
Survey of optimizing techniques for parallel programs running on

computer clusters

Espen S. Johnsen
Otto J. Anshus

John Markus Bjørndalen
Lars Ailo Bongo

Department of Computer Science, University of Tromsø

July 1, 2004

1 Introduction

In the current field of high performance computing,
clusters technologies plays an ever increasing role. This
paper tries to summarize state-of-the techniques for
optimization of parallel programs designed to run on
computer clusters.

Optimizing parallel programs is a much harder task
than optimizing sequential programs due to the in-
creased complexity caused be communication and syn-
chronization between threads. As a consequence of
this, tools and techniques traditionally used for sequen-
tial application are not always very helpful in detecting
and solving performance bottlenecks in parallel appli-
cation. This survey present an overview of some of
the available techniques and tools for optimization of
parallel programs.

2 Optimizing techniques for
parallel programs

Quite a few techniques exists that may be used in op-
timization of parallel programs. In this paper, these
techniques are roughly classified into the following cat-
egories:

• program transformations

• optimizing communication links

• optimizing message passing

• optimizing cluster configuration

• self adapting software

• load balancing

2.1 Program transformation

Program transformation is the act of changing a pro-
gram into another without altering the original seman-
tics. In this context, it often means parallelizing of
sequential applications, either manually or automati-
cally.

2.1.1 Application level optimization

One of the most obvious techniques for optimizing
of both parallel and sequential programs is tuning
and transforming of the algorithms for the underlying
computation – in other words, choosing better algo-
rithms. As this technique changes the way the appli-
cation problem is solved, it is called application level
optimization[6]

When developing new applications, using this tech-
nique does normally not lead to any problems. But
it may not be feasible when dealing with legacy ap-
plication or parallelizing existing sequential code. One
reason for this is that in applications which are often
very complex structures, the computations may not be
well understood by the maintainer (who may be a com-
puter scientist and not expert in the field of the appli-
cation). Modifying the application in such a way may
therefor lead to incorrect results or just doubt about
the correctness of the computations. Application level
optimization is also a very time consuming task as it
can only be performed manually.

2.1.2 Program level optimization

Program level optimization[6] is a technique in which
the application is analyzed at program level, in order to
improve performance. Understanding of the underly-
ing application problem is not necessary. Instead trans-
formation is based on the source code, very similar to
how a parallelizing compiler does optimization. This



NOTUR ET Cluster Activity 1.2b

kind of technique is especially suited when porting se-
quential code to parallel form.

2.2 Optimizing communication links

Effective communication between the nodes in a clus-
ter, is essential for best utilization of the available re-
sources, eg. not leaving nodes idle while waiting for
data to process. A lot of effort is currently being put
into research around these matters. This section sum-
marizes some this work.

2.2.1 Network topology

An important aspect of clusters is the physical topol-
ogy of the network connecting nodes. By changing the
interconnecting links, significant improvements in per-
formance may be achieved. Minimal Distance Mesh
with Wrap-around [13] (Midimew) is an optimal net-
work topology where every node is connected to four
other nodes in a such way that a circular graph is
created. Compared to other topologies, Midimew has
shorter average distance when the number of nodes is
large and should be a very god network topology when
building large clusters and massive parallel computers.

2.2.2 Compiled communication

Compiled communication is a technique which seeks
to optimize network efficiency by eliminating as much
as possible of runtime configuration (ie. routing deci-
sion) by managing network resources statically at com-
pile time. The technique depends on communication
patterns in applications being mostly static. Scientifi-
cal applications is generally regarded as having mostly
static communication patterns[17].

CC-MPI[10] is an implementation of a compiled
communication capable MPI prototype for switched
ethernet clusters. CC-MPI optimizes the communica-
tion routines for many of the collective operators. To
achieve this CC-MPI, extends the MPI standard by
separating network control from data transmission and
introducing routines to the application programmer
for controlling and optimizing communication. One-
to-many and many-to-many communication is imple-
mented using reliable multi-cast based on compiler-
assisted group management.

The conclusion drawn is that when using compiled
communication the performance of switched ethernet
clusters, can be significantly improved compared to
traditional MPI implementations. One drawback with
the technique is that it requires detailed knowledge of
the underlying network, which the typical application
programmer may not have.

2.2.3 Reliable IP multicast

As shown in [10] multi-cast can greatly improve the
communication performance of MPI collective opera-
tions on LANs. A comprehensive study of different
reliable multicast protocols and how well they perform
in LAN clusters is given in [11]. The protocols studied
are ACK-based, NAK-based with polling, ring based
and tree based.

2.3 Optimizing message passing

Other methods for reducing network overhead also ex-
ists. Message vectorization[7] is an optimization tech-
nique for distributed memory access through message
passing, in where send and receive operations is moved
out of loops and concatenated to form larger messages.
Since the overhead in initiating a communication oper-
ation is quite large compared to the actual data trans-
fer, this should reduce the total time spend in com-
munication considerably. Message coalescing and mes-
sage aggregation is similar techniques that combines
references to the same data from different places and
references to different parts of the data into single mes-
sages.

These techniques does only give local optimization
(ie. optimization of a single loop nest) and doesn’t
consider references across different nests. To solve this
problem, different methods based on data-flow anal-
ysis have been proposed. On particular method for
data-flow analysis which uses linear algebra[9], allows
both traditional loop based optimization and global
optimization techniques to be applied.

2.4 Optimizing cluster configuration

Cluster configuration in this context, does not mean
hardware configuration, but how the software is
mapped to the underlying cluster resources.

2.4.1 Threaded MPI

In a traditional implementation of MPI, individual in-
stances of the application are separate processes, even
when running on the same machine in a SMP-cluster.
In such a setup, even communication between processes
on a single machine needs to go through the operation
system kernel. By running all MPI-nodes on a sin-
gle machine, as threads within the same process, one
may take advantage of faster context switching and us-
ing shared address space for communication and syn-
chronization between threads. A an implementation
of MPI utilizing this technique is TMPI[14]. Making
such an implementation is not straight forward due to
the fact that MPI is not thread safe. Access to some
functions has to be serialized, and calls to low level
parts of MPI can not be done. This is generally not

2



NOTUR ET Cluster Activity 1.2b

a problem since few applications make use of such low
level functionality. Experiments shows that TMPI may
outperforms MPICH substantially on SMP-cluster.

2.4.2 Optimization of collective operations

Configuring hows nodes communicate with each other
may significantly improve the efficiency of collective
operations in a parallel MPI programs. In LAM-MPI
broadcast and reduction operations are implemented
using an algorithm where nodes are organized in a
logarithmic spanning three. This tree does not nec-
essarily reflect the underlying topology of the cluster.
Experiments[3] have shown that by adding configura-
tion to LAM-MPI, efficiency of the allreduce operation
could be improved by a factor as large as 1.98.

2.5 Self adapting software

Running the same application on different hardware
platforms may require different settings of various per-
formance parameters to achieve optimal performance.
Manually tuning of large complex applications to new
hardware architecuters may be a very time consuming
task. Especially in heterogeneous environments such
as GRIDs where many different hardware architecture
and configurations may be involved.

An alternative approach is to use self adaptive
software[4], ie. the application decides at runtime
which algorithm is best suited, and how to tune pa-
rameters to yield optimal performance. Information
about the hardware it is running on, the current data
set and empirical results of previous runs is used to
make these decisions.

2.6 Load balancing

Load balancing is the task of distributing the work load
evenly across the nodes in a cluster. Load-balancing
may either be static or dynamic. Static load-balancing
uses knowledge available before execution to partition
tasks among the nodes, while dynamic load-balancing
is an adaptive technique where tasks are scheduled
based on knowledge gained during execution. The im-
portance of load balancing for improving performance
of parallel programs is thoroughly demonstrated in
[12].

Zoltan[5] is a general purpose tool which aims pro-
vide an application independent way of doing dy-
namic load-balancing. The load-balancing algorithm
is moved away from the application and into a library.
The application programmer needs to provide callback
functions for information gathering, to the library. He
must also select a proper load-balancing method to
used, but the actual load-balancing algorithms may
be changed without any modification to applications.

Currently Zoltan only support geometric and graph-
based methods, but other algorithms may be easily
added. Migrating data to a new processor cannot be
done by the library as it is application dependent, but
Zolan contains functionality to aid the application with
this task.

DASH[1] is an other proposed general purpose load-
balancing scheme using autonomous software agents.
Each node runs an agent composed of a monitoring
module, process execution module and process sched-
uler module. These modules is responsible exchanging
information with nearby agents, running migrated task
and scheduling or migrating task. The system is espe-
cially attractive to parallel application using the Single
Program Multiple Data Stream (SPMD) model.

3 How to optimize parallel pro-
grams

This section gives some hints about how the optimiza-
tion techniques described in this document may be ap-
plied. A more comprehensive list of tools for execution
monitoring and performance analysis of parallel pro-
grams, is given in [8].

3.1 Compiler optimization

Many of these techniques may be applied automati-
cally as compiler optimizations. EARTH-McCAT[18]
is an optimizing/parallelizing C compiler focusing on
reducing communication overhead. The compiler uti-
lizes an analysis phase to find possible placement points
for communication primitives. The following transfor-
mation phase would then selcet the best locations for
these calls and perform appropriate code transforma-
tions.

3.2 The NOW-Sort experience

[2] present the experiences gained in developing and
tuning the performance of NOW-Sort. Their method-
ology involved setting up optimistic performance ex-
pectations. By doing this they where able to put their
optimizing efforts where it gave most effect, and also
know when to stop optimizing. By explicit defining
expectations, the tuning of the applications was said
to be greatly simplified.

Performance tools where mainly used for three pur-
poses: setting expectations, visualize measured per-
formance and searching for anomalies. Performance
counters (instrumentation) on all levels of the system
where also found to be of great importance.

The development first focused on a single node. Only
when the expectations for a single node implementa-
tion where reached, did the development focus change

3



NOTUR ET Cluster Activity 1.2b

to large scale parallelism. But only after the perfor-
mance expectations where fulfilled on a small number
of nodes, where the project scaled up to full cluster
size.

3.3 Instrumentation

Code instrumentation is valuable technique as experi-
enced in NOW-Sort, for collecting performance data
that may be further analyzed for the purpose of locat-
ing bottlenecks in parallel (and sequential) programs.

ULTRA[15] is a tool using instrumentation tech-
niques to collect traces from the execution of paral-
lel MPI programs. This is done using the profiling
wrapper mechanism in MPI, and does not require any
modification to the program being instrumented. A
log entry containing the number of instruction exe-
cuted and other relevant information, is written for
every communication operation. By using traces in-
stead of time-based measurements, the performance of
the application is measured independent of the actual
cluster it is running on (ie. the performance of the
cluster doesn’t influence the result). These traces may
therefor be used in simulations to predict how well the
application will perform on a different cluster hard-
ware.

An other tool using instrumentation for perfor-
mance measuring and analysis of parallel programs is
Paradyn.[16]. The technique described, called dynamic
instrumentation, inserts code to collect performance
data at the appropriate points based on dynamic con-
trol. The user is assisted in deciding which perfor-
mance bottlenecks to search for, or the system can au-
tomatically detect such bottlenecks.

References

[1] A. Rajagopalan, S. H. An agent based dy-
namic load balancing system. In Autonomous
Decentralized Systems, 2000. Proceedings. 2000
International Workshop on , 21-23 Sept. 2000
(2000), IEEE, pp. 164–171.

[2] Arpaci-Dusseau, A. C., Arpaci-Dusseau,
R. H., Culler, D. E., Hellerstein, J. M.,
and Patterson, D. A. Searching for the sort-
ing record: experiences in tuning now-sort. In
Proceedings of the SIGMETRICS symposium on
Parallel and distributed tools (1998), ACM Press,
pp. 124–133.

[3] Bjørndalen, J. M., Anshus, O., Vinter,
B., and Larsen, T. The Performance of
Configurable Collective Communication for LAM-
MPI in Clusters and Multi-Clusters. NIK 2002,
Norsk Informatikk Konferanse, Kongsberg, Nor-
way (November 2002).

[4] Chen, Z., Dongarra, J., Luszczek, P., and
Roche, K. Self adapting software for numerical
linear algebra and lapack for clusters, 2003.

[5] Devine, K., Hendrickson, B., Boman, E.,
John, M. S., and Vaughan, C. Design of
dynamic load-balancing tools for parallel applica-
tions. In Proceedings of the 14th international con-
ference on Supercomputing (2000), ACM Press,
pp. 110–118.

[6] Eigenmann, R. Toward a methodology of opti-
mizing programs for high-performance computers.
In Proceedings of the 7th international conference
on Supercomputing (1993), ACM Press, pp. 27–
36.

[7] Hall, M. W., Hiranandani, S., Kennedy,
K., and Tseng, C.-W. Interprocedural compi-
lation of fortran d for mimd distributed-memory
machines. In Proceedings of the 1992 ACM/IEEE
conference on Supercomputing (1992), IEEE Com-
puter Society Press, pp. 522–534.

[8] Johnsen, Anshus, B., and Bongo. Survey of
execution monitoring tools for computer clusters.

[9] Kandemir, M., Banerjee, P., Choudhary,
A., Ramanujam, J., and Shenoy, N. A global
communication optimization technique based on
data-flow analysis and linear algebra. ACM Trans-
actions on Programming Languages and Systems
(TOPLAS) 21, 6 (1999), 1251–1297.

[10] Karwande, A., Yuan, X., and Lowenthal,
D. K. Cc–mpi: a compiled communication ca-
pable mpi prototype for ethernet switched clus-
ters. In Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel
programming (2003), ACM Press, pp. 95–106.

[11] Lane, R. G. A comprehensive study of reliable
multicast protocols over ethernet-connected net-
works.

[12] Mateescu, G. Parallel sorting on heterogeneous
platforms. In High Performance Computing Sys-
tems and Applications, 2002. Proceedings. 16th
Annual International Symposium on , 16-19 June
2002 (2002), IEEE, pp. 116–117.

[13] Puente, V., Izu, C., Gregorio, J. A., Bei-
vide, R., Prellezo, J. M., and Vallejo, F.
Improving parallel system performance by chang-
ing the arrangement of the network links. In Pro-
ceedings of the 14th international conference on
Supercomputing (2000), ACM Press, pp. 44–53.

4



NOTUR ET Cluster Activity 1.2b

[14] Tang, H., and Yang, T. Optimizing threaded
mpi execution on smp clusters. In Proceedings of
the 15th international conference on Supercomput-
ing (2001), ACM Press, pp. 381–392.

[15] W. E. Cohen, W. D. G., and Gaede, R. K.
Parallel program traces for accurate prediction of
proposed cluster performance.

[16] Waheed, A., Rover, D. T., and
Hollingsworth, J. K. Modeling, evalua-
tion, and testing of paradyn instrumentation
system. In Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) (1996),
ACM Press, p. 18.

[17] Yuan, X., Melhem, R., and Gupta, R. Com-
piled communication for all-optical tdm networks.
In Proceedings of the 1996 ACM/IEEE confer-
ence on Supercomputing (CDROM) (1996), ACM
Press, p. 25.

[18] Zhu, Y., and Hendren, L. J. Communication
optimizations for parallel c programs. In Pro-
ceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implemen-
tation (1998), ACM Press, pp. 199–211.

5


