Using a Virtual Event Space to Understand
Parallel Application Communication Behavior

Lars Ailo Bongo, Otto J. Anshus, and John Markus Bjgrndalen

Department of Computer Science, University of Tromsg
{larsab, otto, johnm}@cs.uit.no

Abstract. We have developed EventSpace, a configurable data collect-
ing, management and observation system for monitoring low-level syn-
chronization and communication events with the purpose of understand-
ing the behavior of parallel applications on clusters and multi-clusters.
Applications are instrumented by adding data collecting code in the form
of event collectors to an applications communication paths. When trig-
gered these create and store wvirtual events to a virtual event space. Based
on the meta-data describing the communication paths, virtual events can
be combined to provide different views of the applications communication
behavior. We used the data collected by EventSpace to do a post-mortem
analysis of a wind-tunnel application, a river simulator, global clock syn-
chronization, and a hierarchical barrier benchmark. The views allowed
us to detect anomalous communication behavior, detect load balance
problems, analyze hierarchical barriers, synchronize the Pentium times-
tamp counters on the cluster nodes, and analyze the accuracy of the
synchronization.

1 Introduction

As the complexity and problem size of parallel applications and the number of
nodes in clusters increase, communication performance becomes increasingly im-
portant. Of eight scalable scientific applications investigated in [16], most would
benefit from improvements to MPI’s collective operations, and half would benefit
from improvements in point-to-point message overhead and reduced latency.

The performance of collective operations has been shown to improve by a
factor of 1.98 by using better mappings of computation and data to the clusters
[2]. Point-to-point communication performance can also be improved by tuning
configurations.

However, having sufficient understanding of the communication behavior
when reconfiguring the communication is difficult. A tool is needed that can
monitor the communication behavior of the application, aid in analyzing the
results, and present them in a useful manner. In this paper, we describe how the
EventSpace [3] monitoring approach can be used for understanding the low level
communication and synchronization behavior of parallel applications.

O This research was supported in part by the Norwegian Science Foundation project
“NOTUR”, sub-project “Emerging Technologies - Cluster”

In EventSpace, event collectors are triggered by communication events. An
event collector creates a virtual event, and stores it in a wirtual event space.
A virtual event comprises an identifier, timestamps, and other contextual data
about the communication event. Fvent scopes are used to observe virtual events
in the virtual event space. Event scopes can combine virtual events in various
ways, providing different views of an applications behavior.

The prototype implementation of the EventSpace system is based on the
PATHS [1] system. PATHS allows for configuring and mapping the communica-
tion paths of an application to the resources of the system used to execute the
application. PATHS use the concept of wrappers to add code along the com-
munication paths, allowing for various kinds of processing of the data along
the paths. PATHS use the PastSet [17] distributed shared memory system. In
PastSet tuples are read from and written to named elements.

This paper makes the following two contributions: (i) we describe the ar-
chitecture and design of a a tunable, and configurable framework for low-level
communication monitoring, and (ii) we show how it can be used for analyzing
different parallel applications.

This paper proceeds as follows. In section 2 we relate EventSpace to other
monitoring systems. The EventSpace monitoring approach and system are de-
scribed in sections 3, and 4. We explore how the data collected by EventSpace
can be used for analysis in section 5. Finally, in section 6 we draw conclusions
and outline future work.

2 Related Work

There are several performance analysis tools for message passing parallel pro-
grams [9]. Generally such tools provide coarse grained analysis with focus on
processor utilization [14]. EventSpace supplements these tools by providing data
for analysis and visualization of low-level behavior of the communication sys-
tem. We expect EventSpace to be used together with other tools. For instance
to understand why collective operations or synchronization operations have poor
performance, once other tools have identified it as a problem.

NetLogger [14] provides detailed end-to-end application and system level
monitoring of high performance distributed systems. Analysis is based on life-
lines describing the temporal trace of an object through the distributed system.
Using EventSpace, similar paths inside the communication system can be ana-
lyzed. However, the paths are joined and forked, forming trees used to implement
collective operations and barriers. Hence the paths are more complex, and the
analysis and visualization might involve several threads, and several concurrent
events.

There are several network performance monitoring tools [10]. While these
often monitor low level network data, EventSpace is used by monitors monitoring
paths that are used to implement point-to-point and collective communication
operations. Such a path may in addition to a TCP connection, have code to
process the data, synchronization code, and buffering.

In EventSpace an application is instrumented by adding data logging code
to its communication paths. A similar approach is used by a firmware based
distributed shared virtual memory (DSVM) system monitor for the SHRIMP
multicomputer [7]. Here monitoring code is embedded in programmable network
interfaces to collect network-level data. The data is tied to higher level software
events. In [6] a tool that measures the performance of an application and the
DSVM system is described. Monitoring structured shared memory systems is
different, since communication is explicit. Hence, it is easier to tie trace data to
higher-level software events. Also we have explicit meta-data available about the
communication paths, showing the data flow between threads.

Prism [12] is a debugger for multi-process MPI programs that supports per-
formance analysis and (application data) visualization. They do post-mortem
clock synchronization similar to ours, but collect the data by running a separate
MPT job. Our approach uses already collected data, and hence has no additional
data collection perturbation.

3 EventSpace Approach

application

virtual event | R
Paral | el
W

event G
-col | ector R
. |

.~ even .
¢ ~.. (col lector

>, v even
col l ector Rk
T/ event ’

col I ector .

Fig. 1. EventSpace overview.

The architecture of the EventSpace system is given in figure 1. An application
is instrumented by inserting event collectors into its communication paths. Each
event collector record data about communication events, creates a virtual event
based on the data, and stores it in a virtual event space. Different views of the
communication behavior can be provided by extracting and combining virtual
events provided by different event collectors. Consumers use an event scope to
do this.

Each event collector record operation type, operation parameters, and start
and completion times of all operations invoked through it. Typically, several
event collectors are placed on a path to collect data at multiple points.

EventSpace is designed to let event collectors create, and store events, with
low overhead introduced to the monitored communication operations. Shared

resources used to extract and combine virtual events are not used until the data
is actually needed by consumers. We call this lazy event processing. By using
lazy processing we can, without heavy performance penalties, collect more data
than may actually be needed. This is important because we do not know the
actual needs of the consumers, and we expect the number of writes to be much
larger than the number of reads [13].

EventSpace is designed to be extensible and flexible. The event collectors and
event scopes can be configured and tuned to trade off between introduced pertur-
bation and data gathering performance. It is also possible to extend EventSpace
by adding other event collectors, and event scopes.

4 EventSpace Monitoring

The implementation of EventSpace is built on top of PATHS and PastSet.
Presently, the monitored applications must also use PATHS and PastSet.

PastSet is a structured distributed shared memory system in the tradition
of Linda [4]. A PastSet system comprises a number of user-level tuple servers
hosting PastSet elements. An element is a sequence of tuples of the same type.
Tuples can be read from and written to the element according to parameters
given at call time. The read and write operations blocks the caller until they
have finished.

PATHS supports mapping of threads to hosts, specifying and setting up
physical communication paths to individual PastSet elements, and insertion of
code in the communication paths.

A path is specified by the stages needed to bind a thread to a PastSet element.
Each stage is specified by a wrapper type, and parameters used to initialize an
actual instance of the wrapper. A wrapper comprises code and data to handle
the data flow at a given stage. The wrappers in a path are executed every time
the path is used.

Node A Node B
Event
Event @
col | ector \
Q vent
col l ector
wr apper

Fig. 2. Two threads communicating using a PastSet element.

In figure 2, the path from thread 1 to the element consists of a a proxy
wrapper and two event collector wrappers. The proxy wrapper is used to access
wrappers on remote nodes by specifying parameters such as the remote nodes
name and protocols to use. The event collector wrappers are described below.

Paths can be joined or forked forming a tree structure. This supports imple-
mentation of collective operations and barriers.

Threads can use elements in an access and location transparent manner,
allowing the communication to be mapped onto arbitrary cluster configurations
simply by changing the path specifications.

4.1 Specifying Communication Paths

Path specifications are generated by path generate functions. Input to these func-
tions are three mappings: (1) An application mapping describing which threads
access which elements. (2) A cluster mapping describing the topology and the
nodes of each cluster. (3) An application to cluster mapping describing the map-
ping of threads and elements to the nodes.

The set of all paths in an application define a path map. Based on the path
map, PATHS do the actual set up of the paths. The path map is also used by
various tools, including tools for analysis and visualization.

4.2 Instrumenting Communication Paths

Fig. 3. Instrumentation of a global sum reduction tree: Paths are instrumented with
event collector wrappers (EC1 - EC10). The global sum is stored in element 1. Thread
5 does not participate in the global sum.

The application is instrumented by adding event collector wrappers to the
communication paths. Event collectors can be added anywhere in the path. The
lower cost of using lazy event processing approach, typically makes it feasible to
add an event collector before and after every other wrapper, as shown in figure
3. The figure shows how a global sum reduction tree is instrumented with event
collectors. An event collector is placed before and after each wrapper doing a
partial sum.

The event collectors can produce large amounts of data. For a multi-cluster
wind-tunnel (described in section 5.1) with 332 threads, we collected over 165
MB of data in five minutes.

4.3 Event Collectors

When triggered, an event collector creates a virtual event in the form of a trace
tuple, and writes it to a trace element. A virtual event space is implemented by
a number of trace elements in PastSet. Each trace element can have a differ-
ent size, lifetime, and be stored in servers locally or remotely from where the
communication event took place.

The trace tuple is written to a trace element using a blocking PastSet oper-
ation. If the trace element is located on a local server, the write only involves a
memory copy and some synchronization code!.

Tuples can be removed either by explicit calls, or automatically discarded
when the number of tuples is above a specified threshold (specified on a per
element basis). Presently, for persistent storage some kind of archive consumers
are needed.

The recorded data is stored in a 36 byte tuple. Since write performance
is important, tuples are stored in binary format, using native byte ordering.
For heterogeneous environments, the tuple content can be parsed to a common
format when it is observed.

As an operation passes down and up the path it can pass through several
wrappers. Timestamps are recorded on both passes, but only one tuple is created,
and written on the up pass. For example in figure 3, 6 timestamps are recorded
for operations on element 1 from thread 1. The timestamps are recorded using
the high-resolution Pentium timestamp counter.

We have measured the overhead of an event collector to be between 0.5 us
to 6.1 us depending on the architecture it is run on [3]. This is comparable to
systems such as Autopilot [11], NetLogger [14], and SHRIMP [7].

4.4 Event Scopes

An event scope is used to gather and combine virtual events providing a specific
view of an applications communication behavior (as described in section 4.5).
It can also do some pre-processing on the virtual events. An event scope is
implemented using a gather tree. The tree is built using PATHS wrappers. The
desired performance and perturbation of a gather tree are achieved by mapping
the tree to available resources and setting properties of the wrappers.

In this paper we focus on what kind of views can be provided, rather than
how the view data can be gathered at run-time. This, and the performance and
perturbation of different event scopes are described in [3].

4.5 Views

During analysis, several views of the communication behavior of the application
are used. A view can be used for inspection of the behavior of high-level abstrac-
tions such as threads, or to look at the individual phases of collective operations

1 A local server is in the same process as the event collector.

such as a global sum reduction. Views can be hierarchical, for example, a view
can comprise the views of all threads on a node.

To establish a view, the path map is used to correlate data from a group of
trace elements to higher-level abstractions. The path map gives a specification
of the causality between trace wrapper events along a given path, while the time
stamps gives a temporal ordering of the communication events per node.

Below are some examples on how the trace wrappers in figure 3 can provide
different views. Examples on how views are used in communication behavior
analysis are given in section 5.

By combining data from all top-level event collectors (EC1 - EC6), we get
a communication oriented view. It provides information about where and when
each thread is using the communication system.

The data from EC5 and EC6, provides information on how thread 4 and
thread 5 use element 2. It can be used to determine the order of reads and
writes to the element.

The overhead of a remote operation can be calculated by subtracting the
operation time recorded in EC8 from the operation time recorded in EC9. The
same information can also be used to synchronize the clocks in A and B, as
described in section 5.4.

For the global sum in figure 3 event collectors EC1-EC4 provides a thread wait
view, that can be used to calculate how long each thread wait for the operation
to complete.

Event collectors EC7 and EC9 provides a signal departure view? for partial
summation no. 3. Event collectors EC7 and ECS8 provides a signal arrival view for
partial summation no. 3. EC7, EC8 and EC10 provides a performance oriented
view of the partial summation no. 3.

It is also possible to have more complex views, such as which threads are
waiting for which other threads at a given time, as shown in section 5.2.

4.6 Visualization

To visualize the different views, we use timeline graphs, line charts, bar charts,
and tables with statistics. A connection graph is used to visualize the path spec-
ifications themselves. The visualizations of the different views can interactively
be controlled, and the functionality can be extended. Some examples on the
visualizations, and how they are used are given in section 5.

4.7 Analysis and Visualization Tools

We use several simple tools for analysis and visualization. Presently, the tools
read virtual events from files. We are working on an implementation where the
tools use event scopes directly.

2 This requires an accurate global clock synchronization.

The tools are implemented using Python® and Tkinter*. Graphviz® is used to
draw the path specification graphs, Blt.Graph® is used to draw the line and bar
charts, statistics are calculated using the Python stats module’. Using a high
level language and existing tools allowed us to easily develop a prototype.

5 Experiments

In this section we provide examples on how the data in a virtual event space can
be used for analyzing the communication behavior of parallel applications, and
how the approach can be used for clock synchronization.

The hardware platform consists of three clusters, each with 32 processors:

— Two-way cluster (2W): 16 * 2-way Pentium III 450 MHz, 256 MB RAM
(Odense, Denmark). Accessed through a 2-way Pentium IIT 800 MHz with
256 MB RAM.

— Four-way cluster (4W): 8 * 4-way Pentium Pro 166 MHz, 128 MB RAM
(Tromsg, Norway). Accessed through a 2-way Pentium IT 300 MHz with 256
MB RAM.

— Eight-way cluster (8W): 4 * 8-way Pentium Pro 200 MHz, 2GB RAM (Tromsg,
Norway). Accessed directly.

All clusters use TCP/IP over a 100 Mbps Ethernet for intra-cluster com-
munication. For communication between 4W and 8W we use the departments
100Mbit local area network. Communication between Tromsg and Odense is the
departments Internet backbone.

5.1 Wind-tunnel

In this section we analyze the communication behavior of a wind-tunnel simula-
tor, a Lattice Gas Automaton doing particle simulation. We use eight matrices.
Each matrix is split into slices, which are then assigned to threads. Each thread
does an equal amount of work. PastSet elements are used to exchange border
entries of a threads slices with threads computing on neighboring slices. Bulk
synchronous communication is used. First the entries used by the thread calcu-
lating on the slice above are written, then the entries used by the thread below.
Finally, entries from the threads above and below are read.

The wind-tunnel had linear scalability when run on the 4W cluster, and the
perturbation due to monitoring could not be measured. We observed that when
200 steps were executed, having 4 threads per CPU® was about 5% faster than

3 http://www.python.org

* http://www.python.org/topics/tkinter/

® http://www.research.att.com /sw/tools/graphviz/

5 http://www.ifi.uio.no/ hpl/Pmw.Blt/doc/

7 http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html
8 Each thread did an equal amount of work

having 1 thread per CPU (the same problem size was used for both configu-
rations). When the number of steps was increased to 500, they were equally
fast.

Fig. 4. Communication and computation times for the ’four threads per CPU’ config-
uration (in total 96 threads).

Fig. 5. Part of figure 4 with with 250th step highlighted.

In figure 4, there is one horizontal bar for each thread, that shows when
it was using the communication system (black) and when it is was computing
(light gray). On the horizontal-axis elapsed time is shown. We can see thick
black stripes starting at the lower threads going upward. By using the step
information displayed when pointing at a bar, we can see that most threads are
one step ahead of the thread below (neighbors can only be one step apart).

600 = observe_20_c0019_levell

++ observe_20_d0020_levell

400

milliseconds

T T T T T
o 200 400
steps

Fig. 6. Read operation times for worker thread 20, on elements from thread above
(solid), and from the thread below (dotted).

By looking at the completion times (where the bars end) we can see a wave-
front, where the threads higher up finishes earlier than the threads further down.
By highlighting some steps we found that after 100 steps the threads had got-
ten roughly equally far, after 200 steps we could see a wavefront shape starting
to emerge, and after 400 steps it was clearly visible. An emerging wavefront is
shown in figure 5, where the 250th step is highlighted. In the background the
same black stripes as seen in figure 4 are shown. The threads above the strip,
are not affected by the wavefront.

Figure 6 shows how thread 20 changes, at around the 400th step, from spend-
ing most of its time waiting for data from the thread above (solid line), to waiting
for data from the thread below (dotted line). By highlighting the 400th step in
the communication-computation view, we can see that this is where the wave-
front hits worker thread 20. Also the time per step is slightly increased after the
400th step.

To conclude, the four thread per CPU configuration slows down as the com-
puting proceeds, due to the communication behavior of the wind-tunnel appli-
cation.

5.2 Barrier Benchmark

In this section we analyze the behavior of hierarchical barriers, using a barrier
benchmark with 32 threads. Each thread has a loop were it waits for some
random time, before doing a barrier synchronization operation. One thread, Q,
waits for a random time (0 to 8 seconds), the others waits for shorter random
time (0 to 2 seconds). The hierarchical barrier has two levels where each node
has a local barrier reporting to a single root barrier. The experiment was run on
the 8W cluster.

By analyzing the virtual events, we found that on the node where QQ was run
it arrived latest in 62% of the barrier synchronizations. However, the signal from
that local barrier to the global barrier arrived latest in 99% of the cases.

5.3 ELCIRC River Simulator

In this section we show how a load balance problem in a real scientific application,
the ELCIRC river simulator [5], can be detected by analyzing the communication
behavior of all threads.

2
steps.

Fig. 7. ELCIRC: Write and read times for thread p02.

Fig. 8. ELCIRC: Computation (light gray) and communication (black) for each thread.
Step 160 is highlighted.

In figure 8 communication (black) and computation (light gray) times are
shown for four computation threads (we use a four thread version for clarity,
similar results are found for a 32 thread version). It shows that the topmost
thread (p01) spends almost no time communicating, while the others spend a
significant amount of time communicating. In figure 7, the read and write times
for thread p02 are shown. It shows that p02 spends most of its time waiting for
data from p0l. A read on data from p03 is almost as fast as a write (i.e. reads
has almost no blocking time). Similar graphs can be shown for other threads.
Thus all threads spends a significant amount of time waiting for data from p01,
indicating a load balance problem. A search (similar to the barrier wait) can be
used to find which thread a specific thread spends most time waiting for.

5.4 Global Clock

The pathmap can be used together with the virtual events to synchronize the
Pentium time stamp counters (TSC).

W

t1 t4
t2 t3 ve

Fig. 9. Clock synchronization.

To synchronize the TSC for two nodes A and B, we use the following ob-
servation. If we have a path as show in figure 2, then we have a wrapper W,
before the proxy on node A, and a wrapper W5 on node B after the proxy.
When a thread on A does an operation on the element four timestamps will be
recorded as shown in figure 9: start time of the operation in wrapper Wy (t1),
start time of the operation in wrapper Wy (t2), completion time of the opera-
tion in wrapper Wa (t3), and the completion time of the operation in wrapper
W1 (t4). This information can be used to find an approximation of the offset
between the TSC’s on the two nodes. Our current implementation uses a simple
scheme where B’s offset relative to A is the average of several offsets calculated
using: 0 = to — (t1 + ¢), where ¢ = ((t4 — t1) — (t3 — t2))/2. We assume that the
communication time moving down, and up the path are equal.

To synchronize multiple clocks, we use the pathmap to create a graph that
shows which nodes communicate with which other nodes. Then we use breadth
first search to create a minimum spanning tree (MST)? starting from a node
selected as the reference node (it should be be chosen such that the MST has a
minimal height). For each pair of neighbors the difference between the TSC’s is
calculated (as described above), before the offsets are used to get an offset relative
to the reference node. This offset is used to adjust the recorded timestamps.

5.5 Global Clock Accuracy

We can determine if the Pentium timestamp counters (TSC) on node A and
B are synchronized with an offset less than the one-way latency, by asserting
for each remote operation if gt > gto or gt3 > gts, where gt; are the four
timestamps in figure 9 adjusted to the global clock.

Table 1. Accuracy of computed clock offsets (one-way latency not added).

Offset |Barrier wait|Wind-tunnel|Wind-tunnel (multi-cluster)
Correct 50 % 50 % 47 %
Mean 55 us 1933 ps 20667 ps
Median 13 ps 1600 ps 4182 us
Stddev 43 us 1275 ps 61975 us

® The MST can be compared to a set of NTP [8] servers where the reference node is
the primary server, and its children are secondary servers, and so on.

Performance data from the barrier benchmark and wind-tunnel applications
were used to do a post-mortem analysis of the global clock synchronization
accuracy. All timestamps belonging to a single step were adjusted to the global
clock and checked as described above. The results are shown in table 1.

For all experiments 50% were within the tolerance offset. For the barrier
benchmark the synchronization miss times are lower than for the wind-tunnel.
The barrier benchmark is better suited since the communication consists of
sending and receiving equal amount of data for each operation. Also all nodes
are directly connected to the reference node. In the wind-tunnel application much
data is sent one way, and no data sent the other way, and the spanning tree has
only one node per level. When the wind-tunnel is run on all three clusters, the
miss times are larger.

For comparison, using NTP under optimal conditions (e.g. 100Mb/s LAN
access to a primary server) the offset can be bound to the order of 1 millisecond,
but can be far worse [15].

6 Conclusions and Future Work

This paper describe the EventSpace monitoring approach that allows the low-
level communication behavior of parallel applications to be monitored. By com-
bining the collected data, high-level global views can be calculated.

In EventSpace, event collectors are integrated in the communication paths.
When triggered by communication events, they create a virtual event that con-
tains timestamps and other information about the event. The virtual events
are then stored in a virtual events space from where they can be extracted by
consumers using event scopes.

We have shown how the data in the virtual event space can be used for post-
mortem analysis of a wind-tunnel application, a river simulator, global clock syn-
chronization, and a hierarchical barrier benchmark. We have also shown how dif-
ferent communication behavior views are visualized using simple charts. We were
able to detect anomalous communication behavior, detect load balance problems,
analyze hierarchical barriers, synchronize the Pentium timestamp counters, and
analyze the accuracy of the synchronization.

Further research is needed to find other useful views provided by the data in
the event space. Presently, we are investigating how to use the data to analyze
the performance of collective operations.

Acknowledgments

We wish to thank Tore Larsen for discussions and being vital in getting the 4W
and 8W clusters to Tromsg, Jonathan Walpole and Antonio Baptista for making
ELCIRC available to us, and Brian Vinter for making the 2W cluster available.

References

10.
11.

12.

13.

14.

15.

16.

17.

. BIGRNDALEN, J. M., ANsHUS, O., LARSEN, T., AND VINTER, B. Paths - integrat-

ing the principles of method-combination and remote procedure calls for run-time
configuration and tuning of high-performance distributed application. Norsk In-
formatikk Konferanse (November 2001), 164-175.

BI@GRNDALEN, J. M., ANsHUS, O., VINTER, B., AND LARSEN, T. Configurable
collective communication in LAM-MPI. Proceedings of Communicating Process
Architectures 2002, Reading, UK (September 2002).

BoNGo, L. A., ANsHUS, O. J., AND BIgRNDALEN, J. M. EventSpace - Exposing
and observing communication behavior of parallel cluster applications. To appear
in Proceedings of Euro-Par 2003.

. CARRIERO, N., AND GELERNTER, D. Linda in context. Commun. ACM 32, 4

(April 1989), 444-458.

http://www.ccalmr.ogi.edu/CORIE/.

KM, S. W., OHLy, P., KunN, R. H., AND MOKHOV, D. A performance tool for
distributed virtual shared-memory systems. In fth IASTED Int. Conf. Parallel
and Distributed Computing and Systems (2002), Acta Press.

Liao, C., JiaNG, D., IFTODE, L., MARTONOSI, M., AND CLARK, D. W. Mon-
itoring shared virtual memory performance on a myrinet-based PC cluster. In
International Conference on Supercomputing (1998), pp. 251-258.

Miirs, D. L. Improved algorithms for synchronizing computer network clocks.
IEEE Transactions on Networks (1995).

MOORE, S., D.CroONK, LONDON, K., AND J.DONGARRA. Review of performance
analysis tools for MPI parallel programs. In 8th European PVM/MPI Users’ Group
Meeting, Lecture Notes in Computer Science 2181 (2001), Springer Verlag.
http://www.caida.org/tools/taxonomy/.

RIBLER, R. L., VETTER, J. S., SimITCI, H., AND REED, D. A. Autopilot: Adap-
tive control of distributed applications. In Proc. of the 7th IEEE International
Symposium on High Performance Distributed Computing (1998), pp. 172-179.
SISTARE, S., DORENKAMP, E., NEVIN, N., AND LoH, E. MPI support in the Prism
programming environment. In 18th ACM International Conference on Supercom-
puting (1999).

TIERNEY, B., AypT, R., GUNTER, D., SMITH, W., TAYLOR, V., WoOLsKI, R.,
AND SWANY, M. A grid monitoring architecture. Tech. Rep. GWD-PERF-16-2,
Global Grid Forum, January 2002. (2002).

TIERNEY, B., JoHNSTON, W. E., CROWLEY, B., Hoo, G., BrROOKs, C., AND
GUNTER, D. The NetLogger methodology for high performance distributed sys-
tems performance analysis. In Proc. 7th IEEE Symp. On High Performance Dis-
tributed Computing (1998), pp. 260-267.

ULTERWAAL, H., AND KOLKMAN, O. Internet delay measurments using test traffic:
Design note. Tech. Report RIPE-158, RIPE, NCC (June 1997).

VETTER, J. S., AND Y00, A. An empirical performance evaluation of scalable
scientific applications. In Proceedings of the 2002 ACM/IEEE conference on Su-
percomputing (November 2002).

VINTER, B. PastSet a Structured Distributed Shared Memory System. PhD thesis,
University of Tromsg, 1999.

