Science, University of Tromsø

���
Department of Mathematics and Computer Science, University of Southern Denmark

Abstract.
In an earlier paper, we observed that PastSet (our experimental tuple space system)

was 1.83 times faster on global reductions than LAM-MPI. Our hypothesis was that
this was due to the better resource usage of the PATHS framework (an extension to
PastSet that supports orchestration and configuration) due to a mapping of the commu-
nication and operations which matched the computing resources and cluster topology
better.

This paper reports on an experiment to verify this, and represents an ongoing work
to add some of the same configurability of PastSet and PATHS to MPI.

We show that by adding run-time configurable collective communication, we can
reduce the latencies without recompiling the application source code. For the same
cluster where we experienced the faster PastSet, we show that Allreduce with our
configuration mechanism is 1.79 times faster than the original LAM-MPI Allreduce.

We also experiment with the configuration mechanism on 3 different cluster plat-
forms with 2-, 4-, and 8-way nodes. For the cluster of 8-way nodes, we show an
improvement by a factor of 1.98 for Allreduce.

1 Introduction

For efficient support of synchronization and communication in parallel systems, these sys-
tems require fast collective communication support from the underlying communication sub-
system as, for example, is defined by the Message Passing Interface (MPI) Standard [1].
Among the set of collective communication operations broadcast is fundamental and is used
in several other operations such as barrier synchronization and reduction [2]. Thus, it is
advantageous to reduce the latency of broadcast operations on these systems.

In our work with the PATHS[3] configuration and orchestration system, we have experi-
mented with microbenchmarks and applications to study the effects of configurable commu-
nication.

In one of the experiments[4], we used the configuration mechanisms to reduce the execu-
tion times of collective communication operations in PastSet. To get a baseline, we compared
our reduction operation with the equivalent operation in MPI (Allreduce).

By trying a few configurations, we found that we could improve our Tuple Space system
to be 1.83 times faster than LAM-MPI[5][6]. Our hypothesis was that this advantage came
from a better usage of resources in the cluster rather than a more efficient implementation.

If anything, LAM-MPI should be faster than PastSet since PastSet stores the results of
each global sum computation in a tuple space inducing more overhead than simply computing
and distributing the sum.

APPENDIX A. PAPERS

Paper 7 166 CPA 2002, pages 123-134

134 J. Bjørndalen et al. / Configurable collective communication in LAM-MPI

This paper reports on an experiment where we have added configurable communication
to the Broadcast and Reduce operations in LAM-MPI (both of which are used by Allreduce)
to validate or falsify our hypothesis.

The paper is organized as follows: Section 2 summarizes the main features of the PastSet
and PATHS system. Section 3 describes the Allreduce, Reduce and Broadcast operations in
LAM-MPI. Section 4 describes the configuration mechanism that was added to LAM-MPI
for the experiments reported on in this paper. Section 5 describes the experiments and results,
section 6 presents related work, and section 7 concludes the paper.

2 PATHS: Configurable Orchestration and Mapping

Our research platform is PastSet[7][8], a structured distributed shared memory system in
the tradition of Linda[9]. PastSet is a set of Elements, where each Element is an ordered
collection of tuples. All tuples in an Element follow the same template.

The PATHS[3] system is an extension of PastSet that allows for mappings of processes to
hosts at load time, selection of physical communication paths to each element, and distribu-
tion of communications along the path. PATHS also implements the X-functions[4], which
are PastSet operation modifiers.

A path specification for a single thread needing access to a given element is represented
by a list of stages. Each stage is implemented using a wrapper object hiding the rest of the
path after that stage. The stage specification includes parameters used for initialisation of the
wrapper.

Thread Thread Thread Thread

Global Sum

Remote access

Global Sum

Remote access

Global Sum

Element

Node 1 Node 2

Server

Figure 1: Four threads on two hosts accessing shared element on a separate server. Each host computes a partial
sum that is forwarded to the global-sum wrapper on the server. The final result is stored in the element.

Paths can be shared whenever path descriptions match and point to the same element
(see figure 1). This can be used to implement functionality such as, for instance, caches,
reductions and broadcasts.

The collection of all paths in a system pointing to a given element forms a tree. The leaf
nodes in the tree are the application threads, while the root is the element.

Figure 1 shows a global reduction tree. By modifying the tree and the parameters to the
wrappers in the tree, we can specify and experiment directly with factors such as which pro-
cesses participate in a given partial sum, how many partial sum wrappers to use, where each
sum wrapper is located, protocols and service requirements for remote operations and where
the root element is located. Thus, we can control and experiment with tradeoffs between
placement of computation, communication, and data location.

Paper 7 167 CPA 2002, pages 123-134

J. Bjørndalen et al. / Configurable collective communication in LAM-MPI 135

Applications tend to use multiple trees, either because the application uses multiple ele-
ments, or because each thread might use multiple paths to the same element.

To get access to an element, the application programmer can either choose to use lower-
level functions to specify paths before handing it over to a path builder, or use a higher level
function which retrieves a path specification to a named element and then builds the specified
path. The application programmer then gets a reference to the topmost wrapper in the path.

The path specification can either be retrieved from a combined path specification and
name server, or be created with a high-level language library loaded at application load-time1

Since the application program invokes all operations through its reference to the topmost
wrapper, the application can be mapped to different cluster topologies simply by doing one
of the following:

� Updating a map description used by the high-level library.

� Specifying a different high-level library that generates path-specifications. This library
may be written by the user.

� Update the path mappings in the name server.

Profiling is provided via trace wrappers that log the start and completion time of opera-
tions that are invoked through it. Any number of trace wrappers can inserted anywhere in the
path.

Specialized tools to examine the performance aspects of the application can later read
trace data stored with the path specifications from a system. We are currently experimenting
with different visualizations and analyses of this data to support optimization of a given
application.

The combination of trace data, a specification of communication paths, and computations
along the path has been useful in understanding performance aspects and tuning benchmarks
and applications that we have run in cluster and multicluster environments.

3 LAM-MPI implementation of Allreduce

LAM-MPI (Local Area Multicomputer) is an open source implementation of MPI available
from [5]. It was chosen over MPICH[10] for our work in [4] since it had lower latency with
less variance than MPICH for the benchmarks we used in our clusters.

The MPI Allreduce operation combines values from all processes and distribute the result
back to all processes. LAM-MPI implements Allreduce by first calling Reduce, collecting
the result in the root process, then calling Broadcast, distributing the result from the root
process. For all our experiments, the root process is the process with rank 0 (hereafter called
process 0).

The Reduce and Broadcast algorithms use a linear scheme (every process communicates
directly with process 0) up to and including 4 processes. From there on they use a scheme
that organizes the processes into a logarithmic spanning tree.

The shape of this tree is fixed, and doesn’t change to reflect the topology of the computing
system or cluster. Figure 2 shows the reduction trees used in LAM-MPI for 32 processes in
a cluster. We observe that broadcast and reduction trees are different.

By default, LAM-MPI evenly distributes processes onto nodes. When we combine this
mapping for 32 processes with the reduction tree, we can see in Figure 3 that a lot of messages
are sent across nodes in the system. The broadcast operation has a better mapping for this
cluster though.

1Currently, a Python module is loaded for this purpose.

APPENDIX A. PAPERS

Paper 7 168 CPA 2002, pages 123-134

136 J. Bjørndalen et al. / Configurable collective communication in LAM-MPI

V-0

V-1

S

V-2

S

V-4

S

V-8

S

V-16

S

V-3

S

V-5

S

V-6

S

V-7

S

V-9

S

V-10

S

V-12

S

V-11

S

V-13

S

V-14

S

V-15

S

V-17

S

V-18

S

V-20

S

V-24

S

V-19

S

V-21

S

V-22

S

V-23

S

V-25

S

V-26

S

V-28

S

V-27

S

V-29

S

V-30

S

V-31

S

Figure 2: Log-reduce tree for 32 processes. The arcs represent communication between two nodes. Partial sums
are computed at a node in the tree before passing the result further up in the tree.

ps0

ps1 ps2

ps3

ps4

ps5 ps6

ps7

V-0

V-8V-16

V-1 V-2V-4 V-9 V-10V-12

V-24

V-17 V-18V-20 V-25 V-26V-28

V-3V-11V-19V-27V-5 V-6V-13 V-14V-21 V-22V-29 V-30

V-7 V-15V-23 V-31

Figure 3: Log-reduce tree for 32 processes mapped onto 8 nodes.

4 Adding configuration to LAM-MPI

To minimize the necessary changes to LAM-MPI for this experiment, we didn’t add a full
PATHS system at this point. Instead, a mechanism was added that allowed for scripting the
way LAM-MPI communicates during the broadcast and reduce operations.

There were two main reasons for this. Firstly, our hypothesis was that PastSet with
PATHS allowed us to map the communication and computation better to the resources and
cluster topology. For global reduction and broadcast, LAM-MPI already computes partial
sums at internal nodes in the trees. This means that experimenting with different reduction
and broadcast trees should give us much of the effect that we observed with PATHS in [4]
and [3].

Secondly, we wanted to limit the influence that our system would have on the performance
aspects of LAM-MPI such that any observable changes in performance would come from
modifying the reduce and broadcast trees.

Apart from this, the amount of code changed and added was minimal, which reduced the
chances of introducing errors into the experiments.

When reading the LAM-MPI source code, we noticed that the reduce operation was, for

Paper 7 169 CPA 2002, pages 123-134

J. Bjørndalen et al. / Configurable collective communication in LAM-MPI 137

any process in the reduction tree, essentially a sequence of
�

receives from the
�

children
directly below it in the tree, and one send to the process above it. For broadcast, the reverse
was true; one receive followed by

�
sends.

Using a different reduction or broadcast tree would then simply be a matter of examining,
for each process, which processes are directly above and below it in the tree and construct a
new sequence of send and receive commands.

To implement this, we added new reduce and broadcast functions which used the rank
of the process and size of the system to look up the sequence of sends and receives to be
executed (including which processes to send and receive from). This is implemented by
retrieving and executing a script with send and receive commands.

As an example, when using a scripted reduce operation with a mapping identical to the
original LAM-MPI reduction tree, the process with rank 12 (see figure 2) would look up and
execute a script with the following commands:

� Receive (and combine result) from rank 13

� Receive (and combine result) from rank 14

� Send result to 8

The new scripted functions are used instead of the original logarithmic Reduce and Broad-
cast operations in LAM-MPI. No change was necessary to the Allreduce function since it is
implemented using the reduce and broadcast operations.

The changes to the LAM-MPI code was thus limited to 3 code lines, replacing the calls
to the logarithmic reduction and broadcast functions as well as adding and a call in MPI_Init
to load the scripts.

Remapping the application to another cluster configuration, or simply trying new map-
pings for optimization purposes, now consists of specifying new communication trees and
generating the scripts. A Python program generates these scripts as Lisp symbolic expres-
sions.

5 Experiments

t1 = get_usecs();
MPI_Allreduce(&hit, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
t1 = get_usecs();
for (i = 0; i < ITERS; i++) {

MPI_Allreduce(&i, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
if (ghit != (i * size))

printf("oops at %d. %d != %d\n", i, ghit, (i * size));
}
t2 = get_usecs();
MPI_Allreduce(&hit, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

Figure 4: Global reduction benchmark

Figure 4 shows the code run in the experiments. The code measures the average execution
time of 1000 Allreduce operations. The average of 5 runs is then plotted. To make sure that
the correct sum is computed, the code also checks the result on each iteration.

For each experiment, the number of processes was varied from 1 to 32. LAM-MPI used
the default placement of processes on nodes, which evenly spread the processes over the
nodes.

The hardware platforms consists of three clusters, each with 32 processors:

APPENDIX A. PAPERS

Paper 7 170 CPA 2002, pages 123-134

138 J. Bjørndalen et al. / Configurable collective communication in LAM-MPI

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable schemes vs pristine LAM-MPI

LAM-MPI original code

��

��

��

��

�	

�

�

��

��

�� ��

�� ��
��

��

��

 !

"# $%

&'
() *+

,-

./

01 23 45 67
89 :;

<=

>?

@A

LAM-MPI + path, original scheme

+

+

+

+

+

+

+

+

+

+ +

+
+ +

+

+

+

+ +

+

+
+

+

+

+ + + +
+

+

+

+

+

LAM-MPI + path, linear scheme

BC

DE

FG

HI JK

LM

NO

PQ

RS

TU

VW

XY

Z[

\]

^_

`a

bc

de

LAM-MPI + path, exp1 scheme

+

+

+

+
+

+

+

+

+

+

+

+

+
+ +

+

+

+ + + +
+

+ +

+

+
+ + + +

+ +

+

Figure 5: Allreduce, 4-way cluster

� 2W: 16*2-Way Pentium III 450 MHz, 256MB RAM

� 4W: 8*4-Way Pentium Pro 166 MHz, 128MB RAM

� 8W: 4*8-Way Pentium Pro 200 MHz, 2GB RAM

All clusters used 100MBit Ethernet for intra-cluster communication.

5.1 4-way cluster

Figure 5 shows experiments run on the 4-way cluster. The following experiments were run:

Original LAM-MPI The experiment was run using LAM-MPI 6.5.6.

Modified LAM-MPI, original scheme The experiment was run using a modified LAM-
MPI, but using the same broadcast and reduce trees for communication as the original
version used.

This graph completely overlaps the graph from the original LAM-MPI code, showing
us that the scripting functionality is able to replicate the performance aspects of the
original LAM-MPI for this experiment.

Modified LAM-MPI, linear scheme This experiment was run using a linear scheme where
all processes report directly to the process with rank 0, and rank 0 sends the results
directly back to each client.

This experiment crashed at 18 processes due to TCP connection failures in LAM-MPI.
We haven’t examined what caused this, but it is likely to be a limitation in the imple-
mentation.

Modified LAM-MPI, hierarchal scheme 1 Rank 0 is always placed on node 0, so all other
processes on node 0 contribute directly to rank 0. On the other nodes, a local reduction
is done within each node before the nodes partial sum is sent to process 0.

The modified LAM-MPI with the hierarchal scheme is 1.79 times faster than the original
LAM-MPI. This is close to the factor of 1.83 reported in [4], which was based on measure-
ments on the same cluster. It is possible that further experiments with configurations would
have brought us closer to the original speed improvement.

Paper 7 171 CPA 2002, pages 123-134

J. Bjørndalen et al. / Configurable collective communication in LAM-MPI 139

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable LAM-MPI vs pristine LAM-MPI

LAM-MPI original code

��

��

��

��

�	

�
�

��

��

�� ��

��

��
�� ��

��

 !

"# $%

&' () *+ ,-

./

01 23 4
5

67 8
9 :;

<=

>?

@A

LAM-MPI + path

+

+

+

+ +

+ + + +

+ +
+ +

+
+ +

+

+

+

+ + +

+

+ +
+ + +

+

+
+

+

+

Figure 6: Allreduce, 8-way cluster

5.2 8-way cluster

For the 8-way cluster, we expected the best configuration to involve using an internal root
process on each node and limit the inter-node communications to one send (of the local sum)
and one receive (of the global result) resembling the best configuration for the 4-way cluster.
This turned out not to be true.

Due to the 8 processes on each node, the local root process on each node would get 7
children in the sum tree (with the exception of the root processes in the root node). The extra
latency added per child of the local root processes was enough to increase the total latency
for 32 processes to 1444 microseconds.

Splitting the processes to allow further subgrouping within each node introduced another
layer in the sum tree. This extra layer brought the total latency for 32 processes to 1534
microseconds.

The fastest solution found so far involves partitioning the processes on each node into
two groups of 4 processes. Each group computes a partial sum for that group, and forwards
it to directly to the root process. This doubled the communication over the network, but the
total execution time was shorter (1322 microseconds).

The fastest configuration is 1.98 times faster than the original LAM-MPI Allreduce oper-
ation. In figure 6, the fastest configuration and the original LAM-MPI Allreduce are plotted
for 1-32 processes.

5.3 2-way cluster

On the 2-way cluster, after trying a few configurations, we ended up with a configuration
that was 1.52 times faster than the original LAM-MPI code. This was not as good as for the
other clusters. We expected this since a reduction in this cluster would need more external
messages.

Based on the experiments, we observed three main factors that influenced the scaling of
the application:

� The number of children for a process in the operation tree. More children adds com-
munication load for the node hosting this process.

� The depth of a branch in the operation tree. That is, the number of nodes a value has to
be added through before reaching the root node.

� Whether a message was sent over the network or internally on a node.

APPENDIX A. PAPERS

Paper 7 172 CPA 2002, pages 123-134

140 J. Bjørndalen et al. / Configurable collective communication in LAM-MPI

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable LAM-MPI vs pristine LAM-MPI

LAM-MPI original code

��

��

��
��

�	

�
�

�� �� ��
��

��
��

�� ��

��

 !

"# $%
&' ()

*+
,-

./
01

23
45 67 89

:;
<=

>?

@A

LAM-MPI + PATHS

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +
+

+ +

+
+

+ +

+

+

Figure 7: Allreduce, 2-way cluster.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable LAM-MPI vs pristine LAM-MPI

LAM-MPI original code, 1-16 nodes

BC

DE

FG

HI JK

LM
NO

PQ

RS

TU VW

XY
Z[

\] ^_

`a

bc

LAM-MPI + path, exp1 scheme, 1-16 nodes

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

Figure 8: Allreduce, 2-way cluster, scaling the number of nodes from 1 to 16. Each node added adds two new
processes in the experiment.

The depth factor seemed to introduce a higher latency than adding a few more children
to a process. On the other hand, adding another layer in the tree would also allow us to
use partial sums. We have not arrived at any model which allows us predict which tree
organization would in practice lead to the shortest execution time of the Allreduce operation.

One difference between the PastSet/PATHS implementation and LAM-MPI is that Past-
Set/PATHS process incoming partial sums by order of arrival, while LAM-MPI process them
in the order they appear in the sequence specified either by the original LAM-MPI code, or
the script. This might influence the overhead when receiving messages from a larger number
of children. We are investigating this further.

5.4 Scaling up the number of nodes on the 2-way cluster

We also scaled the 2-way cluster along another axis: the number of available nodes for the
application.

The motivation for this is that clusters do not necessarily have a power of two nodes, such
as the clusters we used in the previous sections2.

A given algorithm for building an operation tree might result in a good mapping for one
cluster configuration, but result in a less efficient operation on another cluster configuration.

In this experiment, we scaled the number of nodes from 1 to 16. The number of processes
was scaled with the number of nodes, adding two processes for each node added to the

2either because of lack of funding, broken nodes, or nodes allocated for other purposes

Paper 7 173 CPA 2002, pages 123-134

J. Bjørndalen et al. / Configurable collective communication in LAM-MPI 141

experiment.
Figure 8 shows an experiment where we compare the original LAM-MPI mappings with

a setting where we reconfigure the best algorithm from section 5.3 to fit with a different sized
cluster. We generally outperform the original LAM-MPI algorithm for all cluster sizes larger
than 2 in this experiment. At 16 nodes and 32 processes, we end up with the same cluster
configuration and the same latencies as in the previous section.

6 Related work

Jacunski et al.[11] shows that selection of the best performing algorithm for all-to-all broad-
cast on clusters of workstations based on commodity switch-based networks is a function of
both network characteristics as well as the message length and number of participating nodes
in the all-to-all broadcast operation. In contrast our work used clusters with multiprocessors,
we did performance measurements on the reduce operation as well as on the broadcast, and
we documented the effect of the actual system at run time including the workload, commu-
nication performance of the hosts.

Bernashci et al.[12] study the performance of the MPI broadcast operation on large shared
memory systems using a-trees.

Kielmann et al.[13] show how the performance for collective operations like broadcast
depend upon cluster topology, latency, and bandwidth. They develop a library of collective
communication operations optimized for wide area systems where a majority of the speedup
comes from limiting the number messages passing over wide-area links.

Husbands et al.[14] optimizes the performance of MPI_Bcast in clusters of SMP nodes
by using a two-phase scheme; first messages are sent to each SMP node, then messages are
distributed within the SMP nodes. Sistare et al.[15] uses a similar scheme, but focus on
improving the performance of collective operations on large-scale SMP’s.

Tang et al.[16] also use a two-phase scheme for a multithreaded implementation for MPI.
They separate the implementation of the point-to-point and collective operations to allow for
optimizations of the collective operations, which would otherwise be difficult.

In contrast to the above works, this paper is not focused on a particular optimization of
the spanning trees. Instead, we focus on making the shape of the spanning trees configurable
to allow easy experimentation on various cluster topologies and applications.

Vadhiyar et al.[17] shows an automatic approach to selecting buffer sizes and algorithms
to optimize the collective operation trees by conducting a series of experiments.

7 Conclusions

We have observed that the broadcast and reduction trees in LAM-MPI are different, and do
not necessarily take into account the actual topology of the cluster.

By introducing configurable broadcast and reduction trees, we have shown a simple way
of mapping the reduction and broadcast trees to the actual clusters in use. This gave us a
performance improvement up to a factor of 1.98.

For the cluster where we observed the performance difference of a factor 1.83 between
PastSet/PATHS and LAM-MPI, we arrived at a reduction and broadcast tree that gave us
an improvement of 1.79 for Allreduce over the original LAM-MPI implementation. This
supports our hypothesis that the majority of the performance-difference between LAM-MPI
and PastSet/PATHS was a better mapping to the resources and topology in the cluster.

We have also observed that the assumption that doing a reduction internally in each node
before sending a message on the network did not lead to the best performance on our cluster
of 8-way nodes. Instead, increasing the number of messages on the network to reduce the

APPENDIX A. PAPERS

Paper 7 174 CPA 2002, pages 123-134

142 J. Bjørndalen et al. / Configurable collective communication in LAM-MPI

depth of the reduction and broadcast as well as the number of direct children for each internal
node proved to be a better strategy.

The reason for this may be found by studying three different factors that add to the cost
of the global reduction and broadcast trees:

� The number of children directly below an internal node in the spanning tree.

� The depth of the spanning tree.

� Whether an arc between a child and a parent in the spanning tree is a message on the
network or internally in the node.

We suspect that these factors are not increasing linearly, and that the cost of, for instance,
adding another child to an internal node in the spanning tree depends on factors such as the
order of the sequence of receive commands as well as contention on the network layer in the
host computer.

8 Acknowledgements

Thanks to Ole Martin Bjørndalen for reading the paper and suggesting improvements.

References

[1] Mpi: A message-passing interface standard. Message Passing Interface Forum, Mar
1994.

[2] D.K. Panda. Issues in designing efficient and practical algorithms for collective com-
munication in wormhole-routed systems. Proc. ICPP Workshop Challenges for Parallel
processing, pages 8–15, 1995.

[3] John Markus Bjørndalen, Otto Anshus, Tore Larsen, and Brian Vinter. Paths - integrat-
ing the principles of method-combination and remote procedure calls for run-time con-
figuration and tuning of high-performance distributed application. Norsk Informatikk
Konferanse, pages 164–175, November 2001.

[4] Brian Vinter, Otto J. Anshus, Tore Larsen, and John Markus Bjørndalen. Extending the
applicability of software dsm by adding user redefinable memory semantics. Parallel
Computing (ParCo) 2001, Naples, Italy, September 2001.

[5] http://www.lam-mpi.org/.

[6] Jeffrey M. Squyres, Andrew Lumsdaine, William L. George, John G. Hagedorn, and
Judith E. Devaney. The interoperable message passing interface (IMPI) extensions to
LAM/MPI. In Proceedings, MPIDC’2000, March 2000.

[7] O. J. Anshus and Tore Larsen. Macroscope: The abstractions of a distributed operating
system. Norsk Informatikk Konferanse, October 1992.

[8] Brian Vinter. PastSet a Structured Distributed Shared Memory System. PhD thesis,
Tromsø University, 1999.

[9] N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, April
1989.

Paper 7 175 CPA 2002, pages 123-134

J. Bjørndalen et al. / Configurable collective communication in LAM-MPI 143

[10] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface standard.
Parallel Computing, Volume 22, Issue 6, September 1996.

[11] Matt Jacunski, P. Sadayappan, and D.K. Panda. All-to-all broadcast on switch-based
clusters of workstations. 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing, 12 - 16 April 1999. San Juan,
Puerto Rico.

[12] Massimo Bernaschi and Giorgia Richelli. Mpi collective communication operations
on large shared memory systems. Proceedings of the Ninth Euromicro Workshop on
Parallel and Distributed Processing (EUROPDP.01), 2001.

[13] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F.
Bhoedjang. Magpie: Mpi’s collective communication operations for clustered wide
area systems. Proceedings of the seventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, 1999. Atlanta, Georgia, United States.

[14] Parry Husbands and James C. Hoe. Mpi-start: delivering network performance to nu-
merical applications. Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing, 1998. San Jose, CA.

[15] Steve Sistare, Rolf vandeVaart, and Eugene Loh. Optimization of mpi collectives on
clusters of large-scale smp’s. Proceedings of the 1999 conference on Supercomputing,
1999. Portland, Oregon, United States.

[16] Hong Tang and Tao Yang. Optimizing threaded mpi execution on smp clusters. Pro-
ceedings of the 15th international conference on Supercomputing, 2001. Sorrento, Italy.

[17] Sathish S. Vadhiyar, Graham E. Fagg, and Jack Dongarra. Automatically tuned collec-
tive communications. Proceedings of the 2000 conference on Supercomputing, 2000.
Dallas, Texas, United States.

APPENDIX A. PAPERS

Paper 7 176 CPA 2002, pages 123-134

144

This page intentionally left blank

Paper 7 177 CPA 2002, pages 123-134

APPENDIX A. PAPERS

Paper 7 178 CPA 2002, pages 123-134

A.8 The Performance of Configurable Collective Com-
munication for LAM-MPI in Clusters and Multi-
Clusters

Paper 8 179 NIK 2002

The Performance of Configurable Collective
Communication for LAM-MPI in Clusters and

Multi-Clusters

John Markus Bjørndalen
�

, Otto J. Anshus
�

Brian Vinter
�

, Tore Larsen
�

���
Department of Computer Science, University of Tromsø

���
Department of Mathematics and Computer Science, University of Southern Denmark

Abstract

Using a cluster of eight four-way com-
puters, PastSet, an experimental tuple
space based shared memory system, has
been measured to be 1.83 times faster on
global reduction than using the Allreduce
operation of LAM-MPI. Our hypothesis is
that this is due to PastSet using a better
mapping of processes to computers result-
ing in less messages and more use of lo-
cal processor cycles to compute partial
sums. PastSet achieved this by utilizing
the PATHS system for configuring multi-
cluster applications. This paper reports
on an experiment to verify the hypothesis
by using PATHS on LAM-MPI to see if we
can get better performance, and to identify
the contributing factors.

By adding configurability to Allreduce
by using PATHS, we achieved a perfor-
mance gain of 1.52, 1.79, and 1.98 on re-
spectively two, four and eight-way clus-
ters. We conclude that the LAM-MPI algo-
rithm for mapping processes to computers
when using Allreduce was the reason for
its poor performance relative to the imple-
mentation using PastSet and PATHS.

We then did a set of experiments to
examine whether we could improve the
performance of the Allreduce operation
when using two clusters interconnected by

a WAN link with 30-50ms roundtrip la-
tency. The experiments showed that even a
bad mapping of Allreduce which resulted
in multiple messages being sent across
the WAN did not add significant perfor-
mance penalty to the Allreduce operation
for packet sizes up to 4KB. We believe this
is due to multiple small messages concur-
rently in transit on the WAN.

1 Introduction

For efficient support of synchroniza-
tion and communication in parallel sys-
tems, these systems require fast collective
communication support from the underly-
ing communication subsystem as, for ex-
ample, is defined by the Message Pass-
ing Interface (MPI) Standard [1]. Among
the set of collective communication opera-
tions broadcast is fundamental and is used
in several other operations such as barrier
synchronization and reduction [12]. Thus,
it is advantageous to reduce the latency of
broadcast operations on these systems.

In our work with the PATHS[5] config-
uration and orchestration system, we have
experimented with micro-benchmarks and
applications to study the effects of config-
urable communication.

In one of the experiments[18], we used

APPENDIX A. PAPERS

Paper 8 180 NIK 2002

the configuration mechanisms to reduce
the execution times of collective commu-
nication operations in PastSet. To get a
baseline, we compared our reduction oper-
ation with the equivalent operation in MPI
(Allreduce).

By trying a few configurations, we
found that we could improve our Tuple
Space system to be 1.83 times faster than
LAM-MPI (Local Area for Multicomputer
MPI) [11][14]. Our hypothesis was that
this advantage came from a better usage of
resources in the cluster rather than a more
efficient implementation.

If anything, LAM-MPI should be faster
than PastSet since PastSet stores the re-
sults of each global sum computation in
a tuple space inducing more overhead
than simply computing and distributing
the sum.

This paper reports on an experiment
where we have added configurable com-
munication to the Broadcast and Reduce
operations in LAM-MPI (both of which
are used by Allreduce) to validate or fal-
sify our hypothesis. In [4] we report
on complimentary experiments where we
also varied the number of computers per
experiment.

The paper is organized as follows: Sec-
tion 2 summarizes the main features of
the PastSet and PATHS system. Section
3 describes the Allreduce, Reduce and
Broadcast operations in LAM-MPI. Sec-
tion 4 describes the configuration mech-
anism that was added to LAM-MPI for
the experiments reported on in this paper.
Section 5 describes the experiments and
results, section 7 presents related work,
section 6 presents our multicluster exper-
iments, and section 8 concludes the paper.

2 PATHS: Configurable Or-
chestration and Mapping

Our research platform is PastSet[2][17],
a structured distributed shared memory
system in the tradition of Linda[6]. Past-

Set is a set of Elements, where each El-
ement is an ordered collection of tuples.
All tuples in an Element follow the same
template.

The PATHS[5] system is an extension of
PastSet that allows for mappings of pro-
cesses to hosts at load time, selection of
physical communication paths to each ele-
ment, and distribution of communications
along the path. PATHS also implements
the X-functions[18], which are PastSet op-
eration modifiers.

A path specification for a single thread
needing access to a given element is rep-
resented by a list of stages. Each stage is
implemented using a wrapper object hid-
ing the rest of the path after that stage.
The stage specification includes parame-
ters used for initialisation of the wrapper.

Thread Thread Thread Thread

Global Sum

Remote access

Global Sum

Remote access

Global Sum

Element

Node 1 Node 2

Server

Figure 1. Four threads on two hosts
accessing shared element on a sep-
arate server. Each host computes
a partial sum that is forwarded to
the global-sum wrapper on the server.
The final result is stored in the ele-
ment.

Paths can be shared whenever path de-
scriptions match and point to the same el-
ement (see figure 1). This can be used
to implement functionality such as, for in-
stance, caches, reductions and broadcasts.

The collection of all paths in a system
pointing to a given element forms a tree.

Paper 8 181 NIK 2002

The leaf nodes in the tree are the applica-
tion threads, while the root is the element.

Figure 1 shows a global reduction tree.
By modifying the tree and the parameters
to the wrappers in the tree, we can spec-
ify and experiment directly with factors
such as which processes participate in a
given partial sum, how many partial sum
wrappers to use, where each sum wrapper
is located, protocols and service require-
ments for remote operations and where the
root element is located. Thus, we can
control and experiment with tradeoffs be-
tween placement of computation, commu-
nication, and data location.

Applications tend to use multiple trees,
either because the application uses multi-
ple elements, or because each thread might
use multiple paths to the same element.

To get access to an element, the applica-
tion programmer can either choose to use
lower-level functions to specify paths be-
fore handing it over to a path builder, or
use a higher level function which retrieves
a path specification to a named element
and then builds the specified path. The
application programmer then gets a refer-
ence to the topmost wrapper in the path.

The path specification can either be re-
trieved from a combined path specification
and name server, or be created with a high-
level language library loaded at applica-
tion load-time1

Since the application program invokes
all operations through its reference to
the topmost wrapper, the application can
be mapped to different cluster topologies
simply by doing one of the following:

� Updating a map description used by
the high-level library.

� Specifying a different high-level
library that generates path-
specifications. This library may
be written by the user.

1Currently, a Python module is loaded for this
purpose.

� Update the path mappings in the
name server.

Profiling is provided via trace wrap-
pers that log the start and completion time
of operations that are invoked through it.
Any number of trace wrappers can in-
serted anywhere in the path.

Specialized tools to examine the per-
formance aspects of the application can
later read trace data stored with the path
specifications from a system. We are cur-
rently experimenting with different visu-
alizations and analyses of this data to sup-
port optimization of a given application.

The combination of trace data, a specifi-
cation of communication paths, and com-
putations along the path has been useful
in understanding performance aspects and
tuning benchmarks and applications that
we have run in cluster and multi-cluster
environments.

3 LAM-MPI implementation of
Allreduce

LAM-MPI is an open source implemen-
tation of MPI available from [11]. It was
chosen over MPICH [7] for our work in
[18] since it had lower latency with less
variance than MPICH for the benchmarks
we used in our clusters.

The MPI Allreduce operation combines
values from all processes and distribute
the result back to all processes. LAM-MPI
implements Allreduce by first calling Re-
duce, collecting the result in the root pro-
cess, then calling Broadcast, distributing
the result from the root process. For all our
experiments, the root process is the pro-
cess with rank 0 (hereafter called process
0).

The Reduce and Broadcast algorithms
use a linear scheme (every process com-
municates directly with process 0) up to
and including 4 processes. From there on
they use a scheme that organizes the pro-
cesses into a logarithmic spanning tree.

APPENDIX A. PAPERS

Paper 8 182 NIK 2002

The shape of this tree is fixed, and
doesn’t change to reflect the topology of
the computing system or cluster. Figure 2
shows the reduction trees used in LAM-
MPI for 32 processes in a cluster. We
observe that broadcast and reduction trees
are different.

By default, LAM-MPI evenly dis-
tributes processes onto nodes. When we
combine this mapping for 32 processes
with the reduction tree, we can see in Fig-
ure 3 that a lot of messages are sent across
nodes in the system. The broadcast oper-
ation has a better mapping for this cluster
though.

4 Adding configuration to
LAM-MPI

To minimize the necessary changes to
LAM-MPI for this experiment, we didn’t
add a full PATHS system at this point.
Instead, a mechanism was added that al-
lowed for scripting the way LAM-MPI
communicates during the broadcast and
reduce operations.

There were two main reasons for this.
Firstly, our hypothesis was that PastSet
with PATHS allowed us to map the com-
munication and computation better to the
resources and cluster topology. For global
reduction and broadcast, LAM-MPI al-
ready computes partial sums at internal
nodes in the trees. This means that ex-
perimenting with different reduction and
broadcast trees should give us much of
the effect that we observed with PATHS in
[18] and [5].

Secondly, we wanted to limit the influ-
ence that our system would have on the
performance aspects of LAM-MPI such
that any observable changes in perfor-
mance would come from modifying the re-
duce and broadcast trees.

Apart from this, the amount of code
changed and added was minimal, which
reduced the chances of introducing errors
into the experiments.

When reading the LAM-MPI source
code, we noticed that the reduce opera-
tion was, for any process in the reduction
tree, essentially a sequence of

�
receives

from the
�

children directly below it in
the tree, and one send to the process above
it. For broadcast, the reverse was true; one
receive followed by

�
sends.

Using a different reduction or broad-
cast tree would then simply be a matter of
examining, for each process, which pro-
cesses are directly above and below it in
the tree and construct a new sequence of
send and receive commands.

To implement this, we added new re-
duce and broadcast functions which used
the rank of the process and size of the sys-
tem to look up the sequence of sends and
receives to be executed (including which
processes to send and receive from). This
is implemented by retrieving and execut-
ing a script with send and receive com-
mands.

As an example, when using a scripted
reduce operation with a mapping identical
to the original LAM-MPI reduction tree,
the process with rank 12 (see figure 2)
would look up and execute a script with
the following commands:

� Receive (and combine result) from
rank 13

� Receive (and combine result) from
rank 14

� Send result to 8

The new scripted functions are used in-
stead of the original logarithmic Reduce
and Broadcast operations in LAM-MPI.
No change was necessary to the Allreduce
function since it is implemented using the
Reduce and Broadcast operations.

The changes to the LAM-MPI code was
thus limited to 3 code lines, replacing
the calls to the logarithmic reduction and
broadcast functions as well as adding and
a call in MPI_Init to load the scripts.

Paper 8 183 NIK 2002

Remapping the application to another
cluster configuration, or simply trying new
mappings for optimization purposes, now
consists of specifying new communication
trees and generating the scripts. A Python
program generates these scripts as Lisp
symbolic expressions.

5 Experiments

Figure 4 shows the code run in the ex-
periments. The code measures the average
execution time of 1000 Allreduce opera-
tions. The average of 5 runs is then plot-
ted. To make sure that the correct sum is
computed, the code also checks the result
on each iteration.

For each experiment, the number of pro-
cesses was varied from 1 to 32. LAM-MPI
used the default placement of processes on
nodes, which evenly spread the processes
over the nodes.

The hardware platforms consists of
three clusters, each with 32 processors:

� 2W: 16*2-Way Pentium III 450
MHz, 256MB RAM

� 4W: 8*4-Way Pentium Pro 166 MHz,
128MB RAM

� 8W: 4*8-Way Pentium Pro 200 MHz,
2GB RAM

All clusters used 100MBit Ethernet for
intra-cluster communication.

5.1 4-way cluster

Figure 5 shows experiments run on the
4-way cluster. The following experiments
were run:

Original LAM-MPI The experiment
was run using LAM-MPI 6.5.6.

Modified LAM-MPI, original scheme
The experiment was run using a
modified LAM-MPI, but using the
same broadcast and reduce trees

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable schemes vs. pristine LAM-MPI

LAM-MPI original code

��

��

��

��

�	

�

�

��

��

�� ��

�� ��

��

��

��

 !

"# $%

&'

()

*+

,-

./

01 23
45

67

89 :;

<=

>?

@A

LAM-MPI + path, original scheme

+

+

+

+

+

+

+

+

+

+ +

+
+ +

+

+

+

+ +

+

+
+

+

+

+ + + +
+ +

+

+

+

LAM-MPI + path, linear scheme

BC

DE

FG

HI JK

LM

NO

PQ

RS

TU

VW

XY

Z[

\]

^_

`a

bc

de

LAM-MPI + path, exp1 scheme

+

+

+

+ +

+

+

+

+

+

+
+

+ + +
+

+

+ + + + +
+ +

+

+
+ + +

+
+ +

+

Figure 5. Allreduce, 4-way cluster

for communication as the original
version used.

This graph completely overlaps the
graph from the original LAM-MPI
code, showing us that the scripting
functionality is able to replicate the
performance aspects of the original
LAM-MPI for this experiment.

Modified LAM-MPI, linear scheme
This experiment was run using a
linear scheme where all processes
report directly to the process with
rank 0, and rank 0 sends the results
directly back to each client.

This experiment crashed at 18 pro-
cesses due to TCP connection failures
in LAM-MPI. We haven’t examined
what caused this, but it is likely to be
a limitation in the implementation.

Modified LAM-MPI, hierarchal scheme 1
Rank 0 is always placed on node
0, so all other processes on node 0
contribute directly to rank 0. On the
other nodes, a local reduction is done
within each node before the nodes
partial sum is sent to process 0.

The modified LAM-MPI with the hier-
archal scheme is 1.79 times faster than the
original LAM-MPI. This is close to the
factor of 1.83 reported in [18], which was
based on measurements on the same clus-
ter. It is possible that further experiments

APPENDIX A. PAPERS

Paper 8 184 NIK 2002

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable LAM-MPI vs. pristine LAM-MPI

LAM-MPI original code

��

��

��

��

�	

�
�

��

��

�� ��

��

��
��

��

��

 !

"# $%

&' () *+ ,-

./

01 23 45

67
89 :;

<=

>?

@A

LAM-MPI + path

+

+

+

+ +

+ + + +

+ +
+ +

+
+ +

+

+

+

+ + +

+

+ +
+ + +

+

+
+

+

+

Figure 6. Allreduce, 8-way cluster

with configurations would have brought us
closer to the original speed improvement.

5.2 8-way cluster

For the 8-way cluster, we expected the
best configuration to involve using an in-
ternal root process on each node and
limit the inter-node communications to
one send (of the local sum) and one receive
(of the global result) resembling the best
configuration for the 4-way cluster. This
turned out not to be true.

Due to the 8 processes on each node, the
local root process on each node would get
7 children in the sum tree (with the excep-
tion of the root processes in the root node).
The extra latency added per child of the lo-
cal root processes was enough to increase
the total latency for 32 processes to 1444
microseconds.

Splitting the processes to allow further
subgrouping within each node introduced
another layer in the sum tree. This extra
layer brought the total latency for 32 pro-
cesses to 1534 microseconds.

The fastest solution found so far in-
volves partitioning the processes on each
node into two groups of 4 processes. Each
group computes a partial sum for that
group, and forwards it to directly to the
root process. This doubled the communi-
cation over the network, but the total ex-
ecution time was shorter (1322 microsec-
onds).

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

O
pe

ra
ti

on
la

te
nc

y
in

us
,a

vg
of

5x
10

00
op

s

Number of processes in system

Configurable LAM-MPI vs. pristine LAM-MPI

LAM-MPI original code

BC

DE

FG

HI

JK

LM

NO

PQ
RS

TU

VW

XY

Z[

\]
^_

`a

bc

de fg

hi jk

lm

no

pq

rs

tu

vw
xy z{ |}

~�

��

��

LAM-MPI + PATHS

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+ +
+

+ +

+
+

+ +
+

+

Figure 7. Allreduce, 2-way cluster.

The fastest configuration is 1.98 times
faster than the original LAM-MPI Allre-
duce operation. In figure 6, the fastest
configuration and the original LAM-MPI
Allreduce are plotted for 1-32 processes.

5.3 2-way cluster

On the 2-way cluster, after trying a few
configurations, we ended up with a config-
uration that was 1.52 times faster than the
original LAM-MPI code. This was not as
good as for the other clusters. We expected
this since a reduction in this cluster would
need more external messages.

Based on the experiments, we observed
three main factors that influenced the scal-
ing of the application:

� The number of children for a pro-
cess in the operation tree. More chil-
dren adds communication load for the
node hosting this process.

� The depth of a branch in the operation
tree. That is, the number of nodes a
value has to be added through before
reaching the root node.

� Whether a message was sent over the
network or internally on a node.

The depth factor seemed to introduce
a higher latency than adding a few more
children to a process. On the other hand,
adding another layer in the tree would also
allow us to use partial sums. We have

Paper 8 185 NIK 2002

not arrived at any model which allows us
predict which tree organization would in
practice lead to the shortest execution time
of the Allreduce operation.

One difference between the Past-
Set/PATHS implementation and LAM-
MPI is that PastSet/PATHS process
incoming partial sums by order of ar-
rival, while LAM-MPI process them in
the order they appear in the sequence
specified either by the original LAM-MPI
code, or the script. This might influence
the overhead when receiving messages
from a larger number of children. We are
investigating this further.

6 Multi-cluster experiments

In [5] we also ran multi-cluster global
reductions using PastSet and PATHS, and
[10] shows an approach where they reduce
the number of messages over WAN con-
nections to reduce the latency of collective
operations over wide-area links.

To study the effect of choosing various
configurations on multi-clusters, we added
an experiment where we installed an IP
tunnel between the 4W cluster in Tromsø
and the 2W cluster in Denmark and ran the
Allreduce benchmark using those clusters
as one larger cluster.

Unfortunately, during the experiments
two things happened: two of the nodes in
Denmark went down, and the 2W clus-
ter was allocated to other purposes after
we finished the measurements with the
unmodified LAM-MPI Allreduce, so we
were unable to run the benchmark us-
ing configurable Allreduce on the multi-
cluster system.

However, the performance measure-
ments using the unmodified Allreduce did
produce interesting results. An experi-
ment with 32 processes both in Denmark
and Tromsø documented that the reduce
phase of the Allreduce operation had a
very good mapping for minimizing mes-
sages over the WAN link: only one mes-

sage was sent from the Tromsø cluster to
the root process in the Denmark cluster.
However, in the broadcast phase each pro-
cess in Tromsø was sent a message from a
process in Denmark.

We expected this configuration of Allre-
duce to perform gradually worse when
we scaled up the number of processes in
Tromsø from 1 to 32. This did not turn out
to be the case. With 32 processes in Den-
mark, the difference between the Allre-
duce latency of using 1 and 32 processes
in Tromsø was small enough to be masked
by the noise in latency.

We suspected that the reason for this
was that the numerous routers and links
down to Denmark allowed multiple small
messages to propagate towards Tromsø
concurrently.

This suggests that for the cluster sizes
that we have available, a configurable
mechanism that reduces the number of
small messages on a long WAN link does
not significantly reduce the latency. How-
ever, for larger packet sizes, the bandwidth
of the link is important, and a reduction
in the number of messages should matter
more.

To study this, the benchmark was ex-
tended to include not only scaling from 1
to 64 processes, but also to calling Allre-
duce with value vectors from 4 byte (1 in-
teger) to 4MB.

Since two computers in Denmark had
gone down, we ran the benchmark with
28 processors (14 nodes) in Denmark, and
32 processors in Tromsø reducing the to-
tal cluster size to 60 processors. This
produced a similar mapping to the orig-
inal: when running with 60 processes,
all Tromsø nodes would receive a mes-
sage directly from Denmark during broad-
cast, and only two messages would be sent
down to Denmark on reduce.

We also ran the benchmark with 61 pro-
cesses. This resulted in a configuration
where the process with rank 60 (the last
process added when scaling the system to

APPENDIX A. PAPERS

Paper 8 186 NIK 2002

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70

M
ic

ro
se

co
nd

s

Number of processes

Average Allreduce execution time

4 bytes

��

��

��

�� �	

� �

��

��
�� �� ��

��
�� �� ��

 !
"# $% &' () *+ ,- ./

01 23
45 67

89

:;

<=

>?

@A
BC

DE FG HI JK

LM

NO

PQ RS TU VW XY

Z[

\] ^_
`a bc de fg hi

jk
lm

no pq rs tu vw

xy

z{

128 bytes

+

+

+

+ +

+ + +

+

+ + +

+

+ + +

+
+ + + +

+ + +

+ +

+ +

+

+

+

+

+

+
+ +

+ +

+

+

+ + + + +

+

+ +

+ +
+ + +

+

+
+ + + + +

+

+

256 bytes

|}

~�

��

�� ��

�� ��
��

��
�� �� ��

�� �� �� ��

��
�� ¡ ¢£ ¤¥

¦§ ¨© ª«
¬­ ®¯

°± ²³

´µ

¶·

¸¹

º»

¼½
¾¿

ÀÁ
ÂÃ ÄÅ

ÆÇ ÈÉ

ÊË

ÌÍ
ÎÏ ÐÑ

ÒÓ ÔÕ

Ö×

ØÙ ÚÛ
ÜÝ Þß

àá âã äå æç èé êë ìí îï ðñ òó

ôõ

ö÷

512 bytes
+

+

+

+ +
+ +

+

+

+ + + + + + +
+

+ + + +
+ + +

+ +

+ +

+

+

+

+

+

+

+

+
+

+
+

+

+
+ + + +

+

+
+

+ +
+ + + +

+
+ + + + +

+

+

2048 bytes
øù

úû

üý

þÿ �� �� �� �� �	
� �
 ��
�� �� �� �� �� �� �� �� ! "# $% &' () *+ ,- ./

01 23
45 67
89 :; <= >? @A

BC DE
FG HI JK LM NO PQ RS TU VW XY Z[\] ^_ `a bc de fg hi jk lm no

pq

rs

Figure 8. Allreduce performance us-
ing two clusters.

1

10

100

1000

10000

100000

tvuxw

tvuxy

0 10 20 30 40 50 60 70

M
ic

ro
se

co
nd

s

Number of processes

Average Allreduce execution time

4 bytes

z{

|} ~�
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ¡ ¢£ ¤¥ ¦§ ¨© ª« ¬­ ®¯ °±

²³ ´µ ¶· ¸¹ º» ¼½ ¾¿ ÀÁ ÂÃ ÄÅ ÆÇ ÈÉ ÊË ÌÍ ÎÏ ÐÑ ÒÓ ÔÕ Ö× ØÙ ÚÛ ÜÝ Þß àá âã äå æç èé êë ìí îï ðñ òó

ôõ

128 bytes

+

+

+

+
+

+ +
+

+

+ + +

+
+ + +

+
+ + + + + + +

+ +
+ +

+
+ + + + + + + + +

+

+ +

+

+

256 bytes

ö÷

øù úû
üý þÿ �

� �� ��
�� �	
� �
 �� �� �� �� �� �� �� �� �� ! "# $% &' () *+ ,-

./ 01 23 45 67 89 :; <= >? @A BC DE FG HI JK LM NO PQ RS TU VW XY Z[\] ^_ `a bc de fg hi jk lm

no

pq

512 bytes

+

+

+

+
+

+ +
+

+

+ + + + + + +
+

+ + + +
+ + +

+ +
+ +

+ + + + + + + + + + +
+ +

+

+

2048 bytes

rs

tu

vw

xy z{
|} ~� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ¡ ¢£ ¤¥ ¦§ ¨©

ª« ¬­ ®¯ °± ²³ ´µ ¶· ¸¹ º» ¼½ ¾¿ ÀÁ ÂÃ ÄÅ ÆÇ ÈÉ ÊË ÌÍ ÎÏ ÐÑ ÒÓ ÔÕ Ö× ØÙ ÚÛ ÜÝ Þß àá âã äå æç èé

êë

ìí

4096 bytes

îï

ðñ

òó

ôõ ö÷ øù
úû

üý þÿ �� �� ��
�� �	
�

�

�� �� �� �� �� �� �� ��

�� ! "# $%

&' () *+
,- ./
01 23 45 67 89 :;

<= >? @A BC DE
FG HI JK LM NO PQ RS TU VW XY Z[\] ^_ `a bc de

fg

hi

32384 bytes
jk

lm

no

pq rs
tu
vw

xy
z{
|} ~� �� �� �� ��

��
�� �� �� �� �� �� �� ��

�� ��
�� ¡

¢£ ¤¥ ¦§
¨©
ª« ¬­
®¯ °±
²³

´µ

¶·

¸¹ º» ¼½ ¾¿ ÀÁ
ÂÃ ÄÅ ÆÇ ÈÉ ÊË ÌÍ ÎÏ ÐÑ

ÒÓ ÔÕ Ö×
ØÙ ÚÛ ÜÝ Þß

àá

âã

äå

262144 bytes

æ

ç

è

é
ê ë
ì

í

î
ïñð ò

óñô õ
ö
÷ ø ùñú ûñü ý

þ
ÿ�� ���

�

� �
�

��	

� ��

�

� � �
��� � � �

� �
� � �

���
� �

! "
#
$

%

4194304 bytes

&

'

(

)
*

+ ,
-

. /�0
1 2�3 4�5

6 7 8�9 :�; < =
>�? @�A

B

C D
E

F G H
I
J
K

L

M N
O
P Q R

S T U V

W
X Y Z�[\

] ^
_ `
a b

c

Figure 9. Allreduce performance us-
ing two clusters. Note logarithmic
scale of y-axis.

61 processes) is located in Denmark but
only communicates directly with nodes in
Tromsø for Reduce and Broadcast. This
forces the nodes in Tromsø to wait for pro-
cess 60 before one of the two messages
can be sent down to Denmark again, and
the corresponding broadcast message for
60 has to propagate through Tromsø be-
fore reaching it. Figure 8 shows that this
configuration nearly doubles the latency of
Allreduce compared to running Allreduce
with 60 processes. Clearly, configurations
can be encountered where it pays off to
control who communicates with who even
for small messages.

Figure 8 also shows us that sending
many messages (there is one message
per process in the figure) for vectors up
to 2KB does not add much performance

100

1000

10000

100000

t uxw

t u y

1 10 100 1000 10000 100000
tvu w t uxy

R
ou

nd
tr

ip
la

te
nc

y
in

m
ic

ro
se

co
nd

s

Packet size in bytes

1 threads

de

fg

hi

jk

lm

no

pq

rs

tu

vw

2 threads

+

+

+

+

+

+

+

+

+

+

3 threads

xy

z{

|}

~�

��

��

��

��

��
��

4 threads

+

+

+

+

+

+

+

+

+

+

5 threads

��

��

��

��

��

��

��

��

��

��

6 threads

 ¡

¢£

¤¥

¦§

¨©

ª«

¬­

®¯

°±

²³

7 threads

´µ

¶·

¸¹

º»

¼½

¾¿

ÀÁ

ÂÃ

ÄÅ

ÆÇ

8 threads

È

É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

9 threads

Ò

Ó

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

10 threads

Ü

Ý

Þ

ß

à

á

â

ã

ä

å

Figure 10. Roundtrip TCP/IP latency
for one of N threads. 4W node to 8W
node (LAN)

penalty to Allreduce compared to sending
only a few messages. The figure shows a
spike around 38 processes, which comes
from a temporary network routing prob-
lem somewhere between Denmark and
Tromsø when the experiment was per-
formed.

Figure 9 shows that the performance
of Allreduce rapidly deteriorates when the
size and number of packets increase. The
graph uses a logarithmic scale for the y-
axis.

To examine this effect further, we de-
vised another experiment. We had one
thread measuring the latency of roundtrip
messages over TCP/IP. To simulate the
bad mapping of the Broadcast operation,
a number of threads were added sending
roundtrip messages concurrently with the
first thread.

The hypotheses were that adding the ex-
tra threads would impact the first thread
the least using the WAN to Denmark, and
that the background threads would influ-
ence the first thread more for small mes-
sages when using the LAN.

Figure 10 shows that communicating
between two cluster nodes, using only
a single router between them, the back-
ground communication would influence
the roundtrip latency of the benchmark
thread even at the smallest packet sizes.
As we add background communication,

Paper 8 187 NIK 2002

10000

100000

tvuxw

tvu y

tvu �

1 10 100 1000 10000 100000
t uxw tvuxy

R
ou

nd
tr

ip
la

te
nc

y
in

m
ic

ro
se

co
nd

s

Packet size in bytes

1 threads

�� �� �� �� 	
 ��
�

��

��

��

2 threads

+ + + +

+ +

+

+

+

+

3 threads

�� �� �� �� �� � !"

#$

%&

'(

4 threads

+ + + +

+ +

+

+

+

+

5 threads

)* +, -. /0 12 34

56

78

9:

;<

6 threads

=> ?@ AB CD EF GH

IJ

KL

MNOP

7 threads

QR ST UV WX YZ [\

]^

_`

ab

cd

8 threads

e fhgjilknm

o

p

q

r

9 threads

s thujvlwnx

y

z

{

|

10 threads

} ~h�j�l�n�

�

�

�

�

Figure 11. Roundtrip TCP/IP latency
for one of N threads. Gateway node
in Denmark to 4W node (WAN)

the latency increases for all packet sizes.
The cluster in Denmark was busy at the

time of the experiment, so we had to use
the clusters gateway node when running
the WAN experiment. The gateway was
where we originally installed the IP tunnel
for the LAM-MPI Allreduce benchmark,
so we still used the tunnel for the experi-
ment.

Figure 11 shows that for messages up
to 4KB, we can hardly see any differ-
ence in the performance of Allreduce as
we add background communication. Only
with larger packet sizes, where we assume
that the bandwidth plays a larger role, is
the performance influenced by the back-
ground communication.

7 Related work

Jacunski et al.[9] shows that selection of
the best performing algorithm for all-to-
all broadcast on clusters of workstations
based on commodity switch-based net-
works is a function of both network char-
acteristics as well as the message length
and number of participating nodes in the
all-to-all broadcast operation. In contrast
our work used clusters with multiproces-
sors, we did performance measurements
on the reduce operation as well as on the
broadcast, and we documented the effect
of the actual system at run time includ-

ing the workload, communication perfor-
mance of the hosts.

Bernashci et al.[3] study the perfor-
mance of the MPI broadcast operation
on large shared memory systems using a-
trees.

Kielmann et al.[10] show how the per-
formance for collective operations like
broadcast depend upon cluster topology,
latency, and bandwidth. They develop a
library of collective communication op-
erations optimized for wide area systems
where a majority of the speedup comes
from limiting the number messages pass-
ing over wide-area links.

Husbands et al.[8] optimizes the perfor-
mance of MPI_Bcast in clusters of SMP
nodes by using a two-phase scheme; first
messages are sent to each SMP node, then
messages are distributed within the SMP
nodes. Sistare et al.[13] uses a simi-
lar scheme, but focus on improving the
performance of collective operations on
large-scale SMP’s.

Tang et al.[15] also use a two-phase
scheme for a multithreaded implementa-
tion for MPI. They separate the imple-
mentation of the point-to-point and collec-
tive operations to allow for optimizations
of the collective operations, which would
otherwise be difficult.

In contrast to the above works, this pa-
per is not focused on a particular optimiza-
tion of the spanning trees. Instead, we
focus on making the shape of the span-
ning trees configurable to allow easy ex-
perimentation on various cluster topolo-
gies and applications.

Vadhiyar et al.[16] shows an automatic
approach to selecting buffer sizes and al-
gorithms to optimize the collective opera-
tion trees by conducting a series of exper-
iments.

8 Conclusions

We have observed that the broadcast
and reduction trees in LAM-MPI are dif-

APPENDIX A. PAPERS

Paper 8 188 NIK 2002

ferent, and do not necessarily take into ac-
count the actual topology of the cluster.

By introducing configurable broadcast
and reduction trees, we have shown a sim-
ple way of mapping the reduction and
broadcast trees to the actual clusters in use.
This gave us a performance improvement
up to a factor of 1.98.

For the cluster where we observed the
performance difference of a factor 1.83 be-
tween PastSet/PATHS and LAM-MPI, we
arrived at a reduction and broadcast tree
that gave us an improvement of 1.79 for
Allreduce over the original LAM-MPI im-
plementation. This supports our hypothe-
sis that the majority of the performance-
difference between LAM-MPI and Past-
Set/PATHS was a better mapping to the re-
sources and topology in the cluster.

We have also observed that the assump-
tion that doing a reduction internally in
each node before sending a message on
the network did not lead to the best per-
formance on our cluster of 8-way nodes.
Instead, increasing the number of mes-
sages on the network to reduce the depth
of the reduction and broadcast as well as
the number of direct children for each in-
ternal node proved to be a better strategy.

The reason for this may be found by
studying three different factors that add to
the cost of the global reduction and broad-
cast trees:

� The number of children directly be-
low an internal node in the spanning
tree.

� The depth of the spanning tree.

� Whether an arc between a child and a
parent in the spanning tree is a mes-
sage on the network or internally in
the node.

We suspect that these factors are not in-
creasing linearly, and that the cost of, for
instance, adding another child to an inter-
nal node in the spanning tree depends on

factors such as the order of the sequence
of receive commands as well as contention
on the network layer in the host computer.

For the multi-cluster experiments, we
observed that configurations which sent
more messages than necessary over the
WAN link did not perform as bad as we
had expected. For message sizes up to
4KB, the extra messages did not add a no-
ticeable operation time to the Allreduce
operation. We believe that multiple mes-
sages concurrently in transit through the
routers along the WAN link masks some
of the overhead of the extra messages send
by LAM-MPI.

For larger messages, we see that the
bandwidth of the WAN link is starting to
penalize the bad configurations.

9 Acknowledgements

Thanks to Ole Martin Bjørndalen for
reading the paper and suggesting improve-
ments.

References

[1] Mpi: A message-passing interface
standard. Message Passing Interface
Forum (Mar 1994).

[2] ANSHUS, O. J., AND LARSEN,
T. Macroscope: The abstractions
of a distributed operating system.
Norsk Informatikk Konferanse (Oc-
tober 1992).

[3] BERNASCHI, M., AND RICHELLI,
G. Mpi collective communication
operations on large shared mem-
ory systems. Proceedings of the
Ninth Euromicro Workshop on Paral-
lel and Distributed Processing (EU-
ROPDP.01) (2001).

[4] BJØRNDALEN, J. M., ANSHUS, O.,
VINTER, B., AND LARSEN, T. Con-
figurable collective communication

Paper 8 189 NIK 2002

in lam-mpi. Proceedings of Commu-
nicating Process Architectures 2002,
Reading, UK (September 2002).

[5] BJØRNDALEN, J. M., ANSHUS,
O., LARSEN, T., AND VINTER,
B. Paths - integrating the prin-
ciples of method-combination and
remote procedure calls for run-
time configuration and tuning of
high-performance distributed appli-
cation. Norsk Informatikk Konfer-
anse (November 2001), 164–175.

[6] CARRIERO, N., AND GELERNTER,
D. Linda in context. Commun. ACM
32, 4 (April 1989), 444–458.

[7] GROPP, W., LUSK, E., DOSS, N.,
AND SKJELLUM, A. A high-
performance, portable implementa-
tion of the mpi message passing in-
terface standard. Parallel Comput-
ing, Volume 22, Issue 6 (September
1996).

[8] HUSBANDS, P., AND HOE, J. C.
Mpi-start: delivering network per-
formance to numerical applications.
Proceedings of the 1998 ACM/IEEE
conference on Supercomputing
(1998). San Jose, CA.

[9] JACUNSKI, M., SADAYAPPAN, P.,
AND PANDA, D. All-to-all broadcast
on switch-based clusters of work-
stations. 13th International Paral-
lel Processing Symposium and 10th
Symposium on Parallel and Dis-
tributed Processing (12 - 16 April
1999). San Juan, Puerto Rico.

[10] KIELMANN, T., HOFMAN, R. F. H.,
BAL, H. E., PLAAT, A., AND

BHOEDJANG, R. A. F. Magpie:
Mpi’s collective communication op-
erations for clustered wide area sys-
tems. Proceedings of the seventh
ACM SIGPLAN symposium on Prin-
ciples and practice of parallel pro-

gramming (1999). Atlanta, Georgia,
United States.

[11] http://www.lam-mpi.org/.

[12] PANDA, D. Issues in design-
ing efficient and practical algo-
rithms for collective communication
in wormhole-routed systems. Proc.
ICPP Workshop Challenges for Par-
allel processing (1995), 8–15.

[13] SISTARE, S., VANDEVAART, R.,
AND LOH, E. Optimization of mpi
collectives on clusters of large-scale
smp’s. Proceedings of the 1999 con-
ference on Supercomputing (1999).
Portland, Oregon, United States.

[14] SQUYRES, J. M., LUMSDAINE,
A., GEORGE, W. L., HAGE-
DORN, J. G., AND DEVANEY,
J. E. The interoperable message
passing interface (IMPI) extensions
to LAM/MPI. In Proceedings,
MPIDC’2000 (March 2000).

[15] TANG, H., AND YANG, T. Optimiz-
ing threaded mpi execution on smp
clusters. Proceedings of the 15th in-
ternational conference on Supercom-
puting (2001). Sorrento, Italy.

[16] VADHIYAR, S. S., FAGG, G. E.,
AND DONGARRA, J. Automati-
cally tuned collective communica-
tions. Proceedings of the 2000 con-
ference on Supercomputing (2000).
Dallas, Texas, United States.

[17] VINTER, B. PastSet a Struc-
tured Distributed Shared Memory
System. PhD thesis, Tromsø Univer-
sity, 1999.

[18] VINTER, B., ANSHUS, O. J.,
LARSEN, T., AND BJØRNDALEN,
J. M. Extending the applicability of
software dsm by adding user rede-
finable memory semantics. Parallel
Computing (ParCo) 2001, Naples,
Italy (September 2001).

APPENDIX A. PAPERS

Paper 8 190 NIK 2002

V-0

V-1

S

V-2

S

V-4

S

V-8

S

V-16

S

V-3

S

V-5

S

V-6

S

V-7

S

V-9

S

V-10

S

V-12

S

V-11

S

V-13

S

V-14

S

V-15

S

V-17

S

V-18

S

V-20

S

V-24

S

V-19

S

V-21

S

V-22

S

V-23

S

V-25

S

V-26

S

V-28

S

V-27

S

V-29

S

V-30

S

V-31

S

Figure 2. Log-reduce tree for 32 processes. The arcs represent communication be-
tween two nodes. Partial sums are computed at a node in the tree before passing the
result further up in the tree.

ps0

ps1 ps2

ps3

ps4

ps5 ps6

ps7

V-0

V-8V-16

V-1 V-2V-4 V-9 V-10V-12

V-24

V-17 V-18V-20 V-25 V-26V-28

V-3V-11V-19V-27V-5 V-6V-13 V-14V-21 V-22V-29 V-30

V-7 V-15V-23 V-31

Figure 3. Log-reduce tree for 32 processes mapped onto 8 nodes.

t1 = get_usecs();
MPI_Allreduce(&hit, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
t1 = get_usecs();
for (i = 0; i < ITERS; i++) {

MPI_Allreduce(&i, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
if (ghit != (i * size))

printf("oops at %d. %d != %d\n", i, ghit, (i * size));
}
t2 = get_usecs();
MPI_Allreduce(&hit, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

Figure 4. Global reduction benchmark

Paper 8 191 NIK 2002

APPENDIX A. PAPERS

Paper 8 192 NIK 2002

A.9 The latency of user-to-user, kernel-to-kernel and
interrupt-to-interrupt level communication

Paper 9 193 NIK 2002

The latency of user-to-user, kernel-to-kernel and
interrupt-to-interrupt level communication

John Markus Bjørndalen
�
, Otto J. Anshus

�
, Brian Vinter

�
,

Tore Larsen
�

���
Department of Computer Science

University of Tromsø

���
Department of Mathematics and Computer Science

University of Southern Denmark

Abstract

Communication performance depends
on the bit rate of the networks physical
channel, the type and number of routers
traversed, and on the computers ability
to process the incoming bits. The latter
depends on factors such as the protocol
stack, bus architecture and the operating
system.

To see how these factors impact the
roundtrip latency, we experiment with four
different protocols, an optimization of one
of the protocols, and with moving the com-
municating endpoints from user-level pro-
cesses into the kernel, and then further on
into the interrupt handler of two commu-
nicating computers.

We then add a processor-bound work-
load to the receiving computer to simu-
late a server which also do computations
in addition to network I/O. We report how
this workload affects the roundtrip latency
of the different protocols and endpoints,
and also how the different benchmarks in-
fluence the execution time of the workload.

The largest reduction in latency can be
achieved by using less complex protocols
specialized for local networks. A less com-

plex protocol also has less variation in
the roundtrip latency when the workload
is running.

For small messages, interrupt-level
communication and the TCP/IP based
communication both increase the work-
load running time the least. However, the
interrupt-level communication will trans-
mit 5.3 times more messages.

1 Introduction

The importance of distributed comput-
ing is increasing as clusters of worksta-
tions or PCs becomes more and more im-
portant. Intranets are becoming important
mechanisms to manage information flow
in organizations. We are seeing an increas-
ing number of services that need to per-
form significant computations, and the im-
portance and role of application and com-
pute facilities are becoming larger.

Processor, memory and bus perfor-
mance, and more and more communica-
tion performance are important factors in
determining the time an application needs
to complete.

The communication performance de-

APPENDIX A. PAPERS

Paper 9 194 NIK 2002

pends on the bit rate of the networks
physical channel and the type and num-
ber of routers traversed, and it depends
on the hosts ability to process the incom-
ing bits. The latter depends on factors
like the protocol stack, the bus architec-
ture, and the operating system. When a
message arrives or departs, many activities
take place including data copying, context
switching, buffer management, and inter-
rupt handling.

In particular, low latency and low per-
turbation of the workload is important for
scientific computations, which typically
combine high computational load with a
need for tight, low-latency communica-
tion.

To learn more about where the over-
heads are located and how large they are,
we have done performance measurements
to find out how much the latency of send-
ing a message between two hosts using
blocking message passing improves when
increasingly less complex communication
protocols are used from the user level. To
establish a lower bound on the achiev-
able latency, we also measured the latency
when sending a message between two op-
erating system kernels without going to
user level. We did this in two steps, first
we measured the latency when running
the message passing threads in the kernel,
and then by running a roundtrip bench-
mark directly from the interrupt handler
for the network card in use. The ratios
between the user level protocols and the
kernel and interrupt level communication
latencies will provide us with data to eval-
uate if there are benefits from moving, say,
a distributed shared memory server closer
to the network card by locating it at ker-
nel or even interrupt level. This is work in
progress.

There is overhead in allocating, copy-
ing and queueing buffers for later pro-
cessing by a layer further up. If the re-
quested service (say, send/receive opera-
tion, or read/write to distributed shared

memory) takes less time than the overhead
it could be better to execute the operation
directly from the interrupt handler. In an
earlier paper[2], we compared the perfor-
mance of the read and write operations
of the PastSet distributed shared memory
[1][6] when using TCP/IP and two imple-
mentations of VIA (Virtual Interface Ar-
chitecture). One of the VIA implemen-
tations had direct hardware support from
the Gigabit network card, and the other
was a software implementation, M-VIA
[5], using a 100Mbit network. The re-
sults showed that both VIA implementa-
tions were significantly faster than TCP/IP.
This was as expected. However, M-VIA
using a 100Mbit network for small mes-
sages had comparable performance to the
hardware supported VIA using a Giga-
bit network when blocking message pass-
ing was used between two user level pro-
cesses.

We believe that the reason for this is that
the majority of the overhead in both the
hardware supported VIA implementation
and M-VIA comes from interrupt handling
and scheduling the user-level threads.

Furthermore, we observed that some of
the factors contributing to the low latency
of the M-VIA implementation were:

� Modified versions of the network de-
vice drivers were used which pro-
vided hooks for the M-VIA subsys-
tem

� A localnet/Ethernet-optimized proto-
col was used

� Checksums were computed directly
on the network interface card

� A low-overhead API with statically
allocated buffers in user space was
used

� Fast kernel traps were used instead of
using the ordinary system call or de-
vice call mechanisms

Paper 9 195 NIK 2002

One of the more important factors was
that the implementation made use of a
low-overhead Ethernet-optimized proto-
col. As such, it avoided a lot of the
processing that internet-protocols such as
TCP/IP do. However, M-VIA was also
able to queue packets directly to the net-
work interface card, and provide hooks
which allows the interrupt handler to dis-
patch incoming VIA packets to the M-VIA
system instead of sending them to the or-
dinary Ethernet layer in the kernel.

2 The Low-Latency Protocol

M-VIA uses a special kernel trap mech-
anism to speed up kernel access. A sim-
pler (but slightly less efficient) way to pro-
vide a quick access to a device driver is
to use the Linux /proc filesystem, which
is a mechanism for exporting interfaces to
device drivers (or any other Linux kernel
module).

The /proc filesystem is typically used to
export interface files which can be used
for tasks such as inspection of devices (by
reading files) and setting of options (by
writing to specific files). To provide such
interfaces, a device driver exports a file in
a subdirectory of /proc and binds functions
of its own choice to the read and write op-
erations of those files.

To implement the Low Latency Pro-
tocol (LLP), we use the /proc interface
to provide four different interfaces (de-
scribed below) for sending and receiv-
ing Ethernet frames with a protocol ID
which separate them from other protocols
transmitted on the cable. The interfaces
were exported by an extension to the de-
vice driver for the 100Mbit Ethernet cards
we used (TrendNet NICs with DEC Tulip
based chipsets).

The LLP protocol uses raw Ethernet
frames with only a few addressing head-
ers added.

Two of the interfaces were used to con-
trol the kernel-based and interrupt handler

based benchmarks.
The four interfaces are:

basic This interface allows a user level
process to read and write raw Ether-
net frames directly to and from the
network card using only a simple
packet processing layer in the driver.

When a user writes a packet to the
interface file, an sk_buf (a network
buffer) is allocated, the packet is
copied into the buffer and the buffer
is queued directly with the device
driver.

We used a unique ethernet protocol
ID, which allowed us to recognize
our own protocol directly in the de-
vice drivers interrupt handler. This
was used to dispatch incoming pack-
ets to the LLP subsystem in the inter-
rupt handler instead of going through
the Ethernet packet processing in the
Linux kernel.

Incoming packets are written to a
buffer in the LLP subsystem. If a
user-level process is blocked waiting
for a packet, the process is unblocked.

basic static-skb Allocating and freeing
network buffers introduces overhead
in the protocol. Instead of dy-
namically allocating buffers for each
packet, we statically allocate an
sk_buf when the interface file is
opened.

This buffer is reused every time the
client wants to send a packet.

The interface is identical to the one
above, and uses the same read rou-
tine.

kernel-based roundtrip To measure the
roundtrip latency between two ker-
nel level processes, we provide an in-
terface file where the write operation
starts a benchmark loop in the kernel.

An iteration count is provided when
writing to the file, and timing data is

APPENDIX A. PAPERS

Paper 9 196 NIK 2002

written back to the client by modify-
ing the write buffer.

The remote end of the benchmark
starts by invoking a read operation
on the corresponding interface file on
that host.

The benchmark loop is run by the
Linux user level processes which in-
voked the write and read operations.
Thus, the benchmark is not run by
spawning Linux kernel threads.

interupt-handler roundtrip When a
packet arrives from the network for
the kernel level server, the interrupt
handler in the device driver still
needs to queue up (or register) the
packet and wake up the server thread
in the benchmark.

This involves some synchronization
between the interrupt handler and
kernel process, as well as scheduling
and running the server thread.

To avoid this, we allowed the inter-
rupt handler to process the packet di-
rectly and queue up a reply packet for
transmission with the NIC. This al-
lows us to keep the bechmark entirely
in the interrupt handlers.

To start the interrupt handler bench-
mark, a write operation is invoked
on the corresponding interface file.
An iteration count and a timestamp is
stored in the packet, and the packet is
immediately queued with the device
driver.

The iteration count is decreased every
time the packet passes trough an in-
terrupt handler. A second timestamp
is stored in the packet when the iter-
ation count reaches 0, and the packet
is returned up to the thread which in-
voked the write operation.

UDP TCP

IP

Ethernet

Device Driver

LLP

Kernel

Userlevel

Pa
ck

et
 S

oc
ke

t B
en

ch
m

ar
k

U
D

P/
IP

 B
en

ch
m

ar
k

T
C

P/
IP

 B
en

ch
m

ar
k

L
L

P
B

en
ch

m
ar

ks

Figure 1. Protocols used in bench-
marks, and location of protocol imple-
mentations.

3 Experiments

We have measured the round-trip la-
tency of communication between two
user-level processes, each on a different
computer, using four different protocols.
For the LLP protocol, we also measured
the round-trip latency between two threads
located in the operating system kernel,
each on a different computer. Finally, we
measured the round-trip latency of com-
munication between two interrupt handler
device drivers, each on a different com-
puter.

The experiments measure the time it
takes sending a message from one com-
puter to another, sending a reply back, and
receiving it on the original computer. We
call this the round-trip latency.

For each experiment, we measure the
time it took to send and receive 1500
round-trip messages, and compute the av-
erage round-trip latency. We then repeat
each experiment five times, and compute
the minimum, maximum, and average of
the averages.

The following experiments were run:

� TCP/IP protocol, user-level to user-

Paper 9 197 NIK 2002

level

� UDP/IP protocol, user-level to user-
level

� Packet socket, transmitting raw Eth-
ernet frames, user-level to user-level

� LLP, using the /proc filesystem, user-
level to user-level

� LLP, using the /proc filesystem,
statically allocated network buffers,
userspace to userspace

� LLP, kernel-level to kernel-level

� LLP, interrupt handler to interrupt
handler

The whole set of experiments were re-
peated with a work load on the receiving
computer. This scenario emulates a typical
client/server model where a client requests
a service from a server with has other work
loads than servicing remote requests. We
measured both the round-trip latencies and
the running time of the work load in each
case. As a baseline we measured the run-
ning time of the work load without any
communication.

As the work load we used a tiled matrix
multiplication with good cache utilization.

The experiments were run on two HP
Netserver LX Pros (4-Way 166 MHz Pen-
tium Pros with 128 MB RAM), with
Trendnet TE100-PCIA 100MBit network
cards (DEC Tulip chipsets) connected to a
hub. The computers were run with unipro-
cessor Linux kernels to simplify the exper-
iments.

All of the protocols in the experiments
are implemented at kernel level. Figure 1
shows the protocols and some of the sub-
systems used in the various experiments.
The TCP/IP and UDP/IP benchmarks use
blocking send and receive on standard
sockets. The packet socket benchmark
uses the PF_PACKET socket type to send
and receive raw Ethernet packets on the

network. Even if this saves us from pro-
cessing the packet through the IP and
UDP/TCP layers, the Ethernet frames are
still processed by a packet processing
layer in the kernel. This introduces extra
processing overhead which, for instance,
the M-VIA[5] implementation of the VIA
communication API avoids.

To avoid perturbations with IP (and
other protocols), we used Ethernet pro-
tocol ID 0x6008, which is, as far as we
know, not allocated. This means that we
will only receive traffic meant for this
benchmark on the sockets.

4 Results

4.1 Roundtrip latency

Benchmark min max avg
TCP/IP, userlevel 187 189 188
UDP/IP, userlevel 141 142 141
Packet socket, userlevel 114 115 115
LLP userlevel 87 88 88
LLP userlevel static buf 82 83 82
LLP kernel level 67 67 67
LLP interrupt handler 54 54 54

Table 1. Roundtrip latency in mi-
croseconds, 32 byte message, with-
out workload

In table 1, we show the roundtrip la-
tency for each benchmark with a message
size of 32 bytes. The computers have no
workload apart from the benchmarks. We
have added a divider in the table to make
it easier to see where we introduce kernel
level benchmarks.

Most of the latency reduction (106 mi-
croseconds) comes from choosing a sim-
pler protocol. Moving the benchmark into
the interrupt handlers only reduce the la-
tency by another 28 microseconds com-
pared to the best user-level protocol.

APPENDIX A. PAPERS

Paper 9 198 NIK 2002

Benchmark min max avg
TCP/IP, userlevel 231 441 286
UDP/IP, userlevel 145 291 202
Packet socket, userlevel 118 178 140
LLP userlevel 90 130 106
LLP userlevel static buf 84 131 102
LLP kernel level 68 69 68
LLP interrupt handler 54 54 54

Table 2. Roundtrip latency in mi-
croseconds, 32 byte message, with
workload

Table 2 shows the roundtrip latency for
the benchmarks when we add a matrix
multiplication workload to the receiving
computer.

The less complex user-level protocols
are less influenced by the workload than
the more complex protocols. The kernel-
level benchmark is hardly influenced by
the workload, while the interrupt-level
benchmark is not influenced by the work-
load at all.

This is interesting, since the kernel-
level benchmark is implemented with
user-level threads that enter the kernel and
run the benchmark code. We assume that
the kernel-level benchmark is scheduled
the same way as any other userlevel pro-
cess.

Benchmark min max avg
TCP/IP, userlevel 384 385 384
UDP/IP, userlevel 339 340 339
Packet socket, userlevel 311 312 311
LLP userlevel 283 286 284
LLP userlevel static buf 278 278 278
LLP kernel level 251 253 252
LLP interrupt handler 215 215 215

Table 3. Roundtrip latency in mi-
croseconds, 1024 byte message, with-
out workload

Table 3 shows the benchmarks with no
workload on any of the hosts, and with the
message size increased to 1KB.

Compared to the latencies in table 1,
the increase in average latency is 196 mi-
croseconds for all user-level protocols, ex-
cept from the UDP benchmark which has
an increase of 198 microseconds.

The amount of processing per packet
for any one of the protocols should be
the same both for 32-byte and a 1024-
byte message since both packet sizes fit
within an Ethernet frame. Thus, the extra
overhead of sending a 1024-byte message
should depend on the extra time spent in
the network cable, in the network adapter,
time spent being copied between the net-
work adapter to the host memory as well
as time spent copying the packet within the
host memory.

Observing that the added overhead for a
1KB packet compared to a 32 byte packet
is nearly constant for all user-level proto-
cols suggest that the attention paid in the
TCP/IP and UDP/IP stacks to avoid extra
copying of data packets has paid off and
brought the number of copies down the
same number as the other userlevel proto-
cols.

For the kernel-level benchmark, the dif-
ference between the latency for 32-byte
and 1024-byte payloads is further reduced
to 185 microseconds.

A roundtrip message between two pro-
cesses at user-level is copied 4 times
between user-level and kernel-level per
roundtrip. We have measured that copy-
ing a 1KB buffer takes about 2.6 microsec-
onds on the computers we used. This
explains most of the extra overhead for
the user-level protocols compared to the
kernel-level protocol.

For the interrupt-handler roundtrip mes-
sages, the difference between 32-byte and
1KB packets is even less at 161 microsec-
onds. Apart from the copying done by the
Ethernet card over the PCI bus to and from
memory, the interrupt handler benchmark
does not copy the contents of the message.
Instead, it modifies the headers of the in-
coming message and inserts the outgoing

Paper 9 199 NIK 2002

message directly in the output queue for
the network card.

Benchmark min max avg
TCP/IP, userlevel 387 467 427
UDP/IP, userlevel 423 921 598
Packet socket, userlevel 316 396 346
LLP userlevel 287 288 287
LLP userlevel static buf 281 287 282
LLP kernel level 254 255 255
LLP interrupt handler 215 215 215

Table 4. Roundtrip latency in mi-
croseconds, 1024 byte payload, with
workload

Table 4 shows the roundtrip latency of
1KB messages when the receiving com-
puter runs the the matrix multiplication
workload.

As in table 2, we see that the less com-
plex protocols are less influenced by the
workload than the more complex proto-
cols.

4.2 Implications of the roundtrip bench-
marks on the workload

When no benchmarks are run, the av-
erage execution time for multiplying two
512 by 512 matrices is 13.4 seconds. In
tables 5 and 6, we show the impact on
the execution time of the matrix multipli-
cation when running the benchmarks. We
also show the average number of roundtrip
messages per second while the bench-
marks execute.

Table 5 shows that the benchmarks in-
crease the execution time of the matrix
multiplication by 1.6 to 2.3 times.

The benchmark which influences the
matrix multiplication the most is the
packet socket benchmark. We currently do
not have an explanation why this bench-
mark performs as bad as it does, but ob-
serve that the benchmark sends more than
twice as many roundtrip messages than
the TCP/IP benchmark. A likely place to

look for an explanation is the amount of
code executed by the protocol combined
with the time that the matrix multiplication
is allowed to compute before being inter-
rupted by another packet from the client.

The two benchmarks which influence
the matrix multiplication the least are the
TCP/IP benchmark and the interrupt han-
dler benchmark.

We believe that one of the reasons the
workload is not influenced more by the
TCP/IP benchmark is that the higher over-
head in the TCP/IP protocols means that it
takes longer for the client host to send the
next message to the host with the work-
load. The matrix multiplication applica-
tion is thus allowed to compute more be-
fore being interrupted by another request
from the client end.

Another observation is that there is a
factor 5.3 difference in the number of
roundtrip messages between the two best
benchmarks in this experiment, implying
that a server in the kernel could support
a much higher network load without dis-
turbing the workload on a host more than a
TCP/IP server which serves a smaller load.

Table 6 shows us a similar pattern to ta-
ble 5. The packet socket benchmark still
comes out worst when comparing the in-
fluence on the workload execution time,
while the least disturbing benchmarks are
the TCP/IP and interrupt handler bench-
marks.

5 Related Works

In [4] it was documented that CPU per-
formance is not the only factor affecting
network throughput. Even though we have
not used different computers, we have also
shown that the network latency is depen-
dent upon several other factors than CPU
performance, and we have detailed some
of these.

In [3] it is shown how the cost of user-
level communication can be reduced by
reducing the cost of servicing interrupts,

APPENDIX A. PAPERS

Paper 9 200 NIK 2002

Benchmark min max avg messages/s
TCP/IP, userlevel 19 23 21 3494
UDP/IP, userlevel 23 26 24 4950
Packet socket, userlevel 25 37 30 7120
LLP userlevel 23 27 26 9406
LLP userlevel static buf 22 27 24 9801
LLP kernel level 23 24 24 14621
LLP interrupt handler 21 21 21 18501

Table 5. Impact of the benchmarks on the work load execution time, 32 bytes message

Benchmark min max avg messages/s
TCP/IP, userlevel 16 16 16 2341
UDP/IP, userlevel 16 16 16 1671
Packet socket, userlevel 20 20 20 2893
LLP userlevel 17 18 18 3482
LLP userlevel static buf 18 18 18 3540
LLP kernel level 16 16 16 3923
LLP interrupt handler 15 15 15 4642

Table 6. Impact of roundtrip benchmarks on matrix multiplication execution time, 1024
bytes message

and by controlling when the system uses
interrupts and when it uses polling. They
showed that blocking communication was
about an order of magnitude more expen-
sive than spinning between two computers
in the Shrimp multicomputer.

Active messages [7] invoke a receiver-
side handler whenever a message arrives.
Control information at the head of each
message species the address of a user-
level routine that is responsible for extract-
ing the message from the network. This
approach often requires servicing an inter-
rupt for each message received.

6 Conclusion

We have observed that the largest im-
pact on roundtrip latency is the complexity
and implementation of the protocol used,
not whether the endpoints of the com-
munication are in userspace or in kernel
space. Reducing the overhead by choos-

ing simpler protocols also resulted in less
variation in the roundtrip latency.

This suggests that a significant re-
duction in communication latency can
be achieved without modifications to the
operating system kernel. However, to
achieve the best possible latency, a com-
bination of interrupt level handling of the
communication with an efficient activation
of user-level processes are necessary. The
interrupt level latency effectively gives a
practical lower bound on how low the la-
tency can be.

Moving data between kernel and user-
level by copying also introduces extra
overhead which is visible in the roundtrip
latency. This suggests that we can benefit
from moving communication handling to
kernel space if the data can be stored in the
kernel1. This can be of use for distributed

1The extra copying could also be avoided if we
used shared buffers between kernel and userspace,
as VIA does

Paper 9 201 NIK 2002

shared memory systems using servers on
each computer.

The interrupt-level benchmark which
had the lowest latency, was least influ-
enced by the workload (not visible in the
tables). This benchmark also disturbed the
workload the least. Again, this suggests
that there may be performance benefits
from integrating, say, a distributed shared
memory server with the interrupt handler.

7 Acknowledgements

We thank Lars Ailo Bongo for reading
the paper and suggesting improvements.

References

[1] ANSHUS, O. J., AND LARSEN,
T. Macroscope: The abstractions
of a distributed operating system.
Norsk Informatikk Konferanse (Octo-
ber 1992).

[2] BJØRNDALEN, J. M., ANSHUS, O.,
VINTER, B., AND LARSEN, T. Com-
paring the performance of the pastset
distributed shared memory system us-
ing tcp/ip and m-via. In Proceedings
of WSDSM’00, Santa Fe, New Mexico
(May 2000).

[3] DAMIANAKIS, S. N., CHEN, Y.,
AND FELTEN, E. Reducing waiting
costs in user-level communication. In
11th International Parallel Processing
Symposium (IPPS ’97) (April 1997).

[4] MALY, K. J., GUPTA, A. K., AND

MYNAM, S. Btu: A host communica-
tion benchmark. Computer, pp. 66-74.

[5] http://www.nersc.gov/research/ftg/via/.

[6] VINTER, B. PastSet a Structured Dis-
tributed Shared Memory System. PhD
thesis, Tromsø University, 1999.

[7] VON EICKEN, T., CULLER, D. E.,
GOLDSTEIN, S. C., AND SCHAUSER,

K. E. Active messages: A mech-
anism for integrated communication
and computation. In Proceedings
of 19th International Symposium on
Computer Architecture, pages 256-
266, May 1992.

APPENDIX A. PAPERS

Paper 9 202 NIK 2002

A.10 Cluster Monitoring with Steps: Making the Ap-
plication Behaviour Visible

Paper 10 203 Submitted

Cluster Monitoring with Steps:
Making the Application Behaviour Visible

Lars Ailo Bongo, John Markus Bjørndalen, Otto J. Anshus

larsab@stud.cs.uit.no, johnm@cs.uit.no, otto@cs.uit.no

Department of Computer Science,
University of Tromsø

Abstract

We introduce Steps, an application behaviour
monitoring environment for clusters of comput-
ers. Steps is designed to aid the user in instru-
menting, visualize, and analyse the post mortem
behaviour of parallel applications. Steps is based
on combining logged data from low overhead
event based data logging wrappers with a config-
uration map of the application specifying in de-
tail how threads access data. Steps visulize an
applications behavior in various ways, and this
together with the knowledge an application pro-
grammer has of an application, are used to iden-
tify interesting behaviour characteristics. The
user can then reconfigure the application and try
again with the purpose of changing the behavior
to get better performance. We have implemented
a Wind Tunnel application and a barrier bench-
mark, and used Steps on them to validate our de-
sign by showing were to log data, what to visu-
alize, and how the applications behaviour are re-
flected in the visualizations.

1 Introduction

Writing distributed and parallel applications for
clusters of scalar uni- and multiprocessors built
from commodity hardware and software can be
difficult. To use the available resources efficiently
to get good scaling is even more difficult. A
tool that can monitor the behaviour of an applica-
tion or a system, aid in analyzing the results, and
present them in a useful manner has been found
to be useful [2]. In this paper we report on such
a tool, Steps, and on our experience building and
using it.

Steps support a post-mortem analysis and vi-
sualization of communication events recorded us-
ing the PATHS[4] cluster application middleware
enhancement. We combine the event informa-
tion recorded with Steps with PATHS meta-data
on the actual configuration of an application in
a distributed system (in our case this is a dis-
tributed system of three clusters). Steps then vi-
sualizes the behaviour in various graphical ways.
We also show how the recorded data can be used
to do a post-mortem global clock synchronization
of communication events.

We report on our experiences building an anal-
ysis and visualization tool using a high-level lan-

APPENDIX A. PAPERS

Paper 10 204 Submitted

Node A

Thread

Timestamp-
trace

Proxy

Node B

Timestamp-
trace

Element

Figure 1. A simple path for a thread access-
ing an element on another node. Two trace
wrappers are added to collect performance
information.

guage and utilizing existing tools. We demon-
strate how Steps can be used to find interesting
communication patterns indicating potential per-
formance problems in a simple two dimensional
wind-tunnel simulator. We also show how we can
extend Steps to find performance problems for ap-
plications with barrier synchronizations.

2 Research Platform

2.1 PastSet

PastSet [1][21] is a structured distributed
shared memory system in the tradition of Linda
[6]. A PastSet system consists of a number of
servers hosting PastSet elements. An element is
a named sequence of tuples of the same type. Tu-
ples can be read from and written to the element
using the move, observe, and mob (move-observe)
operations. A process typically use more than one
element for communication and synchronization
with other processes. Elements can physically be
located on different computers according to the
distribution algorithm in use by PastSet.

2.2 PATHS

PATHS [3], is an extension of PastSet that en-
ables mapping of threads to hosts at load time, se-
lection of physical communication paths to each
element, and distribution of computations along
the path.

In figure 1 a path from a thread on node A is
created to an element in node B. Each stage in the
path is implemented using a Wrapper of a given
type. A wrapper exports the same interface as a
PastSet element, and is typically used to run code
before and after forwarding the PastSet operation
to the next stage in the path.

A path is specified by listing the stages from
the thread to the PastSet element, specifying the
wrapper type used at each stage as well as param-
eters used to initialize the wrapper.

The path in figure 1 consists in addition to the
element, a proxy wrapper, which is used to access
wrappers on remote nodes by specifying parame-
ters such as the remote nodes name and protocols
to use, and two trace wrappers. The path specifi-
cation is given in figure 2. Default parameters are
not necessary to include in the path specification.

A thread may use multiple paths to the same
element, each of which can be specified and built
dynamically. Paths can also be joined (forming
a tree structure) to amortize communication over-
head. It is also possible to use PATHS to create,
for instance, tree barriers.

Applications can be mapped onto arbitrary
cluster configurations by changing the path spec-
ification meta-data as long as only leaf wrappers
are referenced in the application source code.

2.3 Using PATHS with PastSet applications

Applications using PATHS and PastSet often
have the following parts:

� Multi-threaded application code written in
C. The threads use PastSet operations to
communicate with other threads in a location
and access transparent manner.

� A meta-data file containing the path descrip-
tion and thread to host mapping. The meta-
data is typically specified using a high-level
language such as Python, and may include
meta-code to do run-time decisions on path
specifications.

Paper 10 205 Submitted

make_path(stage(’trace-timestamp’, log_file=’log1’),
stage(’proxy’, host=’B’),
stage(’trace-timestamp’, log_file=’log2’),
stage(’element’))

Figure 2. Path specification code for the path in figure 1.

Node A

th1

W1

th2

Node B

gred1

E1

proxy

gred2

W2 W3 W4

W5 W6

W7

E2

th3

Figure 3. A more advanced path with tracing.

Path specifications may also be retrieved
from path specification servers.

� A script to start the servers and processes on
the different nodes.

Interfaces are also provided to allow appli-
cations written in high level languages to use
PATHS and PastSet.

2.4 Instrumentation

The application is instrumented using PATHS
trace wrappers. Any number of trace wrappers
can be added anywhere in the path tree. The trace
wrappers log the start and completion times of all
PastSet operations that are invoked through the
wrapper. Other parameters that may be useful in
analyzing the traces and for debugging are also
recorded.

We use the high-resolution Pentium timestamp
counter (TSC) to get the timestamps. TSC records
the number of elapsed processor cycles since the
processor was booted. Reading this value has

very little overhead [16]. We have measured the
overhead of the timestamp trace wrapper to be
less than one microsecond on the platform used
[3].

New trace wrapper types can easily be added if
additional information is needed.

Presently, the data is recorded in main memory
and written to a log-file on disk when the program
releases the path or finishes.

Each path is usually instrumented by adding
trace wrappers before and after each (non-trace)
wrapper. Figure 3 shows how paths are usually
instrumented by adding trace wrappers before and
after each non-trace wrapper. For operation on el-
ement E1 from th1, a total of 6 timestamps are
collected at various levels.

We instrument more than we may need, since
it is hard to know exactly what and how much in-
formation is needed. Thus the overhead is usually
larger than strictly necessary.

3 Steps Overview

3.1 Log-file analysis

The application is analyzed by combining the
data recorded using the trace wrappers with the
same meta-data that was used for setting up the
paths. The path description gives us a specifica-
tion of the causality between trace wrapper events
along a given path, while the Pentium time stamp
counter used in the wrappers gives us a temporal
ordering of the communication events internally
in each node.

Below are some examples of what kind of in-
formation we can extract with the PATHS map-
ping shown in figure 3. As described in section

APPENDIX A. PAPERS

Paper 10 206 Submitted

A

B

t1

t3t2

t4

Figure 4. Clock synchronization.

2.4, the information logged at each timestamp
wrapper is the start and completion time of each
operation, and the operation type.

The data from the bottom-level wrappers (W7)
can be used to calculate the number of unobserved
tuples in an element (E1), which can be used to
determine when a thread is blocked waiting for a
tuple to arrive at the element.

For hierarchical global reductions and barri-
ers1, we combine the data in W1, W2, W5 and
W6 in figure 3 to establish when the values for
each partial sum arrives. This gives us the order
of arrivals as shown in section 4.5.

We can calculate the overhead of a remote op-
eration by subtracting the operation time recorded
in W6 from the operation time recorded in W3.
We can also use this information to do a post-
mortem synchronization of the clocks in A and B
(as described in section 3.2). By knowing the tu-
ple sizes, we can also compute the effective band-
width of the TCP connection.

It is also possible to calculate for a given time
which threads are waiting for which other threads
by examining, for instance, which threads are cur-
rently waiting for an observe operation to finish.

The meta-data has some limits. We cannot link
recorded events to a specific location in the source
code. Nor can we link recorded events to abstrac-
tions such as the different stages in the algorithm.
Currently, the user must write a component to do
this binding.

3.2 Global clock

In this section we will describe our post-
mortem clock synchronization of the Pentium
time stamp counters (TSC). It has no additional
runtime overhead or perturbation since only ex-
isting data is used for the synchronization.

The approach is inspired by Lamports logical
clocks [10], and by the approach described in [11]
where they used an algorithm similar to Chris-
tian’s algorithm [8] to synchronize the clocks on
a Myrinet-based cluster.

The design is based on the following assump-
tions:

� The CPU clocks have high oscillator stabil-
ity, hence the clock drift for a short period of
time is roughly constant [11] [16].

� On a multiprocessor the TSC’s are synchro-
nized.

� The data is intended to be used for high-level
visualization.

To synchronize the TSC for two nodes A and B,
we use the following observation. If node A ac-
cesses an element on B, then we have a path with
a wrapper (“proxy”) transparently doing routing
from A to B. If trace wrappers are added as shown
in figure 1, then we have a wrapper

���
before

the proxy on node A, and a wrapper
���

on node
B after the proxy. When a thread on A does an
operation on the element four timestamps will be
recorded as shown in figure 4: start time of the
operation in wrapper

���
(� �), start time of the op-

eration in wrapper
���

(� �), completion time of the
operation in wrapper

���
(���), and the completion

time of the operation in wrapper W1 (�
). This in-
formation can be used to calculate the offset of the
TSC’s on the two nodes. Our current implemen-
tation uses a very simple scheme where the offset
is the average of several offsets calculated using:�
� � ����� � ������� , where

� � ��� ��	 � � ������� ��� � � ��������� .
1Barriers are implemented using global reduction.

Paper 10 207 Submitted

To synchronize the TSC’s on all nodes, we cre-
ate a graph that shows which nodes communicate
with which other nodes. Then we used breadth
first search to create a minimum spanning tree
(MST) starting from a node selected as the ref-
erence node. For each pair of neighbors the dif-
ference between the TSC’s is calculated (as de-
scribed above), before the offsets are used to get
an offset relative to the reference node. This offset
is used to adjust the recorded timestamps.

The MST can be compared to a set of NTP [14]
servers where the reference node is the primary
server, and its children are secondary servers, and
so on. The reference node should be choosen such
that most of the nodes are as close to the ’primary
server’ as possible (i.e. the MST is as low as pos-
sible). Currently, the user uses his/ her knowledge
of the application and topology to choose a good
reference node.

The simple algorithm used to synchronize two
nodes has been sufficient for our purposes, but
could be replaced by an algorithm that uses data
filtering to get a more accurate offset (e.g. the one
used by NTP servers [14]). Also the accuracy of
the synchronization is affected by operating sys-
tem noice [16].

We can find if the global clocks on node A and
B are synchronized with an offset less than the
one-way latency, by calculating for each remote
operation if � � � > � � � or � ��� > � � 	 , where � ��� are
the four timestamps in figure 4 adjusted to the
global clock.

The logged data from the barrier wait applica-
tion is well suited to be used as input to the global
clock algorithm, since the communication consist
of mob operations (send and receive of a fixed size
tuple). This implies that an equal amount of data
is sent each way, giving a more accurate commu-
nication time. Also, all nodes are directly con-
nected to the reference node (where the element
is located) and there is little load on the comput-
ers. The windtunnel application on the other hand
is worse. The communication consists of only
moves and observes using large tuples (meaning

that on each operation much data is sent one way,
and no data sent the other way). Also there is no
central node that can be used as a reference node
(we get a MST with only one node per level).

We used performance data from the barrier
wait and windtunnel applications to test the global
clock synchronization. A 5 minute period was
considered. The TSC’s were synchronized once,
after 2 1/2 minutes. All recorded timestamps were
adjustet to the global clock and checked as de-
scribed above.

In table 1 results using data from the barrier
wait application and the windtunnel application
are shown. The barrier wait was only run on one
cluster, while the windtunnel was run both on one
and on three clusters. The table shows the per-
centages of events that were correctly synchro-
nized (i.e. where the offset was less than the one-
way latency), and the range, median, mean and
standard deviation of the misses (i.e. where the
offset is larger than the one-way latency).

In table 1 we see that the number of correct
synchronizations is dependent on the one-way
latency. In the barrier wait application, small
amounts of data is sent, hence the one-way la-
tency is small (around 200 � s). In the windtunnel
the one-way latency is much larger (from 1 ms to
200 ms).

We can also see that, as expected, the miss
numbers are much better for the barrier wait than
for the windtunnel. For the barrier wait we get
a mean miss time of 750 � s (plus the one-way
latency), and for the single cluster 8 ms, but the
median is actually better (so is the correct rate).
For the multi-cluster windtunnel the average miss
time is increased to 45 ms, the median is 6 ms
and the maximum miss time is 0.8 seconds. The
increase was caused by problems synchronizing
three pair of nodes.

We also did an experiment where only the com-
munication events of a single step in the windtun-
nel and barrier wait computations was considered.
The results are shown in table 2.

We can see that the number of correct synchro-

APPENDIX A. PAPERS

Paper 10 208 Submitted

Offset Barrier wait Windtunnel Windtunnel (multi-cluster)
Correct 0% 44% 18 %
Minimum 12 � s 0 � s 0 � s
Maximum 2644 � s 52140 � s 820677 � s
Mean 750 � s 8100 � s 45168 � s
Median 500 � s 332 � s 6136 � s
Stddev 710 � s 16024 � s 114842 � s

Table 1. Accuracy of computed clock offsets (one-way latency not added). Data for all communication
events over a 5 minute period is used.

Offset Barrier wait Windtunnel Windtunnel (multi-cluster)
Correct 50 % 50 % 47 %
Minimum 0 � s 0 � s 0 � s
Maximum 98 � s 4701 � s 345584 � s
Mean 55 � s 1933 � s 20667 � s
Median 13 � s 1600 � s 4182 � s
Stddev 43 � s 1275 � s 61975 � s

Table 2. Accuracy of computed clock offsets (one-way latency not added). Only data for the second
step is used.

Paper 10 209 Submitted

nizations increase, and the miss times are lower.
Especially good are the numbers for the barrier
wait application, and the numbers for the sin-
gle cluster windtunnel are also acceptable. For
the multi-cluster windtunnel the average and the
maximum are still to high, but the mean is accept-
able. Still the problems are caused by the three
pairs described above.

For comparison, using NTP under optimal con-
ditions (e.g. 100Mb/s LAN access to a primary
server) the offset can be bound to the order of
1 millisecond, but can be far worse [20]. Using
the Global Positioning System (GPS) based tim-
ing the offset can be improved to around 10 � s
[16]. And by using special hardware such as the
’DAG3.2e’ series measurements cards the offset
can be reduced to 100 ns [12].

3.3 Visualization

For this paper we have visualized communica-
tion events. The visualization is focused on help-
ing the programmer solve the problems encoun-
tered when balancing the workload and reducing
time spent waiting at synchronization points.

The user using the visualizations must have
knowledge about the communication patterns of
the application. In our case, the user should un-
derstand the paths in use by the application.

The tools are not intended to visualize every as-
pect of the parallel program, to do that other tools
must also be used. We envision the visualization
tools to be used to get an idea of what to change
in the path description to get better performance.
We have found it useful to just discover that there
is a performance problem even without actually
understanding why as long as we can get better
performance by trying a few changes to the paths
in use.

We wanted a visualization tool supporting a
high level view giving an overview of the logged
data, while allowing the user to zoom in on in-
teresting patterns. We use a Gantt chart showing
communication and computation times for each

thread. This allows the user to easily spot inter-
esting synchronization patterns, potentially indi-
cating performance problems like bottlenecks and
unbalanced load sharing. A similar chart is used
to show the time spent on doing an operation, and
the time between each execution of the operation.

We use line charts, bar charts and tables with
statistics to show data for high-level objects such
as threads, elements, hierarchical barriers and hi-
erarchical global sums. For each high-level object
several graphs are drawn, e.g. for a thread, graphs
for all PastSet operations on different element are
drawn. The user can select which graphs to draw,
and what type of operations to draw (e.g. only
show observe operations on element A).

The user can point to a bar to get informa-
tion about the thread, elapsed time and the current
step. By clicking on a step in one bar the corre-
sponding steps in the other bars are highlighted,
helping the user see how far in the computation
each thread has gotten. Also the user can zoom in
on interesting areas, or select an area to get more
information about it.

Steps also visualizes the path specifications
themselves. This is useful when developing and
debugging a path specification. It can also be use-
ful to see the path specification when analyzing
the performance.

3.4 Implementation

Steps is implemented using Python and Tkin-
ter. Graphviz [9] is used to draw the path speci-
fication graphs, Blt.Graph [5] is used to draw the
line and bar charts, statistics are calculated using
the Python stats module [19]. Using a high level
language and existing tools allowed us to easily
develop a prototype.

Steps is implemented such that it is easy for ap-
plication programmers to write modules for other
types of visualizations. The programmer can use
the analysis modules, chart modules and other
useful libraries in Steps to analyze and visualize
the data.

APPENDIX A. PAPERS

Paper 10 210 Submitted

PSFS

PS0..7
(4W)

100 Mbps
Ethernet

mc1..4
(8W)

100 Mbps
Ethernet

(Dep. backbone)

Internet

RRFS

100 Mbps
Ethernet

roadrunner00..15
(2W)

Tromsø
(Norway)

Odense
(Denmark)

rrfs

Figure 5. Overview of hardware platform.

4 Experiences Using Steps

We used a wind-tunnel simulator as a case
study for how Steps can be used to find perfor-
mance problems in real applications. Addition-
ally, a simple application was devised to show
how Steps can visualize barrier arrival times.

4.1 Hardware Platform

Figure 5 shows the clusters used in the exper-
iment. The hardware platform consists of three
clusters, each with 32 processors:

� Two-way cluster (2W): 16 * 2-way Pentium
III 450 MHz, 256 MB RAM (Odense, Den-
mark)

� Four-way cluster (4W): 8 * 4-way Pentium
Pro 166 MHz, 128 MB RAM (Tromsø, Nor-
way)

� Eight-way cluster (8W): 4 * 8-way Pentium
Pro 200 MHz, 2GB RAM (Tromsø, Norway)

All clusters use TCP/IP over a 100 Mbps Ether-
net for intra-cluster communication. For commu-
nication between 4W and 8W we use the depart-
ments 100Mbit local area network. Communica-
tion between Tromsø and Odense is the depart-
ments Internet backbone (100 Mbps Ethernet). To

access the 4W cluster communication must go
through a 2-way Pentium II 300 MHz machine
with 256 MB RAM. And to access the 2W cluster
communication must go through a 2-way Pentium
III 800 MHz machine with 256 MB RAM.

4.2 Windtunnel simulator

The windtunnel application models airflow rep-
resented as particles in a two-dimensional wind-
tunnel. The flow is modeled as particles rather
than using gas dynamics. This model is both
simple and efficient, and is to some degree easy
to parallelize. The idea is to model the two-
dimensional space using a set of eight large matri-
ces, representing the physical model, immovable
particles, and particles flowing in different direc-
tions.

The space is divided along the X-axis into
equal sized parts. There is one thread per part,
pseudo code a the worker thread is shown in fig-
ure 6. Since the spaces are equal all threads do the
same amount of work. This makes it easier to ana-
lyze and visualize the data. The load is distributed
among the nodes in the clusters by assigning more
threads to faster nodes. Each worker thread com-
municates with two neighbor threads. All threads
communicate with each other using PastSet even
when they are in the same process. This increases
the number of events that can be monitored using
PATHS.

The result of the simulation is a bitmap that
shows the distribution of particles in the windtun-
nel. Each worker thread generates part of the re-
sulting bitmap and sends it to a thread that merges
and displays the bitmaps.

All worker threads are written in C using
Pthreads, and they all run the same code. All
threads get at initialization time information about
the parts they work on, and top-level handles to
paths. To simplify the discussion result bitmaps
were not created.

We added trace wrappers to log all significant
events (all calls to read or write to a PastSet ele-

Paper 10 211 Submitted

barrier_sync();
TS(0);
for (i = 0; i < steps; i++)

calculate particle movement
do collision check
send particles leaving my space to neighbors
receive particles entering my space from neighbors

barrier_sync();
TS(1);

Figure 6. Pseudo code for a windtunnel worker thread.

ment). Therefore we log more data than needed,
but we get flexibility to choose which data to be
used for the post-mortem analysis and visualiza-
tion.

4.3 Single cluster windtunnel experiment

We used the 4W cluster to document how the
windtunnel scaled on one cluster. In summary,
it scaled linearly from one CPU to 32 CPU’s.
We used Steps to examine the performance data
for two configurations, one with one thread per
CPU and one with four threads per CPU. The time
taken to compute 500 steps for a problem size of
5312 x 2656 points was measured. In all experi-
ments the load was evenly distributed among the
nodes. We observed that when 200 steps were ex-
ecuted, having 4 threads per CPU was about 5%
faster than having 1 thread per CPU. When the
number of steps was increased to 500, they were
equally fast. We detail these results in the follow-
ing.

We also did experiments without tracing to de-
termine the overhead of doing tracing. With-
out tracing the execution varied from being 1%
slower to 1% faster. The implication is that the
tracing overhead is not significant.

Figure 7 shows the computation (light gray)
and communication (black) times for the configu-
ration with one thread per CPU. There is one hor-
izontal bar for each thread, that shows the com-
munication and computation for each step. On the

x-axis elapsed time is shown. Several thick black
bars can be seen. By using the statistics table we
can see that communication times varies from the
average couple of milliseconds up to 50 millisec-
onds. By zooming in and counting the number
of red lines on a node at a specific time we can
see that we are not able to overlap communica-
tion with computation. Using this knowledge we
created a new configuration with four threads per
CPU.

observe_20_c0019_level1

observe_20_d0020_level1

steps
0 200 400

m
ill

is
ec

on
ds

0

200

400

600

Figure 10. Observe operation times for worker
thread 20.

Figure 8 shows the communication and com-
putation times for the configuration with four
threads per CPU. As expected the amount of black
is larger since the relative amount of time spent
on communication is larger since each thread has
less work and spends more time blocked waiting
for the others.

We can see in figure 8 thick black bars starting

APPENDIX A. PAPERS

Paper 10 212 Submitted

Figure 7. Communication (black) and computation (ligh gray) times for the 32 threads in the ’one
thread per CPU’ configuration (one cluster, 8 nodes, 4 CPU’s per node).

Figure 8. Communication and computation times for the 96 threads in the ’four threads per CPU’
configuration (one cluster, 8 nodes, 4 CPU’s per node).

Figure 9. Part of figure 8 with with 250th step highlighted.

at the lower threads going upwards. By using the
step information displayed when pointing at a bar,
we can see that most threads are one step ahead of
the thread below (neighbors can only be one step

apart).

By looking at the completion times (where the
bars end) we can see that the threads higher up
finishes earlier than the threads further down. By

Paper 10 213 Submitted

highlighting some steps we found that after 100
steps the threads had gotten roughly equally far,
after 200 steps we could see a pattern looking like
a “wavefront” emerging, and after 400 steps this
pattern was clearly visible. The wavefront can be
seen in Figure 9, where the 250th step is high-
lighted. Comparing figure 8 with figure 9 we can
see that that the wavefront only affects threads af-
fected by the thick black bars.

In figure 10 we can see that when the wave-
front hits worker thread 20 (WT20) at about the
400th step, it shifts from spending most of its time
waiting for data from the thread above (C, solid
line), to waiting for data from the thread below
(D, dotted line) (both elements and threads are on
the same node). By highlighting the 400th step in
the communication-computation view, we can see
that this is where the wavefront hits worker thread
20. Also the time per step is slightly increased af-
ter the 400th step (not shown).

We have shown that by providing a high-level
view it is possible to compare communication
times versus computation times, find load unbal-
ance, and find synchronization patterns that can
indicate performance problems.

4.4 Multi cluster Windtunnel experiments

comm_mc1_77

comp_mc1_77

steps
0 100 200 300 400

m
ill

is
ec

on
ds

0

200

400

600

Figure 13. Communication (whole line) vs.
computation (dotted line) times per step for
worker thread 77. Wavefront hits at about the
200th step.

We used Steps to analyze the performance data
collected for a simulation run on all three clus-
ters for 500 steps, with problem size of 29680 x
14840 points. The amount of RAM on the 4W

steptimes_mc1_77

steptimes_roadrunner00_141

steps
100 200 300 400

m
ill

is
ec

on
ds

300

400

500

600

700

Figure 14. Time per step for worker threads
77 (whole) and 141 (dotted). Wavefront hits
worker thread 77 at about the 200th step. The
average of two samples is plotted.

cluster did not support a larger problem size with-
out demand paging. On each node in the 2W, 4W,
8W clusters we had 12, 8, and 19 threads respec-
tively. When using the 4W and 8W clusters we
measured linear speed up. Combining all three
clusters gave just 1.54 times better performance
than using the 2W and 4W clusters. Using the
processor frequency of the computers as a guide-
line for expected performance, the three clusters
should have been about 2.22 times faster than us-
ing just the 2W and 4W clusters.

Figure 11 shows the computation and commu-
nication times for the initial configuration. We
can see blackness ’spreading’ from a thread in the
middle (WT141) meaning more and more waiting
for communication events to finish. WT141 is a
thread on a node in Odense that does two moves
and two observes to elements in Tromsø, i.e. it
sends and receives data using the slow Internet be-
tween Tromsø and Odense. This results in a state
where most other threads end up waiting for data
from it (actually, each thread wait for a thread,
that waits for a thread, ..., that waits for WT141).

In figure 13 we can see that the communication
time per step (solid line) increases when the wave-
front hits worker thread 77 located at one of the
4W nodes. In figure 14 we can also see that the
time per step (solid line) increases and becomes
roughly the same as for WT141.

Using this insight we created a couple of new
configuration where we changed the load on the
clusters, the load on the Odense-Tromsø nodes,

APPENDIX A. PAPERS

Paper 10 214 Submitted

Figure 11. Communication and computation times for the 332 threads in the ’multi-cluster’ configu-
ration (3 clusters, 28 nodes)

and the data placement. But with no results, since
the problem was due to limited bandwidth.

4.5 Barrier arrival times benchmark

In this section we will demonstrate how we
used Steps to examine barrier arrival times using
a Gantt chart. In the experiment there were 32
threads, one thread waited for a random time (0 to
8 seconds), the others waited for shorter random
time (0 to 2 seconds). The hierarchical barrier had
two levels where each node had a local barrier re-
porting to a single root barrier. The experiments
were run on 8-way cluster.

In figure 15 one horizontal bar per thread,
shows the barrier wait times (black) and the times

between each synchronization (light gray). We
can see that the amount of black is much smaller
in one of the bars than on the other bars. Also in
that bar the wait time often is so small that it is not
visible. Combined with our knowledge about the
application we can conclude that 31 of the threads
often wait for the last thread to arrive at the bar-
rier.

It is also possible to search for the thread that
most often contributes latest to a global sum or
arrives latest at a barrier. Using this method we
can (for this artificial case) see that at the global
barrier the signal from the local barrier containing
the odd thread arrives latest in 99% of the cases.
And at the local barrier on the node with the odd
thread, the odd thread arrives latest in 62% of the

Paper 10 215 Submitted

Figure 12. Figure 11 with step 427 highlighted.

Figure 15. Barrier wait time (black) and the time between each synchronization (light gray) for the 32
threads in the barrier wait application.

synchronizations.

4.6 Visualizing windtunnel path specifications

In this section experiences in visualizing the
communication paths for the windtunnel are de-
scribed. The path map used was for a configura-

tion with a total of 30 nodes, 96 processors, 332
threads, 1321 elements and (about) 2750 wrap-
pers.

Figure 16 illustrates some of the problems en-
countered. When all details are displayed the
graph has about 3000 nodes and 3000 edges. With

APPENDIX A. PAPERS

Paper 10 216 Submitted

Figure 16. Path specification graph for the multi-cluster windtunnel application (only wrappers for
two nodes are shown).

a typical 21 inch 1280*1024 display, the user can
only see a subset of the path graph at a time. To
examine different parts of the graph, the graph
must be zoomed or the window must be scrolled.
The small display makes it difficult to get an
overview of the graph, and to find specific wrap-
pers in the graph. A really large (several me-
ters) high resolution (6000*4000 or better) dis-
play would have been interesting to use, but at the
present time we do not have such a tiled display
wall available.

Another problem was the time required to cre-
ate the maps. We used Graphviz to calculate the

node and edge placement on a Pentium III 600
MHz with 384 MB RAM. It took about 15 sec-
onds to generate a graph with two nodes. A graph
with 8 nodes took over 65 minutes, and we were
not able to create a graph with 28 nodes without
crashing.

4.7 Observations

By instrumenting liberally, several hundred
megabytes of data is easily accumulated. It can
be time consuming to move the data to a central
node for analysis. We are working on moving

Paper 10 217 Submitted

only the data needed. We would also like to get
the flexibility offered by SQL when analyzing the
data. But we found that using a database resulted
in bad performance when accessing and moving
data. This was probably caused by transaction
support and the schema used in the database we
had available.

When analyzing and visualization the perfor-
mance, we found it useful to be able to select in a
hierarchical manner the nodes, threads and (data)
elements to visualize. This made it easier to get
an overview and understand what the data rep-
resented. Before opening the visualization win-
dow the set of threads, elements, barrier-levels
and wrappers to show must be selected. After-
wards the user can interactively select the graphs
to be drawn.

We also found the ability to extend the func-
tionality of the views useful. For example when
drawing line charts, our data tended to differ by
several orders of magnitude. We solved this prob-
lem simply by writing a function that allowed the
user to plot the average of several points. We
could easily add new functionality since the vi-
sualization modules were implemented in a high-
level language.

It was difficult to name specifics parts of hi-
erarchical global sums-, and tree barriers. The
problem being that the trees are unbalanced, and
can be very wide, this makes it difficult to find a
simple and useful naming approach. Presently we
just give the user a dialog box where he/ she could
specify the barrier name, barrier level, nodes to
consider, and nodes not to consider. A graphical
interface would have made this easier.

Also it is difficult to give short and meaning-
ful names to the graphs. We have used long de-
scriptive names that contains the data type (e.g.
move operations), thread name, element name,
and level.

The Gantt chart module implemented in Python
did not scale very well. It was too slow to be use-
ful when visualizing the data from 300 threads.
We believe the problem was our prototype imple-

mentation.

5 Related work

Analysis and visualization of shared virtual
memory is described in [11] where monitoring
code is embedded in programmable network in-
terfaces to collect network-level data. This data
is tied to higher level software events. In [15]
monitoring is used to allow shared memory pro-
grams to tune their memory performance. And
in [23] the underlying system’s cache coherence
protocol is used to detect data sharing patterns
that indicate potential performance bottlenecks in
shared memory parallel programs. As our appli-
cations use structured shared memory, the signif-
icant events are the latency of read and write op-
erations. In addition, we have explicit meta-data
available about the communication paths, making
it easier to tie trace data to higher-level software
events.

Paradyn [13]is a performance measurement
tool for heterogeneous parallel and distributed
programs. It instruments, analyzes and visual-
izes the performance at runtime. The search for
bottlenecks is automated. Users can extend Para-
dyn by adding instrumentation code and visual-
ization modules. Pablo [17] is a performance
instrumentation and analysis toolkit for parallel
systems. Pablo allows the user to do extensible
performance analysis by using a coarse-grained
graphical data flow programming model.

The Network Weather Service (NWS) [22] is
a monitoring system for grid-style computing.
NWS uses active probing to measure among other
things the available network bandwidth and TCP
latency. This information is used to forecast fu-
ture network performance. We can measure net-
work connections using both TCP and other pro-
tocols, and do this without probing. However, we
have no support for forecasting.

Prism [18] is a debugger for multi-process MPI
programs that supports performance analysis and
(application data) visualization. They do post-

APPENDIX A. PAPERS

Paper 10 218 Submitted

mortem clock synchronization similar to ours, but
collect the data by running a separate MPI job.
As perturbation is an issue, the offsets are recal-
culated every 3 minutes interpolating values be-
tween intervals. In contrast we can calculate the
intervals at the same rate as messages are sent.

6 Conclusions and Future work

In this paper we present our experiences build-
ing Steps, a tool to analyze and visualize the per-
formance of parallel applications.

We collect performance data, with low over-
head, using PATHS. We use the communication
path specifications to tie low-level data to high-
level abstractions, such as threads, TCP connec-
tions, global sums and barriers. This allows us to
examine, say, barrier synchronization in great de-
tail. We also do a post-mortem synchronization
of the Pentium timestamp counters on the nodes
using the gathered data.

Steps is implemented in a high-level language
using existing Python modules and tools. Com-
bined with the flexibility offered by the large
amounts of data collected, we can easily experi-
ment with different views and functionality. How-
ever, we are still investigating how to get the vi-
sualizations to scale.

We have shown that even a simple well under-
stood application can have unexpected behaviour,
and that Steps can be used to identify some of
these problems.

We are currently working on collecting, ana-
lyzing and visualizing the data at run-time. An
important part of this work is data reduction and
data collection using PATHS. We are also investi-
gating other ways we can use the path specifica-
tions with the gathered data to find additional per-
formance indicators. Work should also be done
to improve the visualization, especially providing
views at several abstraction levels.

We are currently using PATHS and Steps to an-
alyze the performance of a real scientific applica-
tion, the ELCIRC [7] river simulation.

7 Acknowledgements

The authors wish to thank Brian Vinter for in-
teresting discussions.

References

[1] ANSHUS, O. J., AND LARSEN, T. Macro-
scope: The abstractions of a distributed op-
erating system. Norsk Informatikk Konfer-
anse (October 1992).

[2] ARPACI-DUSSEAU, A. C., ARPACI-
DUSSEAU, R. H., CULLER, D. E.,
HELLERSTEIN, J. M., AND PATTERSON,
D. A. Searching for the sorting record:
Experiences in tuning NOW-Sort. Proceed-
ings of the SIGMETRICS symposium on
Parallel and distributed tools (SPDT 98),
USA (1998), pp. 124–133.

[3] BJØRNDALEN, J. M., ANSHUS, O.,
LARSEN, T., AND VINTER, B. Paths
- integrating the principles of method-
combination and remote procedure calls for
run-time configuration and tuning of high-
performance distributed application. Norsk
Informatikk Konferanse (November 2001),
164–175.

[4] BJØRNDALEN, J. M., ANSHUS, O., VIN-
TER, B., AND LARSEN, T. Comparing
the performance of the pastset distributed
shared memory system using tcp/ip and m-
via. In Proceedings of WSDSM’00, Santa
Fe, New Mexico (May 2000).

[5] http://www.ifi.uio.no/ hpl/Pmw.Blt/doc/.

[6] CARRIERO, N., AND GELERNTER, D.
Linda in context. Commun. ACM 32, 4
(April 1989), 444–458.

[7] http://www.ccalmr.ogi.edu/CORIE/.

Paper 10 219 Submitted

[8] CRISTIAN, F. Probabilistic clock synchro-
nization. Distributed Computing 3 (1989),
146–158.

[9] http://www.research.att.com/sw/tools/graphviz/.

[10] LAMPORT, L. Time, clocks, and the order-
ing of events in a distributed system. Com-
munications of the ACM (1978).

[11] LIAO, C., JIANG, D., IFTODE, L.,
MARTONOSI, M., AND CLARK, D. W.
Monitoring shared virtual memory perfor-
mance on a myrinet-based pc cluster. In ICS
1998 (1998).

[12] MICHEEL, J., GRAHAM, I., AND DON-
NELLY, S. Precision timestamping of net-
work packets. In Proceedings of the SIG-
COMM IMW (2001).

[13] MILLER, B. P., CALLAGHAN, M. D.,
CARGILLE, J. M., HOLLINGSWORTH,
J. K., IRVIN, R. B., KARAVANIC, K. L.,
KUNCHITHAPADAM, K., AND NEWHALL,
T. The paradyn parallel performance mea-
surement tools. IEEE Computer (1995).

[14] MILLS, D. L. Improved algorithms for syn-
chronizing computer network clocks. IEEE
Transactions on Networks (1995).

[15] NIKOLOPOULOS, D. S., PAP-
ATHEODOROU, T. S., POLYCHRONOPOU-
LOS, C. D., LABARTA, J., AND AYGUADÉ,
E. A case for user-level dynamic page mi-
gration. In ICS 2000 (2000).

[16] PÁZTOR, A., AND VEITCH, D. Pc based
precision timing without gps. ACM SIG-
METRICS 2002 (2002).

[17] REED, D. A., AYDT, R. A., NOE, R. J.,
ROTH, P. C., SHIELDS, K. A., SCHWARTZ,
B. W., AND TAVERA, L. F. Scalable per-
formance analysis: The pablo performance
analysis environment. IEEE Proc. Scalable
Parallel Libraries Conf. (1993).

[18] SISTARE, S., DORENKAMP, E., NEVIN,
N., AND LOH, E. Mpi support in the prism
programming environment.

[19] http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html.

[20] UIJTERWAAL, H., AND KOLKMAN, O. In-
ternet delay measurments using test traffic:
Design note. Tech. Report RIPE-158, RIPE,
NCC (June 1997).

[21] VINTER, B. PastSet a Structured Dis-
tributed Shared Memory System. PhD the-
sis, Tromsø University, 1999.

[22] WOLSKI, R., SPRING, N., AND HAYES,
J. The network weather service: A dis-
tributed resource performance forecasting
service for metacomputing. Journal of Fu-
ture Generation Computing Systems (1999).

[23] XU, Z., LARUS, J. R., AND MILLER, B. P.
Shared-memory performance profiling. In
ACM PPoPP’ 97 (1997).

APPENDIX A. PAPERS

Paper 10 220 Submitted

Appendix B

PATHS Implementation

Remote operation library
and transport protocols

Path management
protocol

library
Path management

Implemented in C

Application code

Wrappers and Elements

Element operation protocol.
Only the standard PastSet operations
(move, observe, first, last ++)

TCP/IP and VIA as transport protocols
Binary protocol − currently using ++

Path management protocol.
Create and release paths, query servers,
element operations,
Lisp and Python line oriented
protocols, XML−RPC

Implemented in Python

Figure B.1: Organization of a PATHS enabled client application

This appendix provides some additional information about the current PastSet/PATHS
implementation.

B.1 Implementation

A PastSet client with PATHS follows the architecture in figure B.1.
The path management library is implemented in Python. This was partly done to

ease prototyping. Using Python also provided a simple option for allowing the users
to provide their own path specification modules: a Python module is loaded at initial-
ization time. Which module to load can be specified by the user, allowing the user to
override the default behaviour.

221

APPENDIX B. PATHS IMPLEMENTATION

The Wrappers, Elements and the RPC library are implemented in C. This provides
efficient execution of operations along a path, as Python is only invoked when manag-
ing a path, and not when invoking PastSet operations on an existing path.

One of the reasons for implementing the Wrappers and Elements in C was to allow
paths to be specified that can enter the operating system kernel. C is also relatively
easy to integrate with other programming languages.

PastSet Elements are currently hosted at user-space within the PastSet server or
client application.

Path management and PastSet functions are available both from C and Python, and
created paths can be handed freely between the languages. This allows the user to write
applications using various combinations of the languages.

The path management protocol used is either a simple line-based text protocol (us-
ing Lisp or Python syntax), or XML-RPC. One of the reasons for adding XML-RPC
was to open up for implementing tools and application programs as Javascript or Java
Applets running in a web browser. XML-RPC is also supported by a large number of
programming languages [59], allowing for simple interfacing with those languages.

B.1.1 PastSet servers

The PastSet/PATHS library includes the service routines used to implement PastSet
servers. Any PastSet application can act as a PastSet server by calling a function which
spawns a service thread and initializes the server functionality.

There can only be one PastSet server on each host, however, as addressing of in-
dividual servers within one host has not been implemented. Thus, either one of the
client processes acts as a server for the other processes, or a dedicated server process
is started.

B.2 Size of implementation

The latest distribution consists of 7334 lines of Python and C source code, including
comments and white space. This includes source code for the PastSet servers, 9 wrap-
per classes, two different Element classes, path management server and client library
for the XML-RPC and Python line-based protocols, and some simple regression testing
code. Some experimental code not necessary for the distribution is also included.

The wrapper implementations range from about 100 to 300 lines depending on the
functionality implemented and the amount of comments.

222

	Introduction
	Research issues
	Limitations
	Methodology
	Main Contributions
	Latency
	Configuration
	PATHS
	ELCIRC

	Organization of the dissertation

	Synthesis of Results
	Reducing remote operation latency
	User-space Communication APIs
	Communication Protocols
	Thread models
	User Level vs. Kernel Level
	Workload on the server host

	Mapping computation and communication
	Mapping applications to different clusters and multi-clusters
	Adding configurable collective communication to LAM-MPI

	Cluster Components

	PATHS
	The Path Specification
	The Remote Operation Wrapper
	Path map example
	Reasoning about ``what'', ``where'' and ``when''

	PATHS Architecture
	Using PATHS
	Path specification example

	Instrumentation
	Performance data analysis
	Debugging
	Summary

	ELCIRC
	Overview and terminology
	Tuning
	Sequential code optimizations
	Compiler experiments

	Parallelizing ELCIRC
	Implementation of Domain Decomposition
	Reducing the number of exchanged arrays
	Performance results
	Speedup with 26 partitions

	Effect of domain decompositioning on the accuracy of ELCIRC output
	Comparing output of sequential ELCIRC using different compilers
	Accuracy of the Parallel ELCIRC model
	Global or subdomain based solver

	Summary

	ELCIRC and PATHS
	Locating a performance bottleneck in the parallel ELCIRC
	Identifying the cause of the bottleneck
	Additional factors contributing to a partitions execution time
	Communication overhead

	Partitioning bug
	Controlling ghost region updates with PATHS
	Introducing new PATHS wrappers
	Experiences using new wrappers

	Summary

	Additional related work
	Configuration and adapting to cluster architectures
	Monitoring and profiling

	Conclusions
	Future work
	References
	Bibliography
	Papers
	Comparing the Performance of the PastSet Distributed Shared Memory System using TCP/IP and M-VIA
	The Impact on Latency and Bandwidth for a Distributed Shared Memory System Using a Gigabit Network Supporting the Virtual Interface Architecture
	Using Two-, Four- and Eight- Way Multiprocessors as Cluster Components
	Extending the Applicability of software DSM by adding user redefinable memory semantics
	PATHS - Integrating the Principles of Method-Combination and Remote Procedure Calls for Run-Time Configuration and Tuning of High-Performance Distributed Applications
	Scalable Processing and Communication Performance in a Multi-Media Related Context
	Configurable Collective Communication in LAM-MPI
	The Performance of Configurable Collective Communication for LAM-MPI in Clusters and Multi-Clusters
	The latency of user-to-user, kernel-to-kernel and interrupt-to-interrupt level communication
	Cluster Monitoring with Steps: Making the Application Behaviour Visible

	PATHS Implementation
	Implementation
	PastSet servers

	Size of implementation

