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Abstract. Grid computing is finally starting to provide solutions for capacity-
computing, that is problem solving where there is a large number of independent 
tasks for execution. This paper describes the experiences with using Grid for 
capability computing, i.e. solving a single task efficiently. The chosen capability 
application is driving a very large display which requires enormous processing 
power due to its huge graphic resolution (7168 x 3072 pixels). Though we use an 
advanced Grid middleware, the conclusion is that new features are required to 
provide such coordinated calculations as the present application requires. 

1. Introduction 

Grid computing promise endless computing power to all fields of science and is already 
being established as the primary tool for eScience. Applications run on Grid, however, are 
generally capacity class applications, i.e. applications that can trivially be divided into a 
large number of tasks without intercommunication or deadlines for termination. If Grid 
should really provide processing power for all kinds of applications it must also support 
capability class applications [1], e.g. support deadlines or intercommunication. In this paper 
we investigate the current performance of Grid when running a deadline-driven application, 
the rendering of very large images for a display wall. 

A display wall is a high-resolution computer display the size of a wall, with the 
combined resolution and other graphical capabilities of several common off-the-shelf 
display cards. The display wall features as a physical wall in a room with digital video 
sensors for calibration, gesture recognition, video-recording etc., and with multi-channel 
sound systems for audio input and output. The size and resolution are typically at 230 
inches and 22 megapixels – an order of magnitude larger than a high-end 23-inch display. 
Creating the content for such a large high-resolution display, coordinating the individual 
computers to deliver coherent images, and moving the individual megapixel tiles to each 
computer for displaying are all challenges. In this paper we report on the use of a Grid-type 
computing resource to quickly create content for interactive use.  

1.1 Capacity vs. Capability Computing 

High Performance Computing, HPC, is typically divided into two groups [1]: capacity-
computing and capability-computing.  Capacity-computing targets solutions that are not 
feasible on an ordinary computer, e.g. ‘Grand Challenge Computing’.  

Tasks that are capability driven may be divided into three rough groups. The first 
group of problems requires so much memory that they only fit particular supercomputers. 
The computer that currently has the most shared memory is the NASA Colombia with 
20TB of memory which is addressable from any processor in the machine. The second 
group of capability driven applications include those with such large computational 
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requirements that starting them on a PC would not make sense since waiting for faster 
computers would be faster. An example of this is shown in Figure 1, where a computation 
task that uses a current PC (Year 0) will take 10-years, but waiting a year, to benefit from 
faster computers, allows the total time to wait for a result to drop to just under 8 years, and 
in fact the best scenario is to wait three years which will allow a final result in just 5.5 years 
from Year 0. 

 
Figure 1. The start time vs. end time of a fixed calculation when starting the computation immediately, or 
waiting to benefit from faster computers introduced later. 
 

The third and final application group for capability computing is applications with a 
deadline. This can be hard deadlines, such as whether forecasting, or soft deadlines, such as 
applications that are meant for human interaction. An example of such an application is the 
process of planning cancer radiation therapy [1].   

Capacity-computing, on the other hand, involve simpler tasks which typically can be 
executed on a PC; the only challenge is that there are a vast number of them. Such capacity-
driven applications are common in science and are thus the driving motivation for many 
Grid projects. Examples of capacity-driven problems include parameter studies, Monte 
Carlo simulations and genetic algorithm design. 

1.2 Grid Computing vs. Public Resource Computing 

Looking for examples of Grid computing, many people first think of Public Resource 
Computing (PRC). Popular PRC projects include SETI@Home and Folding@Home. A 
successful platform for PRC is the Berkeley BOINC project [2]. PRC computing is, like 
Grid computing, very well suited for capacity-computing. The main difference between 
Grid and PRC is that in Grid computing, the resources allow multiple users running 
arbitrary applications, while in PRC resources allow a specific server to submit input tasks 
(called work units) to a specific application on the resource, thus Grid computing is far 
more flexible than PRC when it comes to diverse use of the resources. 
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1.3 Grid for Capability Computing 

This paper seeks to investigate the possibilities for utilizing Grid for capability computing 
rather than only serving the current capacity-computing model. None of the current Grid 
middlewares support real-time or even deadline scheduling of tasks, which in essence 
makes capability computing on Grid very hard.  

It is our hope that we will expose a set of deficiencies in Grid with respect to capability 
computing which can then function as input for a process to introduce the required 
functions in order to enable Grid to handle capability computing. The motivating example 
will be graphics rendering for a very large display, described further in Section 2. The Grid 
we use for the experiments, Minimum intrusion Grid, is described in Section 3 and Section 
4 describes the experiments while Section 5 analyses the results. 

2. The Display Wall 

The display wall1 used in the experiments reported on in this paper is located at the 
University of Tromsø, Norway. The display wall use back-projection employing 28 off-the-
shelf projectors, each with a resolution of 1024 x 768 pixels. The projectors are physically 
tiled as a 7 x 4 matrix giving a combined resolution of 7168 x 3072 pixels (see Figure 8 for 
an image of the Display Wall). Separate display cards in separate display hosts drive each 
projector. The 28 tiles of the display are software coordinated over a COTS (commodity 
off-the-shelf) local area network to achieve the appearance of one large, high-resolution, 
seamless computer display. Each computer driving a projector executes a VNC (Virtual 
Network Computer) [4] client fetching a tile from a VNC server running on a remote 
computer.  A 1-Gigabit Ethernet is used for interconnect.  

The compute resources for the display wall are physically located close to the display 
wall, but they are accessed through a Grid interface (MiG, see below) located on a 
computer at the University of Southern Denmark. File storage is also handled by the Grid 
interface, including the physical storage of the files.  

3. Minimum intrusion Grid 

MiG [5] is a Grid middleware model and implementation designed with previous Grid 
middleware experiences in mind. In MiG central issues such as security, scalability, 
privacy, strong scheduling and fault tolerance are included by design. Other Grid 
middlewares tend to suffer from problems with at least one of those issues. 

The MiG model seeks to be non-intrusive in the sense that both users and resources 
should be able to join the Grid with a minimal initial effort and with little or no 
maintenance required. One way to obtain these features is keeping the required software 
installation to a functional minimum. The software that is required to run MiG includes 
only ‘need to have’ features, while any ‘nice to have’ features are completely optional. 

This design philosophy has been used, and reiterated, so stringently that in fact neither 
users nor resources are required to install any software that is MiG-specific. Another area 
where MiG strives to be non-intrusive is the communication with users and resources. 
Users in general and resources in particular can not be expected to have unrestricted 
network access in either direction. Therefore the MiG design enforces that all 
communication with resources and users should use only the most common protocols 
                                                           
1 Supported by the project “Advanced Scientific Equipment: Display Wall and Compute Cluster”, Norwegian 
Research Foundation (NFR project no. 155550/420) 
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known to be allowed even with severely restricted networking configurations. Furthermore 
resources should not be forced to run any additional network-listening daemons.  
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Figure 2. The abstract MiG model 

 
Figure 2 depicts the way MiG separates the users and resources with a Grid layer, 

which users and resources securely access through one of a number of MiG servers. The 
MiG model resembles a classic client server model where clients are represented by either 
users or resources. The servers are represented by the Grid itself, which in the case of MiG 
is a set of actual computers, not simply a protocol for communicating between computers. 
Upon contacting Grid any client can request to either upload or download a file. Users in 
turn can additionally submit a file to the job queue while resources can request a job. 

Most of the actual functionality is located at the MiG servers, where it can be fully 
maintained and controlled by the MiG developers. Thus, in addition to minimizing the user 
and resource requirements, the Grid layer simplifies consistent deployment of new versions 
of the software. 

The security infrastructure relies on all entities: users, MiG-servers and resources, 
being identified by a signed certificate and a private key. The security model is based on 
sessions and as such requires no insecure transfers or storage of certificates or proxy-
certificates, as it is required with some Grid middlewares. Users communicate securely 
with the server by means of the HTTPS protocol using certificates for two-sided 
authentication and authorization. Server communication with the resources is slightly more 
complicated as it combines SSH and HTTPS communication to provide secure 
communication and the ability to remotely clean up after job executions. 

MiG jobs are described with mRSL, which is an acronym for minimal Resource 
Specification Language.  mRSL is similar to other Resource Specification Languages, but 
keeps the philosophy of minimum intrusion, thus mRSL tries to hide as many aspects of 
Grid computing as possible from the user. To further hide the complexities of Grid 
computing from the user, MiG supplies every user with a Grid home directory where input 
and output files are stored. When a job makes a reference to a file, input or output, the 
location is simply given relative to the user’s home directory and thus all aspects of storage 
elements and transfer protocols are completely hidden from the user. The user can access 
her home directory through a web interface or through a set of simple MiG executables for 
use with scripting. 
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Job management and monitoring is very similar to file access so it is also done either 
through the web interface or with the MiG executables. Users simply submit jobs to the 
MiG server, which in turn handles everything from scheduling and job hand-out to input 
and output file management. An important aspect of this is that a job is not scheduled to a 
resource before the resource is ready to execute the job. Resources request jobs from the 
MiG server when they become ready. The MiG server then seeks to schedule a suitable job 
for execution at the resource. If one is found, the job, with input files, is immediately 
handed out to the resource. Otherwise the resource is told to wait and request a job again 
later. 

Upon completion of a job, the resource hands the result back to the MiG server which 
then makes the result available to the user through her home directory. Even though MiG is 
a new model, we have already implemented a stable single-server version. It relies on the 
Apache web server (http://httpd.apache.org/) as a basis for the web interface and 
further functionality is handled by a number of cgi-scripts communicating with a local MiG 
server process. We have decided to implement as much of the project as possible in Python 
(http://www.python.org/) since it provides a very clear syntax and a high level of 
abstraction, and it allows rapid development. 

4. Experiments 

As an example application, we use POV-Ray [5] to render an image with full resolution for 
the display wall. Rendering the example chess2.pov file at the full 7168 x 3072 resolution 
required a small change to the POV-Ray control file to render at the correct aspect ratio.  

We compare the time it takes to render a single image using one cluster node in 
Tromsø with the time it takes to run on MiG using jobs with 1, 2, 4, 8, 16, 23, and 63 tasks.  

For the Grid benchmarks, we split the image into equal-size parts, and submit job 
description files describing the necessary parameters to each POV-Ray task.  

For the remainder of the paper, we use the term Job to describe the collection of tasks 
that produce the necessary fragments of an image to form the full image. Each task is 
submitted to MiG as a separate MiG job, but to avoid confusion, we will call these tasks.  

We use the +SR (Start Row) and +ER (End Row) parameters to POV-Ray to limit the 
number of rows each task should render. The partial images are downloaded to the client 
computer and combined. The execution time of the entire operation and of individual tasks 
are examined and compared to the sequential execution time. Also, we profile the 
application to examine MiGs limitations for near-interactive use, and to provide design 
input for MiG.  

4.1 Methodology 

We measure the time from when the first task is submitted until the last image fragment is 
received and all fragments are combined into one file. We also measure the time it takes to 
download the individual image fragments.  

To profile the execution of our tasks in MiG, we use MiGs job status reporting facility. 
MiG provides a log that shows the time when each task is received by the MiG server, 
when the task is entered in the queue system, when the task is picked up and starts 
executing, and when the task finishes.  

This provides us with a tool to examine when each task was executed, how long it 
executed and to examine some of the overheads in MiG that may limit scalability.  
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4.2 Hardware 

Twenty-three of the MiG nodes have POV-Ray 3.6 installed, which limit the scalability we 
can study in this paper. The 23 nodes are part of a larger 40-node Rocks [6] cluster, 
consisting of Dell Precision Workstation 370 nodes, each with a 3.2-GHz Intel Pentium 4 
Prescott EMT64 and 2 GB RAM.  

The MiG client is a Dell Precision Workstation 360 with a 3.0-GHz Intel P4 
Northwood processor with 2 GB RAM, running Debian Linux (Debian unstable). The 
client machine is connected to the department’s 100-MBit backbone Ethernet. 

The Rocks cluster is located in Tromsø, the MiG server is located in Denmark, and the 
client machine is located in Tromsø.  

4.3 Skewed System Clocks in the Experiments 

Note that during our experiments, we found that the system clock in the MiG server was 
about 47 seconds slow (tasks were registered in the log 47 seconds before the client node 
sent them). Furthermore, the “finished” timestamps in the MiG status logs use the local 
clocks of the compute nodes, thus subtracting the “finished” timestamp from the 
“executing” timestamp produces an incorrect execution time for the experiments.  

To correct for this, we subtracted 47 seconds from the “finished” timestamp when 
calculating the execution times measured with the MiG status log facility. This did not 
significantly alter our results or conclusions, except in one place: in Figure 6, instead of 
observing that the first task finished a few seconds after the last task started executing 
(which was the original conclusion), we now have 3 tasks that finish before the last task 
starts executing. Thus, we are not guaranteed that we in fact are using 23 nodes in the 
cluster.  

The results have been verified through multiple runs that showed similar behavior, but 
only one set of experiments is reported on in this paper.  
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Figure 3. Total  execution time from a client submits the first task until all results are received and combined 
into an image. The “sequential” time is the execution time of POV-Ray rendering the entire image on one of 
the cluster nodes without using MiG.  
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5. Results 

Rendering time on one of our cluster nodes without using MiG is 8169.37 seconds, or 2 
hours, 16 minutes, 19.37 seconds. A speedup of 23 would reduce this to 355.17 seconds, or 
5 minutes and 55.17 seconds.  

 
Figure 3 shows the total execution time of creating an image using MiG, including the 

time to submit the tasks, retrieve partial image files and combine the fragments. The graph 
shows that the minimum job execution time, at 23 tasks, is 754 seconds, or 12 minutes 34 
seconds. This is fast enough to get a result image while attending a meeting. The speedup, 
however, is 10.84, which is less than linear.  

5.1 Task Submission and Result Retrieval Overheads 

Part of the overhead when rendering with MiG, is the time necessary to send the tasks to 
the MiG server (task submission overhead), and the time to retrieve the image fragments to 
the client and combine them. 

Figure 4 shows the total execution time broken down into MiG task submission time, 
time spent waiting for and downloading results and the time spent combining the image 
fragments to a single image. 
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Figure 4. Component times. 

 
Submitting tasks takes about 1 second per task. Compared to the total execution time 

of the rendering job, this is relatively small. The only overhead visible on the graphs is the 
task submission at 63 tasks where task submission takes 67 seconds out of a total of 1057 
seconds.  

The overhead of transferring files from the MiG server to the client is partially hidden 
by transferring the files immediately when the client discovers them. The client retrieves a 
list of available files from the MiG server every 10 seconds. When the client discovers that 
an image fragment is available, the client immediately downloads the fragment. With 23 
tasks, the fragment sizes are typically transferred in 4 to 5 seconds. Since the tasks do not 
finish at the same time, the download time of the last file is usually the only visible 
download overhead contributing to the total execution time for the job. 
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Combining the image fragments takes from 0.4 to 0.8 second for all variations of 
number of tasks. For up to 63 tasks, this doesn’t add enough overhead to significantly 
impact the scalability.  

In total, for the 23-fragment job that has the lowest execution time, the reported time 
shown in Figure 4 is 754 seconds. Removing the measured overheads (including the 
download time of the last fragment), we get a MiG execution time of 728 seconds, which 
would have given us a speedup of 11.22. 

5.2 MiG Internal Overheads 

The major contribution to scalability in the system is clearly not the client side or the 
communication between the client and the server, so we investigate the internal overhead 
using the MiG job status log to profile the tasks. Figure 5 shows a timeline of the rendering 
job split into 4 tasks. Shown are: 

  
• receive time, the time it takes before a task is received (measured from when 

the first task was received);  
• queue overhead – the time it takes from when the task was received until it is 

entered into the job queue; 
• queue time – the time the task spends in the queue until it is executed and  
• execution time – the execution time of the task. 

Timeline for 4 tasks
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Figure 5. Timeline for 4 tasks. Queue time is not significant here. The timeline shows that the execution time 
of each part of the image varies by more than a factor 2.5. 
  

The figure shows that the irregular execution time of POV-Ray on different parts of 
the image, which is a result of the varying computational complexity of each image 
fragment, is a major contribution to the scalability of the application. This pattern continues 
to be a problem at all problem sizes that we have studied. Note that the other times have no 
impact for this example.  



 J.M. Bjørndalen et al. / Interactive Computing with the Minimum Intrusion Grid (MiG) 269 

Timeline for 23 tasks
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Figure 6. Timeline for 23 tasks. The first three tasks finished before the last three tasks started. Task 
execution time varies by a factor 3. Tasks also spend a significant amount of time in the job queue before 
execution starts. 
 

At 23 tasks, equal to the number of worker hosts, the minimum execution time is 144 
seconds, the average 354 seconds and the maximum 460 seconds. In Figure 6, we see that 
most tasks wait a minute or more before they start executing, contributing significantly to 
the computation time. What is worse, the task that starts latest is also the task that has the 
longest execution time; the most complex image fragment was scheduled last.  

This suggests a number of remedies to improve the scaling of the application using 
better task execution time balancing, better scheduling, and reduced overhead for the MiG 
queues.  

Better task execution time balancing would bring the execution time down to around 
354 seconds for each of the 23 tasks, reducing the total time by 106 seconds, but both this 
and better scheduling would require knowledge of the computational complexity of each 
row of the image. We may be able to approximate this by first rendering the image at a 
lower resolution, recording the computation time of sections of the image, but we have not 
experimented with this. 

Reducing queue overhead in MiG would also improve the scheduling: the overhead of 
task submission and queue time for the task that finished last was in total 181 seconds: it 
took 20 seconds until the task was received by MiG, 1 second to queue the task, and the 
task waited 160 seconds in the queue before it started executing. 

A simple method of improving load balancing that often works in parallel applications 
is to divide the job into more tasks than we have workers. With 63 tasks, the execution time 
increases rather than decreases. Figure 7 shows that although the range of execution times 
is smaller than for 23 tasks (72 to 221 seconds vs. 144 to 354 for 23 tasks), new tasks are 
not immediately picked up by MiG workers, so much of the potential load balancing 
improvement is wasted in queue overheads.  
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Timeline for 63 tasks
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Figure 7. Timeline for 63 tasks. There are more tasks than workers, but we fail to benefit from a potentially 
better load balancing, in part because the workers do not pick up new jobs immediately. 

5.3 MiG “Null Call” 

To examine the internal overhead in the job management system, we measured a simple job 
that only executed the unix “date” command. The execution time of this operation is 
recorded to be 40 seconds, while the queuing time was 1 second and the queue time was 0 
seconds. 

6. Discussion 

Using remote resources for rendering introduces two main overheads that need to be coped 
with: the time it takes to submit the rendering job to the remote server, and the time it takes 
to retrieve the results back to the node that requested the rendering. Task submission 
overhead did not significantly impact our jobs, but for jobs with a higher number of tasks or 
shorter tasks, the overhead should be reduced. One of the ways this can be improved is by 
introducing a “multi-task” job, which allows the user to submit multiple MiG jobs using a 
single job submission request.  

The result retrieval, in this case retrieving image fragments, is not a significant 
problem in the experiments we have run. The main reason for this is that the tasks do not 
finish at the same time. For the 23-task job, the first task is finished after 145 seconds, 
while the last task finishes after 641 seconds (shown as, respectively, the lowermost and 
topmost tasks in Figure 6), which allows nearly all of the fragments to be downloaded 
before the last task finishes.   

Figure 6 provides an explanation for the large difference in the task completion time. 
The first problem is seen in the upper left section of the figure, where the worker nodes are 
idle for a long time before the tasks start executing. Task submission overhead contributes 
to this, but the main reason for the idle time is that tasks spend a long time in the queue 
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before a worker host picks them up. MiG workers pick up tasks by polling the server with a 
configurable number of seconds between each attempt. Reducing the polling period would 
reduce the idle time somewhat, at the cost of increasing the load of the server. 
Alternatively, a signalling mechanism would be useful, where a worker could keep up a 
connection to a local MiG server and wait for “task ready” signals. A signalling mechanism 
would also be useful for clients – our client code has to poll the server to determine when 
tasks have completed, and when files are ready to be retrieved.  

At the lower left side of Figure 6, we see the result of the load imbalance problem. 
This problem can be solved by a better partitioning of the image. To do this, we need to 
know where the computationally intensive parts of the image are. This, however, depends 
on the rendered image, and is not trivially known before attempting to render the image.  

To give an idea of the computational task at hand, Figure 8 shows a photograph of the 
final picture on the display wall. 

 

 
 
Figure 8. The completed image. For size comparisons, note that the portable computer on the table is a 17-
inch notebook and that the display wall is about 3 meters from the table. 

7. Related Work 

Grid Computing has been hyped for a number of years [8]. The most common Grid project 
is Globus [9] which has changed a lot since its beginning and is now moving towards a 
simple Web-service model. A fork from Globus revision 2 is NorduGrid ARC which sticks 
more closely to the original Grid computing model [10]. The only Grid to include PRC, 
except MiG, is Condor [11] which is an advanced model that includes dynamic process 
migration. 
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In [12], an approach to using a Grid to support interactive visualization based on the 
Grid Visualization Kernel (GVK) is described. Two models for using a Grid for interactive 
visualization are identified:  

(i) local visualization: compute the results on the Grid, download the results, and 
compute the visualizations locally;  

(ii) remote visualization: compute the results and the visualization on the Grid, 
download the finished visualization.  

 
gSlick [13] is a Grid-enabled collaborative scientific visualization environment based 

on the Globus toolkit (GTK). While GVK and gSlick are built on top of or as extensions to 
existing Grid models, MiG is a Grid. We have not built any environments specifically for 
visualization, but are using MiG directly to move data and tasks to the compute resources, 
and fetch the results afterwards. Thereby, we can provide performance data for the MiG 
grid model without extra overhead. It also demonstrates the flexibility of the MiG approach. 

Large format digital displays have traditionally been used for high-end applications in 
science and engineering. Examples include CAVE [14], InfinityWall[15], Princeton’s 
scalable display wall [16], the MIT DataWall, Stanford’s Interactive Mural [17], and the 
PowerWall at the University of Minnesota.  

8. Conclusions 

In this paper we have introduced the problem of using a Grid for capability computing, and 
run an example of rendering a large image for experiments. The overall conclusion is that 
while performance improvements can be obtained using the Grid computing model there 
are still a number of features that need to be added or improved to represent a true 
alternative for capacity-computing.  

First of all a more convenient interface for retrieving results as soon as they are ready 
must be implemented. Secondly a strong prioritization mechanism must be implemented to 
ensure that deadline-driven applications are scheduled before capacity-driven applications. 
Finally it is evident that better tools for monitoring timing and performance of an 
application are needed to perform the kinds of experiments that we execute in this paper. 

9. Future Work 

Follow-up on this work will be twofold: first we will add prioritization to MiG and 
introduce a simpler interface for having results delivered when ready. Once these 
improvements have been implemented we will rerun the experiments to verify their 
efficiency. 

Secondly, we will look into supporting capability computing that requires 
intercommunication. Since no existing Grid software support intercommunication, except a 
special Globus version of MPI, we will seek to introduce different intercommunication 
mechanisms and test capability computing on Grid with true intercommunication support. 
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