PyCSP — Communicating
Sequential Processes for
Python

John Markus Bjorndalen'

Brian Vinter?
Otto Anshus!

"Department of Computer Science, University of Tromse, Norway
*Department of Computer Science, University of Copenhagen, Denmark



Why PyCSP

m Internal research projects
= Simple prototyping, especially in projects that already use Python
m  Want to use CSP from Python

m cScience
m Python

m Script and integration language
m Prototyping

m Fasy to learn, readable code

m Plenty of tools and libraries

m CSP

m Simpler than message passing and shared memory?
m Teaching
m eScience

m (S students
m Show them CSP azd the implementation in a few lectures
m and let them tinker with it



Some goals

m Simple, short, and readable source code

® Should be easy to walk students through the code

m Pure python code

® Portable implementation that does not depend on
compiling extra libraries

m Reasonable performance



Simple PyCSP program

import time
from pycsp import x*

Channel1
TN

- a“_‘\ -‘
5 def P1(cin, cout):
) P | while True:
~_ 7 v = cin()
Channel2 print "P1, read from input channel:", v

time.sleep (1)
cout (v)

def P2(cin, cout):

i =20
while True:
cout (i)
~/pycsp/pycsp-0-1/test> python2.5 simple.py v = cin ()
read from input channel: print "P2, read from input channel:", v
read from input channel: i += 1
1, read from input channel: !
>, read from input channel:
read from input channel: chanl = (0One20neChannel ()

2, read from input channel: chan? One20neChannel ()
1, read from input channel: 3

), read from input channel: .
Parallel (Process (P1, chanl.read, chan2.write),

Process (P2, chan2.read, chanl.write))




Simplifying Process Syntax using
Python Descriptors

def process(func):
# 01d Code "Decorator for creating process functions”
def TestProc (n): def _call(*xargs, **xkwargs):
print "This is test proc", n return Process (func, *args, **xkwargs)

return _call

Sequence (Process (TestProc, 1),
Process (TestProc, 2),
Process (TestProc, 3))

# New code
@process
def TestProc2(n):

-Tags the function as a PyCSP process print "This is test proc", n

Sequence (TestProc2 (1),
TestProc2(2),
TestProc2(3))




Parallel and Sequence

class Parallel:
def __init__(self, *processes):

self .procs = processes

# run, then sync with them.

for p in self.procs:
p.start ()

for p in self.procs:
p-join ()

1
2
3
4
5
6
7
8
9

class Sequence:
def __init__(self, *processes):
self .procs = processes
for p in self.procs:

p.run ()




Alternative Example

final Skip sg = new Skip();

/S

final Guard[] guards = {inl, in2, sg}; // prioritised order
final int IN1 = 0, IN2 = 1, SG = 2; // index into guards

final Alternative alt = new Alternative (guards);

switch (alt.priSelect()) { _V:SP
case IN1:
x1 = inl.read () ;
break;
case IN2:
x2 = in2.read () ;
break ;
case SG:
break ;

PyCSP — returns the guard, not the guard index

ming that we already have two channel inputs:
Skip ()

Alternative(inl, in2, sg)

alt.priSelect ()

if ret != sg:
# Alt did not return the skip guard
print "Reading from the selected channel:", ret()




_ Commstime

2 def Consumer (cin):
"Commstime consumer process"
= 5000
ts time . time
tl = ts ()
cin ()
tl1 = ts ()
for i in range(N):
cin ()
t2 = ts ()
dt = t2-tl1
tchan = dt / (4 * N)

print "DT = %f.\nTime per ch : %f/(4x%d) = %f s = %f us" % \
(dt, dt, N, tchan, tchan * 1000000)

print "consumer done, posioning channel"

poisonChannel (cin)

CommsTimeBM () :

# Create channels

a = (One20neChannel("a")
b = 0One20neChannel("b")
c = One20neChannel("c")
d = 0One20neChannel ("d")

print "Running commstime test"

Parallel (Prefix(c.read, a.write, prefixItem
Delta2(a.read, b.write, d.write),
Successor(b.read, c.write),
Consumer (d.read))




Current state

® Implemented:

® Channels: One20ne, One2Any, Any20ne, Any2Any,
BlackHole

Channel Poison, and poison propagation

Processes

Parallel and Sequence constructs

Alternative

Guards: Guard, Skip, and input channels

Some components based on JCSP.plugNplay library

m Todo

= Network support
= More from plugNplay and core



Early Experiences

m University of Copenhagen, department of
Computer Science
students in Extreme Multiprogramming course:

m Offered occam, C++CSP, and JCSP
m Several opted for PyCSP

® Informal look-over seems to indicate that the
solutions using PyCSP were shorter and easier to
understand than solutions using statically typed
languages



Performance evaluation

Implementation Optimization min max avg

AMD, PyCSP 74.78us  88.40pus  84.81us
AMD, PyCSP Psyco 48.15us  5491pus  52.67us
R360, PyCSP 141.67pus 14251 pus  142.09pus
R360, PyCSP Psyco 89.50pus  91.57pus  90.37us
R370, PyCSP 128.14ps  129.12pus  128.61 s
Qtek mobile phone, PyCSP 6500/ 6500/s 6500/s

AMD, JCSP, w/SeqDelta 618 Qs 8.1us
Table 1 Commstime results




Application examples in the paper

m Radiation planning

m Circuit design

m Protein folding

B Commstime




Conclusions

m Python CSP library using Python 2.5+

B Attempt to keep the code simple, short and readable

m Farly experiences using PyCSP for teaching looks
promising

m Available from
http://www.cs.uit.no/~johnm/code/PyCSP/

B Recent:

m Alternative process syntax

® Network support through Pyro (channel poision does not
work propetly yet)


http://www.cs.uit.no/~johnm/code/PyCSP/

	PyCSP – Communicating Sequential Processes for Python
	Why PyCSP
	Some goals
	Simple PyCSP program
	Simplifying Process Syntax using Python Descriptors
	Parallel and Sequence
	Alternative Example
	Commstime
	Current state
	Early Experiences
	Performance evaluation
	Application examples in the paper
	Conclusions

