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Abstract

Using TCP/IP or M-VIA, the performance of the
structured distributed shared memory system PastSet is
measured and compared to a reference single-node im-
plementation (excluding all intra-node communication).
The latencies of PastSet-operations are measured using
several micro-benchmarks. For the experiment setup
used, M-VIA latencies are shown to be between 1.4 and
2.2 times lower than the comparable latencies using
TCP/IP. For a data size of 31KB, this corresponds to a
difference of more than one millisecond. Depending on
the thread-allocation policy applied in the PastSet server,
PastSet latencies using TCP/IP may exhibit increased
variance compared to the corresponding latencies using
M-VIA. The increased latency and variance may mask the
performance characteristics of the PastSet system.

1. Introduction

The application-to-application performance of a Dis-
tributed Shared Memory (DSM) system depends on the
performance and interaction of the DSM and the under-
lying network subsystems. The key challenge [16] is to
preserve the performance characteristics of the physical
network (bandwidth, latency, QoS) while making effec-
tive use of host resources. Network bandwidths have been
increasing and latencies through these networks have
been decreasing. Unfortunately, applications have not
been able to take full advantage of these performance
improvements due to the many layers of user level and
kernel level software required to use the network. A de-
tailed breakdown of hardware and software costs of re-
mote memory operations is discussed in [5]. The Virtual
Interface Architecture was developed to significantly re-
duce the software overhead between a high performance
CPU/memory subsystem and a high performance net-
work.

In this paper, we study the application-to-application
performance of the PastSet DSM system using either

M-VIA, a software VIA implementation for Linux [6], or
TCP/IP. The report describes the functionality of PastSet,
the organization of the implementation; and the interac-
tions between PastSet user-level components, M-VIA,
and a PastSet-modified Linux kernel. An experiment con-
figuration with micro-benchmarks and metrics is de-
scribed before presenting and analyzing benchmark re-
sults.

2. PastSet

2.1. Model

PastSet was first introduced as a structured shared
memory in [1]. Early partial implementations of PastSet
include [2, 3]. [4] develops and demonstrates an extended
PastSet programming model, shows how parallel applica-
tions are written using PastSet, and documents the per-
formance of these applications on the authors implemen-
tation of PastSet. The PastSet paradigm resembles that of
Linda [18], but with added structuring of the shared
memory and different functionality of the operations pro-
vided. Comparable, efforts within industry include IBM
TSpaces [15] and JavaSpaces [14].

All PastSet operations are synchronous, returning only
when the operation is completed, or an error has been
detected. Processes using PastSet dynamically generate
tuples based on tuple templates that may also be gener-
ated dynamically. A tuple template specifies a list of data
types. A tuple is a list of values matching the data types
specified in the template upon which the tuple is based.

The ‘elements’ of PastSet are lists of tuples; one list
per unique template used. The enter operator takes a
tuple template as parameter and establishes a binding
from that template to the associated element in PastSet. If
the template is unique (i.e. no identical template has been
specified for previously executed enter-operations), a
new element is created. If the template is not unique, the
binding is established with the element already associated
with the identical templates. As with Linda, PastSet sup-



ports writing (called move) tuples into PastSet and read-
ing (called observe) tuples that reside in PastSet. A
tuple that is moved into PastSet is added to the associated
element in PastSet and remains in that element as a
unique tuple. For each element, tuples are added and ob-
served in FIFO or program-specified order as described in
[4]. Two identifiers First and Last are associated with
each element in PastSet. First refers to the elements
oldest unobserved tuple. Last refers to the tuple most
recently added to the element. A parameter, Delta-
Value, associated with each element in PastSet defines
the maximum number of tuples allowed between First
and Last for that element. A process may change Del-
taValue at any time. Move and observe update
First and Last, and obey the restrictions imposed by
DeltaValue for each element in PastSet. PastSet pre-
serves the sequential order among move and observe
operations on tuples based on identical templates. There
is no ordering among operations on tuples based on dif-
ferent templates.

A combined move-observe operation, mob, is pro-
vided to support efficiently the commonly used sequence
of a move immediately followed by an observe. Mob
takes two tuples as parameters and operates on two ele-
ments if the tuples are based on different templates; if not,
mob operates on one element.

Contrary to similar systems, PastSet observe does
not remove tuples from PastSet, observed tuples are
tagged ‘observed’ but remain in PastSet and may be ob-
served again later. A mechanism is provided to coarsely
truncate PastSet on a per element basis, permanently re-
moving all tuples that are older than a given tuple. There
is no mechanism to remove individual tuples from Past-
Set.

2.2. Organization

One or more nodes may host PastSet. Each hosting
node runs a PastSet kernel, a server, and an application
library (Fig. 1). Currently, each element in PastSet is
stored on one host only. There is no distribution, replica-
tion, or migration of individual elements. Nodes that use
PastSet without hosting it will run the application library
and TCP/IP or M-VIA only.

The organization supports PastSet operations on ele-
ments that are located on the same node as the initiating
process (local operations), as well as operations on ele-
ments that are located on other nodes (remote operations).
Remote operations are wrapped and communicated to the
PastSet server on a remote node. Mob operations work on
one or two elements, each of which may be local or re-
mote.

PastSet

PastSet Server Application

libPastSet

User-level

Kernel-level
TCP/IP      VIA TCP/IP      VIA

Fig. 1. Layout of a node that supports PastSet

THE PASTSET APPLICATION LIBRARY handles ac-
cess to PastSet, including multiplexing between local and
remote execution paths.

All PastSet operations check to determine whether the
element that is to be operated on is hosted locally or re-
motely. If the element is hosted locally, the operation is
executed using the local PastSet Kernel. If the element is
hosted remotely, the operation is redirected to the PastSet
Server on the appropriate host. The server, upon comple-
tion, returns the answer through the application library to
the initiating process.

New tuples with additional space for communication
headers are also allocated via the application library.

THE PASTSET SERVER executes remotely issued
PastSet operations on local elements using the local Past-
Set Kernel. Since operations are blocking, the server
must be able to service several operations concurrently.

THE PASTSET KERNEL is a modified Linux kernel
that stores PastSet elements and services operations is-
sued by the local PastSet Server or the application library.

3. Implementing the PastSet Server and Ap-
plication Library

Two approaches to handling communication were
used in the PastSet server. The Single Thread approach
spawns a new thread for each new client connection. The
thread is given a pointer to the new connection and han-
dles that connection exclusively.
The Thread Pool approach uses a pool of threads, which
multiplexes handling of multiple connections.

The synchronous nature of PastSet necessitates a reply
with the result of an operation before the client can issue
a new operation. Consequently, there are two messages
for each remote operation.

The current implementation of the PastSet Application
Library can not handle multithreaded clients.



3.1. TCP/IP implementation

The client library uses ordinary TCP/IP connections to
remote servers. If an element is located on a remote node,
the operation and its parameters are sent over the TCP/IP
socket to the remote PastSet server. The client library
then blocks waiting for the reply from the server.

When using the Single Thread approach, the PastSet
server creates a new thread when a new socket arrives.
The newly created thread is given the file descriptor of
the socket and immediately tries to read data from the
socket. It blocks if there is no data available.

In the Thread Pool approach, when a connection is ac-
cepted, the file descriptor is added to the list of active
connections. A set of threads use the select() system call
to multiplex themselves between the active sockets. To
avoid race conditions, the select() call and the subsequent
read of a socket with data is protected with a mutex.

We disable the Nagle algorithm on all sockets to en-
sure that data is sent immediately.

3.2. M-VIA implementation

The PastSet server and the application library were
implemented using the M-VIA 1.0 [6] implementation of
the VIA API. We have used the message passing model
of VIA since the port from the TCP/IP implementation
was straightforward.

The NICs used do not support the doorbell mecha-
nism, and M-VIA has to emulate this in software. This
results in traps to the Linux kernel.

The Thread Pool model was implemented using VIA
Completion Queues. Because M-VIA is not thread safe
per VI we protected the calls to the Completion Queue
and the per VI operations using mutexes.

To reduce the CPU use of the PastSet server we used
blocking calls to wait for completed descriptors. M-VIA
implements these blocking calls by first spinning a few
times with the respective non-blocking functions to avoid
going to the kernel if the descriptor is already completed.

Tuples used in the application are allocated in memory
registered with the VIA NICs to reduce copying on send
and receive.

4. Methodology

This section documents the hardware and software
details of the experiments, how the timing measurements
were done, the micro-benchmarks, and the metrics used.

4.1. Hardware and Software

All experiments were done using one, two, or three HP
LX-Pro Net-servers, each having four 166MHz Pentium

Pro CPUs and 128MB main-memory, and dual peer
33MHz, 32 bit PCI buses. The level 2 cache size is 1MB
per processor. The computers were interconnected using
either Intel 82255 or Trendnet TE100-PCIA (with Tulip
chip set) NIC-cards connected to a hub. Both NICs, and
one 100VG NIC connected to the outside network, were
connected to PCI bus no. 0.

Linux v. 2.2.14 with PastSet functionality added to the
kernel was installed on each node participating in the ex-
periments. M-VIA version 1.0 with a minor patch to the
connection management was used. The benchmarks and
the PastSet Application Library were compiled with gcc
2.95.2 using optimization flags “-O6 -m486 -mjumps=2 -
malignloops=2 –malignfunctions=2.” M-VIA, The Past-
Set Server, the PastSet Kernel, and the Linux operating
system were compiled with egcs 1.1.2 using default flags.

For some experiments we could not get M-VIA run-
ning on the SMP-configurations. To circumvent this
problem, we had to resort to compiling the Linux kernel
to run as a single processor system rather than using all
four processors in a node.

4.2. Time Measurements

The Intel Pentium Pro RDTSC (read time-stamp
counter) instruction and the Linux gettimeofday system
call were used to determine PastSet operation latencies.

Using RDTSC, as in [17], the cycle count was re-
corded for every move and observe operation. Elapsed
time in microseconds was calculated by dividing the reg-
istered cycle count by the specified processor frequency
of 166 MHz. No attempts were made to verify the actual
frequency of each individual computer, leaving open the
possibility that the computed time may deviate slightly,
but consistently, from the performance measured in cycles
spent. Care was taken to avoid potential problems with
register overwrites and counter overflow.

The gettimeofday() system call was used for aggregate
measurements over many operation calls. Checks were
made to ensure that RDTSC and gettimeofday() meas-
urements were consistent.

Cache effects are not eliminated, but measurements are
averaged over 1000 iterations.

4.3. Micro-benchmarks and Metrics

Two micro-benchmarks that measure operation and
ping-pong latencies of the PastSet system were designed:

• Move latency (mvlat), observe la-
tency (oblat): Time to invoke, complete
and return from a move or observe operation.

• Ping-pong latency (pplat): Time to exchange
data between two processes using moveob-
serve.



The benchmarks were executed inside client processes
running both on the same computer as PastSet (“Local
Latencies”) and on remote computers. When using more
than one computer TCP/IP or M-VIA were used for
communication.

When doing the performance measurements each node
supported no other workload except for the operating
system and its various artifacts.

5. Micro-benchmark Results

5.1. Operation Latency Experiment Design

PastSet “operation latency” is defined to be the time
elapsed from a move, observe, or mob operation is
called until it has completed and returned successfully.
For observe operations it is assumed that enough tuples
are available in PastSet to prevent the operations from
blocking for lack of tuples. All necessary initializations
are done before starting time- or cycle measurements.
for(i=0; i<1000; i++)
{

save_timestamp;
mv(); 

}
save_timestamp;

Fig. 2: The Mvlat benchmark

The client process executes move or observe op-
erations. Data size per operation call is varied from zero
to 31KB. The elapsed time is measured for each operation
call. Each call is repeated 1.000 times. This is repeated
five times, and the average is computed.

Due to space constraints, results are shown only for
the move operation. The observe operation exhibit
slightly different behavior, but is close in performance.

Three experiments were designed to measure the la-
tency of the move operation:

• Local Move Latency: The client process and
PastSet are on the same node.

• TCP/IP Move Latency: The client process and
PastSet are on different nodes. TCP/IP is used
for intra-node communication.

• M-VIA Move Latency: The client process and
PastSet are on different nodes. M-VIA is used
for intra-node communication.

The latency experiments were conducted on the fol-
lowing configurations, using both SMP and uniprocessor
versions of Linux:

• A pool of threads is used in the PastSet server to
serve all connections (“Thread Pool”).

• A single thread is used in the PastSet server per
connection (“Single Thread”).

Because of problems experienced with M-VIA, the M-
VIA Move Latency experiment was conducted only for
the “single thread” version .

The configurations used for the experiments are
summed up in table 1.

Table 1: Configurations
Local Using M-VIA Using TCP/IP

SMP (Fig. 3
& 4)

Intel NIC,
Thread Pool
(Fig.3 & 4)

Intel NIC,
Thread pool
(Fig. 3 & 4)

Uni-
proc
essor

(Not
shown)

TREN
Dnet
NIC,
Single
thread
(Fig. 5)

TREND-
net NIC,
Thread
Pool
(Not
done)

TREND-
net NIC,
Single
thread
(Fig. 5)

TREND-
net NIC,
Thread
pool
(Fig. 5)

5.2. Move Latency Results

Fig. 3 shows move latencies for local (one node only)
communication, and for intra-node communication using
TCP/IP or M-VIA. Tuple sizes are varied from one byte
to 31KB. The results are measured using Linux in SMP
mode, a thread pool in the PastSet Server for data in/out
servicing, and using the Intel NICs.
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Fig. 3. The mvlat benchmark: Operation latency for
move

Fig. 3 shows that local move latency (clients and
server on same node) changes from about two to one or-
der of magnitude better than M-VIA or TCP/IP as tuple
size is varied from 1 byte to 32 KB. The difference in
performance is due to the extra overhead caused by net-
work communication and using the PastSet Server.



Fig. 4. The mvlat benchmark: move latency for
tuple size 4KB for 1000 measurements, SMP,

Thread

For small tuple sizes M-VIA move latency is less than
half the latency when using TCP/IP. With increasing tu-
ple size, the M-VIA advantage decreases to about 2/3 for
31 KB tuples. This is a large difference in absolute num-

bers. For one byte tuples, the difference between using
M-VIA and TCP/IP is 242 microseconds, while at 31KB
the difference is 1256 microseconds. We explain the ad-
vantage of M-VIA over TCP/IP partly by the user level
communication used by M-VIA and the faster traps to the
operating system. Other contributing factors are that M-
VIA does not compute checksums of the incoming pack-
ets, taking advantage of the properties of a local net.
However, TCP/IP uses the operating system much more
heavily, and does more copying than M-VIA. Fig. 4
shows the move latency of 1000 move operations for a
single tuple size, 4KB. The results are measured using
Linux in SMP mode, using a thread pool in the PastSet
Server for data in/out servicing, and using Intel NICs.

We have plotted three cases: local, TCP/IP and M-
VIA. The TCP/IP measurements include a few very high
(factor 10) values that we have removed from the plot.
We believe that these values are the result of 10ms time
slice events.

The results for the local move latency clearly show an
effect coming from the way PastSet implements receiving
and storing of tuples. The storage structure of PastSet
seeks to make it efficient to access the newest tuples.
Three levels of indirection are used to achieve this (“re-
verse I-nodes”). When a stream of tuples are sent to Past-
Set the cost of inserting them grows steadily until we are
at level three in the datastructure. This effect can be seen
in the local move latency plot, and to a lesser extent also
in the M-VIA plot.

The measurements show that M-VIA has a lower vari-
ance while TCP/IP gives a much more unpredictable la-
tency. We believe that the TCP/IP latency is long enough
to include relatively more events (including interrupts and
scheduling) happening in the total system resulting in a
high variance. Also, the thread pool in the PastSet Server
uses the select() system call when using TCP/IP. This
seems to be more expensive than using the VIA comple-
tion queue mechanism.

The results suggest that M-VIA and the way we use it,
even when using a slow 100Mbit network, is just fast
enough to let the basic behavior of the PastSet system
become visible in the measurements. This is due both to
the better latency of M-VIA and less variance.

TCP/IP does not reveal the behavior of PastSet, while
M-VIA does.



Fig. 5: The mvlat benchmark: move latency for tuple
size 4KB for 1000 measurements, Uniprocessor and
SMP, Single Thread and Thread Pool, TRENDnet
NIC.

Fig. 5 shows the move latency of 1000 move opera-
tions for a single tuple size, 4KB. The results are meas-
ured using Linux in uniprocessor mode, and TRENDnet
NICs are used. The PastSet Server uses a single thread for

each connection for the M-VIA, and a single thread or a
thread pool for the TCP/IP. We have not been able to use
a thread pool for the M-VIA measurements using
TRENDnet NICs due to problems with M-VIA.

The results from fig. 5 show that TCP/IP improves
significantly when using a single thread to handle the
benchmark connection as compared to using a thread
pool. TCP/IP is still slower than M-VIA, but the variance
has improved, and is just slightly worse than for M-VIA.
We explain this with the way the PastSet server handles
TCP/IP connections. In the single thread per connection
configuration there will almost always be a thread ready
to read incoming data, and this thread will be the same
every time. In the thread pool configuration a new thread
will serve each incoming packet. We believe this has im-
pact on the cache footprint giving more variance and
worse results. Also, the thread pool configuration exe-
cutes more instructions.

We have not been able to measure the move latency
when using M-VIA, TRENDnet NICs, and a thread pool
on a Linux uniprocessor configuration. If we assume that
M-VIA will behave about the same or better than TCP/IP,
then we can conclude that M-VIA is less influenced than
TCP/IP on whether a single thread or a thread pool is
used in the PastSet server. TCP/IP is much more sensitive
to this as can be seen by comparing the two TCP/IP re-
sults in fig. 5. We explain this difference in sensitivity to
the M-VIAs better utilization of user level communica-
tion.

Generally, TRENDnet NICs are faster than the older
Intel NICs.

5.3. Ping pong latency

PastSet “ping pong latency” is the time period elapsed
between the repeated lock stepped exchanges of a value
between two processes. What we measure will include
potential waiting by the two processes for each other to
rendezvous. All initializations have been done before we
start counting time.

gettimeofday();
for(i=0; i<1000; i++){
  mob(); // Exchange a value with
the other process
}
gettimeofday();

Fig. 6. The PPlat Benchmark

For the ping-pong latency performance measurements,
we execute the micro-benchmark using two processes.
Both processes loops doing a given number of mob() op-
erations. One process moves data to element e1, and tries
to pick up data from element e2. The other process moves
data to element e2 and tries to get data from e1. In this
way, the processes exchange data in a lock step fashion.



The data units range in size from zero to 31KB. The
elapsed time to exchange all data is measured, and the
time per exchange is computed. The step locked opera-
tions are repeated 1000 times to eliminate noise.

We did five ping-pong experiments (in the legend tag,
L means local, R means remote relative to the location of
PastSet):

• LL: The two processes and PastSet are on the
same computer.

• M-VIA LR: One process is on one computer, the
other process and PastSet are on another com-
puter. VIA is used for communication between
the two computers.

• TCP/IP LR: One process is on one computer, the
other process and PastSet are on another com-
puter. TCP/IP is used for communication be-
tween the two computers.

• M-VIA RR: The two processes and PastSet are
all on different computers. M-VIA is used for
communication between the three computers.

• TCP/IP RR: The two processes and PastSet are
all on different computers. M-VIA is used for
communication between the three computers.

The results presented in fig. 7 show that the ratio be-
tween using TCP/IP vs. M-VIA when the communication
processes are on two different nodes behaves as the same
ratio for the move latency. The advantage of using M-
VIA decreases when the tuple size increases. However,
M-VIA has a significantly better latency at all tuple sizes,
and especially for tuple sizes between 0-256 bytes.
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Fig. 7. The Pplat Benchmark

Fig. 7 also shows that for tuple sizes up to 2KB, using
M-VIA on a three-node configuration (RR) gives about
the same latency as when using TCP/IP on a two-node

configuration (LR). Thus, M-VIA is fast enough to make
up for the extra communication taking place.

6. Related work

Much effort has been put into cluster communication
using either a shared memory model or an explicit com-
munication model.

When comparing our results with the results reported
in [19] we find that the ratio between TCP/IP vs. M-VIA
latency is about the same and around 2.25-2.26.

Distributed Shared Memory implementations include
Princeton Shrimp SVM [8] and Rice TreadMarks [9].
Object based Distributed Shared Memory systems include
Orca [10]. Noteworthy examples of message-passing
systems include Message Passing Interface, MPI [11],
and Parallel Virtual Machines, PVM [12]. Less work has
been done using Structured Distributed Shared Memory.
The most well known systems include Linda [18], and
more recently, Global Arrays [13].

7. Conclusions

Porting PastSet from TCP/IP to M-VIA proved
straightforward. However, we have identified several
bugs or limitations of the M-VIA implementation we
used, and we still do not have a stabile system available.
When using a DSM system a predictable performance is desir-
able, and in addition to being faster, the latency of M-VIA is
more predictable than the latency of TCP/IP. Operations on
tuples of 256 or fewer bytes are twice as fast when using M-
VIA.

By using a standard API such as VIA, system design-
ers can achieve the benefits of user-level communication,
while still maintaining portability.
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