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Abstract

A “path” basedon the idea of method-
combination and remote procedure calls
to provide run-time configurable networks
of computationalcommunicationpathsbe-
tweenthreadsanddata in distributed,high
performanceapplicationsis proposed.An
initial designis implemented,testedandan-
alyzed.

We usea “wr apper” to provide a level
of indirection to the actual run-time loca-
tion of databy forwarding functioncalls to
servers holding thetarget data. A wrapper
specifywhere data is located, how to get
there, and which protocolsto use. Wrap-
pers are also usedto add or modifymeth-
odsaccessingdata. Wrappersare specified
dynamically. A “path” is comprisedof one
or more wrappers. Sectionsof a path can
be shared amongtwo or more paths. Es-
tablishinga path is a two-phaseprocessof
specifyingthe path, and then (recursively)
settingup the path basedon the specifica-
tion.

A test systemusing the proposedarchi-
tecture is implemented,demonstrated and
performancemeasured using two bench-
markson threedifferent clusters. We show
that the proposedarchitecture can be used
for mapping and improving the perfor-

manceof applicationson different topolo-
gies including a wide-area multi cluster
configuration, and how wrappers can be
usedto distributecomputationalload off of
heavilyloadedtargetservers. Wealsoshow
howthreaddistributionscanbechangedat
run-timewithoutaltering applicationcode.

We believe that the proposed semi-
manual approach will prove useful in
debugging and coarse-tuning distributed
high-performanceapplications,and that it
will provide valuableinsightsfor develop-
ing later, more automated,middleware sys-
tems.

1 Intr oduction

A key challengewhen running distributed
high performanceapplicationsis to main-
tain thread-to-hostmappingsthat achieve
high performanceor efficient execution.
Attackingthis challengerequiresbalancing
thepotentiallyconflictinggoalsof distribut-
ing threadsfor improvedloadbalancingand
for reducedcommunicationoverhead.

In reality, high scalability cannot be
achieved unlessthe systemis fine-tunedto
balancecomputation,communication,and
synchronizationrequirements. Unfortu-
nately, high performanceis often achieved



only after rigorous manualfine-tuning to
obtain an efficient mappingof threadsto
hosts.

Efficientthread-to-hostmappingsmaybe
achieved by directives in the application
source-code,reflectingthe topologyof the
hostarchitecturein the applicationsource-
code. Alternatively, mappingsmay be ob-
tained by communicationlibraries or by
middleware. Static or dynamicmappings
may be useddependingon applicationdy-
namics,thehomogeneityof theunderlying
architecture,or the regularity of the inter-
connectiontopology. Dynamic mappings
accommodatechangingneedsover the ap-
plication lifetime by use of costly thread
migrations.In this case,theoriginal place-
mentproblemis transformedinto aproblem
of determiningwhereandwhenany thread
shouldbemigrated.

One alternative to compile-time static
placementandruntimedynamicplacement
is to implementa staticplacementon anir-
regular architectureby decidingon a map-
ping at load-time.A “manual” approachto
the load-time solution is to allow the ap-
plication programmerto instruct the mid-
dlewareasto the distribution andcommu-
nicationpatterns,specifiedeitherexplicitly
by the programmeror chosenfrom a li-
braryof algorithms.We havecombinedthe
static load-timeand the dynamicrun-time
approaches.We allow for run-timeplace-
ment,but we do this typically at thestartup
of the applicationby usinga configuration
maploadedwith theapplication.However,
theapplicationcanchangethis mappingat
will if it sowishes.

This paper describesour initial work
on a middleware extension inspired by
methodcombination[8] and remoteproce-
dure calls[3] which allows the communi-
cation topology to be directedby specify-
ing meta-codeandmeta-data,withoutintro-
ducingany modificationsto theapplication
code.Theextendedmiddlewarealsoallows
computationsto beplacedalongtheaccess
pathsto data.For now, we assumethat the

applicationunderstudyis alonein usingthe
underlyingarchitecture;thereareno other
applicationscompetingfor resources.The
goalof themappingthen,is to achievehigh
performancefor onesingleapplicationrun-
ning alone.

We show how onemay experimentwith
differentmappingsof threadsandtheir in-
tercommunication,and demonstratesthat
this can identify flexible location policies
which are independentof the application
codeandstill supplyeffectiveplacements.

Section 2 describeshow wrappersare
usedandcombinedto specifyandidentify
accesspaths. Section3 describesour ex-
perimentsusing threedifferentclusterslo-
catedat theUniversityof Tromsø,Norway
and the University of SouthernDenmark,
Odense. Section4 presentsand analyzes
the experimentresults,section5 presents
relatedwork, while section6 presentsour
conclutions.

2 The configurable path frame-
work

Our research platform uses the
PastSet[1][13], a structured distributed
sharedmemorysystemin the tradition of
Linda[4]. A PastSetElement is a tuple
spacewith tuples of the sameor equiv-
alent types, and is globally addressable
with a name and the type of the tuples
residingwithin it. PastSetalsosupportsX-
functions[14], whichcanbeusedto modify
the behavior of the PastSetoperations(to
implement functionality such as, but not
limited to, globalreductionsandcaches).

A commonway to implementremoteac-
cessto sharedobjectssuchasa PastSetEl-
ementis to give theaccessingthreada stub
whichforwardstheoperationsto theremote
server. Thestubsinterfaceis identicalto the
interfaceof theacessedelement,providing
transparentaccessto bothlocal andremote
elements.



Thread Element

Thread Stub Element

A stub doesnot necessarilyhave to be
limited to implementremoteaccessthough.
It can just aseasilybe usedto modify the
semanticsof anelementsoperationsby im-
plementingoneof the PastSetX-functions
(suchastheglobalreductionsum).If stubs
can be combined,we can easily set up a
remoteelementwhich is usedto compute
globalsumsasfollows:

Thread Stub GlobalSum Element

We call the combinationof the stubsa
path to the remoteelement.The combina-
tionof all existingpathsto anelementforms
a treewith threadsasthe leavesandtheel-
ementastheroot.

As long as the application only uses
the referenceto the topmoststub, it can
bemappedto anotherclusterconfiguration
without changingtheapplicationcode.Fit-
ting andoptimizingtheapplicationto apar-
ticular configurationcan insteadbe done
by changingthepath-building metadataand
code.

Thread Thread Thread Thread

GlobalSum

Remoteaccess

GlobalSum

Remoteaccess

GlobalSum

Element

Node1 Node2

Server

Figure1: Threadsin two nodesaccessing
a sharedglobal sum element. Eachnode
computesa partial sum beforeforwarding
it to theglobalsumwrapperin theserver.

2.1 Building and specifyingpaths

Settingupaccessfrom athreadto aPastSet
elementinvolvesthefollowing two stages:

1. Specifythethepath.This involvesex-
amininginformationaboutthe cluster
topologies,the location of threadsin
the cluster and where the target ele-
mentis located.

2. Build the path from the description.
This involvescreatingandbindingthe
wrapperswith parametersspecifiedin
thepathdescription.

To allow configurabilityof thewrappers,
we includeparametersfor eachwrapperin
thepathdescription.Someof theseparame-
tersarecommonfor all wrappertypes(such
aswhetherthe wrapperneedto usethread
synchronizationmechanisms),or typespe-
cific (suchastheprotocolto use,remotead-
dressandservicerequirementsin a remote
accesswrapper). Parametersnot specified
areassigneddefault values.

An examplepathdescriptionusedby one
of thenodesin Figure1 is includedin Fig-
ure2. build_path builds thegivenpath
andreturnsareferenceto thetoplevelwrap-
perin thepath.

Eachthreadcreates(or is given) its own
path descriptionand calls build_path
to get its own reference to the path.
Build_path takescareof merging paths
when the pathdescriptionsallow for shar-
ing partsof thepath.

2.2 Curr ent implementations

The currentimplementationsuseCommon
Lisp andPythonfor managementof paths,
while thePastSetapplicationsandwrappers
areimplementedin C.

Thisallowsustheflexibility of high level
dynamiclanguagesfor experimentingwith
pathbuilding code,while keepingthehigh-
level languagesoutof theloopwhenbench-
markingthedifferentconfigurations.



path = make_path(stage("reduce-sum", num_threads=2),
stage("remote", proto=TCP, host="p0"),
stage("reduce-sum", num_threads=2),
stage("core", name="PI-SUM1"))

elm = build_path(path)

Figure2: Examplepathdescription

Thework reportedin this paperis based
onexperimentswith thePythonframework,
whichallows thepathframework to bepro-
vided andextendedeither throughembed-
ded Python (by overloading two default
functionsfor acquiringandreleasingapath
to an element)or, as we did, by hand-
ing path referencesto C algorithmswrit-
ten asPythonextensionmodules.The lat-
ter methodallows different Pythonscripts
to experimentwith pathbuilding andthread
spawning usingthe samecompiledC code
for all experiments.

The wrapperscan also be useddirectly
from thehigh-level languagesallowing, for
instance,Pythonscriptsdirectaccessto tu-
plesandelements.

Simpleprofiling of PastSetoperationsis
provided with two trace wrappers. The
“timestamp”tracewrappersimplyforwards
the operationto the next stagein the path
and usesthe Pentium timestampcounter
to timestampthestartandcompletiontime
for eachoperationinvoked. Thetimestamp
datais loggedto an array in memoryand
written to disk when the tracewrapperis
deleted(referencecounting is usedto de-
terminewhenwrappersshouldbedeleted).
Theoverheadof thiswrapperis around100-
120clock cycles.

The “operation” tracewrapperis an ex-
tension of the timestamp trace wrapper
which additionallylogs the contentsof the
tuplesprovidedto or returnedfromthePast-
Setoperations.

Any numberof tracewrapperscanbein-
sertedanywherein thepathtrees.

3 Experiments

To show how the framework can be used
for mappingandoptimizingan application
to different topologies,we devisedexperi-
mentsto maptwo benchmarksto different
path treesand two different threadalloca-
tion policies.We usedtheseexperimentsto
examinesomechoiceswhich canbe made
whenmappinganapplicationto aclusteror
multi-clusterenvironment.

We believe that changingthe mapping
will produceperformancebenefitsbecause
of the different emphasisput upon local-
ity, load balancing and communication.
Also, thepotentialmismatchesbetweenthe
collective data accesspatternsby all the
threads, and each processor’s individual
datacachewill be influencedby different
mappings. Of course,the applicationwill
play a role in how successfula mapping
is. For instance,frequentuseof synchro-
nizationusinglocks, andespeciallyglobal
locks, will play a role in the resultingper-
formanceandtheeffectof amapping.

Two basicbenchmarkcodeswereused:

� The Global Sum benchmark
(GSum), which measures the av-
erageexecutiontime of a global sum
operation. The numberof valuesto
sumis equalto the numberof threads
usedin theexperiment.

� Monte Carlo Pi (MCPi), which com-
putesan approximationof Pi by ran-
domly throwing a numberof dartsand
countingthosehitting insidea circle.

A total numberof
�

dartsarethrown
by the threads, splitting the darts



evenlybetweenthethreads.

The time of throwing the
�

dartsand
runninga global sumwith the results
is measured.

�
was 10 million for

the cluster tests,and 100 million for
multi-cluster tests. The problem is
large enoughthat the communication
latency shouldbe masked by the time
spentin thecomputation.

Figure 3 shows pseudocodefor the
benchmarks.The TS() macrosamplesthe
pentiumtimestampcounter, andstoresthe
timestampin anarray. gettimeofday()sam-
ples the real-timeclock on the host com-
puter with microsecondresolution. The
gsumbenchmarkwas run with “iters” set
to 1000. For both tests,the averageof 5
benchmarkrunsareplottedin thegraphs.

Basedon the two benchmarks,we de-
vicedthefollowing experiments:

� Scalingononenode.Measuretheexe-
cutiontimeof aglobalreductionwhen
we vary thenumberof threadsfrom 1
to 16 onasinglenode.

� Threadplacementand topology opti-
mization. Two different threaddistri-
bution algorithmsare usedto assign
threadsto nodesin theclusters.

The pathtreeswerealsovariedto ex-
perimentwith computingpartial sums
within partitionsof the clustersto re-
ducethe work andcommunicationon
thenodehostingthetargetelement.

� Monte Carlo Pi in clusterand multi-
clusterconfigurations.Verify that the
applicationcanbemappedandscaled
to the three clustersand when using
the threeclusterstogetherin a multi-
clusterconfiguration.

� Multicluster global sum. Measurethe
execution time of global sum using
all threeclusterswith 3 to 96 threads.
Threadsareassignedevenlyamongthe
clusters.

The benchmark code was unchanged
during the experiments,we only changed
parametersand metadatafor the Python
framework codeusedto mapthreadsandset
up thepaths.

Available for the experimentswere 3
clusterswith 32 processorsin each,orga-
nizedasfollows:

� 2W cluster- 16 * 2-Way (Dual) Pen-
tium III 450MHz, 256MB RAM, Lo-
cation:Odense,Denmark.

� 4W cluster- 8 * 4-Way (Quad)Pen-
tium Pro166MHz, 128MB RAM, lo-
cation:Tromsø,Norway

� 8W cluster - 4 * 8-Way Pentium
Pro 200 Mhz, 1GB RAM, location:
Tromsø,Norway

In addition, the root nodefor the multi-
clusterexperimentswasa dual PentiumII
300 MHz machinewith 256MB RAM lo-
catedin Tromsø.Oneexperimentwasalso
run on a 650 Mhz PentiumIII notebook
(Dell Latitude CPx, 256MB RAM) to get
resultsfor asingle-processornode.

For the current experiments, we only
used TCP/IP over 100MBit ethernet for
intra-clustercommunication.The4W clus-
ter wasconnectedto theroot nodethrough
a HP 100VG anylan switch,while the8W
clusterwasconnectedto the root nodeus-
ing thedepartmentslocalareanetwork. The
intra-clusterfor the8W clusterwasaswitch
connectedto thedepartmentsLAN.

The connection between Tromsø and
Odensewasthedepartmentsinternetback-
bone.

4 Results

Figure 4 show the differencein execution
time of thetwo differentthreaddistribution
algorithms.Theevendistributionalgorithm
distributesthreadsevenly amongthenodes
in the cluster. It startswith the first node
andaddsonethreadto eachnodebeforeit



barrier_sync();
gettimeofday();
TS(0);
for (i = 1; i= < iters; i++) {

sum = gsum(i);
TS(i);

}
gettimeofday();

(a)gsum

barrier_sync();
gettimeofday();
TS(0);
n_inside = mcpi(to_throw);
total = gsum(n_inside);
TS(1);
gettimeofday();

(b) mcpi

Figure3: Pseudocodefor theGlobalSumandMonteCarloPi benchmarks.Only oneof
thethreadsrunsthetimestampcode.Theothersrun thesamecodewithout thetimestamp
codein it.

goesbackto thefirstnodeagain.Thebucket
algorithm fills up one node with threads
(numberof threadsequalto the numberof
CPUsin thenode)beforeproceedingto the
next.

As expected,oncewe reach32 threads
andthetwodistributionalgorithmsgenerate
thesamenumberof threadsonall nodes,we
endup with the sameexecutiontime with
bothalgorithms.

For the 4-way and 2-way cluster, the
bucket distribution algorithmperformsbet-
ter in the rangebetween1 to 32 threads.
Thisis becauseweonly needto paythecost
of bringing in a new nodewhenthebucket
algorithmhasfilled up thelastnode.

The8-way clustershows a differentpat-
tern though.After 4 threads,thebucket al-
gorithm performsworsethanthe even dis-
tribution algorithm.Thereasonfor this can
be found in figure 5, in which the “Non-
partitioned”graphsshow theexecutiontime
of global sumswith 1-16 threadson single
nodes.

As the numberof threadsincrease,we
observe a suddenjump in execution time
around3-5 threadsfor the different SMP
nodes. For the 8-way nodes,this execu-
tion timequickly growsover800microsec-
ondswhenthenumberof threadsequalthe
numberof CPUsin the node. This shows
thattheinternalsynchronizationcostfor the
globalsumis higherthanthenode-to-node

communicationcosts.
The curiousjump in latency between12

and 13 nodesfor the even distribution al-
gorithm on the 8-way nodescan also be
explained from figure 5. At 12 threads,
we have 3 threadsrunning on eachnode.
Whenwe addonemorethread,oneof the
nodeswill increaseto 4 threads,which cor-
respondsto the point in the figure 5 where
we geta suddenjump for the8-way nodes.
This jump is reflectedin theclustergraphs
sincethe executiontime of the global sum
is dictatedby theslowestnode.

Sinceall the multiprocessornodesshow
a distinct increasein latency oncethenode
holds more that 3-4 threads,a naturalas-
sumptionis that using partial sumsmight
improve the execution time. The “parti-
tioned” graphsin figure5 shows anexperi-
mentwherewe limit thenumberof threads
per sum wrapper to 4 by arranging the
threadsand wrappersin a hiearchialsum
(seefigure6).

The graph shows that by limiting the
numberof threadsto the rangewherethe
wrapperhas the bestperformance,and at
thesametimeincreasingthepotentialparal-
lelism, theexecutiontime canbeimproved
by roughlyafactortwo. Theextraoverhead
of contributing throughtwo layersof sums
is lessthanthe overheadreducedby parti-
tioning theproblem.

The above resultssuggestthat partition-
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Figure4: Executiontime of global sumin
eachclusterusingtwo differentthreadallo-
cationalgorithms

ing the the clusterssuch that groups of
nodeswithin theclustercontributeto apar-
tial sumbeforethepartialsumsareaddedin
arootnodemight improvethelatency of the
cluster, notonly becauseof thehigherlevel
of parallelismin thecluster, but alsodueto
abetterresourceusagein in thewrappers.

Figures7 and8 show experimentswhere
we partitionedthe path treesfor the even
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Figure 5: Partitioning on single nodes.
Single process,increasingthe numberof
threadsfrom 1 to 16. “Partitioned” usesa
maximumof 4 threadsper global sum,or-
ganizingthe sumwrappersin a hierarchial
partialsumtree.

distribution and bucket threaddistribution
algorithms. The path tree was first parti-
tionedsuchthatno sumwrapperhadmore
than4 contributing threads.Thesumwrap-
persfor thepartitionswereplacedonnodes
such that no node had more than one of
the partial sum wrappers. This increased
thenetwork traffic from 16 to 20 roundtrip
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Figure6: Hierarchialglobal reductionsum
tree. The numbersrepresentthreads. The
upperlayerof sumwrapperscomputespar-
tial sumsusedin the lowermostsumwrap-
per.
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Figure7: Clusterpartition tests- evendis-
tribution

messagespersumin the2-way cluster, and
from 8 to 10 in the4-waycluster.

Once the 4-split tests were made, we
spentanoter10-15minutesmakinga map
which reducedthe numberof threadsper
wrapperto 3. This addedanotherlevel in
the sum hiearchyand increasedthe num-
berof roundtripmessagesto 23persumfor
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Figure8: Clusterpartitiontests- bucket

the2-way cluster. The4-way clusterdidn’t
needanotherlevel, but increasedthe num-
berof roundtripmessagesto 11.

No testsfor the8-wayclusterweremade
since the mechanismfor partitioning the
leafthreadswithin anodearenotreadyyet.

Both the 4-split and3-split graphsshow
animprovedoperationexecutiontimecom-
paredto thenon-splitgraphs.For theeven
distribution graphs,we get a brakeoff at
the point wherethe whole partial sumtree
hasbeenexpanded,andonly thenumberof
threadsat thetoplevel is increased.

4.1 Multicluster results

Figure 9 shows the minimum, maximum
and averageoperationexecutiontime of a
global reductionin a multi-clusterenviron-
ment, going from 3 to 96 threads,at each
stepaddingonethreadto eachcluster.

The figure show a signifiantvariancein
latency, rangingfrom 34to 53milliseconds,
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Figure9: Multiclusterglobalreduction

which is dueto variationin thenetwork la-
tency betweentheOdenseandTromsøclus-
ter.

ThePath-framework allowedaneasyhi-
erarchicalmapping of the threadsin the
global sumpath trees,thuseachreduction
only generatesoneroundtripmessage(con-
tributesumandretrieve result)betweenthe
Odenseand Tromsøclusters,independent
of the number of threadsin the system.
The intra-clusterlatenciesof the sumsare
so small, that they are not visible due to
thehigh variationin latency in theOdense-
Tromsøconnection.
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Figure10: MonteCarloPi in clusters(10M
darts)andmulticluster(100Mdarts).

Figure 10 shows Monte Carlo Pi exe-
cutedon the threeclustersandon themul-
ticluster. We observe the expectedlinear
scalingfor all instances.The multicluster
problem is 10 times bigger than the one
run on theindividualclusters,andthework

is divided evenly amongstthe threadsin
the multicluster. Becausethe work is dis-
tributed evenly performanceof the multi-
cluster is dictatedby the slowestCPUsin
the system,which is the onesin the 4W
cluster, asa resultperfectspeedupmustbe
definedas the multiclustersetupbeing 10
timesslower thanthe4W cluster, thegraph
clearlyshow this to betrue.

5 Relatedwork

Accurate and efficient performancepre-
diction of existing distributed and paral-
lel applications on target configurations
with potentiallythousandsof processorsis
hard. Analytical solutionsare difficult to
develop, and many complex systemscan
be intractable. Simulation is a widely
used tool, but its major limitation is its,
often extremely, long execution time for
large-scalesystems.A numberof simula-
tors have beendeveloped,including Paral-
lel Proteus[9],LAPSE[5], SimOS[11],and
WisconsinWind Tunnel[10]. Thesesimu-
latorstypically arethemselvesparalleland
usedirectexecutionof portionsof thecode
to reducethe cost. The slowdowns range
from 2 to 100. Few simulatorssimulate
both computationand I/O operations. In
contrast to simulators, our approachex-
ecute the actual application code several
times,eachtime with a differentmapping.
Of course,runningan application,say, 10
timesbeforedecidingon a configurationto
use,will give a slowdown of 10. However,
theflexibility andsimplicity is high.

In [7] it is shown that the three paral-
lel computationmodels BSP, E-BSP and
BPRAM in several situationsdo not pre-
cisely predict the actualruntimebehaviour
of an algorithm implementation.They re-
port performancedeviations between25-
200%. This is explainedby the different
approachesto communicationand routing
usedby the models. Cachingeffects are
also possiblecauses. Also, the efficiency
of animplementationderivedfrom thethree



modelsdid notmatchtheperformancepos-
sibleby usinghandtunedimplementations.
Theseresultscanbeusedto makeacasefor
a systemlike ours wherethe programmer
cantry a few configurationsandselectthe
onegiving the bestperformance.This can
prove to bemuchsimplerthanhandcoding
an algorithm to utilize the hardware plat-
form. Theresultingperformancewill most
likely not be optimal, but it can be better
thannotdoinganything.

In [6] both processorand memoryload
balancing are used to support low con-
tentionandgoodscalingto hundredsof pro-
cessors.Gang-schedulingis usedto avoid
wastingcyclesspinningfor a lock held by
a descheduledprocess(actually, a virtual
CPU).In contrast,our systemis muchsim-
pler andprovidesfor muchlessor no auto-
maticsupportat thepresenttime.

In [12] it is shown thatthereis acommu-
nication and load bralancetrade-off when
partitioning and schedulingsparsematrix
factorization on distributed memory sys-
tems. Block based methods result in
lower communicationcostsandworseload
balancing,whereasa "round robin"-based
schemewhere all threadsare distributed
over the processorsgives better load bal-
ancebut highercommunicationcosts.

In [16] an approachto load balancing
for general-purposesimulationsis reported
in with little modificationis neededto the
user’s code. Their approachuses run-
time measurementsand demonstratesbet-
ter load-balancingthanapproacheswithout
suchmeasurements.Threedifferent load-
balancing mapping algorithms are used.
Thisapproachis similar to oursin thatlittle
modificationof the user’s codeis needed.
As they do,we alsousedifferentmappings
and leave it to the application to control
them. Our approachdiffer in that we can
both try different mappingsand add arbi-
trary code along the accesspath to data.
Also, we differ in that we do a prerunof
a few mappings,andthenwe choosea sin-
gle oneandwe let the applicationusethe

selectedmappingwithout incurring further
overhead.Of course,we take all the over-
headwhenchoosinga mapping. For clus-
terswherethey canbededicatedto applica-
tionsrunningoften,thisconfigurationhunt-
ing overheadwill beamortizisedover time.

In [2] three categories of useful tools
were found when tuning the performance
of NOW-Sort, a parallel disk-to-disksort-
ing algorithm on a cluster system: tools
thathelpsetexpectationsandconfigurethe
applicationto different hardware parame-
ters,visualizationtoolsthatanimateperfor-
mancecounters,andsearchtools that track
down performanceanomalies.

We believe that our systemcan,by sim-
ple meanspresentlycontrolledby the pro-
grammer, improve performanceby find-
ing a configurationwherethe resourceus-
age better avoids hot spots, bottlenecks,
andexpensive waiting timesfor processor,
memory, cache,and I/O by compromising
betweenload sharingand communication.
The flexibility of using maps, paths and
wrappersalso make it possibleto monitor
theapplicationandprovide datafor visual-
izationof bothbehaviour andperformance.
At thepresenttimewehavenotinvestigated
approachesto sharingclustersamongsev-
eralconcurrentcomputations.

6 Conclusion

Fine-tuning the performance of high-
performance distributed applications
through analytical means or simulation
is hard, requiring detailed insights into
the tradeoffs and effects of caching,syn-
chronization,locality, load balancing,and
communicationdemands.

We have proposedan approachand de-
velopeda middlewareextentionwheredif-
ferentmappingsof anapplicationscommu-
nication and computationscan quickly be
tried out without changingthe application
code.

Experimentsshowed how we usedthis
systemto discoversomeof thefactorscon-



tributing negatively to the applicationper-
formance,and then remappedthe applica-
tion to avoid configurationswherecompo-
nentsin the applicationdid not scalewell.
We alsoshowedhow theapplicationcould
beremappedto a multiclusterenvironment
withoutchangingtheapplicationcode.

The resultsfrom this work was usedin
[14] to benchmarkPastSetusing the path
framework againstMPI[15] (LAM-MPI),
where we showed that PastSetwas 83%
fasterthanLAM-MPI onglobalreductions.

We believe the framework can be use-
ful both for developing analytical models
by providing information on factorsrele-
vant for analysis,and for tuning of an ap-
plication wherea fine-grainedanalysiscan
bedifficult to attain.

By analyzingtheperformanceresultsus-
ing different mappings,we have also ex-
posedsomebugsin the implementationof
the application. Our approachcanbe use-
ful both whendebuggingan applicationas
well as finding configurationsthat offers
improvedperformance.
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