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Abstract

For scientific application run on clusters, communication performance
becomes increasingly important when the number of cluster nodes increase.
To understand the communication behavior, we have developed EventSpace,
a configurable data collecting, management and observation system for mon-
itoring low-level synchronization and communication events. Applications
are instrumented by adding data collecting code in the form of event collec-
tors to an applications communication paths. When triggered these create
and store virtual events to a virtual event space. Based on the meta-data
describing the communication paths, virtual events can be combined to pro-
vide different views of the applications communication behavior. We used the
data collected by EventSpace to do a post-mortem analysis of a wind-tunnel
application, a river simulator, global clock synchronization, and a collective
operation. The views allowed us to detect anomalous communication behav-
ior, detect load balance problems, find hotspots in a collective communication
structure, synchronize the Pentium timestamp counters on the cluster nodes,
and analyze the accuracy of the synchronization.

1 Introduction
As the complexity and problem size of parallel applications and the number of
nodes in clusters increase, communication performance becomes increasingly important.
Of eight scalable scientific applications investigated in [15], most would benefit
from improvements to MPI’s collective operations [9], and half would benefit from
improvements in point-to-point message overhead and reduced latency.

In earlier work [1] we improved the performance of collective operations up to a factor
of two, by reconfiguring the communication structure, and by using better mappings of
computation and data to the clusters. Point-to-point communication performance can also
be tuned to improve performance, for example by changing protocols.

In order to tune the performance of collective and point-to-point communication, fine-
grained information about the applications communication events is needed to compute
the applications communication behavior. Also needed are tools that can aid in analyzing
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the results, and present them in a useful manner. In this paper, we describe how
the EventSpace [3] monitoring approach can be used for understanding the low level
communication and synchronization behavior of parallel applications.

In EventSpace, event collectors are triggered by communication events. An event
collector creates a virtual event, and stores it in a virtual event space. A virtual event
comprises an identifier, timestamps, and other contextual data about the communication
event. Event scopes are used to observe virtual events in the virtual event space. Event
scopes can combine virtual events in various ways, providing different views of an
applications behavior.

The prototype implementation of the EventSpace system is based on the PATHS [2]
system. PATHS allows for configuring and mapping the communication paths of an
application to the resources of the system used to execute the application. PATHS use
the concept of wrappers to add code along the communication paths, allowing for various
kinds of processing of the data along the paths. PATHS use the PastSet [16] structured
distributed shared memory system. In PastSet tuples are read from and written to named
elements.

This paper makes the following two contributions: (i) we describe the architecture
and design of a a tunable, and configurable framework for low-level communication
monitoring, and (ii) we show how it can be used for analyzing communication behavior
of different parallel applications.

This paper proceeds as follows. In section 2 we relate EventSpace to other monitoring
systems. The EventSpace monitoring approach and system are described in sections 3,
and 4. We explore how the data collected by EventSpace can be used for analysis in
section 5. Finally, in section 6 we draw conclusions and outline future work.

2 Related Work
There are several performance analysis tools for message passing parallel programs [8].
Generally such tools provide coarse grained analysis with focus on processor utilization
[13]. Also, most tools does not monitor what happens inside the communication
system. We expect EventSpace to supplement these tools, for instance to understand why
collective operations or synchronization operations have poor performance, once other
tools have identified it as a problem.

NetLogger [13] provides detailed end-to-end application and system level monitoring
of high performance distributed systems. Analysis is based on lifelines describing the
temporal trace of an object through the distributed system. Using EventSpace, similar
paths inside the communication system can be analyzed. However, the paths are joined
and forked, forming trees used to implement collective operations and barriers. Hence the
paths are more complex, and the analysis and visualization might involve several threads,
and several concurrent events.

There are several network performance monitoring tools [10]. While these often
monitor low level network data, EventSpace is used by monitors monitoring paths that
are used to implement point-to-point and collective communication operations. Such a
path may in addition to a TCP connection, have code to process the data, synchronization
code, and buffering.

In EventSpace an application is instrumented by adding data logging code to its
communication paths. A similar approach is used by a firmware based distributed shared
virtual memory (DSVM) system monitor for the SHRIMP multicomputer [6]. Here
monitoring code is embedded in programmable network interfaces to collect network-
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Figure 1: EventSpace overview.

level data. The data is tied to higher level software events. In [5] a tool that measures the
performance of an application and the DSVM system is described. Monitoring structured
shared memory systems is different, since communication is explicit. Hence, it is easier
to tie trace data to higher-level software events. Also we have explicit meta-data available
about the communication paths, showing the data flow between threads.

Prism [12] is a debugger for multi-process MPI programs that supports performance
analysis and (application data) visualization. They do post-mortem clock synchronization
similar to ours, but collect the data by running a separate MPI job. Our approach uses
already collected data, and hence has no additional data collection perturbation.

3 EventSpace Approach
The architecture of the EventSpace system is given in figure 1. An application is
instrumented by inserting event collectors into its communication paths. Each event
collector record data about communication events, creates a virtual event based on the
data, and stores it in a virtual event space. Different views of the communication behavior
can be provided by extracting and combining virtual events provided by different event
collectors. Consumers use an event scope to do this.

Each event collector record operation type, operation parameters, and start and
completion times of all operations invoked through it. Typically, several event collectors
are placed on a path to collect data at multiple points.

EventSpace is designed to let event collectors create, and store events, with low
overhead introduced to the monitored communication operations. Shared resources used
to extract and combine virtual events are not used until the data is actually needed by
consumers. We call this lazy event processing. By using lazy processing we can, without
heavy performance penalties, collect more data than may actually be needed. This is
important because we do not know the actual needs of the consumers, and we expect the
number of writes to be much larger than the number of reads.

EventSpace is designed to be extensible and flexible. The event collectors and event
scopes can be configured and tuned to trade off between introduced perturbation and data
gathering performance. It is also possible to extend EventSpace by adding other event
collectors, and event scopes.

4 EventSpace Monitoring
The implementation of EventSpace is built on top of PATHS and PastSet. Presently,
the monitored applications must also use PATHS and PastSet for communication and
synchronization.
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PastSet is a structured distributed shared memory system in the tradition of Linda [4].
A PastSet system comprises a number of user-level tuple servers hosting PastSet elements.
An element is a sequence of tuples of the same type. Tuples are read from and written to
a element using blocking operations.

PATHS supports mapping of threads to processes, processes to hosts, specifying and
setting up physical communication paths to individual PastSet elements, and insertion of
code in the communication paths. Paths can be joined or forked, forming a tree structure
that supports implementation of collective operations and barriers.

A path is specified by listing the stages from a thread to a PastSet element. At each
stage the wrapper type and parameters used to initialize an actual instance of the wrapper
are specified. A wrapper is typically used to run code before and after forwarding the
PastSet operation to the next stage in the path.

In figure 2, the path from thread 1 to the element consists of a proxy wrapper and two
event collector wrappers. The proxy wrapper is used to access wrappers on remote nodes
by specifying parameters such as the remote nodes name and protocols to use. The event
collector wrappers are described below.

In the application source code only leaf wrappers are referenced, allowing threads to
communicate in access and location transparent manner. This also allows communication
to be mapped onto arbitrary cluster configurations simply by reconfiguring the path
specifications.

Specifying and Instrumenting Communication Paths
Path specifications are generated by path generator functions. Input to these functions
are three mappings: (1) An application mapping describing which threads access which
elements. (2) A cluster mapping describing the topology and the nodes of each cluster.
(3) An application to cluster mapping describing the mapping of threads and elements to
the nodes.

The set of all paths in an application define a pathmap. Based on the pathmap, PATHS
do the actual set up of the paths. The pathmap is also used by various tools, including
tools for analysis and visualization.

An application is instrumented by inserting event collector wrappers to the
communication paths (figure 3). This is done by scripts that manipulate the paths in
a pathmap (application source code is not changed). Event collectors can be added
anywhere on any path. However, the lower cost of using the lazy event processing
approach, typically makes it feasible to add an event collector before and after every
other wrapper.

The event collectors can produce large amounts of data. For a multi-cluster wind-
tunnel (described in section 5) with 332 threads, we collected over 165 MB of data in five
minutes.
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Event Collectors
When triggered, an event collector creates a virtual event in the form of a trace tuple,
and writes it to a trace element using a blocking PastSet operation. A virtual event
space is implemented by a number of trace elements in PastSet. Each trace element
can have a different size, lifetime, and be stored in servers locally or remotely from
where the communication event took place. Tuples can be removed either by explicit
calls, or automatically discarded when the number of tuples is above a specified threshold
(specified on a per element basis). If the trace element is located on a local server, the
write only involves a memory copy and some synchronization code1.

As an operation passes down and up the path it can pass through several wrappers
(figure 4). For each operation, each event collector record the start time of the operation
on the down-pass, and the stop time on the up-pass. The timestamps are recorded using
the high-resolution Pentium timestamp counter. For each operation, only one 36 byte
tuple is created. It is written on the up pass. This tuple also includes the PastSet operation
arguments.

Since write performance is important, tuples are stored in binary format, using native
byte ordering. For heterogeneous environments, the tuple content can be parsed to a
common format during the lazy event processing.

We have measured the overhead of an event collector to be between 0.5 � s to 6.1 � s
depending on the architecture it is run on [3]. This is comparable to systems such as
Autopilot [11], NetLogger [13], and SHRIMP [6]. A write to a local PastSet element

1A local server is in the same process as the event collector.



may take a few microseconds, a remote write may take hundreds of microseconds, and a
(blocking) read or a collective operation may take thousands of microseconds.

Views
During analysis, several views of the communication behavior of the application are used.
A view can be used for inspection of the behavior of high-level abstractions such as
threads, or to look at the individual phases of collective operations such as a global sum.
Views can be hierarchical, for example, a view can comprise the views of all threads on a
node.

To establish a view, the pathmap is used to correlate data from a group of event
collectors to higher-level abstractions. The pathmap gives a specification of the causality
between virtual events along a given path, while the timestamps gives a temporal ordering
of the communication events per node.

Below are some examples on how the event collectors in figure 3 can provide data for
different views. Examples on how views are used in communication behavior analysis
are given in section 5.

By subtracting the stop timestamp from the start timestamp for all top-level
event collectors (EC1–EC6), we get a computation-communication view, that provides
information about when, and for how long each thread use the communication system.

The order of the timestamps and the associated PastSet operation arguments recorded
by EC5 and EC6, can be used to determine the order of reads and writes to element 2.

The wrapper latency of a wrapper can be calculated by ���������	��
��������������
 (figure 4).
While �������	� , and ��������� gives the time spent in a wrapper on respectively the down and
up pass.

We get an application load balance view by calculating how long each thread wait for
the global sum to complete. This is done by subtracting the stop timestamp from the start
timestamp from the virtual events provided by EC1–EC4.

For sum 1, we get the arrival order distribution by using the start timestamps collected
by EC1 and EC2 to calculate how many times thread 1 arrived before thread 2. The
difference between the timestamps is the time the first arrival had to wait for the second.
Similarly, the departure order distribution and departure wait time can be calculated using
the stop timestamps in EC1 and EC2.

It is also possible to have more complex views, such as which threads are waiting for
which other threads at a given time.

Event Scopes
An event scope is used to gather and combine the virtual events in a view. It can also
do some pre-processing on the virtual events. An event scope is implemented using
a gather tree. The tree is built using PATHS wrappers. The desired performance and
perturbation of a gather tree are achieved by mapping the tree to available resources and
setting properties of the wrappers.

A library is used to get references to the trace elements associated with a view. New
views can be created either by combining existing views (e.g. in a hierarchical manner)
or by extending the library.

Since views often are hierarchical, the gather tree is built in a hierarchical manner. The
simplest tree only gathers data, and all analysis is done in code written by the performance
analyst. By inserting special analysis wrappers to the tree, such as sort or filter, part of the
analysis can be done in the gather tree. Presently, creating and configuring the tree must



be done by either writing or using an existing script. We intend to build a graphical tool
for this task.

In this paper we focus on what kind of views can be provided, rather than how the
view data can be gathered at run-time. This, and the performance and perturbation of
different event scopes are described in [3].

Analysis and Visualization Tools
We use several simple tools for analysis and visualization. Presently, the tools read virtual
events from files. We are working on an implementation where the tools use event scopes
directly.

To visualize the different views, we use timeline graphs, line charts, bar charts, and
tables with statistics. A connection graph is used to visualize the path specifications
themselves. The visualizations of the different views can interactively be controlled, and
the functionality can be extended. Some examples on the visualizations, and how they are
used are given in section 5.

The tools are implemented using Python2 and Tkinter3. Graphviz4 is used to draw the
path specification graphs, Blt.Graph5 is used to draw the line and bar charts, statistics are
calculated using the Python stats module6. Using a high level language and existing tools
allowed us to easily develop a prototype.

5 Experiments
In this section we provide examples on how the data in a virtual event space can be used
for analyzing the communication behavior of parallel applications, and how the approach
can be used for clock synchronization.

The hardware platform consists of three clusters, each with 32 processors:

• Two-way cluster (2W): 16 * 2-way Pentium III 450 MHz, 256 MB RAM (Odense,
Denmark). Accessed through a 2-way Pentium III 800 MHz with 256 MB RAM.

• Four-way cluster (4W): 8 * 4-way Pentium Pro 166 MHz, 128 MB RAM (Tromsø,
Norway). Accessed through a 2-way Pentium II 300 MHz with 256 MB RAM.

• Eight-way cluster (8W): 4 * 8-way Pentium Pro 200 MHz, 2 GB RAM (Tromsø,
Norway). Accessed directly.

All clusters use TCP/IP over a 100 Mbps Ethernet for intra-cluster communication.
For communication between 4W and 8W we use the departments 100 Mbps local area
network. Communication between Tromsø and Odense is the departments Internet
backbone.

Wind-tunnel
In this section we analyze the communication behavior of a wind-tunnel simulator, a
Lattice Gas Automaton doing particle simulation. We use eight matrices. Each matrix is
split into slices, which are then assigned to threads. Each thread does an equal amount

2http://www.python.org
3http://www.python.org/topics/tkinter/
4http://www.research.att.com/sw/tools/graphviz/
5http://www.ifi.uio.no/ hpl/Pmw.Blt/doc/
6http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html



Figure 5: Communication and computation times for the ’four threads per CPU’
configuration (in total 96 threads).

Figure 6: Part of figure 5 with with 250th step highlighted.

of work. PastSet elements are used to exchange border entries of a threads slices with
threads computing on neighboring slices. Bulk synchronous communication is used. First
the entries used by the thread calculating on the slice above are written, then the entries
used by the thread below. Finally, entries from the threads above and below are read.

The wind-tunnel had linear scalability when run on the 4W cluster, and there was no
perturbation due to monitoring. We observed that when 200 steps were executed, having
4 threads per CPU7 was about 5% faster than having 1 thread per CPU (the same problem
size was used for both configurations). When the number of steps was increased to 500,
they were equally fast.

In figure 5, there is one horizontal bar for each thread, that shows when it was
using the communication system (black) and when it is was computing (light gray) (i.e.
a communication-computation view as described in section4). On the horizontal-axis
elapsed time is shown. We can see thick black stripes starting at the lower threads going
upward. By using the step information displayed when pointing at a bar, we can see
that most threads are one step ahead of the thread below (neighbors can only be one step
apart).

By looking at the completion times (where the bars end) we can see a wavefront, where
the threads higher up finishes earlier than the threads further down. By highlighting some
steps we found that after 100 steps the threads had gotten roughly equally far, after 200
steps we could see a wavefront shape starting to emerge, and after 400 steps it was clearly
visible. An emerging wavefront is shown in figure 6, where the 250th step is highlighted.
In the background the same black stripes as seen in figure 5 are shown. The threads above

7Each thread did an equal amount of work



Figure 7: Read operation times for worker thread 20, on elements from thread above
(solid), and from the thread below (dotted).

the strip, are not affected by the wavefront.
Figure 7 shows how thread 20 changes, at around the 400th step, from spending most

of its time waiting for data from the thread above (solid line), to waiting for data from
the thread below (dotted line). By highlighting the 400th step in the communication-
computation view, we can see that this is where the wavefront hits worker thread 20. Also
the time per step is slightly increased after the 400th step.

To conclude, the four thread per CPU configuration slows down as the computing
proceeds, due to the communication behavior of the wind-tunnel application.

Global Sum Benchmark
In this section we use the arrival order distribution (described in section 4) to find the
slowest threads participating in a global sum collective operation run on the 4W and 8W
cluster. The communication structure is organized as a binary tree (as in figure 3).

For the bottommost sum wrapper one of the participant always arrive first (in the
25000 operations examined). We exclude the faster branch, and follow the slower branch
to find the next sum wrapper. For this wrapper, the faster participant arrive first in 67% of
the operations. For the next sum wrapper on the slowest branch, there is an even arrival
order distribution. Thus, the slowest threads are leafs on the subtree with root in the sum
wrapper.

A breakdown of the cost of a global sum for the slowest threads, shows that inter-host
communication dominates the time for a global sum. The breakdown is computed by
summing the time spent in each wrapper, and then subtracting the arrival wait times for
all sum wrappers.

ELCIRC River Simulator
In this section we show how a load balance problem in a real scientific application, the
ELCIRC river simulator8, can be detected by analyzing the communication behavior of
all threads.

ELCIRC was run on the 8W cluster. Figure 8 shows communication (black) and
computation (light gray) times for four computation threads (we use a four thread version
for clarity, similar results are found for a 32 thread version). The topmost thread (p01)

8http://www.ccalmr.ogi.edu/CORIE/



Figure 8: ELCIRC: Computation (light gray) and communication (black) for each thread.
Step 160 is highlighted.

spends almost no time communicating, while the others spend a significant amount of
time communicating.

By examining the read and write order for all elements used by thread p02, we
find that p02 wait longest for data from p01. Also, the wait time dominates the total
communication time for p02. The other threads also spend most of their time blocked
waiting for data from p01, indicating a load balance problem.

Global Clock
The pathmap can be used together with the virtual events to synchronize the Pentium time
stamp counters (TSC) in a cluster. To synchronize the TSC for two nodes A and B, we
use the following observation. If we have a path as show in figure 2, then we have an
event collector before the proxy on node A, and an event collector on node B after the
proxy. When a thread on A does an operation on the element four timestamps will be
recorded as shown in figure 4. This information can be used to find an approximation of
the offset between the TSC’s on the two nodes. Our current implementation uses a simple
scheme where B’s offset relative to A is the average of several offsets calculated using:��� ��� � ���	� ��� 
 , where

� � ����� � � �	�	
 � ����� � ����
�
��	� . We assume that the communication
time when moving down, and up the path are equal.

To synchronize multiple clocks, we use the pathmap to create a graph that shows
which nodes communicate with which other nodes. Then we use breadth first search to
create a minimum spanning tree (MST)9 starting from a node selected as the reference
node (it should be be chosen such that the MST has a minimal height). For each pair of
neighbors the difference between the TSC’s is calculated (as described above), before the
offsets are used to get an offset relative to the reference node. This offset is used to adjust
the recorded timestamps.

Global Clock Accuracy
We can determine if the Pentium timestamp counters (TSC) on node A and B are
synchronized with an offset less than the one-way latency, by asserting for each remote
operation if 
 � ���
 ��� or 
 � ����
 � � , where 
 ��� are the four timestamps in figure 4 adjusted
to the global clock.

Performance data from the global sum benchmark and wind-tunnel applications were
used to do a post-mortem analysis of the global clock synchronization accuracy. All
timestamps belonging to a single step were adjusted to the global clock and checked as
described above. The results are shown in table 1.

For all experiments 50% were within the tolerance offset. For the global sum
benchmark the synchronization miss times are lower than for the wind-tunnel. The global
sum benchmark is better suited since the communication consists of sending and receiving

9The MST can be compared to a hierarchy of NTP [7] servers where the reference node is the primary
server, and its children are secondary servers, and so on.



Table 1: Accuracy of computed clock offsets (one-way latency not added).
Experiment Correct Mean Median Stdev
Global sum benchmark 50% 55 � s 13 � s 43 � s
Wind-tunnel 50% 1933 � s 1600 � s 1275 � s
Wind-tunnel multi-cluster 47% 20667 � s 4182 � s 61975 � s

equal amount of data for each operation. Also all nodes are directly connected to the
reference node. In the wind-tunnel application much data is sent one way, and no data
sent the other way, and the spanning tree has only one node per level. When the wind-
tunnel is run on all three clusters, the miss times are larger.

For comparison, using NTP under optimal conditions (e.g. 100 Mbps LAN access to a
primary server) the offset can be bound to the order of 1 millisecond, but can be far worse
[14].

6 Conclusions and Future Work
This paper describe the EventSpace monitoring approach that allows the low-level
communication behavior of parallel applications to be monitored. By combining the
collected data, high-level global views can be calculated.

In EventSpace, event collectors are integrated in the communication paths. When
triggered by communication events, they create a virtual event that contains timestamps
and other information about the event. The virtual events are then stored in a virtual events
space from where they can be extracted by consumers using event scopes.

We have shown how the data in the virtual event space can be used for post-mortem
analysis of a wind-tunnel application, a river simulator, global clock synchronization, and
a collective operation. We have also shown how different communication behavior views
are visualized using simple charts. We were able to detect anomalous communication
behavior, detect load balance problems, detect hotspots in collective communication
structure, synchronize the Pentium timestamp counters, and analyze the accuracy of the
synchronization.

Further research is needed to find other useful views provided by the data in the event
space, and a better approach for defining views.
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