The Performance of Configurable Collective
Communication for LAM-MPI in Clusters and
Multi-Clusters

John Markus Bjgrndalen?, Otto J. Anshus!
Brian Vinter?, Tore Larsen!

1) Department of Computer Science, University of Tromsg

2) Department of Mathematics and Computer Science, University of Southern Denmark

Abstract

Using a cluster of eight four-way com-
puters, PastSet, an experimental tuple
space based shared memory system, has
been measured to be 1.83 times faster on
global reduction than using the Allreduce
operation of LAM-MPI. Our hypothesis is
that this is due to PastSet using a better
mapping of processes to computers result-
ing in less messages and more use of lo-
cal processor cycles to compute partial
sums. PastSet achieved this by utilizing
the PATHS system for configuring multi-
cluster applications. This paper reports
on an experiment to verify the hypothesis
by using PATHS on LAM-MPI to see if we
can get better performance, and to identify
the contributing factors.

By adding configurability to Allreduce
by using PATHS, we achieved a perfor-
mance gain of 1.52, 1.79, and 1.98 on re-
spectively two, four and eight-way clus-
ters. We conclude that the LAM-MPI algo-
rithm for mapping processes to computers
when using Allreduce was the reason for
its poor performance relative to the imple-
mentation using PastSet and PATHS.

We then did a set of experiments to
examine whether we could improve the
performance of the Allreduce operation
when using two clusters interconnected by

a WAN link with 30-50ms roundtrip la-
tency. The experiments showed that even a
bad mapping of Allreduce which resulted
in multiple messages being sent across
the WAN did not add significant perfor-
mance penalty to the Allreduce operation
for packet sizes up to 4KB. We believe this
is due to multiple small messages concur-
rently in transit on the WAN.

1 Introduction

For efficient support of synchroniza-
tion and communication in parallel sys-
tems, these systems require fast collective
communication support from the underly-
ing communication subsystem as, for ex-
ample, is defined by the Message Pass-
ing Interface (MPI) Standard [1]. Among
the set of collective communication opera-
tions broadcast is fundamental and is used
in several other operations such as barrier
synchronization and reduction [12]. Thus,
it is advantageous to reduce the latency of
broadcast operations on these systems.

In our work with the PATHS[5] config-
uration and orchestration system, we have
experimented with micro-benchmarks and
applications to study the effects of config-
urable communication.

In one of the experiments[18], we used

the configuration mechanisms to reduce
the execution times of collective commu-
nication operations in PastSet. To get a
baseline, we compared our reduction oper-
ation with the equivalent operation in MPI
(Allreduce).

By trying a few configurations, we
found that we could improve our Tuple
Space system to be 1.83 times faster than
LAM-MPI (Local Area for Multicomputer
MPI) [11][14]. Our hypothesis was that
this advantage came from a better usage of
resources in the cluster rather than a more
efficient implementation.

If anything, LAM-MPI should be faster
than PastSet since PastSet stores the re-
sults of each global sum computation in
a tuple space inducing more overhead
than simply computing and distributing
the sum.

This paper reports on an experiment
where we have added configurable com-
munication to the Broadcast and Reduce
operations in LAM-MPI (both of which
are used by Allreduce) to validate or fal-
sify our hypothesis. In [4] we report
on complimentary experiments where we
also varied the number of computers per
experiment.

The paper is organized as follows: Sec-
tion 2 summarizes the main features of
the PastSet and PATHS system. Section
3 describes the Allreduce, Reduce and
Broadcast operations in LAM-MPI. Sec-
tion 4 describes the configuration mech-
anism that was added to LAM-MPI for
the experiments reported on in this paper.
Section 5 describes the experiments and
results, section 7 presents related work,
section 6 presents our multicluster exper-
iments, and section 8 concludes the paper.

2 PATHS: Configurable Or-
chestration and Mapping

Our research platform is PastSet[2][17],
a structured distributed shared memory
system in the tradition of Linda[6]. Past-

Set is a set of Elements, where each El-
ement is an ordered collection of tuples.
All tuples in an Element follow the same
template.

The PATHS[5] system is an extension of
PastSet that allows for mappings of pro-
cesses to hosts at load time, selection of
physical communication paths to each ele-
ment, and distribution of communications
along the path. PATHS also implements
the X-functions[18], which are PastSet op-
eration modifiers.

A path specification for a single thread
needing access to a given element is rep-
resented by a list of stages. Each stage is
implemented using a wrapper object hid-
ing the rest of the path after that stage.
The stage specification includes parame-
ters used for initialisation of the wrapper.

Node 1
Thread

Node 2
Thread Thread

Thread

Figure 1. Four threads on two hosts
accessing shared element on a sep-
arate server. Each host computes
a partial sum that is forwarded to
the global-sum wrapper on the server.
The final result is stored in the ele-
ment.

Paths can be shared whenever path de-
scriptions match and point to the same el-
ement (see figure 1). This can be used
to implement functionality such as, for in-
stance, caches, reductions and broadcasts.

The collection of all paths in a system
pointing to a given element forms a tree.

The leaf nodes in the tree are the applica-
tion threads, while the root is the element.

Figure 1 shows a global reduction tree.
By modifying the tree and the parameters
to the wrappers in the tree, we can spec-
ify and experiment directly with factors
such as which processes participate in a
given partial sum, how many partial sum
wrappers to use, where each sum wrapper
is located, protocols and service require-
ments for remote operations and where the
root element is located. Thus, we can
control and experiment with tradeoffs be-
tween placement of computation, commu-
nication, and data location.

Applications tend to use multiple trees,
either because the application uses multi-
ple elements, or because each thread might
use multiple paths to the same element.

To get access to an element, the applica-
tion programmer can either choose to use
lower-level functions to specify paths be-
fore handing it over to a path builder, or
use a higher level function which retrieves
a path specification to a named element
and then builds the specified path. The
application programmer then gets a refer-
ence to the topmost wrapper in the path.

The path specification can either be re-
trieved from a combined path specification
and name server, or be created with a high-
level language library loaded at applica-
tion load-time?

Since the application program invokes
all operations through its reference to
the topmost wrapper, the application can
be mapped to different cluster topologies
simply by doing one of the following:

e Updating a map description used by
the high-level library.

e Specifying a different high-level
library that generates path-
specifications. This library may
be written by the user.

Currently, a Python module is loaded for this
purpose.

e Update the path mappings in the
name server.

Profiling is provided via trace wrap-
pers that log the start and completion time
of operations that are invoked through it.
Any number of trace wrappers can in-
serted anywhere in the path.

Specialized tools to examine the per-
formance aspects of the application can
later read trace data stored with the path
specifications from a system. We are cur-
rently experimenting with different visu-
alizations and analyses of this data to sup-
port optimization of a given application.

The combination of trace data, a specifi-
cation of communication paths, and com-
putations along the path has been useful
in understanding performance aspects and
tuning benchmarks and applications that
we have run in cluster and multi-cluster
environments.

3 LAM-MPI implementation of
Allreduce

LAM-MPI is an open source implemen-
tation of MPI available from [11]. It was
chosen over MPICH [7] for our work in
[18] since it had lower latency with less
variance than MPICH for the benchmarks
we used in our clusters.

The MPI Allreduce operation combines
values from all processes and distribute
the result back to all processes. LAM-MPI
implements Allreduce by first calling Re-
duce, collecting the result in the root pro-
cess, then calling Broadcast, distributing
the result from the root process. For all our
experiments, the root process is the pro-
cess with rank O (hereafter called process
0).

The Reduce and Broadcast algorithms
use a linear scheme (every process com-
municates directly with process 0) up to
and including 4 processes. From there on
they use a scheme that organizes the pro-
cesses into a logarithmic spanning tree.

The shape of this tree is fixed, and
doesn’t change to reflect the topology of
the computing system or cluster. Figure 2
shows the reduction trees used in LAM-
MPI for 32 processes in a cluster. We
observe that broadcast and reduction trees
are different.

By default, LAM-MPI evenly dis-
tributes processes onto nodes. When we
combine this mapping for 32 processes
with the reduction tree, we can see in Fig-
ure 3 that a lot of messages are sent across
nodes in the system. The broadcast oper-
ation has a better mapping for this cluster
though.

4 Adding
LAM-MPI

configuration to

To minimize the necessary changes to
LAM-MPI for this experiment, we didn’t
add a full PATHS system at this point.
Instead, a mechanism was added that al-
lowed for scripting the way LAM-MPI
communicates during the broadcast and
reduce operations.

There were two main reasons for this.
Firstly, our hypothesis was that PastSet
with PATHS allowed us to map the com-
munication and computation better to the
resources and cluster topology. For global
reduction and broadcast, LAM-MPI al-
ready computes partial sums at internal
nodes in the trees. This means that ex-
perimenting with different reduction and
broadcast trees should give us much of
the effect that we observed with PATHS in
[18] and [5].

Secondly, we wanted to limit the influ-
ence that our system would have on the
performance aspects of LAM-MPI such
that any observable changes in perfor-
mance would come from modifying the re-
duce and broadcast trees.

Apart from this, the amount of code
changed and added was minimal, which
reduced the chances of introducing errors
into the experiments.

When reading the LAM-MPI source
code, we noticed that the reduce opera-
tion was, for any process in the reduction
tree, essentially a sequence of N receives
from the N children directly below it in
the tree, and one send to the process above
it. For broadcast, the reverse was true; one
receive followed by NV sends.

Using a different reduction or broad-
cast tree would then simply be a matter of
examining, for each process, which pro-
cesses are directly above and below it in
the tree and construct a new sequence of
send and receive commands.

To implement this, we added new re-
duce and broadcast functions which used
the rank of the process and size of the sys-
tem to look up the sequence of sends and
receives to be executed (including which
processes to send and receive from). This
is implemented by retrieving and execut-
ing a script with send and receive com-
mands.

As an example, when using a scripted
reduce operation with a mapping identical
to the original LAM-MPI reduction tree,
the process with rank 12 (see figure 2)
would look up and execute a script with
the following commands:

e Receive (and combine result) from
rank 13

e Receive (and combine result) from
rank 14

e Send result to 8

The new scripted functions are used in-
stead of the original logarithmic Reduce
and Broadcast operations in LAM-MPI.
No change was necessary to the Allreduce
function since it is implemented using the
Reduce and Broadcast operations.

The changes to the LAM-MPI code was
thus limited to 3 code lines, replacing
the calls to the logarithmic reduction and
broadcast functions as well as adding and
a call in MPI1_Init to load the scripts.

Remapping the application to another
cluster configuration, or simply trying new
mappings for optimization purposes, now
consists of specifying new communication
trees and generating the scripts. A Python
program generates these scripts as Lisp
symbolic expressions.

5 Experiments

Figure 4 shows the code run in the ex-
periments. The code measures the average
execution time of 1000 Allreduce opera-
tions. The average of 5 runs is then plot-
ted. To make sure that the correct sum is
computed, the code also checks the result
on each iteration.

For each experiment, the number of pro-
cesses was varied from 1 to 32. LAM-MPI
used the default placement of processes on
nodes, which evenly spread the processes
over the nodes.

The hardware platforms consists of
three clusters, each with 32 processors:

e 2W: 16*2-Way Pentium Il
MHz, 256MB RAM

450

e 4W: 8*4-Way Pentium Pro 166 MHz,
128MB RAM

e 8W: 4*8-Way Pentium Pro 200 MHz,
2GB RAM

All clusters used 100MBit Ethernet for
intra-cluster communication.

5.1 4-way cluster

Figure 5 shows experiments run on the
4-way cluster. The following experiments
were run:

Original LAM-MPI The experiment
was run using LAM-MPI 6.5.6.

Modifi ed LAM-MPI, original scheme
The experiment was run using a
modified LAM-MPI, but using the
same broadcast and reduce trees

Configurable schemes vs. pristine LAM-MPI

3000 ‘ LAM-MPI o_riginél code

2500

2000

LAM-MPI + path, original scheme - /- -
LAM-MPI + pa{h, Iinear scheme - .. |
LAM-MPI + path, expZ'scheme — — —

1500 et -

1000]

500 / -

0 5 10 15 20 25 30
Number of processes in system

Operation latency in us, avg of 5x1000 ops

Figure 5. Allreduce, 4-way cluster

for communication as the original
version used.

This graph completely overlaps the
graph from the original LAM-MPI
code, showing us that the scripting
functionality is able to replicate the
performance aspects of the original
LAM-MPI for this experiment.

Modified LAM-MPI, linear scheme
This experiment was run using a
linear scheme where all processes
report directly to the process with
rank 0, and rank 0 sends the results
directly back to each client.

This experiment crashed at 18 pro-
cesses due to TCP connection failures
in LAM-MPI. We haven’t examined
what caused this, but it is likely to be
a limitation in the implementation.

35

Modified LAM-MPI, hierarchal scheme 1

Rank 0 is always placed on node
0, so all other processes on node 0
contribute directly to rank 0. On the
other nodes, a local reduction is done
within each node before the nodes
partial sum is sent to process 0.

The modified LAM-MPI with the hier-
archal scheme is 1.79 times faster than the
original LAM-MPI. This is close to the
factor of 1.83 reported in [18], which was
based on measurements on the same clus-
ter. It is possible that further experiments

Configurable LAM-MPI vs. pristine LAM-MPI
3000

LAM-MP| or,iﬂin‘al code |
LAM-MPI + path - - - -

2500

L

2000

1500

1000

500

Operation latency in us, avg of 5x1000 ops

0 5 10 15 20 25

Number of processes in system

30

Figure 6. Allreduce, 8-way cluster

with configurations would have brought us
closer to the original speed improvement.

5.2 8-way cluster

For the 8-way cluster, we expected the
best configuration to involve using an in-
ternal root process on each node and
limit the inter-node communications to
one send (of the local sum) and one receive
(of the global result) resembling the best
configuration for the 4-way cluster. This
turned out not to be true.

Due to the 8 processes on each node, the
local root process on each node would get
7 children in the sum tree (with the excep-
tion of the root processes in the root node).
The extra latency added per child of the lo-
cal root processes was enough to increase
the total latency for 32 processes to 1444
microseconds.

Splitting the processes to allow further
subgrouping within each node introduced
another layer in the sum tree. This extra
layer brought the total latency for 32 pro-
cesses to 1534 microseconds.

The fastest solution found so far in-
volves partitioning the processes on each
node into two groups of 4 processes. Each
group computes a partial sum for that
group, and forwards it to directly to the
root process. This doubled the communi-
cation over the network, but the total ex-
ecution time was shorter (1322 microsec-
onds).

35

Configurable LAM-MPI vs. pristine LAM-MPI
3000

LAM-MPI original code
LAM-MPI+ PATHS ----

2500

2000

1500

1000

500

L

Operation latency in us, avg of 5x1000 ops

0 5 10 15 20 25

Number of processes in system

30

Figure 7. Allreduce, 2-way cluster.

The fastest configuration is 1.98 times
faster than the original LAM-MPI Allre-
duce operation. In figure 6, the fastest
configuration and the original LAM-MPI
Allreduce are plotted for 1-32 processes.

5.3 2-way cluster

On the 2-way cluster, after trying a few
configurations, we ended up with a config-
uration that was 1.52 times faster than the
original LAM-MPI code. This was not as
good as for the other clusters. We expected
this since a reduction in this cluster would
need more external messages.

Based on the experiments, we observed
three main factors that influenced the scal-
ing of the application:

e The number of children for a pro-
cess in the operation tree. More chil-
dren adds communication load for the
node hosting this process.

e The depth of a branch in the operation
tree. That is, the number of nodes a
value has to be added through before
reaching the root node.

e Whether a message was sent over the
network or internally on a node.

The depth factor seemed to introduce
a higher latency than adding a few more
children to a process. On the other hand,
adding another layer in the tree would also
allow us to use partial sums. We have

35

not arrived at any model which allows us
predict which tree organization would in
practice lead to the shortest execution time
of the Allreduce operation.

One difference between the Past-
Set/PATHS implementation and LAM-
MPI is that PastSet/PATHS process
incoming partial sums by order of ar-
rival, while LAM-MPI process them in
the order they appear in the sequence
specified either by the original LAM-MPI
code, or the script. This might influence
the overhead when receiving messages
from a larger number of children. We are
investigating this further.

6 Multi-cluster experiments

In [5] we also ran multi-cluster global
reductions using PastSet and PATHS, and
[10] shows an approach where they reduce
the number of messages over WAN con-
nections to reduce the latency of collective
operations over wide-area links.

To study the effect of choosing various
configurations on multi-clusters, we added
an experiment where we installed an IP
tunnel between the 4W cluster in Tromsg
and the 2W cluster in Denmark and ran the
Allreduce benchmark using those clusters
as one larger cluster.

Unfortunately, during the experiments
two things happened: two of the nodes in
Denmark went down, and the 2W clus-
ter was allocated to other purposes after
we finished the measurements with the
unmodified LAM-MPI Allreduce, so we
were unable to run the benchmark us-
ing configurable Allreduce on the multi-
cluster system.

However, the performance measure-
ments using the unmodified Allreduce did
produce interesting results. An experi-
ment with 32 processes both in Denmark
and Tromsg documented that the reduce
phase of the Allreduce operation had a
very good mapping for minimizing mes-
sages over the WAN link: only one mes-

sage was sent from the Tromsg cluster to
the root process in the Denmark cluster.
However, in the broadcast phase each pro-
cess in Tromsg was sent a message from a
process in Denmark.

We expected this configuration of Allre-
duce to perform gradually worse when
we scaled up the number of processes in
Tromsg from 1 to 32. This did not turn out
to be the case. With 32 processes in Den-
mark, the difference between the Allre-
duce latency of using 1 and 32 processes
in Tromsg was small enough to be masked
by the noise in latency.

We suspected that the reason for this
was that the numerous routers and links
down to Denmark allowed multiple small
messages to propagate towards Tromsg
concurrently.

This suggests that for the cluster sizes
that we have available, a configurable
mechanism that reduces the number of
small messages on a long WAN link does
not significantly reduce the latency. How-
ever, for larger packet sizes, the bandwidth
of the link is important, and a reduction
in the number of messages should matter
more.

To study this, the benchmark was ex-
tended to include not only scaling from 1
to 64 processes, but also to calling Allre-
duce with value vectors from 4 byte (1 in-
teger) to 4AMB.

Since two computers in Denmark had
gone down, we ran the benchmark with
28 processors (14 nodes) in Denmark, and
32 processors in Tromsg reducing the to-
tal cluster size to 60 processors. This
produced a similar mapping to the orig-
inal: when running with 60 processes,
all Tromsg nodes would receive a mes-
sage directly from Denmark during broad-
cast, and only two messages would be sent
down to Denmark on reduce.

We also ran the benchmark with 61 pro-
cesses. This resulted in a configuration
where the process with rank 60 (the last
process added when scaling the system to

Average Allreduce execution time
80000

70000 I
60000

50000 A
40000
30000

20000 I
10000 I

Microseconds

12
&
04

e 2

0 10 20 30 40 50 60 70

Number of processes
Figure 8. Allreduce performance us-

ing two clusters.

Average Allreduce execution time

/ —

107 F

106 |
100000 F7/ ot
[

10000 / B D N
1000

Microseconds

100 Q’I
10 Jj

1 I I I

0 10 20 30 40 50 60 70

Number of processes

Figure 9. Allreduce performance us-
ing two clusters. Note logarithmic
scale of y-axis.

61 processes) is located in Denmark but
only communicates directly with nodes in
Tromsg for Reduce and Broadcast. This
forces the nodes in Tromsg to wait for pro-
cess 60 before one of the two messages
can be sent down to Denmark again, and
the corresponding broadcast message for
60 has to propagate through Tromsg be-
fore reaching it. Figure 8 shows that this
configuration nearly doubles the latency of
Allreduce compared to running Allreduce
with 60 processes. Clearly, configurations
can be encountered where it pays off to
control who communicates with who even
for small messages.

Figure 8 also shows us that sending
many messages (there is one message
per process in the figure) for vectors up
to 2KB does not add much performance

107 F T T

2 threads - - - - P
100 | 2ipreads — -
[Sthreads Y4
6 threads - -- - A
r Zthreads -+ 75
100000 = 8threads ———
8'{hreads

|1

10000 £

1000

sl

Roundtrip latency in microseconds

100
1

10 100 1000 10000 100000 106

Packet size in bytes

Figure 10. Roundtrip TCP/IP latency
for one of N threads. 4W node to 8W
node (LAN)

penalty to Allreduce compared to sending
only a few messages. The figure shows a
spike around 38 processes, which comes
from a temporary network routing prob-
lem somewhere between Denmark and
Tromsg when the experiment was per-
formed.

Figure 9 shows that the performance
of Allreduce rapidly deteriorates when the
size and number of packets increase. The
graph uses a logarithmic scale for the y-
axis.

To examine this effect further, we de-
vised another experiment. We had one
thread measuring the latency of roundtrip
messages over TCP/IP. To simulate the
bad mapping of the Broadcast operation,
a number of threads were added sending
roundtrip messages concurrently with the
first thread.

The hypotheses were that adding the ex-
tra threads would impact the first thread
the least using the WAN to Denmark, and
that the background threads would influ-
ence the first thread more for small mes-
sages when using the LAN.

Figure 10 shows that communicating
between two cluster nodes, using only
a single router between them, the back-
ground communication would influence
the roundtrip latency of the benchmark
thread even at the smallest packet sizes.
As we add background communication,

107

8 E
@ 10 F " 1threads
2 F 2threads - - - -
8 [3threads -+
5] 4 threads ———
3 107 £ 5threads
2 T
£ [8threads ———
£ . 9 threads y
> 10° £ 10 threads - -- - y 4
5] £ Y
- a
< [vy
2 100000 A
El g -
g
K [

10000
1 10 100 1000 10000 100000 106

Packet size in bytes

Figure 11. Roundtrip TCP/IP latency
for one of N threads. Gateway node
in Denmark to 4W node (WAN)

the latency increases for all packet sizes.

The cluster in Denmark was busy at the
time of the experiment, so we had to use
the clusters gateway node when running
the WAN experiment. The gateway was
where we originally installed the IP tunnel
for the LAM-MPI Allreduce benchmark,
so we still used the tunnel for the experi-
ment.

Figure 11 shows that for messages up
to 4KB, we can hardly see any differ-
ence in the performance of Allreduce as
we add background communication. Only
with larger packet sizes, where we assume
that the bandwidth plays a larger role, is
the performance influenced by the back-
ground communication.

7 Related work

Jacunski et al.[9] shows that selection of
the best performing algorithm for all-to-
all broadcast on clusters of workstations
based on commodity switch-based net-
works is a function of both network char-
acteristics as well as the message length
and number of participating nodes in the
all-to-all broadcast operation. In contrast
our work used clusters with multiproces-
sors, we did performance measurements
on the reduce operation as well as on the
broadcast, and we documented the effect
of the actual system at run time includ-

107

ing the workload, communication perfor-
mance of the hosts.

Bernashci et al.[3] study the perfor-
mance of the MPI broadcast operation
on large shared memory systems using a-
trees.

Kielmann et al.[10] show how the per-
formance for collective operations like
broadcast depend upon cluster topology,
latency, and bandwidth. They develop a
library of collective communication op-
erations optimized for wide area systems
where a majority of the speedup comes
from limiting the number messages pass-
ing over wide-area links.

Husbands et al.[8] optimizes the perfor-
mance of MPI_Bcast in clusters of SMP
nodes by using a two-phase scheme; first
messages are sent to each SMP node, then
messages are distributed within the SMP
nodes. Sistare et al.[13] uses a simi-
lar scheme, but focus on improving the
performance of collective operations on
large-scale SMP’s.

Tang et al.[15] also use a two-phase
scheme for a multithreaded implementa-
tion for MPI. They separate the imple-
mentation of the point-to-point and collec-
tive operations to allow for optimizations
of the collective operations, which would
otherwise be difficult.

In contrast to the above works, this pa-
per is not focused on a particular optimiza-
tion of the spanning trees. Instead, we
focus on making the shape of the span-
ning trees configurable to allow easy ex-
perimentation on various cluster topolo-
gies and applications.

Vadhiyar et al.[16] shows an automatic
approach to selecting buffer sizes and al-
gorithms to optimize the collective opera-
tion trees by conducting a series of exper-
iments.

8 Conclusions

We have observed that the broadcast
and reduction trees in LAM-MPI are dif-

ferent, and do not necessarily take into ac-
count the actual topology of the cluster.

By introducing configurable broadcast
and reduction trees, we have shown a sim-
ple way of mapping the reduction and
broadcast trees to the actual clusters in use.
This gave us a performance improvement
up to a factor of 1.98.

For the cluster where we observed the
performance difference of a factor 1.83 be-
tween PastSet/PATHS and LAM-MPI, we
arrived at a reduction and broadcast tree
that gave us an improvement of 1.79 for
Allreduce over the original LAM-MPI im-
plementation. This supports our hypothe-
sis that the majority of the performance-
difference between LAM-MPI and Past-
Set/PATHS was a better mapping to the re-
sources and topology in the cluster.

We have also observed that the assump-
tion that doing a reduction internally in
each node before sending a message on
the network did not lead to the best per-
formance on our cluster of 8-way nodes.
Instead, increasing the number of mes-
sages on the network to reduce the depth
of the reduction and broadcast as well as
the number of direct children for each in-
ternal node proved to be a better strategy.

The reason for this may be found by
studying three different factors that add to
the cost of the global reduction and broad-
cast trees:

e The number of children directly be-
low an internal node in the spanning
tree.

e The depth of the spanning tree.

e Whether an arc between a child and a
parent in the spanning tree is a mes-
sage on the network or internally in
the node.

We suspect that these factors are not in-
creasing linearly, and that the cost of, for
instance, adding another child to an inter-
nal node in the spanning tree depends on

factors such as the order of the sequence
of receive commands as well as contention
on the network layer in the host computer.

For the multi-cluster experiments, we
observed that configurations which sent
more messages than necessary over the
WAN link did not perform as bad as we
had expected. For message sizes up to
4KB, the extra messages did not add a no-
ticeable operation time to the Allreduce
operation. We believe that multiple mes-
sages concurrently in transit through the
routers along the WAN link masks some
of the overhead of the extra messages send
by LAM-MPI.

For larger messages, we see that the
bandwidth of the WAN link is starting to
penalize the bad configurations.

9 Acknowledgements

Thanks to Ole Martin Bjgrndalen for
reading the paper and suggesting improve-
ments.

References

[1] Mpi: A message-passing interface
standard. Message Passing Interface
Forum (Mar 1994).

[2] ANsHUS, O. J., AND LARSEN,
T. Macroscope: The abstractions
of a distributed operating system.
Norsk Informatikk Konferanse (Oc-
tober 1992).

[3] BERNASCHI, M., AND RICHELLI,
G. Mpi collective communication
operations on large shared mem-
ory systems. Proceedings of the
Ninth Euromicro Workshop on Paral-
lel and Distributed Processing (EU-
ROPDP.01) (2001).

[4] BJZRNDALEN, J. M., ANSHUS, O.,
VINTER, B., AND LARSEN, T. Con-
figurable collective communication

[5]

[6]

[7]

[8]

[9]

[10]

in lam-mpi. Proceedings of Commu-
nicating Process Architectures 2002,
Reading, UK (September 2002).

BJZRNDALEN, J. M., ANSHUS,
O., LARSEN, T., AND VINTER,
B. Paths - integrating the prin-
ciples of method-combination and
remote procedure calls for run-
time configuration and tuning of
high-performance distributed appli-
cation. Norsk Informatikk Konfer-
anse (November 2001), 164-175.

CARRIERO, N., AND GELERNTER,
D. Linda in context. Commun. ACM
32, 4 (April 1989), 444-458.

GRropp, W., LUSK, E., Doss, N.,
AND SKIELLUM, A. A high-
performance, portable implementa-
tion of the mpi message passing in-
terface standard. Parallel Comput-
ing, Volume 22, Issue 6 (September
1996).

HusBANDS, P., AND HOE, J. C.
Mpi-start: delivering network per-
formance to numerical applications.
Proceedings of the 1998 ACM/IEEE
conference on Supercomputing
(1998). San Jose, CA.

JACUNSKI, M., SADAYAPPAN, P.,
AND PANDA, D. All-to-all broadcast
on switch-based clusters of work-
stations. 13th International Paral-
lel Processing Symposium and 10th
Symposium on Parallel and Dis-
tributed Processing (12 - 16 April
1999). San Juan, Puerto Rico.

KIELMANN, T., HOFMAN, R. F. H.,
BAL, H. E., PLAAT, A., AND
BHOEDJANG, R. A. F. Magpie:

Mpi’s collective communication op-
erations for clustered wide area sys-
tems. Proceedings of the seventh
ACM SIGPLAN symposium on Prin-
ciples and practice of parallel pro-

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

gramming (1999). Atlanta, Georgia,
United States.

http://www.lam-mpi.org/.

PANDA, D. Issues in design-
ing efficient and practical algo-
rithms for collective communication
in wormhole-routed systems. Proc.
ICPP Workshop Challenges for Par-
allel processing (1995), 8-15.

SISTARE, S., VANDEVAART, R,
AND LOH, E. Optimization of mpi
collectives on clusters of large-scale
smp’s. Proceedings of the 1999 con-
ference on Supercomputing (1999).
Portland, Oregon, United States.

SQUYRES, J. M., LUMSDAINE,
A., GEORGE, W. L., HAGE-
DORN, J. G., AND DEVANEY,
J. E. The interoperable message
passing interface (IMPI) extensions
to LAM/MPI. In Proceedings,

MPIDC’2000 (March 2000).

TANG, H., AND YANG, T. Optimiz-
ing threaded mpi execution on smp
clusters. Proceedings of the 15th in-
ternational conference on Supercom-
puting (2001). Sorrento, Italy.

VADHIYAR, S. S., FAGG, G. E,,
AND DONGARRA, J. Automati-
cally tuned collective communica-
tions. Proceedings of the 2000 con-
ference on Supercomputing (2000).
Dallas, Texas, United States.

VINTER, B. PastSet a Struc-
tured Distributed Shared Memory
System. PhD thesis, Tromsg Univer-
sity, 1999.

VINTER, B., ANsHus, O. J.,
LARSEN, T., AND BJZRNDALEN,
J. M. Extending the applicability of
software dsm by adding user rede-
finable memory semantics. Parallel
Computing (ParCo) 2001, Naples,
Italy (September 2001).

Figure 2. Log-reduce tree for 32 processes. The arcs represent communication be-
tween two nodes. Partial sums are computed at a node in the tree before passing the
result further up in the tree.

I3

HSF S A© o w
SEddoons oo

Figure 3. Log-reduce tree for 32 processes mapped onto 8 nodes.

t1l = get _usecs();
MPI _All reduce(&hit, &ghit, 1, MPI _INT, MPI_SUM MPI _COVM WORLD);
t1l = get _usecs();
for (i =0; i <ITERS; i++) {
MPlI _Allreduce(& , &ghit, 1, MPI _INT, MPI _SUM MPI _COVM WORLD);
if (ghit I'= (i * size))
printf("oops at %d. % !'= %\n", i, ghit, (i * size));
}
t2 = get_usecs();
MPI _Allreduce(&hit, &hit, 1, MPI _INT, MPI_SUM MPI COVM WORLD);

Figure 4. Global reduction benchmark

