
Lessons learned in benchmarking — Floating point
benchmarks: can you trust them?

John Markus Bjørndalen, Otto Anshus
Department of Computer Science, University of Tromsø, Norway

johnm@cs.uit.no, otto@cs.uit.no

Abstract

Benchmarks are important tools for understanding the implication of
design choices for systems, and for studying increasingly complex hardware
architectures and software systems.

One of the assumptions for benchmarking within systems research seems
to be that the execution time of floating point operations do not change
much with different input values. We report on a problem where a textbook
benchmark showed significant variation in execution time depending on the
input values, and how a small fraction ofdenormalizedfloating point values
(a representation automatically used by the CPU to represent values close to
zero) in the benchmark could lead to the wrong conclusions about the relative
efficiency of PowerPC and Intel P4 machines. Furthermore, a parallel version
of the same benchmark is demonstrated to incorrectly indicate scalability
problems in the application or communication subsystem.

There is significant overhead in handling these exceptions on-chip on
modern Intel hardware, even if the program can continue uninterrupted. We
have observed that the execution time of benchmarks can increase by up to
two orders of magnitude. In one benchmark, 3.88% denormalized numbers
in a matrix slowed down the benchmark by a factor 3.83.

We suggest some remedies and guidelines for avoiding the problem.

1 Introduction
Benchmarks are important tools for studying systems. Understanding the characteristics
of a benchmark is important to avoid drawing the wrong conclusions. We report on a
problem where the execution time of a textbook benchmark showed significant variations
depending on the computed floating point values and how these problems occurred
as a warning to practitioners of benchmarking. We also show how the performance
characteristics of the benchmark could be misinterpreted, wrongly indicating a scalability
problem in the application or communication subsystem, and how a sequential benchmark
could lead to the wrong conclusions about the relative performance of a PowerPC and an
Intel P4 computer.

Programmers and users tend to ignore that floating point numbers are only
approximations of values and how these numbers are represented in hardware.
Denormalizednumbers is a floating point representation that computers today use

automatically for small numbers close to 0 when the result of an operation is too small to
represent using the normal representation. This paper shows that computations involving
denormalized numbers has a significant performance impact, even when the CPU is
configured to mask traps designed to warn the programmer of the denormal numbers.
With as little as 3.88 percent of the floating point computations involving denormalized
values, the entire computation takes 3.83 times longer to run.

The problem was discovered when the execution time of each process in a cluster
benchmark was studied and plotted over time. A strange pattern of varying computation
time appeared, which at first made us suspect that there was a bug in the benchmark code.

This paper continues as follows: section 2 describes normalized and denormalized
representation of floating point, section 3 describes our benchmark and section 4 our
experiment result, section 5 discusses the results, lessons learned and provides some
guidelines. Finally we conclude in section 6.

2 Floating point representation, Normalized and Denormal-
ized Form

The IEEE 754 standard for floating point[1] specify the representation and operations for
single precision (32-bit) and double precision (64-bit) floating point values. This provides
a finite amount of space to represent real numbers that mathematically have infinite
precision. Thus, computers only provide an approximation of floating point numbers,
and a limited range of values that can be represented. For single precision floating point,
the range is about1.18 · 10−38 to 3.40 · 1038 positive and negative.

Limited precision and values that are only approximations create a number of
problems, thus there are many guidelines for proper use of floating point numbers.
Examples are that floating point numbers should be sorted before summing, and that
floating point values should in general not be used as counters in loops.

One of the goals for the designers of the IEEE floating point standard was to balance
the resolution and magnitude of numbers that could be represented. In addition, a problem
at the time was handling applications thatunderflowed, which is where the result of a
floating point operation is too close to zero to represent using the normal representation.
In the 70s, it was common for such results to silently be converted to 0, making it difficult
for the programmer to detect and handle underflow[2].

As a result, a provision forgradual underflowwas added to the standard, which
adds a second representation for small floating numbers close to zero. Whenever the
result of a computation is too small to represent using normalized form, the processor
automatically converts the number to adenormalform and signals the user by setting
a status register flag and optionally trapping to a floating point exception handler. This
allows the programmer to catch the underflow, and use the denormalized values as results
for further computations that ideally would bring the values back into normalized floating
point ranges.

The processor automatically switches between the two representations, so computer
users and programmers rarely see any side effects of this, and operations for normal values
are also valid for any combination of normal and denormal values. Many programmers
may be unaware that their programs are using denormalized values.

Goldberg gives a detailed description of denormalized numbers and many other
floating point issues in [3].

Instructions involving denormalized numbers trigger Floating Point Exceptions.
Intel processors handle underflows using on-chip logic such that reasonable results are

produced and the execution may proceed without interruption [4]. The programmer can
unmask a control flag in the CPU to enable a software exception handler to be called.

The Intel documentation [5], and documents such as [3], warn about significant
overhead when handling exceptions in software, but programmers may not expect the
overhead to be very high when the floating point exceptions are handled in hardware and
essentially ignored by the programmer.

3 Experiments
Jacobi Iteration benchmark
We first found the problem described in this paper in the implementation of a well known
algorithm for solving partial differential equations, Successive Over-relaxation (SOR)
using a Red-Black scheme. To simplify the analysis in this paper, we use the Jacobi
Iteration method, which has similar behavior to the SOR benchmark.

for (itt = 0; itt < ITERS; itt++) {
prev = arr1;
comp = arr2;
if (itt % 2 == 1) {

prev = arr2;
comp = arr1;

}
for (i = 1; i < N - 1; i++)

for (j = 1; j < N - 1; j++)
comp[i][j] = 0.25 * (prev[i-1][j] + prev[i+1][j] +

prev[i][j-1] + prev[i][j + 1]);
}

}

Figure 1: Source code for the Jacobi benchmark, tracing time stamps removed.

An example problem solved by Jacobi is a square sheet of metal represented as a
matrix of points, where the temperature of the points on the edges of the sheet are known.
Figure 2 shows an illustration of the problem. The temperature of the internal gray nodes
are computed from the known values of the boundary (black) points.

The Jacobi iteration method gradually refines an approximation by iterating over the
array a number of times, computing each internal point by averaging the neighbors (see
figure 3). Two arrays are used: one is the source array, and the other is the target array
where the results are stored. When the next iteration starts, the roles of the arrays are
swapped (the target is now the source and vice versa).

A solution is found when the system stabilizes. The algorithm terminates when the
difference between the computed values in two iterations of the algorithm is considered
small enough to represent a solution.

The source code is shown in figure 1. The implementation is a simplified version of
Jacobi, running for a fixed number of iterations instead of comparing the newly computed
array with the previous array to determine whether the system has stabilized. This
simplifies benchmarking and analysis.

Methodology
The experiments were run on the following machines:

Figure 2: Heat distribution problem with Jacobi. In a square sheet of metal, the temperature
along the edges is known (black points), and the temperature for internal points (gray points)
are computed based on the known values for the edges.

Iteration i Iteration i+1

Figure 3: Jacobi iterative method: in each iteration, the cells in the new matrix are computed
as the average of the cells left, right, above, and below from the previous iteration (colored
black in the figure).

• Dell Precision Workstation 370, 3.2 GHz Intel Pentium 4 (Prescott) EMT64, 2GB
RAM, running Linux kernel 2.4.21.

• A cluster of 40 Dell Precision Workstation 370, configured as above, interconnected
using gigabit Ethernet over a 48-port HP Procurve 2848 switch.

• Apple PowerMac G5, Dual 2.5 GHz PowerPC G5, 4GB DDR SDRAM, 512KB L2
cache per CPU, 1.25GHz bus speed.

Verification of the results on the Dell Precision machine has been run on other Intel-
based computers showing similar overheads: a Dell Precision Workstation 360 (3.0 GHz
Intel Pentium 4 Northwood, 2GB RAM), a Dell Inspiron 9200 (notebook with 2GB RAM,
2.0 GHz Pentium-M running Linux in VMware) and a IBM Thinkpad T40p (notebook
with 1GB RAM, 1.6GHz Intel Pentium-M running Linux in VMware).

The benchmark was compiled with GCC version 3.3.5 with the flags “-Wall -O3” on
the Intel architecture. On the PowerMac, GCC 4.0.0 was used with the same flags. Intels
C-compiler, version 8.0, was also used with the same flags for the comparisons shown in
table 1.

The execution time is measured by reading the wall-clock time before and after the
call to the Jacobi solver (usinggettimeofday), and does not include startup overhead such
as application loading, memory allocation and array initialization. All benchmarks are
executed with floating point exceptions masked, so no software handlers are triggered.

The benchmarks were run with two sets of input values:

• One that produce denormal numbers: the border points are set to 10.000, and the
interior points are set to 0.

• One that does not produce denormal numbers: the border points are set to 10.000
and the interior points are set to 1.

In all cases, we run Jacobi for 1500 iterations with a 750x750 matrix. In addition, the
experiment in Table 1 use a matrix where all border and interior points are initialized to a
denormal floating point value:10−39.

Validating the results

To ensure that we didn’t report on operating system overhead for handling floating point
exceptions, the benchmark was modified to check that FP exceptions were masked, and
that the corresponding status registers were updated during the benchmark. The Intel
Architecture Software Developer’s Manual [4] documents the instructions and registers
necessary to do this in chapter 7.

Using these instructions, we also enabled traps from the CPU in one experiment,
verifying that we caught the floating point exceptions in a signal handler. These
experiments, the documentation, inspection of the registers and additional experiments
using VMware (VMware introduces extra overhead in trapping to the operating system)
convinced us that the overhead is introduced only by the CPU, and not by software
overhead as, for example, with the Intel Itaniums [5].

4 Results
Impact of denormal numbers on Intel Prescott
The experiment was run on a Dell Precision WS 370. The benchmark was instrumented
using the Pentium time stamp counters to measure the execution time of each iteration of
Jacobi (0-1500), and of the execution time of each row in each iteration.

In a separate run, the contents of the matrices were dumped to disk for later analysis.
These dumped values were then used to generate maps of where the denormalized
numbers were in the matrices (shown in figure 5) and to count the number of denormal
results per iteration, which is shown in figure 6.

Experiments without denormalized numbers

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

M
ic

ro
se

co
nd

s

Iteration number

Time spent in each iteration

iteration times

Figure 4: Computation time for each iteration of Jacobi when no denormalized numbers
occur.

Figure 4 shows the execution time of each iteration of Jacobi when no denormalized
numbers occur in the computation. Apart from a spike, the execution time is very
stable, as one would expect since the branches in the algorithm are not influenced by
the computed values.

Experiments with denormalized numbers

Figure 5: Graphical representation of the result matrices for four iterations of the JACOBI
benchmark (iterations 0, 20, 200 and 600). Black represents 0-values, blue represents non-
zero values, and red represents nonzero values in denormal form.

Figure 5 shows snapshots of the matrix for four iterations of the algorithm. In the
beginning there is only a narrow band of non-zero (blue) values. For each iteration,
non-zero values gradually spread further inwards in the matrix, but they do so by being
averaged with the zero-values in the array. A wavefront is created, with small values
pushing inwards towards the center of the matrix, followed by gradually larger values.

After a number of iterations, the values that make up the edge of the wavefront are too
small to represent using normalized floating point values, and the CPU automatically
switches over to denormalized form (shown as red in the snapshots). The band of
denormalized numbers grow in width and sweep towards the center until they eventually
disappear.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

M
ic

ro
se

co
nd

s

Iteration number

Time spent in each iteration

iteration times

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 d

en
or

m
al

iz
ed

 v
al

ue
s

Iteration number

Number of denormalized results after each iteration

iteration times

Figure 6: Left: execution time of each of 1500 iterations. Right: number of floating point
values in denormalized form stored in the result matrix on each iteration.

Figure 6 shows the execution time per iteration of Jacobi when denormalized numbers
occur in the computation (left). The figure also shows the number of denormalized
numbers in the result array for each iteration (right).

The number of denormalized numbers correspond directly with the execution time per
iteration. When denormalized numbers occur, the computation time rapidly increase, and
after a while gradually decrease while the number of denormalized numbers decrease.
After a while, the last denormalized number disappears and the computation time is back
to normal. The jagged pattern on the graph showing the number of denormalized numbers
is also reflected in the jagged pattern of the graph showing the execution time.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

M
ic

ro
se

co
nd

s

Row number

Time spent computing each row in a given iteration

Iteration 0

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 100 200 300 400 500 600 700 800

M
ic

ro
se

co
nd

s
Row number

Time spent computing each row in a given iteration

Iteration 20

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

M
ic

ro
se

co
nd

s

Row number

Time spent computing each row in a given iteration

Iteration 200

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

M
ic

ro
se

co
nd

s

Row number

Time spent computing each row in a given iteration

Iteration 600

Figure 7: Computation time for each row in the matrix for four iterations of the algorithm
(iterations 0, 20, 200 and 600). The effect of denormalized numbers is clearly visible as rows
with denormalized numbers have a higher execution time than rows without denormalized
numbers. The computation time depends on the number of denormalized numbers (see lower
left, which corresponds to the lower left picture in graph 5).

Figure 7 shows the computation time of each row of the matrix for the four iterations
that are shown in figure 5. The computation time for each row is clearly correlated to the
number of denormalized values in that row.

Impact on execution time from denormalized numbers

In every iteration, we compute new values for the748 · 748 = 559504 interior points
of the matrix. The maximum number of denormalized numbers stored in an iteration
was 21716 at iteration 338. That’s about 3.88% of the internal numbers computed
for that iteration. This is also the iteration that takes the longest to compute at 13427
microseconds. Iterations that have no denormalized numbers typically take around 3509
microseconds, which means that 3.88% denormalized numbers slows down the entire
iteration by a factor 3.83.

Machine + BM min execution time max execution time
Intel, normal 5.33 5.34
Intel, denormal 13.44 13.47
Intel, all denormal 371.73 373.05
PowerPC, normal 5.04 5.05
PowerPC, denormal 5.40 5.41
PowerPC, all denormal 18.42 18.43
Intel, ICC, normal 4.68 4.70
Intel, ICC, denormal 12.86 12.86
Intel, ICC, all denormal 368.30 368.75

Table 1: Minimum and maximum execution times of Jacobi on an Intel Prescott EMT
64 3.2GHz and on a PowerPC (Macintosh dual G5) for parameters that result in no
denormalized values (normal), up to 4% denormalized numbers (denormal) and where all
values computed are in denormalized form (all denormal). Also shown are the execution
times using the Intel C Compiler version 8.0.

The total number of computed cells for all 1500 iterations is748 · 748 · 1500 =
839256000. The total number of denormalized cells is 18090464.

PowerPC vs. Intel
On the PowerPC architecture, applications need to trap to the operating system to read the
time stamp counter. To avoid extra kernel overhead, the tracing calls for each row were
removed, and only the execution time of the entire Jacobi algorithm was measured.

The contents of the arrays were also dumped to disk in a separate run and checked to
verify that denormalized numbers occurred.

The minimum and maximum execution times of 5 runs of each benchmark is reported
in table 1. The numbers, and some other informal benchmarks on the Intel computer
indicate that denormalized numbers introduce an overhead of up to two orders of
magnitude if exceptions are masked. If exceptions are unmasked, we have to pay an
additional trap to the operating system kernel and potentially a call to a user level signal
handler before continuing.

The Intel processor has a higher impact from handling denormalized numbers than
the PowerPC machine, with a factor 70 between “normal” and “all denormal” compared
to a factor 3.65 on the PowerPC machine.

This means that denormalized numbers occurring in a benchmark may skew the results
of a benchmark moved between architectures. As an example, consider the results of
the “PowerPC denormal” (5.40) and “Intel denormal” (13.44), which indicate that the
PowerPC architecture is more efficient for the Jacobi algorithm. With a different data
set, however, the difference is much smaller, as can be seen when the benchmarks only
contain normalized numbers (5.04 vs. 5.33).

Parallel Jacobi on a cluster
Figure 8 shows the results of running parallelized implementation of Jacobi using LAM-
MPI 7.1.1 [6] using 1 to 8 nodes of the cluster. The implementation divides the matrix
into bands that are1/N rows thick and each process exchange the edges of its band with
the neighbor processes bands.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of processes

Normalized
ideal speedup
Denormalized

Figure 8: Speedup of Jacobi on a cluster of 8 nodes, using 1-8 nodes.

The graph shows that the dataset with denormalized numbers influence the scalability
of the application, resulting in a speedup for 8 processes of 4.05 compared to a speedup
of 6.19 when the computation has no denormalized numbers.

The step like shape of the “Denormalized” graph is a result of the denormalized band
of numbers that move through the rows (as shown in figure 7), influencing at least one
of the processes in every iteration. Since the processes are globally synchronized, one
process experiencing a tight band of denormalized numbers will slow down the other
processes.

This experiment shows that performance anomalies of floating point operations may
cause an unaware programmer to attribute too much performance overhead to the parallel
algorithm or communication subsystem, as the main change between the sequential and
parallel version is the parallelized algorithm and the added communication.

5 Discussion
Normally, users don’t care about the computed results in benchmarks as the important
part is to have a representative instruction stream, memory access and communication
pattern. The assumption is that the execution time of floating point values do not change
significantly when using different input values.

Textbooks don’t warn against using zero as an initial value for the equation solving
methods. One book (Andrews [7] page 535) even suggest that the interior values should
be initialized to zero:“The boundaries of both matrices are initialized to the appropriate
boundary conditions, and the interior points are initialized to some starting value such
as zero”. A factor contributing to using the value zero is that students are taught to use
zero values for variables to help catching pointer errors, unless they have a good reason
for initializing otherwise.

Implication for benchmarks and automatic application tuning
Benchmarks may be vulnerable when varying execution time of floating point operations
can mask other effects. Worse even, wrong results from a benchmark may make later
analysis based on the data invalid.

An example of automatic application or library tuning is ATLAS [8], where
performance measurements are used to automatically tune compilation of the math kernel
to a target architecture. If measurements are thrown off, the tuning heuristics may select
the wrong optimizations. We have not tested ATLAS for any problems.

Remedies
Denormal values are well-known for people concerned about the accuracy of applications.
Some remedies may help or delay the problem: changing from single precision to double
precision may delay the point at where denormal values are introduced in our Jacobi
benchmark, though we have observed that the band of denormal values will be wider
when denormal numbersdooccur.

Other remedies such as enabling flush-to-zero (converting denormal numbers to zero)
are architecture or compiler-specific, and may influence the results of the application.

For this particular benchmark, using nonzero values as initial values for the internal
points can remove the problem. The application would also benefit from using multi-grid
methods, which could reduce the problem of denormalized numbers considerably.

For benchmarks, checking the status flags for floating point exceptions is one method
of detecting that the problem occurred. If the flag is set, the benchmark results should be
considered suspect and investigated, or a different dataset should be used.

The problem is that checking for floating point exceptions is a suggestion on the line
of checking return values from function calls. Programmers, however, tend to forget
checking the return values of functions. We recently heard of an example where a high
performance computing application running on a cluster experienced a node failure. The
application didn’t detect that one of the nodes had died, and the computation continued.
Fortunately for the users, the results from the computation were suspicious enough that
the users found out about the problem.

An alternative is enabling the software handlers for floating point exceptions, allowing
the benchmark to halt if exceptions occur. This is acceptable for some benchmarks and
application tuners, but may not be acceptable for all applications. It also requires that
benchmark designers are aware of the problem. On the other hand, not handling floating
point exceptions may result in an application that is not behaving as designed.

Lessons learned
The most important lesson is: when there is something you can’t explain, this is usually a
good reason to investigate further, even if you can avoid the problem by choosing different
input values. This study is a result of a benchmark problem that a student couldn’t resolve
in a benchmark that was virtually copied from a textbook. The student solved the problem
by choosing a different input data set without understanding the cause of the problem.
However, unless you understand the causes, you can not guarantee that the problem will
not come back, so the solution was only temporary.

If performance is important, profile with multiple granularities and make sure you
understand the performance data. The problem is finding the right granularity for a given
problem. Too much overhead from instrumentation may mask the problem investigated
and create datasets that are too large for the programmer to cope with.

We wrote a number of special purpose tools to examine and visualize the problem
to understand its nature, including tools that create animations of the distribution of
denormalized numbers, execution times of individual rows and the magnitude of the
values in the arrays. The tools and graphs provide a large set of data and visualizations
(both static and animated), and we are currently experimenting with visualizations of the
measurement data on a display wall.

Guidelines for design and implementation
To reduce the chances of problems such as the ones identified in this paper, programmers
can:

• Turn on floating point exceptions and allow the program to halt and report the
problem if these occur. Floating point exceptions should normally not occur in
a correctly behaving program, so terminating a benchmark and selecting a different
data set or modifying the algorithm is preferable to running a benchmark with
performance that varies depending on the input. Care must be taken to mask
exception types that should be expected (such as theprecisionexception).

• Do not ignore potential inaccurate or illegal floating point operations in
benchmarks. Hardware architects optimize for the common case, and handling
exceptions should normally not be the common case.

• Programmers should read and understand the performance guides and software
architecture guides for the architectures they program for.

• Make sure you understand the performance behavior of the sequential program
before benchmarking parallelized applications. Puzzling behavior of a trivial
benchmark may be rooted in the architecture, and not necessarily in the algorithms
used.

• Profile at multiple granularities.

Developers should also follow standard development practices for applications, such
as turning on the warnings that the compiler can provide. This also goes for developing
applications. One environmental simulation application we have worked with accessed
arrays outside the legal boundaries in several locations, and a version of the application
also has division by zero errors in an equation solver that may or may not have caused
problems. Modern compilers can help you catch many of these errors and problems,
sometimes with some runtime overhead.

6 Conclusions
As architectures are getting increasingly complex1 and the cost of using different
components in the systems change, benchmarks may be difficult to create and interpret
correctly. Optimizing for the common case can introduce unoptimized cases that, even
if they occur infrequently, cost enough to significantly impact applications, a point well
made by Intel’s chief IA32 architect [9].

1Examples are increasing difference in latency between different levels of caches and memory, and the
introduction of Simultaneous Multithreading and Single-Chip Multiprocessors

Benchmarks are often simplified versions of existing applications where the results
of the computations are not used since the goal of a benchmark is to measure a systems
behavior under a specific use. In these cases a programmer may choose to ignore some of
the guidelines for programming floating point applications since the accuracy of unused
results are not important, and since the guidelines generally stress the problems around
correctness and accuracy of floating point values and operations.

We have shown that one concern, namely floating point exceptions, can easily occur in
a benchmark and cause significant overhead even when the exceptions are masked off and
handled internally in the CPU. Textbooks and well-known guidelines for programmers
contribute to setting the trap for programmers.

We have also shown how a benchmark influenced by floating point exceptions in only
a small fraction of the calculations may lead to the wrong conclusions about the relative
performance of two architectures, and how a benchmark may wrongly blame the parallel
algorithm or communication library for a performance problem on the cluster when the
problem is in the applications use of floating point numbers.

In reflection of some of the observed behavior of our simple benchmark, we suggest
some guidelines for programmers designing and implementing benchmarks.

References
[1] IEEE 754: Standard for Binary Floating-Point Arithmetic.

http://grouper.ieee.org/groups/754/ .

[2] Charles Severance. IEEE 754: An Interview with William Ka-
han. IEEE Computer, pages 114–115, March 1998. A longer ver-
sion is available asAn Interview with the Old Man of Floating Point
www.cs.berkeley.edu/~wkahan/ieee754status/754story.html .

[3] David Goldberg. What every computer scientist should know about floating-point
arithmetic.ACM Comput. Surv., 23(1):5–48, 1991.

[4] Intel. Intel Architecture Software Developer’s Manual – Volume 1: Basic
Architecture. Intel, Order Number 243190, 1999.

[5] Intel. Intel C++ Compiler and Intel Fortran Compiler 8.X Performance Guide,
version 1.0.3. Intel Corporation, 2004.

[6] LAM-MPI homepage. http://www.lam-mpi.org/.

[7] Gregory R. Andrews. Foundations of multithreaded, parallel, and distributed
programming. Addison Wesley, 2000.

[8] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project.Parallel Computing, 27(1–2):3–
35, 2001. Also available as University of Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

[9] Bob Colwell. What’s the Worst That Can Happen?IEEE Computer, pages 12–15,
May 2005.

