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Abstract.
In an earlier paper, we observed that PastSet (our experimental tuple space system)

was 1.83 times faster on global reductions than LAM-MPI. Our hypothesis was that
this was due to the better resource usage of the PATHS framework (an extension to
PastSet that supports orchestration and configuration) due to a mapping of the commu-
nication and operations which matched the computing resources and cluster topology
better.

This paper reports on an experiment to verify this, and represents an ongoing work
to add some of the same configurability of PastSet and PATHS to MPI.

We show that by adding run-time configurable collective communication, we can
reduce the latencies without recompiling the application source code. For the same
cluster where we experienced the faster PastSet, we show that Allreduce with our
configuration mechanism is 1.79 times faster than the original LAM-MPI Allreduce.

We also experiment with the configuration mechanism on 3 different cluster plat-
forms with 2-, 4-, and 8-way nodes. For the cluster of 8-way nodes, we show an
improvement by a factor of 1.98 for Allreduce.

1 Introduction

For efficient support of synchronization and communication in parallel systems, these sys-
tems require fast collective communication support from the underlying communication sub-
system as, for example, is defined by the Message Passing Interface (MPI) Standard [1].
Among the set of collective communication operations broadcast is fundamental and is used
in several other operations such as barrier synchronization and reduction [2]. Thus, it is
advantageous to reduce the latency of broadcast operations on these systems.

In our work with the PATHS[3] configuration and orchestration system, we have experi-
mented with microbenchmarks and applications to study the effects of configurable commu-
nication.

In one of the experiments[4], we used the configuration mechanisms to reduce the execu-
tion times of collective communication operations in PastSet. To get a baseline, we compared
our reduction operation with the equivalent operation in MPI (Allreduce).

By trying a few configurations, we found that we could improve our Tuple Space system
to be 1.83 times faster than LAM-MPI[5][6]. Our hypothesis was that this advantage came
from a better usage of resources in the cluster rather than a more efficient implementation.

If anything, LAM-MPI should be faster than PastSet since PastSet stores the results of
each global sum computation in a tuple space inducing more overhead than simply computing
and distributing the sum.
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This paper reports on an experiment where we have added configurable communication
to the Broadcast and Reduce operations in LAM-MPI (both of which are used by Allreduce)
to validate or falsify our hypothesis.

The paper is organized as follows: Section 2 summarizes the main features of the PastSet
and PATHS system. Section 3 describes the Allreduce, Reduce and Broadcast operations in
LAM-MPI. Section 4 describes the configuration mechanism that was added to LAM-MPI
for the experiments reported on in this paper. Section 5 describes the experiments and results,
section 6 presents related work, and section 7 concludes the paper.

2 PATHS: Configurable Orchestration and Mapping

Our research platform is PastSet[7][8], a structured distributed shared memory system in
the tradition of Linda[9]. PastSet is a set of Elements, where each Element is an ordered
collection of tuples. All tuples in an Element follow the same template.

The PATHS[3] system is an extension of PastSet that allows for mappings of processes to
hosts at load time, selection of physical communication paths to each element, and distribu-
tion of communications along the path. PATHS also implements the X-functions[4], which
are PastSet operation modifiers.

A path specification for a single thread needing access to a given element is represented
by a list of stages. Each stage is implemented using a wrapper object hiding the rest of the
path after that stage. The stage specification includes parameters used for initialisation of the
wrapper.

Thread Thread Thread Thread

Global Sum

Remote access

Global Sum

Remote access

Global Sum

Element

Node 1 Node 2

Server

Figure 1: Four threads on two hosts accessing shared element on a separate server. Each host computes a partial
sum that is forwarded to the global-sum wrapper on the server. The final result is stored in the element.

Paths can be shared whenever path descriptions match and point to the same element
(see figure 1). This can be used to implement functionality such as, for instance, caches,
reductions and broadcasts.

The collection of all paths in a system pointing to a given element forms a tree. The leaf
nodes in the tree are the application threads, while the root is the element.

Figure 1 shows a global reduction tree. By modifying the tree and the parameters to the
wrappers in the tree, we can specify and experiment directly with factors such as which pro-
cesses participate in a given partial sum, how many partial sum wrappers to use, where each
sum wrapper is located, protocols and service requirements for remote operations and where
the root element is located. Thus, we can control and experiment with tradeoffs between
placement of computation, communication, and data location.
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Applications tend to use multiple trees, either because the application uses multiple ele-
ments, or because each thread might use multiple paths to the same element.

To get access to an element, the application programmer can either choose to use lower-
level functions to specify paths before handing it over to a path builder, or use a higher level
function which retrieves a path specification to a named element and then builds the specified
path. The application programmer then gets a reference to the topmost wrapper in the path.

The path specification can either be retrieved from a combined path specification and
name server, or be created with a high-level language library loaded at application load-time1

Since the application program invokes all operations through its reference to the topmost
wrapper, the application can be mapped to different cluster topologies simply by doing one
of the following:

� Updating a map description used by the high-level library.

� Specifying a different high-level library that generates path-specifications. This library
may be written by the user.

� Update the path mappings in the name server.

Profiling is provided via trace wrappers that log the start and completion time of opera-
tions that are invoked through it. Any number of trace wrappers can inserted anywhere in the
path.

Specialized tools to examine the performance aspects of the application can later read
trace data stored with the path specifications from a system. We are currently experimenting
with different visualizations and analyses of this data to support optimization of a given
application.

The combination of trace data, a specification of communication paths, and computations
along the path has been useful in understanding performance aspects and tuning benchmarks
and applications that we have run in cluster and multicluster environments.

3 LAM-MPI implementation of Allreduce

LAM-MPI (Local Area Multicomputer) is an open source implementation of MPI available
from [5]. It was chosen over MPICH[10] for our work in [4] since it had lower latency with
less variance than MPICH for the benchmarks we used in our clusters.

The MPI Allreduce operation combines values from all processes and distribute the result
back to all processes. LAM-MPI implements Allreduce by first calling Reduce, collecting
the result in the root process, then calling Broadcast, distributing the result from the root
process. For all our experiments, the root process is the process with rank 0 (hereafter called
process 0).

The Reduce and Broadcast algorithms use a linear scheme (every process communicates
directly with process 0) up to and including 4 processes. From there on they use a scheme
that organizes the processes into a logarithmic spanning tree.

The shape of this tree is fixed, and doesn’t change to reflect the topology of the computing
system or cluster. Figure 2 shows the reduction trees used in LAM-MPI for 32 processes in
a cluster. We observe that broadcast and reduction trees are different.

By default, LAM-MPI evenly distributes processes onto nodes. When we combine this
mapping for 32 processes with the reduction tree, we can see in Figure 3 that a lot of messages
are sent across nodes in the system. The broadcast operation has a better mapping for this
cluster though.

1Currently, a Python module is loaded for this purpose.
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Figure 2: Log-reduce tree for 32 processes. The arcs represent communication between two nodes. Partial sums
are computed at a node in the tree before passing the result further up in the tree.
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Figure 3: Log-reduce tree for 32 processes mapped onto 8 nodes.

4 Adding configuration to LAM-MPI

To minimize the necessary changes to LAM-MPI for this experiment, we didn’t add a full
PATHS system at this point. Instead, a mechanism was added that allowed for scripting the
way LAM-MPI communicates during the broadcast and reduce operations.

There were two main reasons for this. Firstly, our hypothesis was that PastSet with
PATHS allowed us to map the communication and computation better to the resources and
cluster topology. For global reduction and broadcast, LAM-MPI already computes partial
sums at internal nodes in the trees. This means that experimenting with different reduction
and broadcast trees should give us much of the effect that we observed with PATHS in [4]
and [3].

Secondly, we wanted to limit the influence that our system would have on the performance
aspects of LAM-MPI such that any observable changes in performance would come from
modifying the reduce and broadcast trees.

Apart from this, the amount of code changed and added was minimal, which reduced the
chances of introducing errors into the experiments.

When reading the LAM-MPI source code, we noticed that the reduce operation was, for
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any process in the reduction tree, essentially a sequence of
�

receives from the
�

children
directly below it in the tree, and one send to the process above it. For broadcast, the reverse
was true; one receive followed by

�
sends.

Using a different reduction or broadcast tree would then simply be a matter of examining,
for each process, which processes are directly above and below it in the tree and construct a
new sequence of send and receive commands.

To implement this, we added new reduce and broadcast functions which used the rank
of the process and size of the system to look up the sequence of sends and receives to be
executed (including which processes to send and receive from). This is implemented by
retrieving and executing a script with send and receive commands.

As an example, when using a scripted reduce operation with a mapping identical to the
original LAM-MPI reduction tree, the process with rank 12 (see figure 2) would look up and
execute a script with the following commands:

� Receive (and combine result) from rank 13

� Receive (and combine result) from rank 14

� Send result to 8

The new scripted functions are used instead of the original logarithmic Reduce and Broad-
cast operations in LAM-MPI. No change was necessary to the Allreduce function since it is
implemented using the reduce and broadcast operations.

The changes to the LAM-MPI code was thus limited to 3 code lines, replacing the calls
to the logarithmic reduction and broadcast functions as well as adding and a call in MPI_Init
to load the scripts.

Remapping the application to another cluster configuration, or simply trying new map-
pings for optimization purposes, now consists of specifying new communication trees and
generating the scripts. A Python program generates these scripts as Lisp symbolic expres-
sions.

5 Experiments

t1 = get_usecs();
MPI_Allreduce(&hit, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
t1 = get_usecs();
for (i = 0; i < ITERS; i++) {

MPI_Allreduce(&i, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
if (ghit != (i * size))

printf("oops at %d. %d != %d\n", i, ghit, (i * size));
}
t2 = get_usecs();
MPI_Allreduce(&hit, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

Figure 4: Global reduction benchmark

Figure 4 shows the code run in the experiments. The code measures the average execution
time of 1000 Allreduce operations. The average of 5 runs is then plotted. To make sure that
the correct sum is computed, the code also checks the result on each iteration.

For each experiment, the number of processes was varied from 1 to 32. LAM-MPI used
the default placement of processes on nodes, which evenly spread the processes over the
nodes.

The hardware platforms consists of three clusters, each with 32 processors:
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Figure 5: Allreduce, 4-way cluster

� 2W: 16*2-Way Pentium III 450 MHz, 256MB RAM

� 4W: 8*4-Way Pentium Pro 166 MHz, 128MB RAM

� 8W: 4*8-Way Pentium Pro 200 MHz, 2GB RAM

All clusters used 100MBit Ethernet for intra-cluster communication.

5.1 4-way cluster

Figure 5 shows experiments run on the 4-way cluster. The following experiments were run:

Original LAM-MPI The experiment was run using LAM-MPI 6.5.6.

Modified LAM-MPI, original scheme The experiment was run using a modified LAM-
MPI, but using the same broadcast and reduce trees for communication as the original
version used.

This graph completely overlaps the graph from the original LAM-MPI code, showing
us that the scripting functionality is able to replicate the performance aspects of the
original LAM-MPI for this experiment.

Modified LAM-MPI, linear scheme This experiment was run using a linear scheme where
all processes report directly to the process with rank 0, and rank 0 sends the results
directly back to each client.

This experiment crashed at 18 processes due to TCP connection failures in LAM-MPI.
We haven’t examined what caused this, but it is likely to be a limitation in the imple-
mentation.

Modified LAM-MPI, hierarchal scheme 1 Rank 0 is always placed on node 0, so all other
processes on node 0 contribute directly to rank 0. On the other nodes, a local reduction
is done within each node before the nodes partial sum is sent to process 0.

The modified LAM-MPI with the hierarchal scheme is 1.79 times faster than the original
LAM-MPI. This is close to the factor of 1.83 reported in [4], which was based on measure-
ments on the same cluster. It is possible that further experiments with configurations would
have brought us closer to the original speed improvement.
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Figure 6: Allreduce, 8-way cluster

5.2 8-way cluster

For the 8-way cluster, we expected the best configuration to involve using an internal root
process on each node and limit the inter-node communications to one send (of the local sum)
and one receive (of the global result) resembling the best configuration for the 4-way cluster.
This turned out not to be true.

Due to the 8 processes on each node, the local root process on each node would get 7
children in the sum tree (with the exception of the root processes in the root node). The extra
latency added per child of the local root processes was enough to increase the total latency
for 32 processes to 1444 microseconds.

Splitting the processes to allow further subgrouping within each node introduced another
layer in the sum tree. This extra layer brought the total latency for 32 processes to 1534
microseconds.

The fastest solution found so far involves partitioning the processes on each node into
two groups of 4 processes. Each group computes a partial sum for that group, and forwards
it to directly to the root process. This doubled the communication over the network, but the
total execution time was shorter (1322 microseconds).

The fastest configuration is 1.98 times faster than the original LAM-MPI Allreduce oper-
ation. In figure 6, the fastest configuration and the original LAM-MPI Allreduce are plotted
for 1-32 processes.

5.3 2-way cluster

On the 2-way cluster, after trying a few configurations, we ended up with a configuration
that was 1.52 times faster than the original LAM-MPI code. This was not as good as for the
other clusters. We expected this since a reduction in this cluster would need more external
messages.

Based on the experiments, we observed three main factors that influenced the scaling of
the application:

� The number of children for a process in the operation tree. More children adds com-
munication load for the node hosting this process.

� The depth of a branch in the operation tree. That is, the number of nodes a value has to
be added through before reaching the root node.

� Whether a message was sent over the network or internally on a node.
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Figure 7: Allreduce, 2-way cluster.
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Figure 8: Allreduce, 2-way cluster, scaling the number of nodes from 1 to 16. Each node added adds two new
processes in the experiment.

The depth factor seemed to introduce a higher latency than adding a few more children
to a process. On the other hand, adding another layer in the tree would also allow us to
use partial sums. We have not arrived at any model which allows us predict which tree
organization would in practice lead to the shortest execution time of the Allreduce operation.

One difference between the PastSet/PATHS implementation and LAM-MPI is that Past-
Set/PATHS process incoming partial sums by order of arrival, while LAM-MPI process them
in the order they appear in the sequence specified either by the original LAM-MPI code, or
the script. This might influence the overhead when receiving messages from a larger number
of children. We are investigating this further.

5.4 Scaling up the number of nodes on the 2-way cluster

We also scaled the 2-way cluster along another axis: the number of available nodes for the
application.

The motivation for this is that clusters do not necessarily have a power of two nodes, such
as the clusters we used in the previous sections2.

A given algorithm for building an operation tree might result in a good mapping for one
cluster configuration, but result in a less efficient operation on another cluster configuration.

In this experiment, we scaled the number of nodes from 1 to 16. The number of processes
was scaled with the number of nodes, adding two processes for each node added to the

2either because of lack of funding, broken nodes, or nodes allocated for other purposes
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experiment.
Figure 8 shows an experiment where we compare the original LAM-MPI mappings with

a setting where we reconfigure the best algorithm from section 5.3 to fit with a different sized
cluster. We generally outperform the original LAM-MPI algorithm for all cluster sizes larger
than 2 in this experiment. At 16 nodes and 32 processes, we end up with the same cluster
configuration and the same latencies as in the previous section.

6 Related work

Jacunski et al.[11] shows that selection of the best performing algorithm for all-to-all broad-
cast on clusters of workstations based on commodity switch-based networks is a function of
both network characteristics as well as the message length and number of participating nodes
in the all-to-all broadcast operation. In contrast our work used clusters with multiprocessors,
we did performance measurements on the reduce operation as well as on the broadcast, and
we documented the effect of the actual system at run time including the workload, commu-
nication performance of the hosts.

Bernashci et al.[12] study the performance of the MPI broadcast operation on large shared
memory systems using a-trees.

Kielmann et al.[13] show how the performance for collective operations like broadcast
depend upon cluster topology, latency, and bandwidth. They develop a library of collective
communication operations optimized for wide area systems where a majority of the speedup
comes from limiting the number messages passing over wide-area links.

Husbands et al.[14] optimizes the performance of MPI_Bcast in clusters of SMP nodes
by using a two-phase scheme; first messages are sent to each SMP node, then messages are
distributed within the SMP nodes. Sistare et al.[15] uses a similar scheme, but focus on
improving the performance of collective operations on large-scale SMP’s.

Tang et al.[16] also use a two-phase scheme for a multithreaded implementation for MPI.
They separate the implementation of the point-to-point and collective operations to allow for
optimizations of the collective operations, which would otherwise be difficult.

In contrast to the above works, this paper is not focused on a particular optimization of
the spanning trees. Instead, we focus on making the shape of the spanning trees configurable
to allow easy experimentation on various cluster topologies and applications.

Vadhiyar et al.[17] shows an automatic approach to selecting buffer sizes and algorithms
to optimize the collective operation trees by conducting a series of experiments.

7 Conclusions

We have observed that the broadcast and reduction trees in LAM-MPI are different, and do
not necessarily take into account the actual topology of the cluster.

By introducing configurable broadcast and reduction trees, we have shown a simple way
of mapping the reduction and broadcast trees to the actual clusters in use. This gave us a
performance improvement up to a factor of 1.98.

For the cluster where we observed the performance difference of a factor 1.83 between
PastSet/PATHS and LAM-MPI, we arrived at a reduction and broadcast tree that gave us
an improvement of 1.79 for Allreduce over the original LAM-MPI implementation. This
supports our hypothesis that the majority of the performance-difference between LAM-MPI
and PastSet/PATHS was a better mapping to the resources and topology in the cluster.

We have also observed that the assumption that doing a reduction internally in each node
before sending a message on the network did not lead to the best performance on our cluster
of 8-way nodes. Instead, increasing the number of messages on the network to reduce the



142 J. Bjørndalen et al. / Configurable collective communication in LAM-MPI

depth of the reduction and broadcast as well as the number of direct children for each internal
node proved to be a better strategy.

The reason for this may be found by studying three different factors that add to the cost
of the global reduction and broadcast trees:

� The number of children directly below an internal node in the spanning tree.

� The depth of the spanning tree.

� Whether an arc between a child and a parent in the spanning tree is a message on the
network or internally in the node.

We suspect that these factors are not increasing linearly, and that the cost of, for instance,
adding another child to an internal node in the spanning tree depends on factors such as the
order of the sequence of receive commands as well as contention on the network layer in the
host computer.
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