
GestureBased, TouchFree MultiUser Gaming on
WallSized, HighResolution Tiled Displays

Daniel Stødle, TorMagne Stien Hagen, John Markus Bjørndalen and Otto J. Anshus
Dept. of Computer Science

University of Tromsø
9037 Tromsø, Norway

{daniels, tormsh, jmb, otto}@cs.uit.no

ABSTRACT

We investigate the responsiveness of a touch-free multi-user
human-computer interface we have developed for a wall-
sized, high-resolution 28-tiled display. We adapted Quake 3
Arena (Q3A) and Homeworld to use the interface, and paral-
lelized them to run with high framerates on the display wall.
The interface comprises 16 cameras and 9 computers, us-
ing triangulation to detect object positions. The games use
the positions to identify hand and arm movements, mapping
them to keyboard and mouse events. The display wall can
be used by one or several simultaneous players.

To parallelize Q3A, we exploit its existing client-server ar-
chitecture and spectator-functionality. Each tile runs a spec-
tator, which displays its corresponding part of a given player’s
view. To parallelize Homeworld, we run a copy on each tile,
and synchronize the rendering of each new frame. Each copy
receives the same input and shares a global clock.

The intrinsic latency of the touch-free interface averages 140
ms, with about 100 ms from the cameras. We expect im-
provements in camera technology to reduce this. The time
to detect the simple gestures is insignificant. The framerate
for parallel Q3A was 398, vs. 21 when using Chromium to
distribute Q3A’s graphics output. Homeworld did not run us-
ing Chromium, but the parallel version achieved a framerate
that was always above 80. The framerates achieved by the
parallel games were well above the refresh rate of the projec-
tors used. Informal use of the touch-free interface indicates
that it works better for controlling Q3A than Homeworld.

INTRODUCTION

We have developed a touch-free multi-user human-computer
interface for wall-sized, high-resolution tiled displays. Users
standing in front of such a display wall can interact with ap-
plications using hand- and arm-gestures. Games are a class
of applications that require low-latency input. To investi-

gate the responsiveness of the touch-free interface, we ap-
plied it to two commercial, but open-source games1. The
two games were Quake 3 Arena (Q3A) [9] and Homeworld
[6], respectively a first-person shooter (FPS) and a real-time
strategy (RTS) game. Figure 1 shows two persons playing
Q3A against each other on a display wall. The person in the
middle is playing Homeworld.

Figure 1. Two persons playing Q3A and one person play-
ing Homeworld simultaneously on a 7x4 tile display wall.
Q3A runs on 2x2 tiles to the left and right, and Home-
world on 3x3 tiles in the middle.

For games, high framerates are important [4]. Maintaining
high framerates becomes increasingly difficult as the resolu-
tion goes up. The resolution of a typical desktop display is
about 2-3 megapixels, while the resolution of a display wall
ranges from 10 to 100 megapixels [11, 15]. Display walls
are usually built by arranging tiles with a resolution of 1-2
megapixels in a grid. One way to run games on display walls
is to use Chromium [8] to distribute the game’s graphics out-
put to the tiles. We measured the framerate when using Q3A
with Chromium, and found that when scaling up from 2x2
tiles to 7x4 tiles, the average framerate decreased from 73 to
21. We were not able to run Homeworld using Chromium.

To solve this, we parallelized both Q3A and Homeworld.
Q3A required parallelization to maintain high framerates be-
yond 2x2 tiles, and Homeworld required parallelization to
run on more than one tile. The result was that the games

1Only the game engines are open source. The data files still require
a license.

could run at high framerates on a tiled display wall com-
prised of 28 projectors, each driven by one computer and
arranged in a 7x4 grid, for a total resolution of 7168x3072
pixels.

The touch-free interface uses 16 cameras and 9 computers
to detect objects in front of the display wall, and is able to
detect multiple objects simultaneously at a rate of 30 Hz.
When three or more cameras see the same object, triangula-
tion can be used to determine the object’s position. We refer
to it as touch-free, as users can interact with the display wall
without actually touching its canvas. This is an important
advantage over existing solutions that require touch to work
[7], as our canvas is flexible and thus prone to perturbation
when users touch it.

The games were modified to accept position data from the
touch-free interface, and convert them into simple hand- and
arm-gestures. When a gesture is recognized, a correspond-
ing keyboard or mouse event is injected into the game’s input
event stream and handled normally by the game.

We used two different approaches to parallelize the games.
For Q3A, we run a client on each tile of the display wall. We
then exploit Q3A’s client-server based architecture and the
existing concept of a spectator. The server keeps the clients
in sync, and the spectator-concept enables different clients
to be configured so as to constantly follow a given player as
that player moves around. We also modify each spectator’s
view frustum in accordance with the tile it runs on to create
a coherent, multi-tile view for a given player.

Homeworld was parallelized by running a copy on each tile,
and ensuring that each copy gets the same input. All the
copies share a global clock and random number generator
seed. The goal is to make each copy compute the same game
state for each frame.

We conducted experiments to measure the latency of the
touch-free interface, as well as the framerate of the two games.
The experiments show that the time before an object’s po-
sition is available to the games averages 140 ms, with the
majority of this latency incurred by the FireWire-based cam-
eras. Game-side gesture-processing did not incur significant
latencies, due to the simple gestures involved. For Q3A, we
measure the framerate to be as much as an order of magni-
tude better than using Chromium [8]. Homeworld’s framer-
ate remains high, and outperforms the single-display config-
uration when running on both 2x2 and 3x3 tiles.

Our main contributions with this paper are (i) a distributed,
touch-free multi-user interface, (ii) a prototype system for
gesture-based input to games in the FPS and RTS genres,
(iii) an evaluation of the interface’s responsiveness when used
to interact with two games, and (iv) evaluation of three dif-
ferent approaches for making existing games run on display
walls.

RELATED WORK

The Quake-series of games have been popular targets for
modification and extension, both in terms of input devices

and display surfaces. Some examples include playing Quake
using Nintendo’s Wiimote, using eye-tracking to play Quake,
or controlling Quake from a PDA2. CaveQuake is a limited
re-implementation of Quake II and Q3A for use in a CAVE3,
but does not support all the features of the full games, and
for the Q3A case does not even support playing. We are
not aware of any work to integrate new input devices or new
display surfaces for Homeworld.

In [2], a gaming interface based on a commercially available
stool, “The Swopper,” is presented. The stool and a light
gun is used to produce joystick input events to control an
FPS game. By shifting the body weight and rotating on the
stool in combination with aiming and firing the gun, the user
can navigate and interact with the world. Our approach does
not use any external devices, but instead uses simple hand
and arm gestures to interact with the games. The large dis-
play wall also allows our system to support multiple players
playing at once. The stool-and-light-gun approach is more
expressive compared to our simple gestures, however.

Gesture VR [14] is a video-based, hand-gesture recognition
system. The system recognizes three gestures which are
used to provide applications with different input events, as
demonstrated by controlling Doom, an FPS game developed
by id Software. Their solution is centralized, using two syn-
chronized cameras connected to a single computer. We use
16 cameras connected to 8 computers, enabling us to cover
a larger area at the cost of a more complicated implemen-
tation. Our system can only recognize simple gestures (2D
position and radius of detected objects), while their system
allows for detection of 3D position and three different ges-
tures.

In [16], the authors argue that a digital table is a conduc-
tive form factor for general co-located home gaming. By
combining speech and hand gestures as input to two com-
mercial games, The Sims and Warcraft III, several persons
can interact with the games running on the tabletop. Our
solution is based on hand- and arm-gestures alone on wall-
sized displays. The physical dimensions of the display wall
enables more than a couple of people to play at once, against
each other or co-operatively. Further, we have modified the
source of the two games, enabling more flexible multi-point
interaction. The games they have used are not open source,
requiring that they build custom wrappers that translate touch-
and speech input to mouse and keyboard events.

The authors of [16] use the Diamondtouch [5] tabletop for
multi-touch interaction. Other technologies for multi-touch
interaction include [7], where infrared light is projected into
a canvas and internally reflected. The internal reflection of
the light is frustrated at points where the user touches the
canvas. The escaping light can be detected using a camera
mounted behind the canvas. Our system is based on detect-
ing the presence of objects directly, and does not require the

2http://www.youtube.com/watch?v=n1tsXc2RoeM
http://www.youtube.com/watch?v=3pRWYE2LRhk
http://www.youtube.com/watch?v=tNJXjNBgmLs
3http://www.visbox.com/cq3a/

user to actually touch the display wall’s canvas. In [13], the
author presents a camera-based solution to detecting and po-
sitioning objects in front of a whiteboard. The approach is
similar to ours, except that we take a distributed approach
with 16 commodity FireWire cameras connected to a set of
computers, whereas they use custom cameras with on-chip
processing to perform object recognition.

Chromium [8] is a system for distributing streams of ren-
dering commands, allowing many existing OpenGL appli-
cations to run on tiled display walls without modifications.
By making applications use Chromium’s OpenGL library,
Chromium can intercept rendering commands and forward
them to remote rendering nodes. We were not able to run
Homeworld using Chromium, and Chromium’s rendering
performance running Q3A did not scale well beyond 2x2
tiles.

In CaveUT [10], a set of modifications to Unreal Tournament
is presented that allows it to display in panoramic theaters.
They apply the same principle of using spectators to support
multi-tile rendering as we have done when modifying Q3A,
but do not present any measurements regarding the perfor-
mance of their approach. We measure the framerate and
document the latency incurred by using spectators in Q3A
to generate the tiled view.

DESIGN

Quake 3 Arena [9], developed by id Software, is an open-
source first-person shooter designed for multiplayer gaming.
It is based on a client-server architecture where the server
maintains the state of the game. At a fixed rate, indepen-
dent of the connected clients, the server updates its game
state, before broadcasting state changes to connected clients.
Clients use this to update their view of the game. A client
in Q3A is either a player or a spectator. A player is a client
that participates in the game. A spectator is a client that in-
stead of participating, follows one of the players around and
displays that player’s view of the game.

Homeworld [6] is a popular 3D real-time strategy game de-
veloped by Relic Entertainment. In September 2003, the
Homeworld engine was made open source. Although the
Linux version still lacks some of the features of the com-
plete game, including software rendering, cut-scene play-
back and networked multiplayer support, the game itself is
fully playable in single-player mode. In contrast to Q3A,
Homeworld has a monolithic design, with all code running
inside a single process.

Figure 2 shows the overall design of the touch-free interface,
and its use with Q3A and Homeworld. Images are captured
and then analyzed to locate objects in a plane parallel to the
the display wall’s canvas. The positions of these objects are
then processed by an object detector that yields the object’s
2D position and radius, before the resulting information is
sent to the two games. The two games process the data in-
dividually, using object positions and radii to detect gestures
and handle them in game-specific ways.

The design of the parallelized Q3A uses a modified player

Figure 2. The design of the touch-free interface, and its
use with Q3A and Homeworld.

that receives input from the touch-free interface. The player
then recognizes gestures and converts them to keyboard and
mouse events suitable for the game. The player relays its ac-
tions to the Q3A server, which then updates all clients with
the new game state. This causes the spectators following a
given player to update their view. For Homeworld, a single
copy is elected as a master. The master becomes responsible
for accepting and interpreting input from the touch-free in-
terface. After recognizing gestures, the input is handled and
broadcast to the slave copies. Figure 3 shows one configu-
ration of a 7x4 tiled display wall where two users can play
Q3A against each other, while a third user simultaneously
plays Homeworld. This configuration is identical to the one
pictured in Figure 1. Several other configurations are also
possible.

Figure 3. Running Q3A and Homeworld on a 7x4 display
wall. To the left and right, two Q3A players control a set
of Q3A spectators. In the middle, a single Homeworld
master synchronizes the rendering and game simulations
of 8 Homeworld slave copies.

Hand and armgestures

When playing an FPS using a mouse and keyboard, the mouse
is used to aim and fire, and the keyboard is used for move-
ment. In addition, the mouse’s scroll wheel is often used to
switch weapons, and the keyboard to control other actions
the player can take (ducking, jumping, etc.). We used the
following gestures, summarized in Table 1, for controlling
Q3A. When only one hand is detected by the input system,

its position is used for controlling the player’s aim. When
the hand is tilted (making it flat), it will additionally fire the
player’s weapon. When two hands are detected, the right
hand controls aim and firing, and the left hand is used to
move the player forwards or backwards. Figure 4 illustrates
the gestures.

Action Gesture

Aim Move right/only hand
Fire weapon Flat right/only hand
Move forward Vertical left hand
Move backward Flat left hand

Table 1. The gestures in Q3A that the game recognizes
and maps to actions.

Figure 4. Gestures for controlling Q3A. (a) Using a “ver-
tical” hand to control the player’s aim. (b) Controlling
aim and firing by making the hand flat. (c) Moving and
aiming simultaneously using both hands.

Homeworld uses a different control scheme. When using a
keyboard and mouse, the main controls can all be accessed
with the mouse, and the keyboard is mostly used for short-
cuts for different menu selections and buttons. When no
mouse buttons are pressed, the mouse simply controls an
on-screen cursor. Holding down different mouse buttons,
the user can pan and zoom the camera, as well as select en-
tities and manipulate them from a contextual menu. Table 2
lists the different actions in Homeworld, and our mapping to
gestures. The cursor is controlled using a one-to-one map-
ping from hand location to screen. When the right/only hand
is flat (like the fire-gesture in Q3A), the user can select or
click items. The user can enter or leave Homeworld’s tacti-
cal view using a vertical left hand. With a flat left hand, the
user can either invoke Homeworld’s contextual menu (for
moving ships, creating formations, and so on), or panning
the camera (by simultaneously moving the right hand). Fi-
nally, the user can zoom the camera in and out using a flat

left and right hand, varying the distance between them to
control the amount of zoom.

Action Gesture

Control cursor position Move right/only hand
Select/click entities Flat right/only hand
Pan view/contextual menu Flat left hand
Toggle tactical view Vertical left hand
Zoom Flat left and right hand, dis-

tance between hands control
zoom factor

Table 2. Actions in Homeworld and their corresponding
gestures.

IMPLEMENTATION

Figure 5 shows the architecture of the touch-free multi-user
interface. The interface makes use of 16 FireWire cameras,
connected in pairs to 8 Mac minis. The cameras are mounted
along the floor, enabling the detection of objects in a plane
parallel to the display wall’s canvas. The cameras capture
images at 30 FPS. Each image is processed by subtracting
the background, removing noise and thresholding the result
to identify objects (which are typically hands or arms). This
yields zero or more pairs of 1D position and radius. Each
Mac mini sends its identified positions and radii via an event
server to a MacBook Pro that determines the position of each
object in 2D space using triangulation (Figure 6). The re-
sulting 2D positions and radii are sent via the event server
to either Homeworld or Q3A. The event server’s role is to
distribute events of different kinds to software used with the
display wall.

Figure 6. 16 cameras positioned below the display wall’s
canvas is used to triangulate the position of different ob-
jects. Each camera has a 42 degree field-of-view, captur-
ing images at 30 FPS with a resolution of 640x480 pixels
in 8-bit grayscale.

We modified Q3A and Homeworld to receive object position
events from the touch-free interface, and then interpret them
according to the gestures outlined in the previous section.
When a gesture is recognized, events corresponding to the
action associated with the gesture is injected into the game’s
input event stream. Depending on the relative amount of
movement detected, mouse events can be generated, and the

Figure 5. The architecture of the touch-free interface.

object’s radius is used to determine whether it is interpreted
as a flat hand or a vertical hand.

The software for capturing images, detecting and position-
ing objects was implemented for Mac OS X in Objective-C
and C, using libdc13944 to communicate with the FireWire
cameras.

Quake 3 Arena and Homeworld on Tiled Display Walls

Running Q3A and Homeworld on a tiled display wall re-
quires that each tile displays a part of the total view for each
game. To achieve this, the view frustum used by OpenGL
for both Q3A and Homeworld must be modified in relation
to the tile on which the game runs.

Figure 7. Example Q3A configuration on a display wall.
The upper left corner shows the player, while the remain-
ing four clients are spectators following that player, with
modified view frustums to match the tiles on which they
run.

4http://libdc1394.sourceforge.net/

For Q3A, we control the parallel version by configuring a set
of environment variables, and then reading them from within
the game. The variables control how the view frustum is
configured, as well as whether or not a client is designated
as a player or a spectator, and which player a given spectator
follows. Due to the client-server architecture of Q3A, this is
sufficient to create a parallel version that will run on the dis-
play wall. Figure 7 shows a player in the upper-left corner,
with four spectators following that player, as it would appear
on a tiled display wall.

To parallelize Homeworld, we could not use the same ap-
proach as for Q3A, as Homeworld does not support the con-
cept of a central server to coordinate a set of clients. Instead,
we run several tightly coupled copies and manually ensure
state consistency between them. Each copy runs on one tile,
and the Message Passing Interface (MPI) [3] is used to ex-
change state information and keep the copies synchronized.
One copy is elected as master, and the remaining copies be-
come slaves. For each frame, the master accepts input from
the touch-free interface and broadcasts it to the slaves. Be-
fore starting a new frame, all the copies synchronize at a bar-
rier. This ensures that each slave receives the same input dur-
ing the same simulation step in the game, and makes the vi-
sual display synchronized. To ensure that each copy’s game
simulation runs identically on all nodes, the same value is
used to seed each copy’s pseudo-random number generator.
Finally, all copies share a global clock controlled by the mas-
ter. The drawback to a state-synchronizing solution like this
is that it requires great familiarity with the source code in or-
der to guarantee that all the game simulations end up running
identically.

EXPERIMENTS

We have conducted three experiments to evaluate our work.
The first experiment’s goal was to determine the latency in-
volved in using the touch-free interface, to evaluate if it is
low enough to be usable for controlling games. For the
next two experiments, the goal was to measure the render-
ing performance of Q3A and Homeworld, when using either
Chromium or our parallel versions.

The hardware used was (i) a display cluster with 28 nodes
(Intel Pentium 4 EM64T, 3.2 GHz, 2 GB RAM, HyperThread-
ing enabled, NVIDIA Quadro FX 3400 with 256 MB Video

RAM, running the Rocks cluster distribution 4.0) connected
to 28 projectors (1024x768, arranged in a 7x4 matrix), (ii)
switched, gigabit Ethernet, (iii) 8 Mac minis (1.66 GHz In-
tel Core Duo, 512 MB RAM, Mac OS X 10.4.8), (iv) 16
Unibrain Fire-i FireWire cameras, (v) a MacBook Pro (2.33
GHz Intel Core 2 Duo, 3 GB RAM, Mac OS X 10.4.8). Each
Mac mini was connected to two cameras. The MacBook Pro
was used to run the object detection software.

Latency Measurements: Methodology and results

Referring to Figure 5, there are five areas where significant
latency may be introduced: (1) The time taken from the cam-
era captures an image, until the image is available to a Mac
mini for processing, (2) the time taken by the Mac mini to
process the image, (3) the time taken to transfer processed
data over the network to the MacBook Pro, (4) time taken by
the MacBook Pro to detect objects using information gath-
ered from all the Mac minis, and (5) the time taken to dis-
tribute the resulting object positions to the two games.

For Q3A, there is one additional, latency-inducing step. This
step is the time from a gesture is recognized, until the action
caused by the gesture is shown by the spectators. This la-
tency stems from the required round-trip from a Q3A player
via Q3A’s server to the spectators.

The camera-induced latency is measured by pointing a cam-
era at the screen attached to a computer capturing images
from the camera. The computer’s screen is initially black,
before it is turned white. At this point, a timer starts. The
timer stops when the images captured by the camera show
a white screen, with the resulting latency being the elapsed
time since the timer was started.

The processing-sensitive latencies (2 and 4) are measured by
measuring typical execution times for the code that respec-
tively performs image processing and object detection. The
network latencies are measured by measuring the time taken
to send a message from one computer via an event server to
the target, and receiving a reply (similar to ping).

To avoid modifying Q3A’s server, we determine the added
latency in Q3A as follows. When the player fires his weapon,
the Q3A engine will cause a weapon-fire sound to be played.
We hook into the sound-playing code and start a timer when
that sound is played. Each spectator reports back to the
player when it plays a weapon-fire sound, yielding a rough
estimate of the latency from when something happens at the
controlling player, until it is visible to the spectators.

Figure 8. The latency from when the cameras grab im-
ages, until positions of objects are available for process-
ing by either Q3A or Homeworld. Each measurement
represents an average measure of the latency.

The results from our latency measurements are summarized
in Figure 8. The additional latency introduced through Q3A’s
client-server architecture is shown in Figure 9. The average
latency before an object’s position is available to either game
is 140 ms. The camera-induced latency is the greatest con-
tributor, at about 100 ms. Object detection requires about 33
ms. For Q3A, the added latency averaged 87 ms with a stan-
dard deviation of 59 ms, with 1287 samples gathered from 9
spectators.

Figure 9. The additional latency as input events are deliv-
ered to a Q3A player, sent to the server and finally made
visible by the spectators.

Rendering Performance: Methodology and results

The metric used to measure the performance of Q3A and
Homeworld is frames per second. For both Q3A and Home-
world, input events are recorded over a period of about 30
seconds. For each experiment, the game is started in a known
state, and the input events are played back5. During play-
back, the framerate is logged continuously.

We ran both Homeworld and Q3A in four different configu-
rations, with 1, 4, 9 and 28 rendering nodes. For Q3A, we
limited the framerate to 500, and measured the performance
both when using Chromium to distribute the rendering, and
when running the parallel version. The Q3A server used ran
locally on the same network. For Homeworld, which we
were not able to run using Chromium, we only measured
framerate for the parallel version, and compared its perfor-
mance to running Homeworld on a single display.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

F
ra

m
e
s
/s

e
c
o
n
d

Time (s)

Quake 3 Arena framerate for parallel implementation and using Chromium

Q3A w/Chromium, 2x2 tiles

Q3A w/Chromium, 3x3 tiles

Q3A w/Chromium, 7x4 tiles

Parallel Q3A, 7x4 tiles

Chromium, 3x3 tiles

Chromium, 2x2 tiles

Chromium, 7x4 tiles

Modified, 7x4 tiles

Figure 10. The framerate when running Q3A on 2x2, 3x3
and 7x4 tiles using Chromium, compared to the parallel
version’s framerate running on 7x4 nodes.

5This is similar to measuring Quake performance by running a
timedemo. The timedemo mechanism already in Quake does not
work for our parallel version, as it is designed to run on a single
computer only.

Figure 10 shows the results from Q3A experiments. The
peak performance with Chromium on 4 rendering nodes (2x2
tiles) is 148 FPS, and the average at 73. For 9 (3x3 tiles)
nodes, the peak FPS is 97 and the average is 47, and for 28
nodes (7x4 tiles) the peak is 51 and the average 21 FPS. The
figure only lists the results from the parallel version running
on all 28 nodes - the reason is that there are no major differ-
ences in performance when varying the number of rendering
nodes for the parallel version. The maximum framerate for
the parallel version was 666, and the average framerate was
398.

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

F
ra

m
e
s
/s

e
c
o
n
d

Time (s)

Homeworld framerate for various tile configurations

Single display

2x2 tiles

3x3 tiles

7x4 tiles

Single display

2x2 tiles

3x3 tiles

7x4 tiles

Figure 11. The framerate when running Homeworld on
a single display, compared to running it on 2x2, 3x3 and
7x4 tiles.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

N
u
m

b
e
r

o
f
fr

a
m

e
s

Time (s)

Homeworld framecount for various tile configurations

Single display

2x2 tiles

3x3 tiles

7x4 tiles

Single display

2x2 tiles

3x3 tiles

7x4 tiles

Figure 12. The total number of frames drawn when run-
ning Homeworld on a single display, compared to 2x2,
3x3 and 7x4 tiles.

Figure 11 shows the results from measuring Homeworld’s
framerate, while Figure 12 shows the cumulative number of
frames shown by the game during the experiment. The fram-
erate varies much more compared to the Q3A measurements.
The maximum framerate for Homeworld running on a single
tile, 2x2, 3x3 and 7x4 tiles were respectively 311, 353, 250
and 231. The respective average framerates were 168, 183,
169 and 143. Figure 12 shows that running Homeworld on

both 2x2 and 3x3 tiles performs better than running it on a
single display. The framerate was never lower than 80 for
any of the configurations.

DISCUSSION

In [12], the authors investigate the effect of lag (i.e, latency)
on human performance in interactive systems. As latency
goes up, accuracy deteriorates and time to perform tasks in-
creases. For this reason, it is important for the touch-free
interface to provide input with as low latency as possible.
In [1], the authors show that Q3A players prefer using Q3A
servers where their average ping6 is no more than 150-180
ms. The touch-free interface has a latency of 140 ms, and
the average latency from the parallelized Q3A implementa-
tion is 87 ms. This gives a total latency of 227 ms, 47 ms
more than the maximum preferred latency. The latency for
Q3A fluctuated with a standard deviation of 59 ms, which
may be an artifact of the latency measuring experiments, or
a result of the Q3A server experiencing varying loads. The
biggest contributor to latency in the touch-free interface are
the cameras. Improvements in the cameras, I/O bus and OS
may reduce this latency. The next-biggest contributor is the
object detector. The detector waits for all the cameras to
provide data before triangulating object positions. This syn-
chronizes the cameras, using only fresh data from each cam-
era for the triangulation. This results in improved accuracy.
The cameras all run at 30 FPS, which corresponds well with
the 33 ms average latency from the object detector. With
cameras running at higher framerates, the latency incurred
by object detection will be reduced, as less waiting will be
required in order to ensure fresh data from each camera.

One problem with the touch-free interface is that its accu-
racy for positioning objects decreases as the objects move
faster. This is caused by the use of many different cameras to
capture images. Although each camera operates at the same
framerate, they capture images at slightly different points in
time. For a moving object, this results in the object appear-
ing at different positions for different cameras. When these
positions are used to triangulate an object’s 2D position, the
result is inaccurate. These inaccuracies appear as jitter in the
object’s vertical position. The horizontal position is also af-
fected, although not as much as the vertical position. This
problem can be alleviated by using cameras with higher im-
age capture rates, or cameras where the image capture can
be synchronized.

By utilizing Q3A’s existing architecture when parallelizing
it, we were able to rapidly port the game to the display wall’s
cluster. When running Q3A on the entire display wall, the
framerate for the parallel version was an order of magnitude
higher than the framerate achievable using Chromium. The
performance penalty was an 87 ms increase in the latency
from a player takes an action until it is visible on the dis-
play wall. This latency is independent of the input system
used (keyboard/mouse or touch-free interface). Even bet-
ter results may be achieved by parallelizing the game from

6The latency from a player takes an action until it becomes observ-
able by other players.

scratch, but at the cost of a much greater effort in paralleliz-
ing it.

Homeworld’s architecture made it possible to parallelize it
by running synchronized copies on the tiles. However, to de-
termine where to synchronize, we had to analyze the game
engine, identifying all places where data is used that could
impact the game simulation. At these places the copies must
synchronize in order to use identical data. Finding all these
synchronization points is difficult, and we have not verified
that we have been able to identify all of them. We have
only played the game’s first level. To better check that all
synchronization points have been identified, the entire game
should be played from start to finish. Even then, minor bugs
and timing issues can also potentially skew the copies out of
sync. For these reasons, parallelizing Homeworld required
more effort than parallelizing Q3A.

When running Homeworld on 2x2 and 3x3 tiles, the parallel
version gave higher framerates compared to running Home-
world on a single tile. We did not parallelize the simulation
itself, and all copies run the same simulation on the same
data. Additionally, there is an increased overhead from syn-
chronizing the copies. The fact that we still achieve a higher
framerate for these tile configurations, is because the tiles
share the rendering workload. For the 7x4 configuration, the
framerate is lower than for a single display. We hypothe-
size that this is due to increased synchronization overhead,
mainly from the MPI barriers used. We have not verified
this.

Our expectations prior to implementing touch-free, multi-
user support in Q3A and Homeworld were that using ges-
tures to control Q3A would be awkward and difficult, while
gestures for controlling Homeworld would be more natural
as the pace of the game is slower and the gestures similar to
emulating a mouse. Although we haven’t conducted any for-
mal user studies, our initial, subjective experiences indicate
that the touch-free interface was more natural when control-
ling Q3A than controlling Homeworld. There are several
potential explanations, including the characteristics of the
touch-free interface and the intrinsics of the games.

CONCLUSION

We have presented a touch-free, multi-user interface for con-
trolling applications on wall-sized, high-resolution tiled dis-
plays, and measured its responsiveness for controlling games.
Games are useful in this context, as they generally require
low-latency input to be playable.

Display walls provide high resolution by tiling a set of inde-
pendent displays in a grid. The tiles are usually driven by a
cluster of computers. The cluster-based architecture makes
running existing games difficult, especially if good perfor-
mance is to be maintained. This is due to the fact that prac-
tically no games are written to run on a cluster of computers
or use more than a few displays.

We modified Quake 3 Arena (Q3A) and Homeworld, a first-
person shooter (FPS) and real-time strategy (RTS) game,

to run on a display wall, converting input from the touch-
free interface to hand- and arm gestures. Players control the
games by using one or both hands. The gestures for the two
games are similar, but interpreted in different ways by the
two games. We did not conduct any formal user studies to
determine how well the gestures worked, but our subjective
experiences indicate that using gestures to play Q3A works
quite well, and better than controlling Homeworld.

The touch-free interface is built using 16 cameras and 9 com-
puters. To determine the interface’s responsiveness, we mea-
sured the latency between its different components. The to-
tal latency incurred by the interface was 140 ms. Of this, the
biggest contributor was capturing images from the cameras,
which incurred a latency of 102 ms. The touch-free inter-
face’s architecture is currently bound latency-wise by exist-
ing camera-technology. As camera technology improves, the
intrinsic latency of cameras can be reduced, which will di-
rectly affect the latency of the touch-free interface. Cameras
with higher image capture rates will also result in lower la-
tencies for the object detector. This is because the detector
can wait for shorter amounts of time before it has the most
recent image data from all cameras. Another benefit from
the architecture is that all image processing is done locally
by each computer capturing image data. This reduces the
amount of data required to be processed by the object detec-
tor by several orders of magnitude.

To run the games on the display wall, the games were paral-
lelized. For Q3A, this was necessary to maintain high fram-
erates when running the game on more than 2x2 tiles. Home-
world did not run on more than one tile of the display wall
at all before being parallelized. Q3A was parallelized by ex-
ploiting its client-server architecture, and configuring a set
of spectators to follow a given player. Each spectator’s view
was modified according to the tile on which it ran, resulting
in several spectators contributing to a multi-tile view. Home-
world was parallelized by running a copy on each tile, and
by keeping the copies’ input and state synchronized.

We found the spectator-concept in Q3A to be useful in creat-
ing a parallel version of the game. We consider the spectator-
concept as a single data, multiple view model. Homeworld
did not support a similar model, requiring a much more labor-
intensive effort to parallelize it. For this reason, we expect
games with support for a single data, multiple view model
to be more easily parallelizable for tiled display wall envi-
ronments than other games. The drawback to using spec-
tators for the purpose of parallelizing Q3A, is an increase
in latency. No similar additional latency was measured in
Homeworld.

For Q3A, we measured the performance of the sequential
version using Chromium to display on one to 28 tiles. We
were not able to run Homeworld at all using Chromium. For
the parallel versions of the games, we measured their fram-
erates running on one to 28 tiles. For Q3A, the parallel ver-
sion runs with an average framerate of 398, an order of mag-
nitude better than the sequential version’s framerate of 21.
The framerate of the parallel Homeworld was highest using

four tiles and lowest using 28 tiles. The framerate was con-
sistently above 80 regardless of the number of tiles used.

The high framerates, even for the 7x4 tile configuration with
7168x3072 pixel resolution (average 143 for Homeworld and
398 for Q3A), indicates that the parallelized games will scale
to more tiles and higher resolutions. The framerates are well
beyond what is displayable by a typical 60 Hz LCD panel,
or in our case projectors with a 60 Hz refresh rate.

For Q3A, the overhead directly introduced by the parallel
version results in an increase in latency of 87 ms. This is due
to the player-server-spectator setup, and comes on top of the
latency introduced by the touch-free interface. However, the
touch-free interface’s latency is bound by cameras, thus a re-
duction in its latency can be expected as camera technology
improves. This will partially offset the effects of the latency
induced by the player-server-spectator setup.

For Homeworld, the overhead of parallelization is mainly
due to synchronization, as all the copies run in lock-step. In
Q3A, the game simulation runs on a centralized server with
each client showing a view of that simulation. In Home-
world, each copy runs its own simulation but with central-
ized synchronization of data.

ACKNOWLEDGMENTS

The authors wish to thank Espen S. Johnsen and Tore Larsen
for their discussions, as well as the technical staff at the CS
department at the University of Tromsø. This work has been
supported by the Norwegian Research Council, projects No.
159936/V30, SHARE - A Distributed Shared Virtual Desk-
top for Simple, Scalable and Robust Resource Sharing across
Computer, Storage and Display Devices, and No. 155550/420
- Display Wall with Compute Cluster.

REFERENCES

1. Grenville Annitage. An experimental estimation of
latency sensitivity in multiplayer quake 3. In ICON
2003: Proceedings of the 11th IEEE International
Conference on Networks, pages 137–141, 2003.

2. Steffi Beckhaus, Kristopher J. Blom, and Matthias
Haringer. A new gaming device and interaction method
for a first-person-shooter. In Proceedings of the
Computer Science and Magic 2005, 2005. GC
Developer Science Track.

3. Greg Burns, Raja Daoud, and James Vaigl. LAM: An
Open Cluster Environment for MPI. In Proceedings of
Supercomputing Symposium, pages 379–386, 1994.

4. Mark Claypool, Kajal Claypool, and Feissal Damaa.
The effects of frame rate and resolution on users
playing first person shooter games. In Proceedings of
ACM/SPIE Multimedia Computing and Networking
(MMCN), January 2006.

5. Paul Dietz and Darren Leigh. DiamondTouch: a
multi-user touch technology. In UIST ’01: Proceedings
of the 14th annual ACM symposium on User interface

software and technology, pages 219–226, New York,
NY, USA, 2001. ACM Press.

6. Relic Entertainment. Homeworld.
http://www.relic.com/rdn/,
http://www.homeworldsdl.org/ and
http://www.thereisnospork.com/projects/homeworld/.

7. Jefferson Y. Han. Low-cost multi-touch sensing
through frustrated total internal reflection. In UIST ’05:
Proceedings of the 18th annual ACM symposium on
User interface software and technology, pages
115–118, New York, NY, USA, 2005. ACM Press.

8. Greg Humphreys, Mike Houston, Ren Ng, Randall
Frank, Sean Ahern, Peter D. Kirchner, and James T.
Klosowski. Chromium: a stream-processing framework
for interactive rendering on clusters. In SIGGRAPH
’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
693–702, New York, NY, USA, 2002. ACM Press.

9. id Software. Quake 3 arena.
http://www.idsoftware.com/ and http://ioquake3.org/.

10. Jeffrey Jacobson and Zimmy Hwang. Unreal
Tournament for Immersive Interactive Theater.
Commun. ACM, 45(1):39–42, 2002.

11. Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark,
Perry Cook, Stefanos Damianakis, Georg Essl, Adam
Finkelstein, Thomas Funkhouser, Timothy Housel,
Allison Klein, Zhiyan Liu, Emil Praun, Rudrajit
Samanta, Ben Shedd, Jaswinder Pal Singh, George
Tzanetakis, and Jiannan Zheng. Building and Using A
Scalable Display Wall System. IEEE Comput. Graph.
Appl., 20(4):29–37, 2000.

12. I. Scott MacKenzie and Colin Ware. Lag as a
determinant of human performance in interactive
systems. In CHI ’93: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 488–493, New York, NY, USA, 1993. ACM
Press.

13. Gerald D. Morrison. A camera-based input device for
large interactive displays. IEEE Computer Graphics
and Applications, 25(4):52–57, 2005.

14. Jakub Segen and Senthil Kumar. Gesture VR:
Vision-based 3D hand interace for spatial interaction.
In MULTIMEDIA ’98: Proceedings of the sixth ACM
international conference on Multimedia, pages
455–464, New York, NY, USA, 1998. ACM Press.

15. Bram Stolk and Paul Wielinga. Building a 100 Mpixel
graphics device for the OptIPuter. Future Gener.
Comput. Syst., 22(8):972–975, 2006.

16. Edward Tse, Saul Greenberg, Chia Shen, and Clifton
Forlines. Multimodal multiplayer tabletop gaming. In
PerGames ’06: Proceedings of the 3rd International
Workshop on Pervasive Gaming Applications, 2006.

