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Abstract

A “path” basedon the idea of method-
combinationand remote procedue calls
to provide run-time configuable networks
of computationakcommunicatiorpathsbe-
tweenthreadsand datain distributed,high
performanceapplicationsis proposed. An
initial designisimplementedestedandan-
alyzed.

We usea “wr apper” to provide a level
of indirectionto the actual run-time loca-
tion of databy forwarding functioncalls to
serves holding the target data. A wrapper
specifywhere data is located, how to get
there, and which protocolsto use Wrap-
pers are also usedto add or modify meth-
odsaccessinglata. Wrappes are specified
dynamically A “path” is comprisedof one
or more wrappes. Sectionsof a path can
be shaed amongtwo or more paths. Es-
tablishinga pathis a two-phaseyrocessof
specifyingthe path, and then (recursively)
settingup the path basedon the specifica-
tion.

A test systemusing the proposedarchi-
tectue is implementeddemonstated and
performancemeasued using two bend-
markson threedifferent clusters. We show
that the proposedarchitectuie can be used
for mapping and improving the perfor-

manceof applicationson different topolo-
gies including a wide-aea multi cluster
configuation, and how wrappes can be
usedto distribute computationaload off of
heavilyloadedtargetserves. We alsoshow
howthreaddistributionscanbe changed at
run-timewithoutaltering applicationcode

We believe that the proposed semi-
manual appmad will prove useful in
delugging and coarse-tuning distributed
high-performancepplications,and that it
will provide valuableinsightsfor develop-
ing later, more automatedmiddlevare sys-
tems.

1 Intr oduction

A key challengewhen running distributed
high performanceapplicationsis to main-
tain thread-to-hostmappingsthat achieve
high performanceor efficient execution.
Attackingthis challengerequiresbalancing
thepotentiallyconflictinggoalsof distribut-
ing threaddor improvedloadbalancingand
for reduceccommunicatioroverhead.

In reality, high scalability cannot be
achieved unlessthe systemis fine-tunedto
balancecomputation,communicationand
synchronizationrequirements. Unfortu-
nately high performances often achieved



only after rigorous manualfine-tuning to
obtain an efficient mappingof threadsto
hosts.

Efficientthread-to-hostnappingsnaybe
achieved by directives in the application
source-codereflectingthe topology of the
hostarchitecturan the applicationsource-
code. Alternatively, mappingsmay be ob-
tained by communicationlibraries or by
middlewvare. Static or dynamic mappings
may be useddependingon applicationdy-
namics,the homogeneityof the underlying
architecture or the regularity of the inter-
connectiontopology Dynamic mappings
accommodatehangingneedsover the ap-
plication lifetime by use of costly thread
migrations.In this case the original place-
mentproblemis transformednto aproblem
of determiningwhereandwhenary thread
shouldbe migrated.

One alternatve to compile-time static
placemenandruntime dynamicplacement
is to implementa staticplacemenbn anir-
regular architectureby decidingon a map-
ping atload-time. A “manual” approacho
the load-time solution is to allow the ap-
plication programmerto instruct the mid-
dleware asto the distribution and commu-
nicationpatterns specifiedeitherexplicitly
by the programmeror chosenfrom a li-
brary of algorithms.We have combinedthe
static load-time and the dynamicrun-time
approaches.We allow for run-time place-
ment,but we do this typically at the startup
of the applicationby usinga configuration
maploadedwith the application.However,
the applicationcanchangethis mappingat
will if it sowishes.

This paper describesour initial work
on a middleware extension inspired by
methodcombination[§ and remoteproce-
dure calls[3 which allows the communi-
cationtopology to be directedby specify-
ing meta-codendmeta-datawithoutintro-
ducingarny modificationsto the application
code.Theextendedmniddlevarealsoallows
computationgo be placedalongthe access
pathsto data. For now, we assumehatthe

applicationunderstudyis alonein usingthe
underlyingarchitecturethereare no other
applicationscompetingfor resources.The
goalof themappingthen,is to achieve high
performancéor onesingleapplicationrun-
ning alone.

We shaov how one may experimentwith
differentmappingsof threadsandtheir in-
tercommunication,and demonstrateghat
this can identify flexible location policies
which are independeniof the application
codeandstill supplyeffective placements.

Section 2 describeshow wrappersare
usedand combinedto specify andidentify
accesyaths. Section3 describesour ex-
perimentsusing threedifferent clusterslo-
catedat the University of Tromsg,Norway
and the University of SouthernDenmark,
Odense. Section4 presentsand analyzes
the experimentresults, section5 presents
relatedwork, while section6 presentsour
conclutions.

2 The configurable path frame-
work

Our research platform uses the
PastSet[1][13], a structured distributed
sharedmemory systemin the tradition of
Linda[4]. A PastSetElementis a tuple
spacewith tuples of the sameor equiv-
alent types, and is globally addressable
with a name and the type of the tuples
residingwithin it. PastSetalsosupportsX-
functions[14, which canbe usedto modify
the behaior of the PastSetoperations(to
implement functionality such as, but not
limited to, globalreductionsandcaches).

A commonway to implementremoteac-
cessto sharedobjectssuchasa PastSetEl-
ementis to give the accessinghreada stub
whichforwardstheoperationgo theremote
sener. Thestubsinterfaceis identicalto the
interfaceof the acesse@lement providing
transparenaccesgo bothlocal andremote
elements.
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A stub doesnot necessarilyhave to be
limited to implementremoteaccesshough.
It canjust as easily be usedto modify the
semanticof anelementoperationdy im-
plementingone of the PastSetX-functions
(suchastheglobalreductionsum). If stubs
can be combined,we can easily setup a
remoteelementwhich is usedto compute
globalsumsasfollows:

Thread—(Stub)

We call the combinationof the stubsa
pathto the remoteelement. The combina-
tion of all existing pathsto anelemenforms
atreewith threadsastheleavesandtheel-
ementastheroot.

As long as the application only uses
the referenceto the topmoststub, it can
be mappedo anotherclusterconfiguration
without changingthe applicationcode. Fit-
ting andoptimizingtheapplicationto apar
ticular configurationcan insteadbe done
by changinghepath-tuilding metadatand
code.
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2.1 Building and specifyingpaths

Settingup accesgrom athreadto a PastSet
elementnvolvesthefollowing two stages:

1. Specifythethe path. Thisinvolvesex-
amininginformation aboutthe cluster
topologies,the location of threadsin
the cluster and where the tamet ele-
mentis located.

2. Build the path from the description.
This involvescreatingandbinding the
wrapperswith parameterspecifiedin

thepathdescription.

To allow configurabilityof thewrappers,
we include parametergor eachwrapperin
thepathdescription.Someof theseparame-
tersarecommortor all wrappertypes(such
aswhetherthe wrapperneedto usethread
synchronizatiormechanisms)or type spe-
cific (suchastheprotocolto use remotead-
dressandservicerequirementsn a remote
accesswrapper). Parametershot specified
areassignedlefault values.

An examplepathdescriptiorusedby one
of thenodesin Figurel is includedin Fig-
ure2. bui | d_pat h builds the given path
andreturnsareferencdo thetoplevel wrap-
perin thepath.

Eachthreadcreategqor is given)its own
path descriptionand calls bui | d_pat h
to get its own referenceto the path.
Bui | d_pat h takescareof meging paths
whenthe path descriptionsallow for shar
ing partsof the path.

2.2 Currentimplementations

The currentimplementationsise Common
Lisp and Pythonfor managemenof paths,
while the PastSetpplicationsandwrappers
areimplementedn C.

Figure1: Threadsin two nodesaccessing  Thisallows ustheflexibility of highlevel

a sharedglobal sum element. Eachnode
computesa partial sum before forwarding
it to theglobalsumwrapperin thesener.

dynamiclanguagegor experimentingwith

pathbuilding code,while keepingthe high-
level languagesutof theloopwhenbench-
markingthe differentconfigurations.



pat h

stage("core",
el m = bui |l d_pat h( pat h)

make_pat h(stage("reduce-sunt,
stage("renote",
st age("reduce-suni,

num t hr eads=2),
prot o=TCP, host="p0"),
num t hr eads=2) ,
nanme=" Pl - SUML") )

Figure2: Examplepathdescription

The work reportedin this paperis based 3 EXxperiments

onexperimentswvith thePythonframework,

which allows the pathframawork to be pro-

vided and extendedeither throughembed-
ded Python (by overloading two default
functionsfor acquiringandreleasinga path
to an element)or, as we did, by hand-
ing path referencego C algorithmswrit-

ten asPythonextensionmodules. The lat-

ter methodallows different Pythonscripts
to experimentwith pathbuilding andthread
spavning usingthe samecompiledC code
for all experiments.

The wrapperscan also be useddirectly
from the high-level languagesllowing, for
instance Pythonscriptsdirectaccesgo tu-
plesandelements.

Simpleprofiling of PastSetperationss
provided with two trace wrappers. The
“timestamp”tracewrappersimply forwards
the operationto the next stagein the path
and usesthe Pentium timestampcounter

To shav how the framewvork can be used
for mappingand optimizing an application
to differenttopologies,we devised experi-
mentsto maptwo benchmarkgo different
path treesandtwo differentthreadalloca-
tion policies. We usedtheseexperimentgo
examinesomechoiceswhich canbe made
whenmappinganapplicationto a clusteror
multi-clusterervironment.

We believe that changingthe mapping
will produceperformancebenefitsbecause
of the different emphasisput upon local-
ity, load balancing and communication.
Also, the potentialmismatchedetweerthe
collective data accesspatternsby all the
threads, and each processos individual
datacachewill be influencedby different
mappings. Of course,the applicationwill
play a role in how successfula mapping
is. For instance,frequentuseof synchro-
nization usinglocks, and especiallyglobal
locks, will play arole in the resultingper

to timestampthe startandcompletiontime formanceandthe effect of amapping
for eachoperationinvoked. Thetimestamp Two basicbenchmark:odeSNereu.sed'

datais loggedto an array in memoryand
written to disk when the trace wrapperis
deleted(referencecountingis usedto de-
terminewhenwrappersshouldbe deleted).
Theoverheadf thiswrapperis aroundl00-
120clockcycles.

The “operation” tracewrapperis an ex-
tension of the timestamp trace wrapper
which additionallylogs the contentsof the
tuplesprovidedto or returnedrom the Past-
Setoperations.

Any numberof tracewrappersanbein-
sertedarywherein thepathtrees.

e The Global Sum benchmark
(GSum), which measuresthe av-
erageexecutiontime of a global sum
operation. The numberof valuesto
sumis equalto the numberof threads
usedin theexperiment.

e Monte Carlo Pi (MCPI), which com-
putesan approximationof Pi by ran-
domly throwing a numberof dartsand
countingthosehitting insidea circle.

A total numberof N dartsarethrown
by the threads, splitting the darts



evenly betweerthethreads.

Thetime of throwing the N dartsand
running a global sumwith the results
is measured. N was 10 million for

the clustertests,and 100 million for

multi-cluster tests. The problem is

large enoughthat the communication
lateny shouldbe masled by the time

spentin the computation.

Figure 3 shovs pseudocodefor the
benchmarks.The TS() macrosampleshe
pentiumtimestampcounter and storesthe
timestampn anarray gettimeofday(am-
ples the real-time clock on the host com-
puter with microsecondresolution. The
gsumbenchmarkwas run with “iters” set
to 1000. For both tests,the averageof 5
benchmarkunsareplottedin thegraphs.

Basedon the two benchmarkswe de-
vicedthefollowing experiments:

e Scalingononenode.Measureheexe-
cutiontime of aglobalreductionwhen
we vary the numberof threadsfrom 1
to 16 onasinglenode.

Threadplacementand topology opti-
mization. Two differentthreaddistri-
bution algorithmsare usedto assign
threadgo nodesn theclusters.

The pathtreeswerealsovariedto ex-

perimentwith computingpartial sums
within partitionsof the clustersto re-

ducethe work and communicationon

thenodehostingthetamgetelement.

Monte Carlo Pi in clusterand multi-

clusterconfigurations. Verify thatthe
applicationcan be mappedandscaled
to the three clustersand when using
the three clusterstogetherin a multi-

clusterconfiguration.

Multicluster global sum. Measurethe
execution time of global sum using
all threeclusterswith 3 to 96 threads.
Threadsareassigneavenlyamonghe
clusters.

The benchmark code was unchanged
during the experiments,we only changed
parametersand metadatafor the Python
framavork codeusedio mapthreadsandset
up thepaths.

Available for the experimentswere 3
clusterswith 32 processorsn each,orga-
nizedasfollows:

e 2W cluster- 16 * 2-Way (Dual) Pen-
tium Il 450 MHz, 256MB RAM, Lo-
cation: OdensePenmark.

e 4W cluster- 8 * 4-Way (Quad)Pen-
tium Pro166 MHz, 128MB RAM, lo-
cation: Tromsg Norway

e 8W cluster - 4 * 8-Way Pentium
Pro 200 Mhz, 1GB RAM, location:
Tromsg Norway

In addition, the root nodefor the multi-
clusterexperimentswas a dual Pentiumll
300 MHz machinewith 256MB RAM lo-
catedin Tromsg.Oneexperimentwasalso
run on a 650 Mhz Pentiumlil notebook
(Dell Latitude CPx, 256MB RAM) to get
resultsfor a single-processanode.

For the current experiments, we only
used TCP/IP over 100MBit ethernetfor
intra-clustercommunication.The 4W clus-
ter wasconnectedo theroot nodethrough
aHP 100 VG arylan switch, while the 8W
clusterwas connectedo the root nodeus-
ing thedepartment®calareanetwork. The
intra-clusterfor the8W clusterwasaswitch
connectedo thedepartments AN.

The connection between Tromsg and
Odensewvasthe departmententernetback-
bone.

4 Results

Figure 4 shav the differencein execution
time of thetwo differentthreaddistribution
algorithms.Theevendistributionalgorithm
distributesthreadsevenly amongthe nodes
in the cluster It startswith the first node
andaddsonethreadto eachnodebeforeit



barrier_sync();
getti neof day();

barrier_sync();
getti neof day();

TS(O0);
; . . : TS(0);
for (i =1 |:_<|ters; ) ni(n)side=rmpi(tothr0W)'
sum . gsun(i); total = gsun{n_i nsi_de) ;
} ) |
get ti meof day(); gettimeofday();
(a) gsum (b) mcpi

Figure3: Pseudocodé&r the Global SumandMonte Carlo Pi benchmarksOnly oneof
thethreadsunsthetimestampcode. The othersrun the samecodewithoutthetimestamp

codein it.

goesbackto thefirstnodeagain.Thebucdket

algorithm fills up one node with threads

(numberof threadsequalto the numberof
CPUsin thenode)beforeproceedingo the
next.

communicatiorcosts.

The curiousjump in latengy betweenl?2
and 13 nodesfor the even distribution al-
gorithm on the 8-way nodescan also be
explained from figure 5. At 12 threads,

As expected,oncewe reach32 threads we have 3 threadsrunning on eachnode.
andthetwo distributionalgorithmsgenerate Whenwe add one more thread,one of the

thesamenumberof threadonall nodeswe
end up with the sameexecutiontime with
bothalgorithms.

For the 4-way and 2-way cluster the
budket distribution algorithm performsbet-
ter in the rangebetweenl to 32 threads.
Thisis becauseve only needto paythecost
of bringingin a nev nodewhenthe bucket
algorithmhasfilled up thelastnode.

The 8-way clustershaws a differentpat-
ternthough. After 4 threadsthe bucket al-
gorithm performsworsethanthe even dis-
tribution algorithm. The reasorfor this can
be found in figure 5, in which the “Non-
partitioned’graphsshov theexecutiontime
of global sumswith 1-16threadson single
nodes.

As the numberof threadsincrease,we
obsere a suddenjump in executiontime
around 3-5 threadsfor the different SMP
nodes. For the 8-way nodes,this execu-
tion time quickly grows over 800 microsec-
ondswhenthe numberof threadsequalthe
numberof CPUsin the node. This shavs
thattheinternalsynchronizatiorrostfor the

global sumis higherthanthe node-to-node

nodeswill increaseo 4 threadswhich cor-
responddo the pointin the figure 5 where
we geta suddenjump for the 8-way nodes.
This jump is reflectedin the clustergraphs
sincethe executiontime of the global sum
is dictatedby the slowestnode.

Sinceall the multiprocessonodesshov
adistinctincreasan lateng oncethe node
holds more that 3-4 threads,a natural as-
sumptionis that using partial sumsmight
improve the executiontime. The “parti-
tioned” graphsin figure 5 shovs anexperi-
mentwherewe limit the numberof threads
per sum wrapperto 4 by arrangingthe
threadsand wrappersin a hiearchialsum
(seefigure6).

The graph shows that by limiting the
numberof threadsto the rangewherethe
wrapperhasthe bestperformanceand at
thesamdimeincreasinghepotentialparal-
lelism, the executiontime canbe improved
by roughlyafactortwo. Theextraoverhead
of contributing throughtwo layersof sums
is lessthanthe overheadreducedby parti-
tioning the problem.

The above resultssuggesthat partition-
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Figure4: Executiontime of global sumin
eachclusterusingtwo differentthreadallo-
cationalgorithms

ing the the clusters such that groups of
nodeswithin the clustercontributeto a par
tial sumbeforethepartialsumsareaddedn
arootnodemightimprovethelateng of the
cluster notonly becaus®f the higherlevel
of parallelismin the cluster but alsodueto
abetterresourcausagen in thewrappers.
Figures7 and8 shav experimentsvhere
we partitionedthe path treesfor the even
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Figure 5: Partitioning on single nodes.
Single process,increasingthe number of
threadsfrom 1 to 16. “Partitioned” usesa
maximumof 4 threadsper global sum, or-
ganizingthe sumwrappersn a hierarchial
partialsumtree.

distribution and budket threaddistribution
algorithms. The path tree was first parti-
tionedsuchthat no sumwrapperhadmore
than4 contributing threads.The sumwrap-
persfor the partitionswereplacedon nodes
such that no node had more than one of
the partial sum wrappers. This increased
the network traffic from 16 to 20 roundtrip
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Figure6: Hierarchialglobalreductionsum
tree. The numbersrepresenthreads. The
upperlayerof sumwrapperscomputegar
tial sumsusedin the lowermostsumwrap-
per.
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Figure7: Clusterpartitiontests- evendis-
tribution

messageper sumin the 2-way cluster and
from 8 to 10in the4-way cluster

Once the 4-split tests were made, we
spentanoter10-15 minutesmaking a map
which reducedthe numberof threadsper
wrapperto 3. This addedanotherlevel in
the sum hiearchyand increasedthe num-
berof roundtripmessaget 23 persumfor
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Figure8: Clusterpartitiontests- bucket

the 2-way cluster The 4-way clusterdidn’t
needanotherlevel, but increasedhe num-
berof roundtripmessageto 11.

No testsfor the 8-way clusterweremade
since the mechanismfor partitioning the
leafthreadswithin anodearenotreadyyet.

Both the 4-split and 3-split graphsshow
animprovedoperationexecutiontime com-
paredto the non-splitgraphs.For the even
distribution graphs,we get a brakeof at
the point wherethe whole partial sumtree
hasbeenexpandedandonly the numberof
threadsatthetoplevel is increased.

4.1 Multicluster results

Figure 9 shavs the minimum, maximum
and averageoperationexecutiontime of a
globalreductionin a multi-clustererviron-
ment, going from 3 to 96 threads,at each
stepaddingonethreadto eachcluster

The figure shov a signifiantvariancein
latengy, rangingfrom 34to 53 milliseconds,
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which is dueto variationin the network la-
teng/ betweertheOdenseindTromseclus-
ter.

The Path-framevork allowed an easyhi-
erarchicalmapping of the threadsin the
global sum pathtrees,thus eachreduction
only generatesneroundtripmessagécon-
tribute sumandretrieve result) betweerthe

is divided evenly amongstthe threadsin
the multicluster Becausehe work is dis-
tributed evenly performanceof the multi-
clusteris dictatedby the slowest CPUsin
the system,which is the onesin the 4W

-wcluster asa resultperfectspeedupmustbe

Avg

definedas the multicluster setupbeing 10
timesslowerthanthe4W cluster thegraph
clearlyshow thisto betrue.

5 Relatedwork

Accurate and efficient performancepre-
diction of existing distributed and paral-
lel applications on target configurations
with potentiallythousand®f processorss
hard. Analytical solutionsare difficult to
develop, and mary complex systemscan
be intractable. Simulation is a widely
usedtool, but its major limitation is its,
often extremely long execution time for
large-scalesystems. A numberof simula-
tors have beendeveloped,including Paral-

Odenseand Tromsgclusters,independent lel Proteus[9],LAPSE[5], SimOS[11],and

of the number of threadsin the system.

The intra-clusterlatenciesof the sumsare
so small, that they are not visible due to

the high variationin lateng in the Odense-

Tromsgconnection.
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Figure10: Monte CarloPiin clusters(10M
darts)andmulticluster(100M darts).

Figure 10 shavs Monte Carlo Pi exe-
cutedon the threeclustersandon the mul-
ticluster We obsenre the expectedlinear
scalingfor all instances. The multicluster
problemis 10 times bigger than the one
run ontheindividual clustersandthework

WisconsinWind Tunnel[1Q. Thesesimu-
latorstypically arethemselesparalleland
usedirectexecutionof portionsof the code
to reducethe cost. The slowdowns range
from 2 to 100. Few simulatorssimulate
both computationand I/O operations. In
contrastto simulators, our approachex-
ecute the actual application code several
times, eachtime with a differentmapping.
Of course,runningan application,say 10
timesbeforedecidingon a configurationto
use,will give aslowdown of 10. However,
theflexibility andsimplicity is high.

In [7] it is shawn that the three paral-
lel computationmodels BSE E-BSP and
BPRAM in several situationsdo not pre-
cisely predictthe actualruntime behaiour
of an algorithmimplementation. They re-
port performancedeviations between25-
200%. This is explainedby the different
approacheso communicationand routing
usedby the models. Cachingeffects are
also possiblecauses. Also, the efficiency
of animplementatiorderivedfrom thethree



modelsdid not matchthe performancegos-

sible by usinghandtunedimplementations.

Theseresultscanbe usedto make a casefor

a systemlike ours wherethe programmer
cantry a few configurationsand selectthe

onegiving the bestperformance.This can

proveto be muchsimplerthanhandcoding

an algorithmto utilize the hardware plat-

form. Theresultingperformancewill most
likely not be optimal, but it can be better
thannotdoinganything.

In [6] both processorand memoryload
balancing are used to supportlow con-
tentionandgoodscalingto hundred®f pro-
cessors.Gang-schedulings usedto avoid
wastingcycles spinningfor a lock held by
a deschedulegrocess(actually a virtual
CPU).In contrastour systemis muchsim-
pler andprovidesfor muchlessor no auto-
maticsupportatthe presentime.

In [12] it is showvn thatthereis acommu-
nication and load bralancetrade-of when
partitioning and schedulingsparsematrix
factorizationon distributed memory sys-
tems. Block based methods result in
lower communicatiorcostsandworseload
balancing,whereasa "round robin"-based
schemewhere all threadsare distributed
over the processorgives betterload bal-
ancebut highercommunicatiorcosts.

In [16] an approachto load balancing
for general-purpossimulationsis reported
in with little modificationis neededo the
users code. Their approachuses run-
time measurementand demonstratebet-
ter load-balancinghanapproachesvithout
suchmeasurementsThreedifferentload-
balancing mapping algorithms are used.
Thisapproachs similarto oursin thatlittle
modificationof the users codeis needed.
As they do, we alsousedifferentmappings
and leave it to the applicationto control
them. Our approachdiffer in that we can
both try different mappingsand add arbi-
trary code along the accesspath to data.
Also, we differ in that we do a prerun of
a few mappingsandthenwe choosea sin-
gle oneandwe let the applicationusethe

selectedmappingwithout incurring further
overhead.Of course,we take all the over
headwhen choosinga mapping. For clus-
terswherethey canbededicatedo applica-
tionsrunningoften,this configuratiorhunt-
ing overheadwill beamortizisedbvertime.

In [2] three cateyories of useful tools
were found when tuning the performance
of NOW-Sort, a parallel disk-to-disk sort-
ing algorithm on a cluster system: tools
thathelp setexpectationsandconfigurethe
applicationto different hardware parame-
ters,visualizationtoolsthatanimateperfor
mancecountersandsearchoolsthattrack
down performancenomalies.

We believe that our systemcan, by sim-
ple meanspresentlycontrolledby the pro-
grammey improve performanceby find-
ing a configurationwherethe resourceus-
age better avoids hot spots, bottlenecks,
and expensve waiting timesfor processqr
memory cache,and /O by compromising
betweenload sharingand communication.
The flexibility of using maps, paths and
wrappersalso make it possibleto monitor
the applicationandprovide datafor visual-
izationof bothbehaiour andperformance.
At thepresentime we have notinvestigated
approacheso sharingclustersamongsev-
eralconcurrentomputations.

6 Conclusion

Fine-tuning the performance of high-
performance distributed applications
through analytical means or simulation
is hard, requiring detailed insights into
the tradeofs and effects of caching, syn-
chronization,locality, load balancing,and
communicatiordemands.

We have proposedan approachand de-
velopeda middleware extentionwheredif-
ferentmappingsf anapplicationscommu-
nication and computationscan quickly be
tried out without changingthe application
code.

Experimentsshaved how we usedthis
systemto discover someof thefactorscon-



tributing negatively to the applicationper
formance,and thenremappedhe applica-
tion to avoid configurationsvherecompo-
nentsin the applicationdid not scalewell.
We alsoshaved how the applicationcould
be remappedo a multiclusterervironment
without changingthe applicationcode.

The resultsfrom this work was usedin
[14] to benchmarkPastSetusing the path
framavork againstMPI[15] (LAM-MPI),
where we shoved that PastSetwas 83%
fastethanLAM-MPI onglobalreductions.

We believe the framework can be use-
ful both for developing analytical models
by providing information on factorsrele-
vant for analysis,andfor tuning of an ap-
plication wherea fine-grainedanalysiscan
bedifficult to attain.

By analyzingthe performanceesultsus-
ing different mappings,we have also ex-
posedsomebugsin the implementationof
the application. Our approachcan be use-
ful both whendehuggingan applicationas
well as finding configurationsthat offers

improvedperformance.
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