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Abstract

Communication performance depends
on the bit rate of the networks physical
channel, the type and number of routers
traversed, and on the computers ability
to process the incoming bits. The latter
depends on factors such as the protocol
stack, bus architecture and the operating
system.

To see how these factors impact the
roundtrip latency, we experiment with four
different protocols, an optimization of one
of the protocols, and with moving the com-
municating endpoints from user-level pro-
cesses into the kernel, and then further on
into the interrupt handler of two commu-
nicating computers.

We then add a processor-bound work-
load to the receiving computer to simu-
late a server which also do computations
in addition to network I/O. We report how
this workload affects the roundtrip latency
of the different protocols and endpoints,
and also how the different benchmarks in-
fluence the execution time of the workload.

The largest reduction in latency can be
achieved by using less complex protocols
specialized for local networks. A less com-

plex protocol also has less variation in
the roundtrip latency when the workload
is running.

For small messages, interrupt-level
communication and the TCP/IP based
communication both increase the work-
load running time the least. However, the
interrupt-level communication will trans-
mit 5.3 times more messages.

1 Introduction

The importance of distributed comput-
ing is increasing as clusters of worksta-
tions or PCs becomes more and more im-
portant. Intranets are becoming important
mechanisms to manage information flow
in organizations. We are seeing an increas-
ing number of services that need to per-
form significant computations, and the im-
portance and role of application and com-
pute facilities are becoming larger.

Processor, memory and bus perfor-
mance, and more and more communica-
tion performance are important factors in
determining the time an application needs
to complete.

The communication performance de-



pends on the bit rate of the networks
physical channel and the type and num-
ber of routers traversed, and it depends
on the hosts ability to process the incom-
ing bits. The latter depends on factors
like the protocol stack, the bus architec-
ture, and the operating system. When a
message arrives or departs, many activities
take place including data copying, context
switching, buffer management, and inter-
rupt handling.

In particular, low latency and low per-
turbation of the workload is important for
scientific computations, which typically
combine high computational load with a
need for tight, low-latency communica-
tion.

To learn more about where the over-
heads are located and how large they are,
we have done performance measurements
to find out how much the latency of send-
ing a message between two hosts using
blocking message passing improves when
increasingly less complex communication
protocols are used from the user level. To
establish a lower bound on the achiev-
able latency, we also measured the latency
when sending a message between two op-
erating system kernels without going to
user level. We did this in two steps, first
we measured the latency when running
the message passing threads in the kernel,
and then by running a roundtrip bench-
mark directly from the interrupt handler
for the network card in use. The ratios
between the user level protocols and the
kernel and interrupt level communication
latencies will provide us with data to eval-
uate if there are benefits from moving, say,
a distributed shared memory server closer
to the network card by locating it at ker-
nel or even interrupt level. This is work in
progress.

There is overhead in allocating, copy-
ing and queueing buffers for later pro-
cessing by a layer further up. If the re-
quested service (say, send/receive opera-
tion, or read/write to distributed shared

memory) takes less time than the overhead
it could be better to execute the operation
directly from the interrupt handler. In an
earlier paper[2], we compared the perfor-
mance of the read and write operations
of the PastSet distributed shared memory
[1][6] when using TCP/IP and two imple-
mentations of VIA (Virtual Interface Ar-
chitecture). One of the VIA implemen-
tations had direct hardware support from
the Gigabit network card, and the other
was a software implementation, M-VIA
[5], using a 100Mbit network. The re-
sults showed that both VIA implementa-
tions were significantly faster than TCP/IP.
This was as expected. However, M-VIA
using a 100Mbit network for small mes-
sages had comparable performance to the
hardware supported VIA using a Giga-
bit network when blocking message pass-
ing was used between two user level pro-
cesses.

We believe that the reason for this is that
the majority of the overhead in both the
hardware supported VIA implementation
and M-VIA comes from interrupt handling
and scheduling the user-level threads.

Furthermore, we observed that some of
the factors contributing to the low latency
of the M-VIA implementation were:

� Modified versions of the network de-
vice drivers were used which pro-
vided hooks for the M-VIA subsys-
tem

� A localnet/Ethernet-optimized proto-
col was used

� Checksums were computed directly
on the network interface card

� A low-overhead API with statically
allocated buffers in user space was
used

� Fast kernel traps were used instead of
using the ordinary system call or de-
vice call mechanisms



One of the more important factors was
that the implementation made use of a
low-overhead Ethernet-optimized proto-
col. As such, it avoided a lot of the
processing that internet-protocols such as
TCP/IP do. However, M-VIA was also
able to queue packets directly to the net-
work interface card, and provide hooks
which allows the interrupt handler to dis-
patch incoming VIA packets to the M-VIA
system instead of sending them to the or-
dinary Ethernet layer in the kernel.

2 The Low-Latency Protocol

M-VIA uses a special kernel trap mech-
anism to speed up kernel access. A sim-
pler (but slightly less efficient) way to pro-
vide a quick access to a device driver is
to use the Linux /proc filesystem, which
is a mechanism for exporting interfaces to
device drivers (or any other Linux kernel
module).

The /proc filesystem is typically used to
export interface files which can be used
for tasks such as inspection of devices (by
reading files) and setting of options (by
writing to specific files). To provide such
interfaces, a device driver exports a file in
a subdirectory of /proc and binds functions
of its own choice to the read and write op-
erations of those files.

To implement the Low Latency Pro-
tocol (LLP), we use the /proc interface
to provide four different interfaces (de-
scribed below) for sending and receiv-
ing Ethernet frames with a protocol ID
which separate them from other protocols
transmitted on the cable. The interfaces
were exported by an extension to the de-
vice driver for the 100Mbit Ethernet cards
we used (TrendNet NICs with DEC Tulip
based chipsets).

The LLP protocol uses raw Ethernet
frames with only a few addressing head-
ers added.

Two of the interfaces were used to con-
trol the kernel-based and interrupt handler

based benchmarks.
The four interfaces are:

basic This interface allows a user level
process to read and write raw Ether-
net frames directly to and from the
network card using only a simple
packet processing layer in the driver.

When a user writes a packet to the
interface file, an sk_buf (a network
buffer) is allocated, the packet is
copied into the buffer and the buffer
is queued directly with the device
driver.

We used a unique ethernet protocol
ID, which allowed us to recognize
our own protocol directly in the de-
vice drivers interrupt handler. This
was used to dispatch incoming pack-
ets to the LLP subsystem in the inter-
rupt handler instead of going through
the Ethernet packet processing in the
Linux kernel.

Incoming packets are written to a
buffer in the LLP subsystem. If a
user-level process is blocked waiting
for a packet, the process is unblocked.

basic static-skb Allocating and freeing
network buffers introduces overhead
in the protocol. Instead of dy-
namically allocating buffers for each
packet, we statically allocate an
sk_buf when the interface file is
opened.

This buffer is reused every time the
client wants to send a packet.

The interface is identical to the one
above, and uses the same read rou-
tine.

kernel-based roundtrip To measure the
roundtrip latency between two ker-
nel level processes, we provide an in-
terface file where the write operation
starts a benchmark loop in the kernel.

An iteration count is provided when
writing to the file, and timing data is



written back to the client by modify-
ing the write buffer.

The remote end of the benchmark
starts by invoking a read operation
on the corresponding interface file on
that host.

The benchmark loop is run by the
Linux user level processes which in-
voked the write and read operations.
Thus, the benchmark is not run by
spawning Linux kernel threads.

interupt-handler roundtrip When a
packet arrives from the network for
the kernel level server, the interrupt
handler in the device driver still
needs to queue up (or register) the
packet and wake up the server thread
in the benchmark.

This involves some synchronization
between the interrupt handler and
kernel process, as well as scheduling
and running the server thread.

To avoid this, we allowed the inter-
rupt handler to process the packet di-
rectly and queue up a reply packet for
transmission with the NIC. This al-
lows us to keep the bechmark entirely
in the interrupt handlers.

To start the interrupt handler bench-
mark, a write operation is invoked
on the corresponding interface file.
An iteration count and a timestamp is
stored in the packet, and the packet is
immediately queued with the device
driver.

The iteration count is decreased every
time the packet passes trough an in-
terrupt handler. A second timestamp
is stored in the packet when the iter-
ation count reaches 0, and the packet
is returned up to the thread which in-
voked the write operation.
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Figure 1. Protocols used in bench-
marks, and location of protocol imple-
mentations.

3 Experiments

We have measured the round-trip la-
tency of communication between two
user-level processes, each on a different
computer, using four different protocols.
For the LLP protocol, we also measured
the round-trip latency between two threads
located in the operating system kernel,
each on a different computer. Finally, we
measured the round-trip latency of com-
munication between two interrupt handler
device drivers, each on a different com-
puter.

The experiments measure the time it
takes sending a message from one com-
puter to another, sending a reply back, and
receiving it on the original computer. We
call this the round-trip latency.

For each experiment, we measure the
time it took to send and receive 1500
round-trip messages, and compute the av-
erage round-trip latency. We then repeat
each experiment five times, and compute
the minimum, maximum, and average of
the averages.

The following experiments were run:

� TCP/IP protocol, user-level to user-



level

� UDP/IP protocol, user-level to user-
level

� Packet socket, transmitting raw Eth-
ernet frames, user-level to user-level

� LLP, using the /proc filesystem, user-
level to user-level

� LLP, using the /proc filesystem,
statically allocated network buffers,
userspace to userspace

� LLP, kernel-level to kernel-level

� LLP, interrupt handler to interrupt
handler

The whole set of experiments were re-
peated with a work load on the receiving
computer. This scenario emulates a typical
client/server model where a client requests
a service from a server with has other work
loads than servicing remote requests. We
measured both the round-trip latencies and
the running time of the work load in each
case. As a baseline we measured the run-
ning time of the work load without any
communication.

As the work load we used a tiled matrix
multiplication with good cache utilization.

The experiments were run on two HP
Netserver LX Pros (4-Way 166 MHz Pen-
tium Pros with 128 MB RAM), with
Trendnet TE100-PCIA 100MBit network
cards (DEC Tulip chipsets) connected to a
hub. The computers were run with unipro-
cessor Linux kernels to simplify the exper-
iments.

All of the protocols in the experiments
are implemented at kernel level. Figure 1
shows the protocols and some of the sub-
systems used in the various experiments.
The TCP/IP and UDP/IP benchmarks use
blocking send and receive on standard
sockets. The packet socket benchmark
uses the PF_PACKET socket type to send
and receive raw Ethernet packets on the

network. Even if this saves us from pro-
cessing the packet through the IP and
UDP/TCP layers, the Ethernet frames are
still processed by a packet processing
layer in the kernel. This introduces extra
processing overhead which, for instance,
the M-VIA[5] implementation of the VIA
communication API avoids.

To avoid perturbations with IP (and
other protocols), we used Ethernet pro-
tocol ID 0x6008, which is, as far as we
know, not allocated. This means that we
will only receive traffic meant for this
benchmark on the sockets.

4 Results

4.1 Roundtrip latency

Benchmark min max avg
TCP/IP, userlevel 187 189 188
UDP/IP, userlevel 141 142 141
Packet socket, userlevel 114 115 115
LLP userlevel 87 88 88
LLP userlevel static buf 82 83 82
LLP kernel level 67 67 67
LLP interrupt handler 54 54 54

Table 1. Roundtrip latency in mi-
croseconds, 32 byte message, with-
out workload

In table 1, we show the roundtrip la-
tency for each benchmark with a message
size of 32 bytes. The computers have no
workload apart from the benchmarks. We
have added a divider in the table to make
it easier to see where we introduce kernel
level benchmarks.

Most of the latency reduction (106 mi-
croseconds) comes from choosing a sim-
pler protocol. Moving the benchmark into
the interrupt handlers only reduce the la-
tency by another 28 microseconds com-
pared to the best user-level protocol.



Benchmark min max avg
TCP/IP, userlevel 231 441 286
UDP/IP, userlevel 145 291 202
Packet socket, userlevel 118 178 140
LLP userlevel 90 130 106
LLP userlevel static buf 84 131 102
LLP kernel level 68 69 68
LLP interrupt handler 54 54 54

Table 2. Roundtrip latency in mi-
croseconds, 32 byte message, with
workload

Table 2 shows the roundtrip latency for
the benchmarks when we add a matrix
multiplication workload to the receiving
computer.

The less complex user-level protocols
are less influenced by the workload than
the more complex protocols. The kernel-
level benchmark is hardly influenced by
the workload, while the interrupt-level
benchmark is not influenced by the work-
load at all.

This is interesting, since the kernel-
level benchmark is implemented with
user-level threads that enter the kernel and
run the benchmark code. We assume that
the kernel-level benchmark is scheduled
the same way as any other userlevel pro-
cess.

Benchmark min max avg
TCP/IP, userlevel 384 385 384
UDP/IP, userlevel 339 340 339
Packet socket, userlevel 311 312 311
LLP userlevel 283 286 284
LLP userlevel static buf 278 278 278
LLP kernel level 251 253 252
LLP interrupt handler 215 215 215

Table 3. Roundtrip latency in mi-
croseconds, 1024 byte message, with-
out workload

Table 3 shows the benchmarks with no
workload on any of the hosts, and with the
message size increased to 1KB.

Compared to the latencies in table 1,
the increase in average latency is 196 mi-
croseconds for all user-level protocols, ex-
cept from the UDP benchmark which has
an increase of 198 microseconds.

The amount of processing per packet
for any one of the protocols should be
the same both for 32-byte and a 1024-
byte message since both packet sizes fit
within an Ethernet frame. Thus, the extra
overhead of sending a 1024-byte message
should depend on the extra time spent in
the network cable, in the network adapter,
time spent being copied between the net-
work adapter to the host memory as well
as time spent copying the packet within the
host memory.

Observing that the added overhead for a
1KB packet compared to a 32 byte packet
is nearly constant for all user-level proto-
cols suggest that the attention paid in the
TCP/IP and UDP/IP stacks to avoid extra
copying of data packets has paid off and
brought the number of copies down the
same number as the other userlevel proto-
cols.

For the kernel-level benchmark, the dif-
ference between the latency for 32-byte
and 1024-byte payloads is further reduced
to 185 microseconds.

A roundtrip message between two pro-
cesses at user-level is copied 4 times
between user-level and kernel-level per
roundtrip. We have measured that copy-
ing a 1KB buffer takes about 2.6 microsec-
onds on the computers we used. This
explains most of the extra overhead for
the user-level protocols compared to the
kernel-level protocol.

For the interrupt-handler roundtrip mes-
sages, the difference between 32-byte and
1KB packets is even less at 161 microsec-
onds. Apart from the copying done by the
Ethernet card over the PCI bus to and from
memory, the interrupt handler benchmark
does not copy the contents of the message.
Instead, it modifies the headers of the in-
coming message and inserts the outgoing



message directly in the output queue for
the network card.

Benchmark min max avg
TCP/IP, userlevel 387 467 427
UDP/IP, userlevel 423 921 598
Packet socket, userlevel 316 396 346
LLP userlevel 287 288 287
LLP userlevel static buf 281 287 282
LLP kernel level 254 255 255
LLP interrupt handler 215 215 215

Table 4. Roundtrip latency in mi-
croseconds, 1024 byte payload, with
workload

Table 4 shows the roundtrip latency of
1KB messages when the receiving com-
puter runs the the matrix multiplication
workload.

As in table 2, we see that the less com-
plex protocols are less influenced by the
workload than the more complex proto-
cols.

4.2 Implications of the roundtrip bench-
marks on the workload

When no benchmarks are run, the av-
erage execution time for multiplying two
512 by 512 matrices is 13.4 seconds. In
tables 5 and 6, we show the impact on
the execution time of the matrix multipli-
cation when running the benchmarks. We
also show the average number of roundtrip
messages per second while the bench-
marks execute.

Table 5 shows that the benchmarks in-
crease the execution time of the matrix
multiplication by 1.6 to 2.3 times.

The benchmark which influences the
matrix multiplication the most is the
packet socket benchmark. We currently do
not have an explanation why this bench-
mark performs as bad as it does, but ob-
serve that the benchmark sends more than
twice as many roundtrip messages than
the TCP/IP benchmark. A likely place to

look for an explanation is the amount of
code executed by the protocol combined
with the time that the matrix multiplication
is allowed to compute before being inter-
rupted by another packet from the client.

The two benchmarks which influence
the matrix multiplication the least are the
TCP/IP benchmark and the interrupt han-
dler benchmark.

We believe that one of the reasons the
workload is not influenced more by the
TCP/IP benchmark is that the higher over-
head in the TCP/IP protocols means that it
takes longer for the client host to send the
next message to the host with the work-
load. The matrix multiplication applica-
tion is thus allowed to compute more be-
fore being interrupted by another request
from the client end.

Another observation is that there is a
factor 5.3 difference in the number of
roundtrip messages between the two best
benchmarks in this experiment, implying
that a server in the kernel could support
a much higher network load without dis-
turbing the workload on a host more than a
TCP/IP server which serves a smaller load.

Table 6 shows us a similar pattern to ta-
ble 5. The packet socket benchmark still
comes out worst when comparing the in-
fluence on the workload execution time,
while the least disturbing benchmarks are
the TCP/IP and interrupt handler bench-
marks.

5 Related Works

In [4] it was documented that CPU per-
formance is not the only factor affecting
network throughput. Even though we have
not used different computers, we have also
shown that the network latency is depen-
dent upon several other factors than CPU
performance, and we have detailed some
of these.

In [3] it is shown how the cost of user-
level communication can be reduced by
reducing the cost of servicing interrupts,



Benchmark min max avg messages/s
TCP/IP, userlevel 19 23 21 3494
UDP/IP, userlevel 23 26 24 4950
Packet socket, userlevel 25 37 30 7120
LLP userlevel 23 27 26 9406
LLP userlevel static buf 22 27 24 9801
LLP kernel level 23 24 24 14621
LLP interrupt handler 21 21 21 18501

Table 5. Impact of the benchmarks on the work load execution time, 32 bytes message

Benchmark min max avg messages/s
TCP/IP, userlevel 16 16 16 2341
UDP/IP, userlevel 16 16 16 1671
Packet socket, userlevel 20 20 20 2893
LLP userlevel 17 18 18 3482
LLP userlevel static buf 18 18 18 3540
LLP kernel level 16 16 16 3923
LLP interrupt handler 15 15 15 4642

Table 6. Impact of roundtrip benchmarks on matrix multiplication execution time, 1024
bytes message

and by controlling when the system uses
interrupts and when it uses polling. They
showed that blocking communication was
about an order of magnitude more expen-
sive than spinning between two computers
in the Shrimp multicomputer.

Active messages [7] invoke a receiver-
side handler whenever a message arrives.
Control information at the head of each
message species the address of a user-
level routine that is responsible for extract-
ing the message from the network. This
approach often requires servicing an inter-
rupt for each message received.

6 Conclusion

We have observed that the largest im-
pact on roundtrip latency is the complexity
and implementation of the protocol used,
not whether the endpoints of the com-
munication are in userspace or in kernel
space. Reducing the overhead by choos-

ing simpler protocols also resulted in less
variation in the roundtrip latency.

This suggests that a significant re-
duction in communication latency can
be achieved without modifications to the
operating system kernel. However, to
achieve the best possible latency, a com-
bination of interrupt level handling of the
communication with an efficient activation
of user-level processes are necessary. The
interrupt level latency effectively gives a
practical lower bound on how low the la-
tency can be.

Moving data between kernel and user-
level by copying also introduces extra
overhead which is visible in the roundtrip
latency. This suggests that we can benefit
from moving communication handling to
kernel space if the data can be stored in the
kernel1. This can be of use for distributed

1The extra copying could also be avoided if we
used shared buffers between kernel and userspace,
as VIA does



shared memory systems using servers on
each computer.

The interrupt-level benchmark which
had the lowest latency, was least influ-
enced by the workload (not visible in the
tables). This benchmark also disturbed the
workload the least. Again, this suggests
that there may be performance benefits
from integrating, say, a distributed shared
memory server with the interrupt handler.
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