

Device-Free Interaction and
Cross-Platform Pixel Based

Output to Display Walls

Daniel Stødle

June 2009

A dissertation for the degree of Philosophiae Doctor

UNIVERSITY OF TROMSØ
Faculty of Science

Department of Computer Science

Abstract

Interacting with computers can be accomplished with or without devices. Interac-
tion using devices like mice, keyboards, gloves, or gesture recognition based on
tracking passive or active markers, can be restrictive and impractical when used to
interact with high-resolution, wall-sized, tiled displays. Devices must be carried
around, or markers must be attached to a user’s clothes or body before interaction
can be detected. Device-free approaches that recognize gestures without requiring
markers are limited either in the size of the area they can cover, their ability to track
objects in 3D, the number of simultaneous users or the number of computers they
can target.

Extending a computer’s display area using additional displays can be accomplished
using the built-in graphics hardware or using software. The graphics hardware re-
quires tethering the displays and limits the number of available pixels. However,
the performance is good. Software approaches can remove the tethering require-
ment, but are either limited to mirroring an already existing display, limit the num-
ber of displays, limit the number of pixels or do not extend the display area in
a transparent manner to applications. Their performance is lower than using the
built-in graphics hardware.

This dissertation presents two concepts: (i) Multiple Interaction Spaces; and (ii) the
Pixel Space. An interaction space is a volume within which interaction is detected.
It is not bound to any given user or computer. Instead, the interaction space is
shared between users and computers. The size of an interaction space is variable,
and interaction within it is detected in up to three dimensions. The space can be
used alone or in complement with other interaction spaces. The Pixel Space is a
collection of pixel resources on which computers can display pixels. Through the
pixel space, cross-platform sharing of pixel output can be realized. Pixels are made
available over a network, and are shared between computers.

Several systems are realized based on these two concepts. Three interaction space
systems are built using cameras and microphones to detect and locate objects and
sound sources: (i) Camera-sense: 16 cameras and 8 computers detect objects and
determine their location and extent in 3D; (ii) Snap-detect: 4 microphones and 1
computer detect snap- and clap-like sounds and determine their location in 2D;

iii

iv Abstract

(iii) Arm-angle: A single, steerable camera is used to determine the angle at which
a user’s arm or other straight object is pointing. Together, these systems realize
device-free, marker-less gesture- and sound-based interaction in two and three di-
mensions for arbitrary applications on a display wall. Several applications are built
or modified to utilize input from the systems, including an image viewer, a genomic
microarray visualization, a virtual billboard and two games.

Two pixel space systems are built and used with up to 30 displays and computers:
(i) The 22 megapixel laptop system extends a computer’s display area by utilizing
30 network accessible displays, ranging from handheld displays to a display wall;
(ii) the De-centralized VNC (DVNC) system improves pixel sharing performance
on tiled display walls by delegating some pixel distribution tasks from a VNC
server to VNC viewers.

Three principles are formulated based on the concepts and systems developed: (i)
Orthogonal interaction mechanism: The interaction mechanism is realized inde-
pendently of the computers one wants to interact with, making the process of de-
tecting interaction into a property of the environment; (ii) “where, not what:” De-
termining where something is, rather than what that something is, is sufficient to
enable interaction; and (iii) pixels as network-available resources: The number of
pixels available to a computer is determined by the environment, and not only its
local pixel resources.

The Camera-sense system is evaluated by conducting experiments to measure its
end-to-end latency, accuracy and precision. The system determines object loca-
tions with a latency of 113.66 ms, an accuracy of 1.24 cm and a precision of 0.72
cm. The two pixel space systems are evaluated by conducting experiments to mea-
sure their pixel update rate, bandwidth and CPU load. The 22 megapixel laptop can
drive a single display at 25 frames per second, and a 22 megapixel display wall at
1.03 frames per second. DVNC improves the pixel update rate of VNC on display
walls by a factor of 11.88 for certain update operations, while reducing VNC server
bandwidth usage and CPU load. The bottleneck preventing better performance in
both systems is a scarcity of local CPU and memory bandwidth resources.

Acknowledgements

It’s been a wild ride.

I thank my advisor, Professor Otto J. Anshus, for his discussions, patience, per-
sistence and continued motivation that kept urging me to build and research ever
more interesting systems, and for his guidance, critical comments and insights in
distilling the results into the papers that form the foundation of this dissertation. I
also thank him for the numerous cups of coffee we have shared, and the many ideas
we developed while drinking them.

I also thank my co-advisor Associate Professor John Markus Bjørndalen, for his
ideas, discussions and numerous comments, and Professor Tore Larsen for his help
and support. I thank Professors Kai Li and Olga Troyanskaya for inviting me to
join them for a year at the Department of Computer Science at Princeton Univer-
sity, and for supporting my research with their continued enthusiasm and fruitful
discussions. Thanks to their support, my camera-based interaction system is in use
with an application supporting genomic researchers.

I thank my fellow graduate students, Tor-Magne Stien Hagen and Espen S. Johnsen,
for their discussions and ample distractions throughout the work on my Ph.D. Their
presence in the lab made the long days interesting when the systems – on very rare
occasions – were not. I’m also grateful for the discussions I’ve had with Lars Ailo
Bongo both in Tromsø and in Princeton, and my conversations with Karl Gunnar
Aarsæther which have been a source of inspiration and ideas. I’d like to also thank
my friends and family for supporting me throughout the work on my dissertation.

I deeply acknowledge the help and assistance I have received from the technical
and administrative staff at the Department of Computer Science in Tromsø: Jon
Ivar Kristiansen, Kai-Even Nilssen, Maria Wulff Hauglann, Svein Tore Jensen and
Jan Fuglesteg. I would especially like to acknowledge the efforts made by Ken-
Arne Jensen, which range from drilling holes in the wooden camera mounts in
Tromsø, to building strips of infrared LEDs by laboriously soldering several hun-
dred individual LEDs, and for fixing the coffee machine on more than one occasion.

I gratefully acknowledge the funding I have received from the Norwegian Research
Council as part of the following projects: (i) 159936/V30, SHARE - A Distributed

v

vi Acknowledgements

Shared Virtual Desktop for Simple, Scalable and Robust Resource Sharing across
Computer, Storage and Display Devices; (ii) 155550/420, Display Wall with Com-
pute Cluster.

Contents

1 Introduction 1
1.1 Display ubiquity and the pixel space 5
1.2 Interaction Spaces . 6
1.3 Problem statement . 7

1.3.1 Pixel resources . 9
1.4 Scientific contributions . 11

1.4.1 Principles . 11
1.4.2 Models . 12
1.4.3 Artifacts . 12
1.4.4 Impact . 14

1.5 Summary of papers . 15
1.5.1 Interaction Spaces papers 16
1.5.2 Pixel Space papers . 17

1.6 Organization . 18

2 Display walls 19
2.1 Application models . 21

2.1.1 Display wall desktop environment 23
2.2 Tromsø and Princeton display walls 26

2.2.1 Camera-sense system specifications 27
2.2.2 Snap-detect system specifications 27
2.2.3 Arm-angle system specifications 28
2.2.4 22 megapixel laptop specification 28
2.2.5 De-centralized VNC server specifications 28

3 Methodology 29
3.1 Latency . 30
3.2 Accuracy and precision . 30
3.3 CPU load . 31
3.4 Bandwidth . 31
3.5 Pixel update rate . 32
3.6 Overhead of instrumentation . 33
3.7 Definition of a megapixel . 34

vii

viii Contents

4 Interaction Spaces 35
4.1 Limitations . 39
4.2 Related work . 40
4.3 The Camera-sense system . 47

4.3.1 Architecture . 47
4.3.2 Design . 49
4.3.3 Implementation . 56

4.4 The Snap-detect system . 64
4.4.1 Architecture . 65
4.4.2 Design . 65
4.4.3 Implementation . 67

4.5 Arm-angle system . 69
4.5.1 Architecture . 70
4.5.2 Design . 70
4.5.3 Implementation . 72

4.6 Evaluation . 73
4.6.1 Latency . 74
4.6.2 Accuracy and precision 79

4.7 Discussion . 86
4.7.1 The Camera-sense system and the state of the art 90

4.8 Lessons learned . 91
4.9 Further improvements . 93
4.10 Conclusion . 95

5 Applications 97
5.1 Wallview . 97
5.2 Wallboard . 98
5.3 Wallfire . 100
5.4 Angle-snap . 100
5.5 MASpace . 101
5.6 Quake 3 Arena and Homeworld 103

6 Pixel Space 105
6.1 Limitations . 107
6.2 Related work . 108
6.3 Network Accessible Displays . 110

6.3.1 Architecture . 111
6.3.2 Design . 111
6.3.3 Implementation . 115
6.3.4 Evaluation . 119
6.3.5 Discussion . 121

6.4 De-centralized VNC . 125
6.4.1 Model and design . 125
6.4.2 Implementation . 129

Contents ix

6.4.3 Evaluation . 131
6.4.4 Discussion . 142

6.5 Further improvements . 145
6.6 Conclusion . 146

7 Discussion 147
7.1 Interaction Spaces . 147
7.2 Pixel Space . 151

8 Conclusion 155

9 Future work 159

References 163

A Papers 179
A.1 Gesture-Based, Touch-Free Multi-User... 179
A.2 The 22 Megapixel Laptop . 195
A.3 Lessons learned using a camera cluster... 201
A.4 A System for Hybrid Vision- and Sound-Based... 211
A.5 De-centralizing the VNC Model... 223
A.6 Blurring the line between real and digital... 237
A.7 Tech-note: Device-Free Interaction Spaces 243

B The Shout event system 249
B.1 Related work . 249
B.2 Model and architecture . 249
B.3 Design . 250
B.4 Implementation . 252
B.5 Evaluation . 253

B.5.1 Results . 254
B.6 Discussion . 255
B.7 Conclusion . 256

C Network discovery mechanism 257

D Pentium 4 and Xeon memory bandwidth 259

E CD-ROM 261

x Contents

List of Figures

1.1 Painting fire on a display wall . 3
1.2 This dissertation on a display wall 4

2.1 Illustration of the Tromsø display wall and projectors 20
2.2 Traditional and display wall use of VNC 25

4.1 Illustration of the three interaction spaces 36
4.2 Architecture of the Camera-sense system 48
4.3 The Camera-sense interaction space 48
4.4 The design of the Camera-sense system 50
4.5 View from a camera in the Camera-sense system 51
4.6 Image processing example . 52
4.7 Detecting objects in slices . 53
4.8 Triangulation and false positives 54
4.9 Constructing a 3D object from 2D object locations 56
4.10 The cameras mounted in Tromsø and Princeton 57
4.11 Screenshot of the image processing application 57
4.12 The 1D object and no detect event formats 58
4.13 Screenshot of the object locator 59
4.14 The camera parameters and triangulation of objects 60
4.15 Constructing line segments based on 1D object events 61
4.16 The Camera-sense system detecting the depth penetration of an object 63
4.17 Camera calibration . 64
4.18 The Snap-detect architecture . 66
4.19 The design of the Snap-detect system. 66
4.20 Constant time difference of arrival 67
4.21 The four microphones deployed around the Tromsø wall 68
4.22 The sound event type . 69
4.23 Screenshot of the Snap-detect visualizer 70
4.24 The Arm-angle architecture . 71
4.25 The design of the Arm-angle system 71
4.26 Determining the angle at which a user’s arm is pointing 72
4.27 The angle event format . 73

xi

xii List of Figures

4.28 Measuring camera image acquisition latency 75
4.29 Camera-sense latency measurement results 78
4.30 Camera-sense accuracy results for user 1 82
4.31 Difference between target and sample location for user 1 83
4.32 Camera-sense accuracy results, user 2 84
4.33 Histograms of horizontal and vertical distance from sample to tar-

get for user 1 . 84
4.34 Histograms of per-target horizontal and vertical standard deviation

for user 1 . 85
4.35 Histograms of horizontal and vertical distance from sample to tar-

get for user 2 . 85
4.36 Histograms of per-target horizontal and vertical standard deviation

for user 2 . 86
4.37 Triangulation inaccuracies . 89
4.38 Illustration of the skeleton-based 3D object representation 92
4.39 The Christmas lights for the Camera-sense system 93

5.1 Navigating a collection of comics using Wallview 98
5.2 Scanning an object using Wallboard 99
5.3 The Wallboard application . 99
5.4 The Wallfire application running on an iPod touch. 100
5.5 The Angle-snap application . 101
5.6 The MASpace application on a display wall and iPod touch 102
5.7 Quake 3 Arena and Homeworld on the Tromsø display wall 103

6.1 An illustration of the 22 megapixel laptop 106
6.2 The 22 megapixel laptop in use 110
6.3 Architecture of the 22 megapixel laptop 112
6.4 Design of the 22 megapixel laptop 113
6.5 The 22 megapixel laptop user interface 114
6.6 The design of the 22 megapixel laptop’s kernel extension 116
6.7 The VNC and NAD approaches to utilizing a remote display . . . 118
6.8 Megapixels updated for the 22 megapixel laptop 120
6.9 Frame rates for the 22 megapixel laptop 121
6.10 The bandwidth used by the 22 megapixel laptop 122
6.11 The window server, DSD and draw process CPU load 122
6.12 The total 22 megapixel laptop CPU load 123
6.13 Two screenshots of the Displays control panel on Mac OS X . . . 124
6.14 The VNC and DVNC models . 126
6.15 The three operations used by the RFB protocol 126
6.16 The Copy Rect operation on a regular and tiled display 127
6.17 Improving the Copy Rect operation on display walls 128
6.18 Possible race condition in DVNC 129
6.19 Illustration of the control experiment 133

List of Figures xiii

6.20 Pixels refreshed and bytes sent for two trace experiments 134
6.21 Cumulative VNC server CPU load for the Image Pan trace 136
6.22 Cumulative VNC server CPU load for the Window Move trace . . 137
6.23 Histogram of the queuing overhead 139
6.24 Total number of refreshed pixels for the control experiment 140
6.25 CPU load for the VNC server in the control experiment 141
6.26 Total bytes sent from the servers for the control experiment. 141
6.27 Cumulative VNC server CPU load for one of the control experiments142

B.1 The event format used by Shout 250
B.2 The Shout server’s threaded design 251
B.3 The Shout roundtrip latency experiment 254
B.4 Graph of the Shout roundtrip latency results 255

D.1 Memory hierarchy performance of the Xeon and Pentium 4. . . . 259

xiv List of Figures

List of Tables

2.1 Specifications for the Tromsø and Princeton display walls. 26
2.2 Unibrain Fire-i specifications . 27

4.1 Characteristics of the three interaction space systems. 37
4.2 Example 1D object events . 60
4.3 Detailed latency measurement results 79
4.4 Accuracy and precision experiment statistics 81
4.5 Object extent statistics . 83

5.1 New and existing applications 97

6.1 22 megapixel laptop results . 120
6.2 The three VNC experiments . 133
6.3 Trace results . 135
6.4 Trace CPU load results . 135
6.5 The queuing overhead . 138
6.6 Control pixel refresh count . 138

B.1 The two Shout specific event types. 251
B.2 Mean Shout roundtrip latency 256

xv

xvi List of Tables

List of Listings

3.1 Latency measurement approach 30
3.2 CPU load measurement approach 32
3.3 Bandwidth measurement approach 33
3.4 Pixel update rate measurement approach 34
4.1 Pseudo-code to detect snaps . 68
4.2 Pseudo-code to thin an edge-detected image 73
4.3 Image processing app instrumentation 77
4.4 Object locator app instrumentation 78
B.1 Sample Shout client code. 253

xvii

xviii List of Listings

List of Abbreviations

NAD Network Accessible Display
VFB Virtual Framebuffer
VNC Virtual Network Computing
DVNC De-centralized VNC
RFB Remote Framebuffer Protocol
PPI Pixels per inch
IR Infrared
LED Light Emitting Diode
FTIR Frustrated Total Internal Reflection
DI Diffuse Illumination
MPx Megapixel (10002 pixels)
GPx Gigapixel (10003 pixels)
FPS Frames per second
FOV Field-of-view
MB Megabyte (10242 bytes)
GB Gigabyte (10243 bytes)
EDID Extended Display Identification Data
CPU Central Processing Unit
GPU Graphics Processing Unit
RAM Random Access Memory
VRAM Video RAM
1D, 2D, 3D One, two and three dimensional
VGA Video Graphics Array (analog display connector)
DVI Digital Visual Interface (digital display connector)
TCP Transmission Control Protocol
UDP User Datagram Protocol
SDL Simple DirectMedia Layer
RGB, BGR Red-Green-Blue or Blue-Green-Red (order of color components

in a pixel)
AD Analog-digital

xix

xx List of Abbreviations

FIR Finite Impulse Response
RLE Run-Length Encoding
DSD Display Sharing Daemon
MAC Media Access Control (Ethernet or BlueTooth hardware

address)
API Application Programming Interface
ID Identity
m Meter
cm Centimeter
s Second
ms Millisecond

Chapter 1

Introduction

The research presented in this dissertation is motivated by the assumption that dis-
plays will become ubiquitous and at some point cover almost any surface. As the
number of displays keep growing, the collection of pixels from each display form
a larger and larger pixel space. Making use of the pixel space requires that one
can interact with it, and that computers can provide it with content. One environ-
ment that already provides a large amount of pixels is created by a display wall.
A display wall is a wall-sized, high-resolution display. The resolution of a display
wall currently ranges from about 10 to 286 megapixels [1, 2, 3], with the highest-
resolution wall measuring approximately ten meters wide by four meters high [3]
– about the size of a large cinema screen. Since current displays are not manu-
factured with neither the resolution nor physical size demanded by a display wall,
display walls are constructed by tiling a set of flat-panel displays or projectors.
Due to the large number of pixels, each display is driven by a separate computer
in a display cluster [4], although more compact configurations are possible using
multi-head graphics cards. Display walls are described in more depth in Chapter 2.

Interacting with displays of this size can be accomplished either with or without
devices. Device-based approaches for interaction include using mice, keyboards,
gloves [5, 6], the Nintendo Wii Remote (Wiimote) [7], or gesture recognition using
markers [8]. These approaches are restrictive and impractical when used to interact
with display walls. A mouse usually requires a table surface to work, and wireless
keyboards are impractical to carry around. For public installations, devices are
problematic, as they may get lost, stolen or have their batteries run out. Some users
might also be averse to directly touching a possibly dirty input device or dirty
public display. Devices further do not scale to many users, since each user must
have his own device. The battery problem can be resolved using passive devices
fitted with markers to enable their tracking [9, 10].

Active or passive markers are also used to enable gesture recognition. Some ex-
amples include the gesture-based interface developed by Oblong Industries, where

1

2 1 Introduction

users must wear gloves fitted with markers [5], a multi-touch tracking system built
using a Wiimote [7] and the colored markers used to detect interaction in the “Sixth
Sense” project [11]. Device-free approaches employing marker-less gesture recog-
nition are either limited to tracking in 2D [12, 13] or to performing gesture recog-
nition in 3D based on a depth map of the scene [14, 15, 16]. All of these systems
limit the size of the area users can interact with and the number of supported users,
and are further limited to interacting with a single computer at a time.

A computer’s display area can be extended with additional displays, either by con-
necting the displays directly to the computer’s graphics hardware, or by extending
the display area in software. Using the graphics hardware, displays must be phys-
ically tethered to the computer, and the number of displays and pixels are limited
by the graphics card’s available display cable outlets and the hardware’s capabili-
ties. However, the resulting performance is generally good with high frame rates.
Using software, the display area can be extended to additional displays without
directly tethering the computer to each display, at the cost of lower performance.
Existing solutions, however, do not provide a transparent way of accomplishing
this [17, 18], limit the maximum resolution [19] or are limited in the number of
additional displays they can support [20].

This dissertation presents two concepts: (i) Multiple Interaction Spaces; and (ii)
the Pixel Space. An interaction space is a physical volume in which interaction
can take place and be detected. The interaction space is not bound to a given
user or a given computer. Instead, an interaction space can be used by several
users simultaneously to interact with one or a collection of computers at the same
time. The size of an interaction space is variable, covering small to large volumes,
and interaction can be detected in one, two or three dimensions depending on the
underlying hardware and software implementation. An interaction space can be
used alone or in complement with other interaction spaces.

The pixel space is a collection of display-backed pixel resources shared on a net-
work that can be utilized by nearby computers to show pixels on their behalf.
The pixel resources enable computers to share visual data amongst each other and
across platforms. The displays that are part of the pixel space vary in number, res-
olution and pixel density, and range from handheld displays to tiled display walls.

Using these concepts, three interaction space systems and two pixel space systems
have been built. The interaction space systems, discussed in Chapter 4, comprise:

Camera-sense: A system to detect multiple objects, typically but not limited to
hands or fingers, simultaneously in front of a display wall using 16 cameras
and 8 computers [21, 22, 23] (Figure 1.1). The system determines an ob-
ject’s location and extent in 3D without requiring users to carry devices or
wear markers, resulting in a skeleton three-dimensional representation of the
detected object. The resulting 3D objects are used to enable multi-touch or
gesture-based interaction with applications on a display wall. The system’s

1.0 3

latency, accuracy and precision are evaluated. The system’s end-to-end la-
tency is 113.66 ms, its accuracy is 1.24 cm and its precision is 0.72 cm.

Snap-detect: A system to detect specific sounds and determine the source location
of the sounds in 2D using four microphones connected to a single computer
[24]. The system detects the source location of snap- and clap-like sounds,
typically from users snapping their fingers or clapping their hands. The re-
sulting 2D sound locations are mapped to a display wall, and interpreted by
applications for different purposes like moving windows or zooming in and
out of images.

Arm-angle: A system to detect the angle of dominant, straight lines within a steer-
able camera’s field-of-view [24]. The camera is pointed towards a user. Im-
ages from the camera are then analyzed to determine the angle of dominant
lines, under the assumption that a user’s straight arm will be detected as the
dominant lines. This enables the system to determine the angle at which a
user’s arm is pointing, which is then used to select items on a display wall
that would otherwise be out of the user’s reach. One example is to select
an object on the far left side of the display wall, when the user himself is
standing on the far right side of the wall.

Figure 1.1: Using the Wallfire application and the Camera-sense interaction space to “paint
fire” on a display wall.

Several applications have been implemented to utilize input from the different in-
teraction spaces. Figure 1.1 shows an application demonstrating the use of the
Camera-sense interaction space. Figure 1.2 shows the Wallview image viewer dis-
playing all the pages of a late draft of this dissertation on a display wall. MASpace,
a visualizer for genomic microarray data on display walls has been implemented
in collaboration with researchers at Princeton University, and is currently in use by
computational biologists for studying the relationship between different genomic

4 1 Introduction

datasets [21]. Additional applications have also developed. All the applications are
listed in Section 1.4.3, and further discussed in Chapter 5.

Figure 1.2: Using the Wallview application to visualize every page from a late draft of this
dissertation on a display wall.

The Pixel Space is discussed in Chapter 6. Two pixel space systems have been built,
based on two models also developed as part of this dissertation. The two models
are: (i) The Network Accessible Display (NAD) model; and (ii) the De-centralized
VNC (DVNC) model. The NAD model was developed to enable use of the pixel
resources in the pixel space. The model assumes that eventually all displays will
have some computational and network resources built-in. Using these resources,
a display’s pixels can be made available over a network, for other computers to
utilize.

The DVNC model is based on the existing VNC (Virtual Network Computing) [17]
model, but modified to improve performance when using VNC with a tiled display
wall. The display wall’s tiled architecture makes the VNC pixel sharing system
perform sub-optimally. By enabling VNC viewers to exchange pixels amongst
each other, the VNC server’s load and bandwidth usage is reduced by delegating a
VNC update operation from the VNC server to the VNC viewers. Based on these
models, two systems have been implemented:

The 22 megapixel laptop: A system based on the NAD model. The system en-
ables a laptop to utilize the pixel resources made available by displays rang-
ing from handheld to a display wall, by creating virtual displays locally, and
then push the pixels from the virtual displays to the remote NADs [25]. The
resulting system can update a single NAD at a rate of up to 25 frames per

1.1 Display ubiquity and the pixel space 5

second, and 28 NADs on a 22 megapixel display wall at a rate of 1.03 frames
per second.

De-centralized VNC: A system based on the DVNC model. The system modifies
an existing, open-source VNC implementation [26], changing both the server
and viewers to incorporate the ability for the VNC viewers to exchange pix-
els amongst each other. The resulting system improves the performance of
the unmodified VNC implementation by a factor of up to 11.88 [27].

The 22 megapixel laptop and DVNC systems document how the resources of the
pixel space are collected, utilized and shared amongst computers. DVNC further
demonstrates how the pixels on a display wall can be kept up to date with improved
performance by delegating work from the VNC server to a set of VNC viewers.

1.1 Display ubiquity and the pixel space

Since the invention of the transistor in the middle of the 20th century [28], technol-
ogy has continued to evolve at a rapid pace. In the three years from 2000 to 2003,
the amount of information in the world doubled [29]. Computers have diversified
from the single-purpose, room-filling computers of the 50s and 60s, into computers
spanning everything from battery-powered, portable computers to petaflop clusters
[30]. Moore’s law [31] states that the transistor count on a die doubles every 18-24
months. This exponential growth has resulted in an increase in processing speed,
network bandwidth, storage and memory capacity by several orders of magnitude
in the time since Moore stated the law in 1965, while at the same time making the
constituent components diminish ever more in size and cost.

Failing to track Moore’s law, display resolution and pixel density have not seen
the same growth. 0.76 megapixel displays were available in the eighties, with the
Three Rivers PERQ’s 768x1024 display as one example [32], and started gaining
widespread use during the early nineties. As of late 2008, the highest resolution
commodity display available supports 2560x1600 pixels, or roughly 4.1 megapix-
els1 [33]. With an increase in resolution and pixel density by factors of five and
two2, the growth over the past thirty years is underwhelming.

Instead of an exponential increase in resolution and size, displays have gone from
being bulky and relatively uncommon, to becoming small, power-efficient, cheap
and pervasive. Combined with ever cheaper, faster and smaller components, this
miniaturization has enabled new classes of devices. Displays now exist everywhere

1While there exist even higher resolution displays, they are not very common and generally very
expensive. Examples include the ViewSonic 3840x2400 display, introduced in 2004, and the NEC
MultiSync MD205MG grayscale display introduced at the end of 2008 geared towards medical imag-
ing with resolution at 2560x2048.

2The PERQ had a 8.5x11 inch 768x1024 display in 1980, which amounts to 90 pixels per inch
(ppi). The Apple iPhone has a ppi of 163 and the Amazon Kindle a ppi of 167.

6 1 Introduction

in different form factors. Mobile phones, music players and portable gaming sys-
tems all carry a tiny display. Laptops are more popular than ever, enabling users to
carry not only a small computer with a one to two megapixel display, but also their
applications and data around everywhere. Large displays are already ubiquitous,
from the flat-panel TV sets in people’s homes, to plasma displays in shop windows.
Projectors are becoming cheaper and smaller, with the tiniest projectors on the mar-
ket fitting in the palm of one’s hand [34]. Large companies have demonstrated a
range of displays that give an idea of where the world is going, with Sony’s super-
thin, bendable, foldable displays [35], LG.Philips’ low-power, low-weight e-paper
[36], and E Ink’s paper-thin displays with built-in touch sensing [37]. The Amazon
Kindle 1, 2 and DX e-book devices are examples of commercialized low-power
displays [38].

At some point in the future, pixels may line the walls of people’s homes, cover
tables, shelves and other objects. Each surface becomes a display of its own, ca-
pable of displaying pixels and accepting user input. Walls lined with pixels are
not close to reality in the consumer space yet, but a range of custom display wall
installations already exist [1, 2, 39, 40]. With display walls covering the walls in
users’ homes or in public places, the future pixel space surrounding a user at any
given time would accumulate a resolution on the order of gigapixels. This makes
research both on ways to drive the pixels and interact with the pixels in the pixel
space important.

1.2 Interaction Spaces

The computer mouse turned 40 on December 9., 2008 [41]. Since its public debut
during the “mother of all demos” at the Fall Joint Computer Conference in San
Francisco in 1968, it and the keyboard have become the de facto input devices
to almost every personal computer shipped since the early eighties. At the same
time, a recurring dream in the realm of science fiction has been to interact with
computers using nothing but thoughts, natural language and gestures.

In Asimov’s Foundation series [42], scientists manipulate equations on a large dis-
play wall-like surface using only their minds. Natural language is used throughout
the Star Trek science-fiction series and portrayed in Stanley Kubrick and Arthur
C. Clarke’s “2001: A space odyssey” [43, 44], and an example of gesture-based
interaction was shown in the 2002 movie Minority Report [45]. New input devices
like the multi-touch screen of the Apple iPhone, the Nintendo Wiimote [7], and
ever-more ubiquitous availability of small web cameras attached to mobile phones,
laptops and displays makes the dream of unencumbered natural interaction with
computers seem more within reach now than ever before.

Mind control is a growing trend in the toy industry [46]. Mattel recently introduced
Mind Flex [47], a game where the participants control a ball using their mind as

1.3 Problem statement 7

the input device. Speech recognition is an established feature in both Apple Mac
OS X and Microsoft Windows, with additional commercial alternatives available
[48]. Gesture-based interfaces are becoming more common, as demonstrated by
the sale of millions of iPhones [49], but so far no input devices have gained the
same adoption as the mouse. The mouse and keyboard are not going away; their
continued presence to this day is a testament to both their utility and a lack of better
alternatives.

The iPhone’s interface is almost entirely based on multi-touch gestures; the only
exception is a few hardware buttons that among other things control sound volume
and device power. Some laptops, like the Apple MacBook Pro, support multi-
touch gestures on their trackpads. In this case, the gesture-capabilities are more
limited, with the trackpad acting mainly as the pointing device in the regular key-
board/mouse combination. Tablets and smaller hand-held computers have had var-
ious kinds of touch- or pencil-style input for years [50]. More recently, Hewlett-
Packard (HP) has been selling its TouchSmart range of computers, which uses a
touchscreen capable of detecting multiple touches to provide an alternative to the
keyboard and mouse. Microsoft is researching multi-touch input on the Surface
[13] and TouchWall [51], and is expected to introduce OS-support for multi-touch
in Windows 7 [52].

Gestures-based input can span devices and device-classes. One characteristic of
the gesture-based interfaces of the iPhone and the TouchSmart range of computers
is that their use does not require any setup on the user’s part, with the possible
exception of a calibration step. There are no devices to keep track of, no devices to
carry around and no devices to lose.

1.3 Problem statement

Interaction with computers ranging from handheld to workstations is possible be-
cause each computer has the necessary interaction mechanism already built-in or
available as external devices in very close proximity – such as the built-in touch
screen of the iPhone, or the mouse and keyboard wired or wirelessly connected to
a workstation. Since the interaction mechanism is available all the time, interaction
can begin immediately when the decision to use one of these computers is made.
In contrast, enabling interaction with a display wall is a challenge. A display wall
does not have a built-in interaction mechanism, and it is not immediately apparent
how and where to approach the wall in order to interact with it. A display wall’s ar-
chitecture is parallel, which makes applying existing input devices to display walls
non-trivial. Input must be shared amongst the computers driving the wall, but a
device can only connect physically to one computer at a time. Even if this problem
were solved, one would still be left with input devices, such as mice or keyboards,
designed for regular workstations.

8 1 Introduction

Movement of the user – and thus the interaction mechanism – is another challenge.
With handheld computers, the computer moves with the user as he moves around,
which has the side-effect of moving the interaction mechanism as well. Laptops
have the same property, since the interaction mechanism is built-in to the laptop
and thus goes with it wherever the laptop goes. Workstations are usually not moved
around while they are in use, even though their input devices may be moved occa-
sionally. For instance, moving a mouse is intrinsic to its operation. In contrast, the
combination of the display wall’s large size and high resolution makes it possible
for users to walk around in front of the wall to study fine details, or step back to get
an overview of the contents being displayed. This makes tethered devices imprac-
tical in a display wall context, since they limit the movement of users in front of
the wall to the length of the device’s cable. Wireless devices remove the tethering
issue, but the size and weight of possible input devices are still limited to what
users can reasonably carry and operate at the same time. Some devices may not
work well without a table for support, such as most mice3 and keyboards. When in-
teracting with a display wall, the user’s physical location also becomes significant,
while most input devices have been designed for location independence.

Regular workstations are rarely used by more than one user at a time, due to lack-
ing application and hardware support, and the small physical size of the attached
displays. Most applications are designed for a single user at a time. Systems and
applications that support input from more than a single mouse are not common,
although they do exist [53, 54]. Physical size also plays a role. Handheld comput-
ers can not practically be shared by two users, and there is usually limited space
around a regular size display for several users to interact simultaneously. The dis-
play wall’s large size changes this, providing sufficient room for several users to
stand close to the wall and potentially interact at the same time. However, addi-
tional users interacting simultaneously requires additional input devices, as well
as changes to the underlying applications to accommodate multi-user and multi-
cursor input. As the number of input devices grow, they become increasingly hard
to keep track of.

Instead of applying devices to interact with a display wall, the display wall’s in-
teraction mechanism can be gesture-based, using the same interaction paradigm as
employed by the iPhone, TouchSmart and Microsoft Surface. However, current ap-
proaches for gesture-based interaction with wall-sized displays either require users
to wear markers [7], are limited to recognizing input only when users stand very
close to the display wall (and in some cases further limited to only recognizing
touch) [55, 13], or limit the size of the walls they can cover [56].

To employ a gesture-based interaction mechanism for display walls, the mecha-
nism should be:

3Gyroscopic mice do exist, however, such as the Gyration Air Mouse, which do not require a
table in order to move the cursor.

1.3 Problem statement 9

1. Always available: There should be no setup associated with interacting with
a display wall, just as there is no setup associated with interacting with a
handheld or regular computer.

2. Unencumbered: Users should not have to carry devices or wear markers to
interact with a display wall.

Further, to accommodate the large size and high resolution of a display wall and go
beyond the approaches that already exist on handheld and touch-screen computers,
the interaction mechanism should further be:

3. Multi-user: Several users should be able to interact with the display wall at
the same time. This requires that the interaction mechanism is able to receive
multi-user input.

4. Room-wide: Users should be able to interact both when they are close to
the wall, and further away. The interaction mechanism should be available
“everywhere” within the same room as the display wall.

1.3.1 Pixel resources

The range of different hardware architectures, operating systems and applications
being used by different classes of devices, from handheld computers, laptops, and
workstations to display walls, makes sharing resources and data amongst them
over a network a challenge. One common trait, however, is that they often have a
built-in or external display. While the displays vary in size and resolution, nearly
all of them use pixels to display visual data. The pixel resources represented by
these displays have so far been shared primarily using remote desktop systems that
only mirror the contents of one display onto another remote computer’s display
[17]. Instead, a computer can utilize the pixel resources afforded by such remote
displays by extending its display area to encompass them, giving the computer a
higher total resolution on which to display pixels. Existing systems that accomplish
this limit the number and resolution of the remote displays [20, 19].

A display wall consists of multiple displays driven by multiple computers. The
displays are usually arranged in a grid, and together represent a very large number
of pixels. An application can utilize the display wall’s shared pixel and compute
resources in three ways: (i) Sharing the pixels generated by the application by
transferring them to the display wall’s computers, and have the computers draw
them; (ii) sharing the rendering commands generated by the application by trans-
ferring them to the computers, and have the computers interpret them; or (iii) par-
allelizing the application to directly utilize the pixel and compute resources of the
display wall. Each approach has different implications for the complexity of the
application’s design, implementation, portability across platforms, and for its per-
formance, including frame rate, CPU load and bandwidth consumption.

10 1 Introduction

Sharing pixels does not require changing an application’s design or implementa-
tion. Since the representation of pixels is shared across displays, the approach is
cross-platform. However, the performance of sharing pixels may be too low and the
cost too high for some application classes, such as games, videos and animations.

Sharing an application’s rendering commands may require changes to its design
and implementation. The applications must be written targeting specific graphics
libraries [18, 57, 58], which limits them to platforms where these libraries are avail-
able. This also limits the number of applications whose rendering commands can
be shared. The approach can provide better performance by utilizing the display
wall’s graphics acceleration hardware. However, the performance may still not be
acceptable for a given application or different application domains.

Parallelizing a sequential application is non-trivial and may involve smaller and
larger changes to its design and implementation. Parallelizing all applications is not
feasible, due to the amount of work involved in re-designing and re-implementing
them, and further made more difficult since not all applications have their source
code available. Different operating systems and hardware platforms also make
cross-platform parallel applications challenging to write. However, parallelizing an
application makes it possible to utilize not only the pixel resources, but also all the
local compute and graphics acceleration resources on each computer [23, 59, 60].

To enable computers to utilize remote pixel resources, the approach should be:

1. Cross-platform: Computers should be able to: (i) Use the pixel resources
on a range of computers, including handhelds, laptops and display walls; and
(ii) share its own pixel resources with other computers.

2. Transparent: The user should be able to manage his desktop environment as
usual, except with a larger display area at his disposal. Applications should
be able to utilize the additional display area without any application-specific
changes.

3. Dynamic: The collection of displays surrounding a user at any given time
changes as the user moves from place to place. This should be accommo-
dated without requiring that the user restarts his desktop environment or his
applications.

Further, to accommodate the parallel architecture of display walls, the approach
should provide:

4. Structure: The individual displays that comprise a display wall are arranged
in a grid. While the displays are individual, the approach should view them
as a collection of displays where each display’s position in relation to the
others is taken into account.

5. Performance: It is non-trivial to drive the large number of pixels on a dis-
play wall with high frame rates. To improve performance over existing ap-

1.4 Scientific contributions 11

proaches, the parallel architecture should be exploited.

1.4 Scientific contributions

This section lists the main contributions claimed by this dissertation, and describes
the dissertation’s impact. The contributions made are founded on a systems ap-
proach where architectures, designs and implementations are developed, before
experiments are conducted to document the resulting systems’ characteristics. The
contributions made are organized into a set of principles, models and artifacts.

1.4.1 Principles

The following principles have been formulated based on the research presented in
this dissertation:

Orthogonal interaction mechanism: The interaction mechanism that detects in-
put from a user is realized independently of the computers the user wants to
interact with. The mechanism is separate from and orthogonal to the comput-
ers it provides input to. It creates an interaction space that can span multiple
computers as well as different classes of computers. The resulting interac-
tion spaces can be used alone or in concert, and targeted towards a general
or application specific domain.

“Where, not what:” In an interaction space, it is sufficient to determine where
an object is, rather than what it is, to enable interaction. Existing interaction
mechanisms work because they make assumptions regarding how interaction
takes place. The principle is applied in the three interaction space systems
presented in this dissertation. The use of multiple cameras in the Camera-
sense system is made possible since the processing associated with locating
an object is simpler than the processing required to recognize an object. The
Snap-detect system does not determine what produced the snap; instead the
system only detects where the snap occurred, and on the assumption that a
user made the sound, gives applications the ability to respond to the sound.
The Arm-angle system does not try to detect arms, but instead looks for
straight lines in images captured by a camera.

Pixels as network-available resources: The environment determines the number
of pixels available to a computer. Since the environment is dynamic, so
is the number of pixels a computer can utilize at any given time. Existing
pixel sharing systems like VNC have shown that pixels are suitable for cross-
platform sharing, but are restricted in that they only mirror existing pixels,
and require the number of pixels to be pre-determined. The systems devel-
oped in this dissertation show that rather than just mirror existing pixels, the

12 1 Introduction

area represented by the pixel resources can be used to grow a computer’s
available resolution by an order of magnitude.

1.4.2 Models

The following models have been developed:

The Network Accessible Display model: A model where displays are made ac-
cessible to other computers on a network by incorporating some network
and processing capabilities into the display. Using this model, computers
can extend the resolution of their built-in display with the pixel resources
provided by nearby displays, increasing the total number of pixels available
to the desktop environment running on the computer.

The De-centralized VNC model: A model that delegates some of the work usu-
ally done by the VNC server to the VNC viewers connected to it, giving the
viewers responsibility for exchanging some pixels amongst each other when
possible. This increases the rate at which pixels can be updated when the
server is used to create the desktop environment for a tiled display wall.

1.4.3 Artifacts

The following artifacts have been produced:

1. The Camera-sense system, which creates an interaction space that detects
and locates multiple objects to enable gesture-based interaction with display
walls. The Camera-sense system is:

• Scalable: The system can be scaled to cover narrow and wide display
walls by varying the number of cameras and computers.

• Unencumbered: Users do not need to wear markers to interact using
the system.

• Device-free: Users are not required to carry any devices to interact
using the system.

• 3D: An object’s location and extent is determined in 3D.

• Multi-user: The system detects multiple objects simultaneously, from
one or more users. It does not distinguish different users from each
other.

2. The Snap-detect system, which creates an interaction space that enables
users to interact with a display wall by snapping their fingers and clapping
their hands from anywhere within the same room as the display wall.

1.4 Scientific contributions 13

3. The Arm-angle system, which creates a movable interaction space that en-
ables users to select targets that are out of the user’s physical reach on a
display wall.

4. The 22 megapixel laptop, a pixel space system that enables a regular laptop
to transparently utilize the pixel resources provided by a handheld device, a
workstation and a display wall.

5. A De-centralized VNC implementation, which is documented to improve
the performance of the original VNC implementation by a factor of up to
11.88 for some operations when used to create the desktop environment on
a display wall.

6. Several applications that make use of the interaction space systems:

• Wallview, an application to view many high-resolution images simulta-
neously on a display wall.

• Wallboard, a multi-user application that makes it possible to bring con-
tent from the real world into the display wall’s pixel space by briefly
holding the object in front of the display wall.

• Wallfire, an application that allows users to “paint fire” on the display
wall using the Camera-sense system (Figure 1.1).

• Angle-snap, an application utilizing all of the three interaction space
systems to select windows far away, move them closer and then interact
with them using hand movements.

• MASpace, an application to visualize several genomic microarray data-
sets on display walls. The application utilizes the Camera-sense inter-
action space, and can also accept input from a version of the application
developed for the Apple iPhone and iPod touch.

• Quake 3 Arena and Homeworld, two existing games that were modified
to utilize the Camera-sense and Snap-detect interaction spaces for in-
put, and to run on a display wall with good performance. The purpose
of the work was to document the Camera-sense system and show that it
is possible to use the system to play games. Games were chosen since
they are a class of application that requires low latency and accurate
input.

In addition, a number of videos have been produced, which demonstrate various
aspects of the systems and applications that have been developed. The videos are
available on the disc accompanying this dissertation (the disc is further described
in Appendix E); some are also available online:

Hybrid vision- and sound-based interaction on display walls: A video demon-
strating the three interaction space systems, published in conjunction with

14 1 Introduction

[24]. The video also shows the Wallboard and Wallfire applications, as well
as the Quake 3 Arena game. The video is available online [61] and on the
disc.

Three years of the comic “M”: A video demonstrating the Camera-sense system
being used to enable interaction with the Wallview application. Wallview is
used to browse 950 strips – three years – of the Norwegian comic “M” [62].
The video is available online [63], as well as on the disc.

Device-free interaction spaces: A video demonstrating the 3D capabilities of the
Camera-sense system. The video was published in conjunction with [21],
and is available online [64] and on the disc.

Microarray visualization: A video that demonstrates the Camera-sense system
being used to enable interaction with the MASpace application, as well as
the MASpace application running on an iPod touch. Available on the disc
only.

The 22 megapixel laptop: A video demonstrating the 22 megapixel laptop. Avail-
able on the disc only.

De-centralized VNC: Two videos that demonstrate the difference in performance
between the original VNC implementation, and the De-centralized VNC im-
plementation. The first video shows a playback of a trace of moving an
image on the original VNC implementation, and the second video shows the
same trace being played back on the De-centralized VNC implementation.
Available on the disc only.

1.4.4 Impact

The concepts and systems researched and developed as part of this dissertation have
had impact by: (i) contributing to the state-of-the-art in gesture-based systems and
pixel sharing systems through peer-reviewed publications; and (ii) by being used
to enable and support several different activities.

The following lists the different systems developed and their impact:

1. The Camera-sense system: Is in use by computational biologists at Prince-
ton University to perform genomics research using the MASpace (Section
5.5) microarray visualization, which has also been developed as part of this
dissertation. The system has been featured in the news [65], and also been
used to support teaching university level courses, talks, presentations, out-
reach and demonstrations for the public.

2. The Snap-detect system: Like the Camera-sense system, the Snap-detect
system has been used during outreach and demonstration activities, and re-
ceived coverage in the news [65].

1.5 Summary of papers 15

3. The Arm-angle system: Is used to demonstrate a device-free approach to
select targets that are physically far away from a user, and in so doing docu-
ments a movable interaction space.

4. The 22 megapixel laptop: Has been featured in news coverage at CNET
[66]. The 22 megapixel laptop [25] introduced the NAD model, which has
since been used in further research by other members of the Tromsø display
wall group [67].

5. De-centralized VNC: The DVNC system has driven the Tromsø display
wall desktop environment for 2-3 years. It has been used to support a variety
of applications and users, including meteorologists from Tromsø using the
display wall to do weather forecasting [68]. It has also been used in activities
like teaching, talks, presentations, outreach and demonstrations.

The following is a non-exhaustive list of some outreach activities and demonstra-
tions in which the systems presented in this dissertation have been used or pre-
sented:

• 2005, 2006, 2007, 2008: Outreach and demonstrations during the Super-
computing-day at the University of Tromsø.

• 2005, 2006, 2007, 2008: Demonstrations for high-school classes.

• 2006: Demonstrations for Dell, Total Oil and Gas Company, Norwegian Re-
search Council, National Center for Telemedicine, Candidata – the Com-
puter Science alumni association at the University of Tromsø, a local e-
science workshop and others.

• 2007: Best poster award for the poster titled “Hybrid vision- and sound based
interaction,” presented at the VERDIKT conference organized by the Norwe-
gian Research Council in October 2007. Demonstrations for the Norwegian
branch of the Fulbright Program, the Norwegian Meteorological Institute
and others.

• 2008: Demonstrations during the Norwegian Science Week, for the Tech-
nology Transfer Office at the University of Tromsø, the Research and Devel-
opment department at the Norwegian Meteorological Institute, and others.

1.5 Summary of papers

This dissertation builds on a collection of published, peer-reviewed papers that
have all been written towards completion of the Ph.D. project presented herein.
The full papers appear in Appendix A. This section gives a brief overview of the
papers, organized by the topic they cover.

16 1 Introduction

1.5.1 Interaction Spaces papers

Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized, High-Resolution
Tiled Displays

This paper introduces the Camera-sense system, and demonstrates its use with the
two games Quake 3 Arena [69] and Homeworld [70]. The two games are modified
to accept input from the Camera-sense system, and had to be parallelized to run
with high frame rates on a display wall. The purpose was to document the Camera-
sense system’s latency, and demonstrate that its latency was sufficiently low to meet
the response time characteristics required by games.

Citation: Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-based, touch-free multi-user gaming on wall-sized, high-
resolution tiled displays. In Proceedings of the 4th International Symposium on
Pervasive Gaming Applications, PerGames 2007, pages 75–83, June 2007.

Revised: Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays. Journal of Virtual Reality and Broadcasting,
5(10), November 2008.

Lessons learned using a camera cluster to detect and locate objects

This paper further documents the Camera-sense system and presents a detailed
evaluation of its end-to-end latency.

Citation: Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen, and Otto J.
Anshus. Lessons learned using a camera cluster to detect and locate objects. In
Parallel Computing: Architectures, Algorithms and Applications. Proceedings of
the International Conference ParCo 2007, volume 15 of Advances in Parallel Com-
puting, pages 71–78. IOS Press, 2008.

A System for Hybrid Vision- and Sound-Based Interaction with Distal and
Proximal Targets on Wall-Sized, High-Resolution Tiled Displays

This paper introduces the Snap-detect and Arm-angle interaction space systems,
and documents how they along with the Camera-sense system can be used to enable
interaction with both far-away and nearby targets on a display wall.

Citation: Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. A system
for hybrid vision- and sound-based interaction with distal and proximal targets on
wall-sized, high-resolution tiled displays. In Proceedings of the IEEE International

1.5 Summary of papers 17

Workshop on Human-Computer Interaction 2007, volume 4796 of Lecture Notes
in Computer Science, pages 59–68. Springer, 2007.

Blurring the line between real and digital: Pinning objects to wall-sized dis-
plays

This paper introduces the Wallboard application, and demonstrates how the (at
the time) rudimentary 3D capabilities of the Camera-sense system can be used to
bring content from the real-world onto the display wall by emulating the actions
one would take to pin a document to a billboard.

Citation: Daniel Stødle and Otto J. Anshus. Blurring the line between real and
digital: pinning objects to wall-sized displays. In IPT/EDT ’08: Proceedings of
the 2008 workshop on Immersive projection technologies/Emerging display tech-
nologies, pages 1–5, New York, NY, USA, 2008. ACM.

Tech-note: Device-Free Interaction Spaces

This paper documents and describes how the Camera-sense system is extended
from only being able to track objects in 2D, to tracking objects in 3D using a
skeleton 3D object representation. It also introduces the Camera-sense system’s
use with the custom genomic microarray visualization, and documents the system’s
accuracy for locating stationary objects in a single 2D plane.

Citation: Daniel Stødle, Olga Troyanskaya, Kai Li, and Otto J. Anshus. Tech-
note: Device-Free Interaction Spaces. In 3DUI ’09: Proceedings of the IEEE
Symposium on 3D User Interfaces, pages 39–42, March 2009.

1.5.2 Pixel Space papers

The 22 Megapixel Laptop

This paper describes the Network Accessible Display model and its associated
realization: The 22 megapixel laptop.

Citation: Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. The 22
megapixel laptop. In EDT ’07: Proceedings of the 2007 workshop on Emerging
displays technologies, pages 1–4, New York, NY, USA, 2007. ACM.

18 1 Introduction

De-centralizing the VNC Model for Improved Performance on Wall-Sized,
High-Resolution Tiled Displays

This paper describes the De-centralized VNC model and its associated implemen-
tation. The paper documents how the De-centralized VNC model improves the
performance of VNC when it is used to create the desktop environment on display
walls.

Citation: Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. De-
Centralizing the VNC Model for Improved Performance on Wall-Sized, High-
Resolution Tiled Displays. In NIK ’07: Norsk Informatikkonferanse, pages 53–64.
tapir akademisk forlag, November 2007.

1.6 Organization

The remainder of this dissertation is organized as follows. Chapter 2 details the
design of current display walls, and some approaches to having applications output
to a display wall. Chapter 3 details the methodology employed to conduct the
research presented in this dissertation. Chapter 4 presents the work on building
a set of interaction spaces for wall-sized, high-resolution displays, while Chapter
5 presents a number of applications developed or modified to use the different
interaction space systems. Chapter 6 details two systems developed to drive the
pixels of a display wall. Chapter 7 discusses the dissertation, and Chapter 8 draws
conclusions based on the research presented. Chapter 9 outlines some areas of
future work.

Appendix A contains a chronological listing of the papers on which this disser-
tation is built, including complete copies of the papers. Appendix B documents
the Shout event system, Appendix C documents the network discovery mechanism
used by the 22 megapixel laptop and DVNC, and Appendix D documents the mem-
ory bandwidth of the two servers used in the DVNC evaluation. Appendix E gives
a brief overview of the contents of the CD-ROM accompanying this dissertation.

Chapter 2

Display walls

A display wall is the scientific instrument that this dissertation builds upon. Display
walls are the closest approximation to the future’s gigapixel-scale displays that
can be built today. Two display walls have been used, one located in Tromsø,
Norway and one located in Princeton, New Jersey, USA. This chapter gives an
introduction to display walls, their construction and application models. It also
details the specifications for the Tromsø and Princeton display walls, as well as the
specifications for other hardware used in the research presented in this dissertation.

The Videoplace was an attempt in the late 1970s and early 1980s at creating an
artificial reality by covering walls and tables with projected displays that respond
to nearby users [71]. Research activity on display walls and large-format immer-
sive display systems increased in the early nineties with the development of the
CAVE [72, 73], a fully immersive display system where all the walls surrounding
a user are active displays. CAVEs did not have very high resolution, on the order
of 1-3 megapixels. The work on Tangible Bits [74] presents a vision of a world
where every surface is active, along with a number of prototypes. The Interactive
Workspaces project at Stanford [75] shared similar goals in trying to build a meet-
ing space with many large displays integrated with portable devices. In 1995, the
Infinity Wall1 was shown for the first time [39], where the focus was on creating
a large-scale, high-resolution projected display. Later, the focus shifted towards
using commodity components to construct display walls, while at the same time
aiming for higher resolutions and better performance [1].

Display walls are characterized by providing high resolution over a large area.
Such high resolution displays are not available off-the-shelf. Instead, they must be
constructed by tiling several smaller displays, typically flat-panel displays or pro-
jectors [1]. Each display is connected to the output from a graphics card mounted in

1The Infinity Wall was itself derived from the Power Wall and the earlier CAVE systems by the
same research group.

19

20 2 Display walls

a computer. Depending on the number of displays involved, the workload for driv-
ing each display can either be handled by a single computer using one or several
multi-head graphics cards, or by dividing the workload between several computers
in a cluster.

To avoid flicker, displays have a refresh rate of at least 60 Hz. To run the display at
full frame rate, applications and the graphics card must co-operate to produce new
pixels at the same rate as the display’s refresh rate. The state-of-the-art NVIDIA
GeForce GTX 295 is able to drive 8.1 megapixels in total, or two 2560x1600 dis-
plays at 60 Hz [76]. To maintain 2D and 3D performance, the card is equipped
with an internal memory bus that delivers data at 223.8 GB/sec, about an order of
magnitude faster than the memory bandwidth between the CPU and main mem-
ory in the current state-of-the-art Roadrunner petaflop supercomputer [30]. Due
to limited processing power and bus bandwidth, a single computer is currently not
able to drive a large collection of displays with acceptable performance. Instead,
a parallel approach can be taken, whereby several computers cooperate to produce
a coherent, high resolution image across the multitude of individual displays. This
is the approach taken by most contemporary display walls [1, 77, 78], including
one of the currently highest resolution display walls in the world: The HIPerSpace
[2, 3]. The HIPerSpace has a resolution of 286 megapixels (35840x8000 pixels),
and is constructed by tiling seventy Dell 30” displays in a 14x5 configuration. In
total, the wall covers an area measuring approximately 9.66 by 2.34 meters. It uses
18 Dell workstations that in total have 72 CPU cores with two NVIDIA graphics
cards to drive its 286 megapixels, interconnected using a 10 gigabit Ethernet.

Display cluster
with front-end

Projectors

Display wall
canvas

(a) (b)

Figure 2.1: (a) An illustration of the display wall in Tromsø, with 28 projectors back-
projecting onto a large canvas. The projectors are driven by a 29-node display cluster.
(b) Some of the projectors driving the Tromsø display wall.

Since driving a gigapixel-scale display wall using a single computer is unfeasible

2.1 Application models 21

in the near-term, the research in this dissertation assumes that display walls are
driven by a cluster of computers. Figure 2.1 illustrates how the Tromsø display
wall is constructed.

The two most common display technologies suitable for tiling are off-the-shelf flat-
panel displays and projectors. The advantages of tiling flat-panel displays are: (i)
Flat-panels are cheaper than projectors compared to the amount of pixels they pro-
vide; (ii) they have a higher number of pixels per inch (ppi) – that is, more pixels
packed in a small area; (iii) they are easy to tile; (iv) do not necessarily require
external cooling; (v) are even in color reproduction and brightness; and (vi) do not
require a separate canvas. The primary disadvantage of tiling flat-panel displays
is the thick mullions – the borders – that appear between the displays when they
are tiled. The borders around each display break the illusion of a large, continu-
ous display, and instead leaves the user with the impression of looking through a
mullioned window. Text that spans different displays becomes difficult to read.

While the mullions can be made less jarring in software by creating “virtual space”
in between the different flat-panel displays (essentially imbuing the display wall
with a greater total resolution than there actually are pixels) [79], a better solution
is to tile an array of projectors, and have them rear-project on a canvas. Using
rear-projection, the light path from the projectors to the canvas is not obstructed
by users. The projectors can be hidden behind the canvas, giving the impression
of a display floating on the wall, with no projectors visible to users. The main
advantage of using projectors is that they can be tiled seamlessly [80, 81, 82, 83].
Disadvantages include the need for a separate, climate-controlled room to hold
the projectors, additional noise (both from external cooling and internal projector
fans), color and brightness differences (which to some extent can be mitigated
through color correction [84]), limited lamp life, cost, the distance required from
projectors to canvas, lower resolution and the more involved mounting required.

Commodity projectors can cover fairly large areas, but do not provide the same
level of resolution as flat-panel displays. A typical commodity projector has a
resolution of 1024x768 pixels. With such a projector covering a canvas of 3x2.25
meters, the resulting ppi would be about 8.6. In contrast, typical displays have a
ppi ranging from 72 to about 130. The two display walls used in this dissertation
have a ppi of 19 and 30, which while not astounding, is still far more than what is
possible with a single commodity projector alone covering the same area.

2.1 Application models

There are three main application models that can be adopted to drive the pixels
of a high-resolution display wall: (i) Centralized application logic and rendering;
(ii) centralized logic and parallel rendering; and (iii) parallel logic and parallel
rendering.

22 2 Display walls

The first approach matches how most applications are written today, where the
assumption is that the application runs on a single computer with a locally attached
display. When applying this model for running applications on a display wall, the
application’s pixel output must be captured, and then streamed to the display wall,
which then displays the pixels. In this case, the computational resources of the
display wall cluster are not utilized beyond simply copying incoming pixel data
into each tile’s local framebuffer, making the central pixel source into a bottleneck
in driving the display wall with good performance. Transferring pixels is also very
costly in terms of network bandwidth usage.

The second approach is to have the application run on a single computer, but dis-
tribute its rendering to the individual tiles of a display wall. This relieves the central
computer of the rendering load, without introducing the complexities inherent in
parallelizing an application; the application logic and data can still remain on a sin-
gle computer. The display cluster’s resources are utilized more efficiently, since the
cluster’s graphics resources are used for more than just copying pixel data. How-
ever, the display cluster’s CPU and memory resources still remain under-utilized,
and the resulting performance may still not be acceptable for all applications.

The third approach is to parallelize both the application itself and its associated ren-
dering to run directly on the display cluster. In this case, the resulting performance
is ideally close to or better than2 the performance one would get running the appli-
cation on a single computer with a single display, while enabling the application
to display one to two orders of magnitude more pixels than usual. The resulting
applications are able to fully utilize the computational resources made available by
the display wall cluster. The drawback is that applications often need to be either
modified or substantially rewritten in order to parallelize them. This complicates
the implementation and can be difficult to retrofit to already existing applications.

There are many existing systems that follow the first approach, including the 22
megapixel laptop [25] and De-centralized VNC [27] systems presented in this dis-
sertation’s Chapter 6. The second approach, used by the Wallboard application
described in Chapter 5, is taken by systems like Chromium [57], WireGL [85] and
Xdmx [18]. Chromium is a derivative of WireGL, and enables existing OpenGL
[58] applications to use the display wall’s rendering resources by substituting the
normal OpenGL library with Chromium’s implementation. No recompilation is
necessary. Chromium redirects OpenGL commands to a set of slaves running on
the display cluster, which in turn execute them locally. Each slave configures its
viewport to match the tile on which it is running, resulting in each tile rendering
a different part of the scene. Xdmx (Distributed, Multi-head X) enables existing
X-based applications [86] to transparently utilize the displays on the display wall.
Xdmx is a proxy X server. It redirects X commands from clients to X servers

2Parallelizing may make the performance improve, but due to synchronization and communica-
tion overhead, the resulting performance is not necessarily better or on par with the original sequen-
tial application.

2.1 Application models 23

running on the display cluster, modifying the commands as necessary to make ap-
plications treat the display wall as one, very large display.

The third approach is taken by several of the applications presented Chapter 5,
including the Wallview image viewer, the MASpace microarray visualization, and
the Homeworld and Quake 3 Arena games. CGLX (Cross-Platform Cluster Graph-
ics Library) [59] is a system that also follows the approach of parallelizing applica-
tions to run on a display wall. CGLX lets OpenGL-based applications use a display
wall by running parallel, synchronized copies of the application on each node in
the display wall cluster. CGLX requires that applications are recompiled in order
to use the distributed OpenGL context created by the system.

2.1.1 Display wall desktop environment

In contrast to the parallel architecture of existing display walls, traditional desktop
applications written for current window systems like those of Mac OS X, Windows
or Linux are written with the assumption that they will run on a single computer
connected to at most two or three displays. When a user has two or more dis-
plays, applications generally leave it to the window system to abstract the details
of display management, and treat the displays as a large, continuous surface. This
way of handling displays is not well-suited to the parallel display wall architecture.
However, there is a constant tension between the need for backwards compatibility
and forward progress. Having a way to make existing applications run on a display
wall is important to make “the long tail” of existing desktop applications available
to users. Due to the parallel architecture of most current display walls, it is not
possible to simply take an existing application and “run it on the display wall.”

Further, it is in practice impossible to rewrite or parallelize all existing applications
to run on a display wall. A large number of applications ship without their source
code readily available, and the sheer effort of porting applications would be too
much to reasonably undertake. However, people still use these applications – such
as web browsers or text editors – so being able to run them on a display wall is
important. One way to accomplish this is by creating a traditional desktop envi-
ronment on the display wall wherein existing applications can run as normal, albeit
with lower performance compared to a desktop environment spanning just a single
computer.

To achieve this goal, one can use the window system’s remote desktop features3 to
bring a replica of one’s current desktop up on the display wall or using “desktop
projector” software such as the one presented in [67]. While this might be sufficient

3Mac OS X 10.5 ships with built-in support for sharing a user’s desktop using VNC [17]; sim-
ilarly, Microsoft Windows has long had support for sharing the user’s desktop using Microsoft’s
Remote Desktop Protocol [87]. On Linux, desktops and applications can be shared using a variety of
techniques, ranging from X server based mirroring [88], to moving applications between X servers
[89] and to plain VNC.

24 2 Display walls

in some cases, it fails to utilize the added resolution and pixel resources afforded
by the display wall; instead, one remains constrained to the resolution provided
by the host computer. Thus, the benefit of the display wall’s order-of-magnitude
higher resolution is lost.

Another approach is to use either Xdmx [18] or Virtual Network Computing (VNC)
[17] to create a desktop environment with the full resolution of the display wall.
Informal experiences with Xdmx prompted the choice of VNC to drive the desk-
top environment on the Tromsø display wall, due to Xdmx’ comparatively lower
performance. The desktop is created using the Xvnc component of RealVNC [26].
The Xvnc component is a combined X and VNC server. It is built as a regular
X server [86], but instead of driving a real display, creates a virtual framebuffer
which is then shared using VNC. Regular X-applications can then use the Xvnc
server’s virtual framebuffer as any other X display, with the caveat that some mod-
ern features like hardware 3D acceleration and overlays are not supported. This
way of driving the display wall follows the first approach outlined earlier, where
a centralized application sends pixels to the display wall tiles, which in turn only
receive and display them.

The VNC server shares the framebuffer using the Remote Framebuffer (RFB) pro-
tocol [90] with one or several viewers. A viewer requests the region of the VNC
server’s framebuffer it wants to receive updates from. The viewer only receives
updates from the server that affect the region it is covering. The viewer keeps
requesting updates, and the server responds in turn until the viewer closes the con-
nection.

Figure 2.2 illustrates how VNC is normally used, and how this changes when using
VNC to drive a display wall. The normal way to use VNC is to use it as a remote
desktop system, where a user accesses his computer remotely by connecting a VNC
viewer to a remote VNC server. The viewer displays the remote server’s associated
framebuffer, which can either represent a real display or a virtual one, with the latter
being the case with Xvnc. When using VNC to provide a desktop environment for
a display wall, there is no longer a single viewer that connects to the server and
displays the entirety of the remote server’s framebuffer. Instead, one viewer runs
on each tile of the display wall, and requests a smaller region of the remote server’s
framebuffer to match the pixel area the tile displays. Further, the server is no longer
a “remote” server – instead, it is located on the same, local network.

When using VNC to drive a display wall, the VNC server’s framebuffer is given
a resolution that matches the total resolution of the display wall. To drive the
Tromsø display wall, Xvnc is configured with a resolution of 7168x3072 pixels,
since there are 7x4 tiles with each tile having a resolution of 1024x768 pixels. The
color depth used is 16-bits, to keep the performance of the system acceptable. To
show the server’s framebuffer on the display wall, each tile is configured to run a
single viewer filling that tile’s entire display. The viewers are further configured
to limit the region of the remote framebuffer that they access, so that they request

2.1 Application models 25

Framebuffer

VNC server VNC viewer

Entire remote
framebuffer

Virtual
framebuffer

VNC server

VNC viewer

Partial
remote

framebuffer

2. VNC driving a display wall

VNC viewer

Partial
remote

framebuffer

VNC viewer

Partial
remote

framebuffer

VNC viewer

Partial
remote

framebuffer

1. Traditional VNC usage

Figure 2.2: (1) Traditional use of VNC. A single viewer connects to the server, and displays
the server’s entire framebuffer. The framebuffer usually represents a real display, but a
virtual framebuffer can also be created. (2) When using VNC to drive a display wall, two
changes occur: (i) the VNC server’s virtual framebuffer is made large enough to match
the display wall’s resolution; and (ii) each tile on the display wall request only the relevant
portion of the VNC server’s virtual framebuffer.

only the part of the remote framebuffer that corresponds with the tile on which
they are running. For instance, the top-left corner tile would display 1024x768
pixels, offset 0x0 pixels into the remote framebuffer, while the bottom-right corner
tile would display the same number of pixels, but offset 6144x2304 pixels into the
remote framebuffer.

In [91], a different approach for creating a large desktop environment is presented.
Using a 3D compositing window manager, knowledge of the geometry of the dif-
ferent displays being used and Xmove [89], windows from one display can be
moved to other displays driven by other computers. However, this architecture pre-
vents windows from spanning more than one display driven by separate X servers,
which makes it unsuitable for systems with a large number of displays driven by
separate servers such as the Tromsø display wall.

The 22 megapixel laptop can also be used to create a desktop environment on dis-
play walls, as shown in Section 6.3, much like the VNC approach. The difference
is that the 22 megapixel laptop is able to transparently integrate the laptop’s built-in

26 2 Display walls

display with the virtual displays it creates to match the available network accessible
displays. However, the performance of the VNC-based approach is better than the
22 megapixel laptop due to the modifications made to de-centralize it, as presented
in Section 6.4.

2.2 Tromsø and Princeton display walls

To conduct the research presented in this dissertation, two different display walls
have been used, listed in Table 2.1. The first is located at the Department of Com-
puter Science at the University of Tromsø, Norway. This wall, which is referred
to as the Tromsø display wall, is comprised of 28 Dell 4100MP projectors with a
resolution of 1024x768 pixels. The projectors are arranged in a 7x4 grid, yield-
ing a display with a total of 7168x3072 pixels in resolution (22 megapixels). The
projectors back-project onto a canvas, resulting in a 6x3 meter, 220” display. The
Tromsø wall provides a resolution of 30 ppi.

Where Resolution Geometry PPI Size Network Hardware
Tromsø 7168x3072 7x4 30 600x300 cm Switched,

gigabit
Ethernet

29 Dell
Precision
370 work-
stations

Princeton 2048x1536 2x2 19 272x200 cm Switched,
gigabit
Ethernet

4 Mac
minis, 1
worksta-
tion

Table 2.1: Specifications for the Tromsø and Princeton display walls.

The Tromsø wall is driven using a cluster of 29 computers. 28 computers are con-
nected to one projector each, with the 29th computer acting as a front-end to the
cluster. The computers run the Rocks cluster Linux distribution, version 4 [92].
The computers are all Dell Precision 370 workstations (Intel Pentium 4 EM64T
at 3.2 GHz, 2 GB RAM, HyperThreading enabled, NVIDIA Quadro FX 3400
with 256 MB VRAM on a PCI Express x16 bus) and are interconnected using
a switched, gigabit Ethernet.

The second wall is located at Princeton University, New Jersey, USA, and is re-
ferred to as the Princeton display wall. It consists of four Synelec projector “cubes,”
tiled in a 2x2 arrangement. It provides 19 ppi over a total resolution of 2048x1536
pixels, and measures 2.7x2 meters. Two instances of this display wall are present
at respectively the Department of Computer Science and the Lewis-Sigler Institute
for Integrative Genomics4. Four Mac minis (Intel Core 2 Duo at 1.83 GHz, 1 GB

4Only one of the walls are operational at a time, since the same computer and camera hardware
is used for both.

2.2 Tromsø and Princeton display walls 27

of RAM, integrated Intel GMA 950 GPU with 64 MB shared VRAM) running Mac
OS X 10.5.5 each drive one of the wall’s four projectors, and are interconnected
using switched, gigabit Ethernet. A Dell workstation (Intel Pentium D at 3.0 GHz,
2 GB of RAM, NVIDIA GeForce 7900 GS with 256 MB VRAM on a PCI Express
x16 bus) acts as a front-end to the Mac mini cluster. The Princeton display wall
was upgraded with the four Mac minis as part of the Ph.D. project presented in this
dissertation.

2.2.1 Camera-sense system specifications

For the Tromsø wall, the Camera-sense system makes use of 16 Unibrain Fire-i
cameras [93] using manual focus with specifications as shown in Table 2.2. The
Princeton wall makes use of 8 Unibrain Fire-i cameras, with identical specifications
but a new metallic grey casing, as compared to the translucent casing of the Tromsø
cameras.

The Camera-sense system in Tromsø further makes use of 8 Mac minis (Intel Core
Duo at 1.66 GHz, 512 MB RAM, integrated Intel GMA 950 GPU with 64 MB
shared VRAM) running Mac OS X 10.4.9 to capture and process images from the
cameras. In Princeton, the system makes use of the same Mac mini cluster as is
used to drive the projectors.

Resolution FOV FPS Depth Bus Trigger Cost
640x480 42◦ horizontal,

32◦ vertical
30 8-bit

grayscalea
FireWire
400

No ∼ $100

Table 2.2: Specifications for a Unibrain Fire-i web camera. FOV is the camera’s horizontal
and vertical field-of-view; FPS is the maximum camera frame rate; Depth is the bit-depth
used to acquire images; Bus is the interconnect used to connect the camera to a computer;
Trigger indicates whether several cameras can be triggered externally to acquire images
simultaneously.

aThe camera supports other color modes as well, however 8-bit grayscale is the mode that is
actually used.

2.2.2 Snap-detect system specifications

The Snap-detect system uses four Behringer microphones connected to an AD con-
verter (Behringer Ultragain Pro-8 Digital ADA 8000). The AD converter in turn is
connected to a Hammerfall HDSP 9652 sound card, which is mounted in a Power-
Mac G5 (Dual-processor PowerPC G5 at 2.5 GHz, 4 GB RAM, ATI Radeon 9600
XT with 128MB VRAM) running Mac OS X 10.4.11. The Snap-detect system is
only installed at the Tromsø display wall.

28 2 Display walls

2.2.3 Arm-angle system specifications

The Arm-angle system makes use of a Canon VC-C4R steerable “pan-tilt-zoom”
camera connected to a framegrabber card (Philips SAA7134/SAA7135HL). The
computer is a Dell Precision 370 workstation with specifications identical to the
computers in the Tromsø display wall cluster. The Arm-angle system is only in-
stalled at the Tromsø display wall.

2.2.4 22 megapixel laptop specification

The 22 megapixel laptop is an Apple MacBook Pro (Intel Core 2 Duo at 2.33 GHz,
3 GB RAM, ATI Radeon X1600 with 256 MB VRAM) running Mac OS X 10.4.9.
The NADs utilized include the projectors and workstations as part of the Tromsø
display wall, and a Nokia N800 Internet Tablet running OS 2007.

2.2.5 De-centralized VNC server specifications

Two computers are used to run the VNC server in the evaluation of the
De-centralized VNC system. The two computers are: (i) A Dell Precision 370
workstation with specifications identical to the computers in the Tromsø display
wall cluster; and (ii) a Dell server (Dual-processor Intel Xeon at 3.8 GHz, 8 GB
RAM, HyperThreading enabled, ATI Radeon 7000/VE with 32 MB VRAM on a
PCI bus). Both computers run RedHat Enterprise Linux 4.

Chapter 3

Methodology

A systems approach is taken to conduct the research presented in this dissertation.
Since the interplay between hardware and software is highly complex, it can not be
fully understood through analysis alone. Instead, the interplay is characterized by
conducting experiments that measure the aspects of a system one is interested in
learning more about. The methodology to do this is to develop architectures, then
design and implement actual, working systems. Experiments are then designed
and conducted, with an emphasis on experiments whose conduct and results can be
reproduced by other researchers to an as large extent as possible.

The results are then analyzed and ideally compared to the state of the art1. Through
the process of constructing the system, a deeper and more detailed understanding
of its underlying model, design, architecture and implementation is obtained, all of
which contribute to explaining the system’s characteristics and the results obtained
through the experiments. On the basis of this knowledge and the experimental
results, conclusions about the system are drawn. These conclusions can give rise
to new questions that can be answered by further research, which restarts the cy-
cle. The system is refined based on the lessons learned, and yet new experiments
conducted.

The purpose of the experiments presented in this dissertation is to measure and doc-
ument various performance aspects of the different systems that have been devel-
oped. The performance metrics used are: (i) Latency; (ii) accuracy and precision;
(iii) CPU load; (iv) bandwidth; and (v) pixel update rate.

1In practice, making an “apples to apples” comparison between two systems is hard to achieve.
Some reasons for this is that systems from the state of the art are not always open, and the hardware
platforms used to conduct experiments usually differ.

29

30 3 Methodology

3.1 Latency

Latency is measured in milliseconds. It characterizes the delay between some ac-
tion happening, and its effect becoming visible to some other part of a system or
to a user. Low latency is important in order for a system to appear responsive to
end users. The methodology used to measure latency varies. One approach used
is to measure the mean running time of a piece of code, to determine the latency
incurred by that piece of code. To measure the time, the code is instrumented by
surrounding the interesting block of code with calls to gettimeofday()2. This is
illustrated in Listing 3.1. When measuring the latency incurred by a network, the
roundtrip latency is determined by sending a packet containing a local timestamp
(from gettimeofday()), and then waiting for a response containing a copy of
the earlier local timestamp. This is the same way that the standard ping [94] pro-
gram works. The roundtrip latency is then divided by two to arrive at the one-way
latency.

external_event_occured:
start = gettimeofday()
time_consuming_function()
stop = gettimeofday()
mean_latency = (mean_latency + (stop - start)) * 0.5

time_consuming_function:
.. do something time consuming ..

Listing 3.1: Pseudo-code demonstrating how the latency incurred by a block of code is
measured. The code updates the mean latency every time an external event occurs.

3.2 Accuracy and precision

Accuracy and precision are measured in centimeters. The two metrics are used
to characterize the accuracy and precision with which the Camera-sense system is
able to locate object. Accuracy is the distance from a target location to an actual,
observed location as reported by the Camera-sense system. Precision indicates
the degree to which the Camera-sense system is consistent in locating an object
at a given location, and is calculated as the standard deviation of several accuracy
measurements.

The accuracy is measured by having users point at different targets, and then mea-
sure the difference between the target’s location and the location as observed by
the system. For each target, a number of measurements are made. The resulting
accuracy is reported as the mean of the difference between the target locations, and

2All time measurements are made using the gettimeofday() system call on either Mac
OS X or Linux. This call returns time as a tuple of seconds and microseconds since the beginning of
Unix time (January 1. 1970).

3.4 CPU load 31

the observed measurements. The mean can be calculated either for all targets, or
for each individual target. The lower the mean, the better the system’s accuracy –
at least for that user. The system’s precision for a given target is then calculated as
the standard deviation of the difference between target and observations.

The accuracy experiments are the only experiments that directly involve users;
this generally makes them harder to reproduce since their movements may not be
entirely consistent across several experiments. However, the alternative would be
to build a very elaborate “accuracy measurement machine” that could repeat the
same movements over and over, which is outside the scope of this dissertation.

3.3 CPU load

CPU load is measured as CPU time, or a percentage thereof. The operating sys-
tem is constantly scheduling different processes to run when they are ready. The
CPU load for a process over a given amount of time is the amount of CPU time
the OS has allocated to that process at both kernel and user level since the process
began running. The CPU load is measured using the getrusage() system call,
which returns the calling process’ cumulative CPU time at kernel and user level.
The function is called either once at the beginning and end of an experiment, or
at regular intervals during the experiment (for instance, once every second), de-
pending on the level of detail that is desired. Its output is logged along with a
timestamp. When an experiment ends, the process’ total CPU load as a percentage
can be calculated as CPU time

end−start , where CPU time is the CPU time returned by
getrusage() at either kernel or user level, end is the last timestamp and start
is the first timestamp. Listing 3.2 demonstrates how the CPU load is recorded. A
separate thread is used to record the amount of CPU time consumed by the process
at regular intervals, and is otherwise sleeping, thus not incurring much overhead.

3.4 Bandwidth

Bandwidth is measured as the number of bytes transferred for the duration of an
experiment, and then optionally calculating the mean number of bytes transferred
per second. Measuring bandwidth helps determine whether the network connec-
tion between two parts of a system may represent a bottleneck, and may also aid in
characterizing how changes to a system’s architecture affects its bandwidth usage.
The bandwidth measurements in this dissertation focus only on application level
bandwidth, and does not consider the additional bandwidth required to manage the
lower-layer protocols such as TCP or UDP. Listing 3.3 shows pseudo-code demon-
strating how bandwidth is measured. Two counters are initialized to 0, representing
the number of bytes sent and received. The values of the counters may be logged

32 3 Methodology

start:
start_cpu_load_thread()
do_work()

do_work:
.. do something ..

cpu_load_thread()
while true:

record_cpu_load()
sleep(N seconds)

record_cpu_load:
timestamp = gettimeofday()
resource_usage = getrusage()
log(timestamp, resource_usage)

Listing 3.2: Pseudo-code demonstrating how the CPU load for a process is measured.

at regular intervals, or just the final values at the end of an experiment. As data is
sent or received, the counters are incremented with the number of bytes sent.

3.5 Pixel update rate

Pixel update rate is measured as the number of pixels updated per second. The
purpose of measuring the pixel update rate is to determine how quickly and how
often a system can refresh its output on a display wall. By measuring an exist-
ing system’s performance and then comparing it to the performance of a modified
system, it is possible to determine if the modified system has increased its perfor-
mance. By combining this metric with knowledge about CPU load and bandwidth
usage, knowledge of bottlenecks and how they change in the modified system can
be gained. Listing 3.4 shows how the pixel update rate is measured. As with CPU
load and bandwidth, a counter keeps track of the total number of pixels updated
for the duration of an experiment. As an application updates areas of the display,
the number of pixels inside the rectangle being updated are added to the counter.
The value of this counter is either obtained at the end of an experiment, or logged
periodically along with a timestamp. Logging can be done using a separate thread
or by incorporating the necessary logging code into the application’s main loop.

An alternative metric is frames per second, which is the number of full display
refreshes per second3. This metric is more intuitive to understand than the number
of pixels updated per second, but is not always applicable. For instance, it does not
make much sense to measure the frame rate of a text editor, since the text editor
usually updates only a small part of the display and not necessarily at a high rate.

3Frames per second is also used to describe the rate at which images are delivered from the
cameras used in the Camera-sense system to the computer they are attached to.

3.6 Overhead of instrumentation 33

send_data:
bytes = send(socket, buffer, bytes_to_send, 0)
if bytes > 0:

.. send ok, update counters and return bytes sent ..
return bytes

else:
.. error condition or socket closed ..
return 0

recv_data:
bytes = recv(socket, buffer, max_bytes_to_receive, 0)
if bytes > 0:

.. handle new data ..
return bytes

else:
.. error condition or socket closed ..
return 0

do_something_bandwidth_consuming:
in_bytes = 0
out_bytes = 0
start = gettimeofday()
last_log = 0
while not done:

out_bytes += send_data()
in_bytes += recv_data()
if last_log + 1 < gettimeofday():

last_log = gettimeofday()
log(in_bytes, out_bytes, last_log)

in_bandwidth = in_bytes/(gettimeofday() - start)
out_bandwidth = out_bytes/(gettimeofday() - start)

Listing 3.3: Pseudo-code demonstrating how bandwidth is measured.

In these cases, a low frame rate could be interpreted as bad performance, when
in reality it just indicates that the application is smarter about when and where to
update the display. However, if it is known that the pixel update rate reflects full
display updates, the two metrics can be used interchangeably. The pixel update
rate (pixels/second) can be converted to frames per second by dividing the pixel
update rate by the size of the display in question. For instance, a pixel update rate
of 110 megapixels/second on the Tromsø display wall (which has a 22 megapixel
resolution) would reflect a frame rate of 110

22 = 5.

3.6 Overhead of instrumentation

There will always be some level of overhead associated with instrumentation.
Many of the statistics listed above are obtained through some level of instrumenta-

34 3 Methodology

main_loop:
total_pixels = 0
start = gettimeofday()
start_log_thread()
while true:

.. wait for pixel updates ..
received_pixel_update(pixels, rectangle)

received_pixel_update(pixels, rectangle):
draw_pixels(pixels)
total_pixels += rectangle.width * rectangle.height

log_thread:
while true:

log(total_pixels, gettimeofday())
sleep(1)

Listing 3.4: Pseudo-code demonstrating how the pixel update rate is measured. Note that
thread safety is not considered in the pseudo-code.

tion. No effort has been made to establish the cost of this instrumentation, however
given the frequency at which the instrumentation code is invoked and the small
amount of data it collects, the cost of the instrumentation is expected to be negli-
gible. The overhead would be of greater importance if the experiments aimed at
determining the exact cost of some operation with a very high degree of precision.
For instance, measuring the execution time of a piece of code down to microsec-
ond or better accuracy would require a more careful examination of the impact
of instrumenting the code – such as cache effects, register spills and so on – than
determining it with millisecond precision. The approach to measuring the execu-
tion time would also likely change, for instance to using the time stamp registers
directly rather than the gettimeofday() system call4. Such a high degree of
precision is not required for the experiments presented in this dissertation.

3.7 Definition of a megapixel

This dissertation defines one megapixel as one million pixels. In the papers de-
tailing the 22 megapixel laptop5 [25] and De-centralized VNC [27], a different
definition was used, defining one megapixel as 1024 ∗ 1024 = 1048576 pixels. In
presenting results from these papers, the results have been converted to the cor-
rect definition of a megapixel by multiplying existing data points by a factor of
1.048576.

4This in turn would introduce other issues, such as having to control the core that the process
runs on, and compensating for any power saving measures the operating system should choose to
implement.

5The name “the 22 megapixel laptop” has not been changed in accordance with this, however.

Chapter 4

Interaction Spaces

This chapter documents the Interaction Spaces concept, as well as the design, im-
plementation and evaluation of three Interaction Space systems. This chapter is
based on the following peer-reviewed, published papers: [23, 22, 24, 21, 95]. The
papers have all been written towards fulfillment of the Ph.D. project presented in
this dissertation.

Interacting with computers can be done with or without devices. Device-based
interaction, using mice, keyboards or any other passive or active device, has several
downsides when being used to interact with display walls. The large size and high
resolution of display walls makes it possible to move around in front of the wall to
explore a dataset, rather than sit passively behind a desk. The high resolution makes
it possible to walk closer and see text and other fine details, or step back to see the
larger context of a dataset. Some devices, such as keyboards, are sufficiently large
that they can not be conveniently carried around or used without a table. A regular
mouse does not work without a tracking surface. Another disadvantage is that
devices don’t scale to many users. Unless the users can agree on taking turns using
the device to interact, supporting many users requires that each potential user has
his own device. Devices may easily get lost, and in public settings they are more
likely to get stolen. Since the devices have to be carried around, they must be
wireless. An active, wireless device will require a battery, which must be replaced
or recharged at regular intervals. There is also learning associated with devices,
and some users may be averse to using public devices for hygienic reasons.

Interaction can also be accomplished without devices, by recognizing speech, ges-
tures or other properties of the persons trying to interact. However, these ap-
proaches are not yet fully developed. Speech recognition is a challenging prob-
lem, and many gesture-based approaches require that users wear gloves [5, 6] or
markers [7, 8]. The approaches that don’t require the use of markers are limited to
detecting input in 2D, gesture recognition in 3D based on depth maps, or in scal-
ability. 2D-approaches do not provide depth information, and are limited to either

35

36 4 Interaction Spaces

recognizing specific gestures [55, 96], or detecting multi-touch input on a 2D sur-
face [12, 13, 97]. Most marker-less 3D approaches detect gestures by analyzing a
depth map of a scene [14, 15, 56, 16]. Both 2D and 3D approaches are limited in
scalability, since they restrict the area within which interaction can take place.

Figure 4.1: Interaction spaces are large and small volumes within which user input is de-
tected. The interaction spaces illustrated above do not require that users use devices or
wear markers. The smallest, magenta-colored interaction space is created using a ceiling-
mounted camera at the back of the room. The medium-sized space in blue is created using
a number of cameras along the floor in front of the display wall, and the largest, yellow
space is created using four microphones. Credit for the human models: Google SketchUp.

Whether with or without devices, interaction is still restricted to a single computer,
and often a single user as well. This dissertation presents the Interaction Spaces
concept. An interaction space is a volume within which user interaction is detected.
As illustrated in Figure 4.1, different interaction spaces can cover differently sized
and overlapping areas. The interaction spaces exist orthogonally to the computers
they act on, and can support one or several users at a time. The input mechanism is
no longer bound to a single computer, but instead becomes a property of the space
users occupy. An interaction space is always switched on, and may be used alone
or in concert with other interaction spaces.

Three systems have been built based on the Interaction Spaces concept. Each of the
three systems create a separate interaction space. Taken together, the three systems
enable unencumbered, device-free interaction with display walls using both ges-
tures and sounds detected and located in both two and three dimensions. The three
systems are: (i) Camera-sense: A scalable, multi-user and multi-“touch”1 camera-

1The system is touch-free in the sense that touching a surface is not necessary in order for inter-

4.0 37

based system that detects and locates objects in 3D; (ii) Snap-detect: A system
capable of locating the origin of the sound made by a user snapping his fingers
or clapping his hands in 2D; and (iii) Arm-angle: An on-demand camera-based
system that recognizes the direction in which a user’s arm is pointing.

System Approach 3D Multi-user Volume Fixed Hardware
Camera-
sense

Gesture Yes Yes 7 m3 Yes 16 cameras,
8 computers

Snap-detect Sound Noa No 144 m3 Yes 4 micro-
phones, 1
computer

Arm-angle Gesture No No 3 m3 No 1 camera, 1
computer

Table 4.1: Characteristics of the three interaction space systems.

aSounds are located in 2D, but the detected sounds can emanate from anywhere within a room-
sized 3D volume.

The characteristics of the three systems are listed in Table 4.1. The columns are:
(i) System: The system being characterized; (ii) Approach: Whether the system
detects gestures or sounds to enable interaction; (iii) 3D: Whether the interaction
space supports 3D detection; (iv) Multi-user: Whether the interaction space sup-
ports several users at the same time; (v) Volume: The approximate extent of the
interaction space in cubic meters2; (vi) Fixed: Indicates whether the interaction
space is fixed, or if it can be moved around; and (vii) Hardware: A very brief
summary of the hardware used to create the interaction space.

The Camera-sense system creates the first interaction space in front of the display
wall. In this space, the location and extent of objects such as hands, fingers, pens
or other items is determined and subsequently interpreted by applications. It is the
only space that can locate objects in 3D. The space allows several users to interact
simultaneously. It is wedge-shaped and can not be moved, but is scalable in that
larger areas can be incorporated into the interaction space by adding more cameras.
A parallel approach is taken by utilizing several cameras and computers to create
the interaction space.

The Snap-detect system creates the second interaction space in the same room as
the display wall. The space detects the sound made by users snapping their fingers,
clapping their hands or making other snap-like sounds, and determines the location
of the individual sounds’ origins in 2D. It can only detect a single snap at a time.
However, due to the short duration of a snap or clap, it is possible for several users
to interact within a few seconds of each other. The Snap-detect system’s space has

action to be detected.
2The volume is estimated based on measurements of the Tromsø display wall and the room it is

in.

38 4 Interaction Spaces

the largest volume of the three interaction spaces, filling an entire room. However,
the space is still fixed due to the use of fixed microphones to detect sounds.

The Arm-angle system creates the third interaction space. Like the Camera-sense
system, the space is created in front of the display wall. Within the space, the
angle of a user’s arm is detected without requiring users to wear markers, giving
applications information about where a user is pointing. It can only be used by a
single user at a time. The space covers a smaller volume than the other two, by
capturing the immediate surroundings of a given user. Unlike the other two spaces,
the Arm-angle space is created on demand by utilizing the Snap-detect interaction
space. By snapping his fingers, a user prompts the creation of the Arm-angle space
around him, after which he may proceed to use the space. The space is thus not
fixed like the other two, but movable. This is achieved using a steerable, ceiling-
mounted camera to pan, tilt and zoom in on the user’s location, with the Snap-
detect system acting as an enabling technology to provide the user’s approximate
location.

The three interaction spaces are used to interact in different ways with a number
of applications on the display wall. The Camera-sense space can be used to either
recognize gestures directly using the location and skeleton 3D object representa-
tion detected by the space, or as a multi-touch gesture interface. Unlike many
existing multi-touch input systems [12, 13, 97], the Camera-sense space does not
require users to actually touch the display in order to interact. This has several
advantages: The interaction mechanism is physically separated from what it acts
on. This enables the display to be moved away from the user, for instance behind a
shop window. Further, users need not worry about touching a possibly dirty public
display, and conversely, the display itself does not get dirty from being repeatedly
touched. For the case of the Tromsø display wall, the display wall’s canvas itself is
flexible. This makes touching it inconvenient, since the canvas inevitably starts to
wobble in response to touch, which distorts the content being shown on the display
wall. The Camera-sense space has been used to interact with a number of new
and existing applications, including a custom image viewer for the display wall,
a custom microarray visualization, and the two games Quake 3 Arena [69] and
Homeworld [70]. The applications are further detailed in Chapter 5.

The Snap-detect space has been used in several ways. It is used by the display
wall’s desktop environment to allow window movement. When two snaps are
detected (a “double snap”), the currently focused window on the display wall is
moved to the average location of the two snaps. It is also used to control the afore-
mentioned image viewer, where a double snap results in the image viewer zooming
in on the location of the two snaps. A triple snap resets the image viewer’s view,
if the images being displayed should disappear from the user’s view. The Snap-
detect space is also used as an alternative firing mechanism in Quake 3 Arena, and
is instrumental in enabling the creation of the Arm-angle space.

The Arm-angle space is used to select objects on the display wall by having users

4.2 Limitations 39

point at them. It has been used to augment the Snap-detect window movement
functionality by enabling users to point at the windows they wish to move, where
snapping previously could only be used to move the currently focused window. It
has also been used to select geometric objects in Wallboard, a custom whiteboard-
style application. The Arm-angle space is unique in that it is movable, and in that
it demonstrates how additional interaction spaces may be built based on already
existing interaction spaces.

4.1 Limitations

This chapter documents the development of three interaction space systems. It is
not focused on the development of user interfaces for display walls3, nor is any
attempt made at determining whether a particular user interface or interaction ap-
proach is “good,” “user friendly” or “efficient.” The systems have been built in
order to gain an understanding of the overarching Interaction Spaces concept, to
demonstrate the ideas and possibilities that stem from it, and to enable unencum-
bered, device-free interaction.

None of the three systems presented are able to distinguish different users. This
capability is found in relatively few device-free interaction systems, with the Di-
amondTouch [97] as an example of a system that can distinguish different users.
Of the three systems, the Camera-sense system might be extended to distinguish
different users by linking objects detected in 3D to each other; at present, however,
no such effort is made. The Snap-detect system can not be reasonably extended to
distinguish different users, and the Arm-angle system is presently single-user only.

A further limitation of scope is object recognition. None of the systems attempt
to determine what exactly an object is. The Camera-sense system enables users
to interact using any object, but no attempt is made at determining if the object
is a pen, a finger, a hand or something else. The Snap-detect system only tries to
detect snap- and clap-like sounds; no attempt is made at identifying what made the
sound – it could be someone snapping their finger, but it could also be a mechanical
clicker, or a book slamming into a table. The Arm-angle system – despite its name
– does not actually identify a user’s arm. Instead, it is based on analyzing an
image to detect straight lines, and on the assumption that straight lines represent
a possible arm, use the angle of those lines to enable interaction. The principle
behind the systems is “where, not what,” and applying this principle to simplify
the design and implementation of device-free, marker-less interaction spaces.

3Although some interfaces are developed, no claim is made towards their efficacy.

40 4 Interaction Spaces

4.2 Related work

Interactive spaces and interactive or “smart” rooms are discussed in the work on
Tangible Bits [74] and the Stanford Interactive Workspaces research on an “inter-
active room operating system” [75]. These papers are discussed in Chapter 2. The
“interaction space” term is very broad, and has been used fields ranging from art
and multimedia [98] to pervasive [99] and mobile [100] computing. This disserta-
tion’s research on interaction spaces is focused on creating device-free interaction
spaces to enable interaction with display walls. As the size of the display in ques-
tion increases, different technical approaches are used to provide gesture-based
input. Small to regular-sized displays such as those found on the Nintendo DS or
the Apple iPhone usually employ either resistive or capacitive [101] touch-screen
technology to enable gesture-based interaction. Resistive touch-screens work by
detecting contact between a resistive and a conductive layer as they are pushed
together. A capacitive touch-screen detects changes in the voltage distributed in
a capacitive layer when a finger or other capacitive device is in close proximity.
When in close enough proximity, a voltage drop on the capacitive surface can be
measured and used to determine the location of the touch. As displays grow larger,
most current approaches including the approach taken by the Camera-sense sys-
tem are camera-based. Other approaches to implementing touch screens include
using a grid of sensors mounted along the display’s frames to determine the point
of contact; this approach is taken by the CarrollTouch frame [102].

One way to use the Camera-sense system is for multi-touch interaction, by having
applications consider input from only one of the multiple planes in which objects
are detected. Some of the earliest work on multi-touch input was conducted in
the late seventies and early eighties by Myron Krueger in the Videoplace work
[71]. The Videoplace is an art project where a cameras are used to detect the
silhouettes of users. It did not require users to wear special gloves in order to enable
interaction, and it was one of the first examples of many multi-touch gestures that
are now common across nearly all multi-touch capable devices, such as the pinch-
to-zoom gesture. Another early example of multi-touch input appears in [103],
where the development of a capacitive multi-input touch tablet with limited 3D-
sensing capabilities is shown.

The DiamondTouch [97], developed by Mitsubishi Electric Research Labs, is a
multi-touch table. The table detects touches using electric capacitance. When the
user touches a region of the table, a signal from an antenna beneath that region is
transmitted through the user into the chair the user sits on, completing an electronic
circuit. This enables the DiamondTouch to distinguish between different users
touching the table. Due to the electronics used, the DiamondTouch requires the use
of front-projection. There are several differences between the DiamondTouch and
the Camera-sense system: (i) The DiamondTouch is a 2D only system, whereas the
Camera-sense system locates objects in 3D; (ii) the DiamondTouch can only detect

4.2 Related work 41

human fingers or hands, while the Camera-sense system can detect any object; (iii)
the DiamondTouch only reports which antenna was touched, and not where on the
antenna the user touched. Further, the DiamondTouch requires users to touch the
table in order to interact. The Camera-sense system can detect user interaction
without requiring users to touch the interactive surface.

The technology used by the DiamondTouch has so far only been used for multi-
touch tables, and not for enabling multi-touch interaction on display walls. In 2005,
Jeff Han demonstrated a system based on using frustrated total internal reflection
(FTIR) of infrared light to provide a multi-touch capable display [12]. The technol-
ogy works by shining infrared (IR) light from a series of IR light emitting diodes
(LEDs) into the sides of a rigid, plastic canvas. At points where a user touches the
canvas, the internal reflection is “frustrated,” resulting in infrared light escaping
from that location on the opposite side of the canvas. A camera behind the canvas
equipped with a filter to block visible light sees the infrared light. By applying
background subtraction and thresholding to the camera image, the location of dif-
ferent touch points is determined by locating bright spots in the processed image.
The FTIR multi-touch technology differs from the Camera-sense system in that:
(i) FTIR multi-touch is limited to locating touches in 2D; (ii) the accuracy of FTIR
multi-touch declines over time as the canvas gets progressively dirtier from being
touched by users [12], a problem not faced by the Camera-sense system; and (iii)
the scale of the system: The system is only used on a small projected display. The
FTIR multi-touch approach has been commercialized by Perceptive Pixel, and was
used extensively to cover the 2008 Presidential Election in the US on CNN [104].

The TouchLight [105] is a system that uses two cameras to capture stereo images of
a transparent projection surface4. The images from the two cameras are processed
to create a depth-map of the scene covered by the two cameras. The system’s
goal is to enable gesture-based interaction by detecting objects at approximately
the same depth as the projection surface. The result is a “touch image” which
can be interpreted by applications to allow interaction. The TouchLight differs
from the Camera-sense system as follows: (i) The TouchLight is restricted to 2D
gestures, at least in its current implementation; and (ii) the approach is not easily
scalable, whereas the Camera-sense system can be scaled to cover larger displays
by adding more cameras. A similar stereo camera system is presented in [106],
where cameras are used to enable multi-touch interaction with a flat surface.

Another stereo camera based approach is the WaveScape system [56], in which a
depth map of the scene in front of a plasma-TV sized screen is computed using two
IR cameras and an infrared illuminator. The illuminator projects a semi-random
dot-pattern onto the scene, which aids the stereo algorithm in more robustly deter-
mining the depth of different parts of the scene. The stereo camera output is then
used to recognize human shapes which are mapped onto a human model for gesture

4The surface is composed of transparent acrylic plastic overlaid with a commercially available
holographic film called the DNP HoloScreen.

42 4 Interaction Spaces

recognition. The Wavescape system differs from the Camera-sense system in that:
(i) The Wavescape system recognizes gestures from humans, whereas the Camera-
sense system detects and locates arbitrary objects. The Camera-sense system does
not attempt to recognize gestures, but instead give applications information about
2D and 3D objects which the applications themselves may use to recognize ges-
tures; (ii) the Wavescape system models the human based on assumptions made
from the computed depth-map, while the Camera-sense system detects not only
the tip of objects in 3D but also their extent further back into the scene (even if oc-
cluded by the tip of the object, which the WaveScape system can not do); and (iii)
the Wavescape system, like the TouchLight, is not scalable without changing the
system’s architecture, while the Camera-sense system’s architecture is inherently
scalable and can scale to wider walls by adding more cameras and computers.

The Microsoft Surface [13] is a multi-touch capable table, similar in function to the
DiamondTouch. A projector under the table creates the visual display, and cam-
eras mounted with the projector enable positioning of up to fifty-two simultaneous
points of contact. The Surface uses five cameras and diffuse illumination (DI) of
infrared light to detect points of contact. Infrared light is emitted from below the
table, and reflected off of objects through the table’s projection surface which is
transparent to infrared light. When objects come closer to the table, the amount
of IR light reflected increases, enabling touches to be detected. The basic image
processing required is similar to that used by the FTIR approach, which uses back-
ground subtraction and thresholding to determine where objects are. This is the
same approach taken by the Camera-sense system. The Surface only detects inter-
action in 2D; no attempt is made at building a depth-map or extract the geometry
of 3D objects. In the Camera-sense system, a skeleton 3D representation of objects
is constructed.

The SecondLight [107] is an extension of the Microsoft Surface. It is based on the
Surface, but with two additions: Images can be projected on surfaces held above
the table surface, and interaction can be detected above the table. For instance,
a piece of paper could be held at a small distance from the table surface, and a
different image from the one shown on the regular table could be projected onto
the paper. At the same time, users can interact both with the primary table surface,
and a secondary surface held above the table. The SecondLight combines both
FTIR and DI to enable interaction. It differs from the Camera-sense system in that:
(i) the SecondLight’s scale is small, whereas the Camera-sense system is designed
for large display walls; and (ii) the detected gestures are still 2D only, although the
authors speculate on extensions to 3D.

The Microsoft TouchWall [51] is a prototype projected display with multi-touch
capabilities. There are few technical details available about the TouchWall. Three
infrared lasers are mounted below the canvas, and a camera is situated behind it.
The camera is equipped with an IR-pass filter, like the cameras used by the FTIR
multi-touch walls and the Microsoft Surface. When a user comes close to touching

4.2 Related work 43

the canvas, the infrared laser light’s beam is diffused by the finger and reflected
towards the display. This can be detected by the camera, and used to enable multi-
touch interaction. The TouchWall has one characteristic that the FTIR multi-touch
wall does not: It can detect interaction without necessarily requiring that users
touch the display. Compared to the Camera-sense system, however, it is still limited
to 2D.

A different DI approach was used to build the Duke multi-touch wall [108]. The
approach uses 8 cameras to track touch-input over a 4.1x1.5 meter display wall.
The basic technique is similar to the approach taken by the Microsoft surface. The
display wall’s canvas is illuminated with infrared light, and Touchlib [109] is used
to detect and track touches from the individual cameras. A “composition” process
(their terminology) is used to merge touches from different cameras. The system
differs from the Camera-sense system in its design, and that it only detects objects
in 2D, and not 3D. However, it demonstrates that DI approaches to multi-touch can
be made to scale to display walls.

Another approach for multi-touch interaction is using range finders. In [110], re-
searchers at IBM developed a system that makes use of a scanning laser rangefinder
to enable multi-touch interaction with display walls. The rangefinder is mounted
in one corner of the display, and rapidly scans the area covering the display wall
to determine the location of objects. In the configuration presented, it suffers from
occlusion issues, although it is suggested that this could be resolved by adding ad-
ditional rangefinders. The use of lasers makes it possible to move the plane where
interaction can occur away from the actual display. This is an advantage that it
shares with the Camera-sense system. However, the range finder approach is still
limited to 2D interaction. A range finder was also used to enable interaction with
the FogScreen [111].

The SMART board [112] is an interactive whiteboard. It detects users touching
the display using a set of custom cameras (called “corner blocks”) mounted in the
corners of the display [113]. The cameras perform on-board image processing to
detect objects intersecting a narrow plane in front of the display. This is similar
to the approach taken by the Camera-sense system, where the location of objects
in a given plane is determined using triangulation. The scalability of the system
is limited to displays where the four cameras can be mounted, their resolution and
field-of-view. In a 2009 tech report [114], the authors present a “continuous inter-
action space” which is created by combining a commercial marker-based tracking
system [115] with a SMART board. The work differs from the research presented
here in its requirement that users wear markers, and in the resulting system’s lim-
ited scalability. The work is further focused on defining and evaluating gestures,
rather than building the underlying interaction space systems.

The HoloWall and HoloTable [116] are two realizations of a system that enables
device-free interaction with a projected display. The system detects hands and
other objects using DI of infrared light and a single camera behind the display.

44 4 Interaction Spaces

Objects are detected up to 30 cm away from the display. The system differs from
the Camera-sense system in that it: (i) Uses only a single camera to detect objects,
whereas the Camera-sense system makes use of several cameras; (ii) the HoloWall
relies on IR light to more easily detect objects, while the Camera-sense system
takes a more traditional approach to segment foreground objects from background
objects in the visual light spectrum; (iii) the HoloWall attempts to distinguish dif-
ferent objects and classify them, while the Camera-sense system makes no such
efforts. Finally the Holowall, while being able to detect objects some distance
away from the display, does not detect their 3D location.

GestureTek is a company that offers both 2D and 3D input solutions based on high-
end cameras [117]. High-end cameras typically provide higher framerates and res-
olution, as well as support for synchronization, a feature that is not available when
using commodity web cameras. The systems can provide 3D gestural input using
depth cameras, such as the ones being developed by the company 3DV Systems
[14]. A depth camera detects not only the color values for pixels in an image, but
also associates a depth value with each pixel. Depth cameras can also be emulated
using a stereo camera setup, as used in some of the approaches discussed previously
[105, 56]. The main differences between the systems provided by GestureTek and
the Camera-system are: (i) The GestureTek systems, while making use of multi-
ple cameras, all have the cameras cover the same limited region of interest from
different angles. In contrast, the Camera-sense system uses several cameras with
partially overlapping or completely disparate regions of interest to cover a larger
area; (ii) the GestureTek systems rely on expensive high-end cameras, whereas the
Camera-sense system is designed for cheap commodity web cameras.

In [15], a depth camera from 3DV Systems is used to determine the occupancy
state of the space in front of the camera. This is used to enable coarse-grained
detection of objects, and use the results to enable interaction. The system is used
to augment a display showing a real-world model with simulated content. Users
can interact with the model by moving their hands over the real-world model, and
see the results on the display. The work is similar to the Camera-sense system in
that it merely aims at detecting the presence of objects, and not determine what the
objects actually are. However, is is not used for interacting with a display wall,
and the system’s scalability has not been demonstrated. The particular 3D sensing
technology used may also preclude the use of more than one camera5.

There are a number of device-based gesture interfaces that share similarities with
the Camera-sense system. When Nintendo introduced the Wii game console in
2006, they simultaneously made a very versatile input device – the Wii Remote
(“Wiimote”) – available to a large number of users. The Wiimote is equipped with

5The camera senses depth by sending out pulses of infrared light, and then measure the time
it takes for the pulse to be reflected and return to the camera. However, the camera is not able to
distinguish its own IR light from other IR sources. Thus, it is possible that several such cameras
would interfere with each other, even if no other IR sources were present.

4.2 Related work 45

accelerometers and a small IR camera in addition to a number of buttons. The IR
camera is used to detect the IR LEDs on the Wii’s “sensor bar6.” In [7], the author
presents several different ways of utilizing the Wiimote’s built in camera to create
a 2D multi-touch input system by illuminating the scene with infrared light, and
then having users wear IR reflectors on their fingertips. The Wiimote is limited to
tracking just four dots however, and users are required to wear either passive IR
reflectors or active IR LEDs for the Wiimote to track the user. The Camera-sense
system does not require the use of passive or active markers.

The system being developed by Oblong industries [5] enables interaction with col-
lection of displays in a way very similar to the interaction portrayed in the movie
Minority Report [45], which is not surprising given that their system was the inspi-
ration for the technology shown in the movie. Users wear gloves that are tracked
by a vision system, and the system then recognizes gestures based on the hand
pose and pointing direction. Another marker-based system developed by the Ger-
man company Advanced Realtime Tracking makes use of IR reflectors mounted to
users’ hands or heads [8]. One goal of the Camera-sense system is to not require
the use of markers or devices, and this is what sets the Camera-system apart from
these systems.

The iPoint Presenter [118] is a system that tracks a user’s fingers in 3D using
cameras and infrared illumination. It can track up to eight fingers without requiring
users to wear markers. The system uses two cameras in a stereo configuration to
detect the location of fingers. Few technical details on the system are available. The
system differs from the Camera-sense system in that it only detects fingers, and not
arbitrary objects. This can be both an advantage and a disadvantage, depending on
the application. Further, no information about an object’s extent in 3D is provided;
only the finger location (not its extent) is tracked. This differs from the Camera-
sense system where a skeleton 3D object is constructed.

Instead of using gestures to interact, one can also use sounds. One approach is to
use speech recognition to detect spoken commands. Speech recognition is built
into many modern operating systems. The main focus in speech recognition is
accurate detection of speech rather than determining where the speaker is located.
In [119], an interface is built where continuous vocal sounds are used to control
an interface. A similar approach is taken in [120], where vocal sounds are used
to control the location of a cursor on a display. Users vary the pitch of their voice
to move a cursor up, down, left or right, and use spoken commands to change
direction or perform a click. Unlike the Snap-detect system, neither of these two
systems attempt to determine where the sound originates. Further, the Snap-detect
system does not attempt to do speech recognition at all.

In [121], a 3D interface is created that responds to loud noises above a dynamic

6The name sensor bar is somewhat misleading, since the bar itself does not do any sensing; it
merely creates two IR dots which can be seen by the camera built into each Wiimote.

46 4 Interaction Spaces

threshold. The system creates virtual boxes in space within which the user can clap
his hands. The boxes act as buttons that control a media player. Instead of creating
fixed areas where the system is sensitive to sound, the Snap-detect system makes
the entire room sensitive to users snapping their fingers or clapping their hands and
then making the 2D location available to applications. The systems also differ in
the approach to detecting sounds: The Snap-detect system matches audio with a
template sound clip, whereas the authors of [121] just detect any loud noise above
a given threshold.

In [122, 110], an interface is developed where users can interact with large displays
by knocking on its surface. The implementation shares the use of multilateration to
locate the knocking sound’s origin with Snap-detect. However, the system inher-
ently requires that users actually knock on the surface; the system does not detect
sounds that do not travel through the surface itself. In Scratch Input [123], any sur-
face – such as a table or a wall – is made active by placing a small microphone on
it. The system detects scratching noises, and uses them to interpret simple gestures
such as drawing a line, circle, triangle or square on the surface. Unlike the Snap-
detect system, no effort is made to determine where the scratching occurs; instead
the focus is on disambiguating a set of gestures. As with the knock-system [122],
Scratch Input requires that users actually touch the surface, while the Snap-detect
system can locate sounds emanating from anywhere within the room.

In [124], sound source localization is used to locate the source of sounds in a 3D
environment. 8 microphones mounted on a robot pick up sound, which is cross-
correlated to determine the time delay of arrival of a sound between the different
microphones. This is the same technique as employed by the Snap-detect system.
The systems differs in that the Snap-detect system only detects snaps, while the
robot navigation work is based on detecting all “interesting” sound sources and
then navigating the robot towards such sounds. The systems further differ in the
number of microphones, and the resulting dimensionality of the sound source lo-
cation: 2D for Snap-detect, and 3D for the robot system.

The Arm-angle system was built to make it possible for users to select targets that
are far away from their current location. In [125], the authors present a system that
allows distant freehand pointing for interacting with wall-sized displays. Users can
be located far away from a display wall, and select targets by pointing at them. The
system requires users to wear markers in order to detect the direction in which they
are pointing. In [126], laser pointers are used to enable interaction at a distance.
Another alternative is to track a marker-equipped wand in 3D [127] and uses the
resulting location information to allow users to point at objects from afar. In con-
trast to these systems, the Arm-angle system does not detect neither the user nor the
arm: Instead, the angle of straight lines in images captured by a camera are used
to infer the direction in which the user’s arm is pointing. The assumption made is
that the arm is sufficiently straight so as to be detected as a small number of lines
with similar angles, and that few other straight lines appear in the image. A further

4.3 The Camera-sense system 47

difference is that the Arm-angle system does not require markers. The Arm-angle
system however is limited to detecting the pointing angle when the user is close to
the display wall; no support is provided for distant pointing.

There have been a number of other techniques for selecting items that are phys-
ically far away from the user. These techniques include drag-and-pop [128], the
Vacuum [129] and the Frisbee [130]. These techniques generally work by tem-
porarily moving a target located far from the user closer. In drag-and-pop, initiat-
ing a drag-operation causes relevant drop-target to move closer to the location of
the drag. When the Vacuum is invoked, it moves remote objects within an “arc
of interest” closer to the user. The Frisbee works by creating a “telescope” on the
display wall which displays the pixels located at a far-away target. This enables
users to see and interact with pixels that are physically unreachable to the user.
The “tablecloth” is another approach that lets the user scroll the desktop much as
he would scroll a window [131]. These systems are generally complementary to
the Arm-angle system, since they do not apply any detection of gestures to enable
interaction.

4.3 The Camera-sense system

The idea behind the Camera-sense system is to use many cameras mounted in a line
along the floor to detect objects, and then combine information about the detected
objects from the different cameras to determine each object’s location and extent
in 3D. No effort is made to identify what the particular objects are, or how they
are related to each other. The system instead only tries to determine if objects have
entered the interaction space, and determine where they are. This makes it possible
to use any object to interact, including hands, fingers or pens. However, it also
has the potential downside that different users can not be distinguished from each
other.

4.3.1 Architecture

Figures 4.2 and 4.3 show the overall architecture of the Camera-sense system.
The system uses several cameras and a cluster of computers to detect the pres-
ence of moving objects in each camera’s field-of-view. The Camera-sense interac-
tion space is created inside the wedge-shaped volume outlined in the figures. The
wedge shape is due to the different cameras’ partially overlapping field-of-views.
Each computer in the cluster captures images from the cameras attached to it at the
maximum frame rate supported by the camera. The maximum frame rate depends
on the camera, and is usually between 15, 30 or 60 frames per second (fps) for
commodity web cameras. The cameras used by the Camera-sense system have a
maximum frame rate of 30.

48 4 Interaction Spaces

Workstation

Computer
cluster Cameras

Gigabit
Ethernet
network

Planes

Display wall

Figure 4.2: The architecture of the Camera-sense system. A collection of cameras is
connected to a cluster of computers. The cluster processes images captured from the
cameras, and sends information about detected objects to a separate workstation over a
local area network. The workstation runs an object locator which locates objects in each
plane in 2D using triangulation. An object’s 3D representation is then inferred from its
corresponding 2D location in the different planes. Credit for the human model: Google SketchUp.

2. A plane cuts
through the
wedge.

1. The Interaction
Space is created
inside the green,
outlined wedge.

5. An object's 2D location is
determined by finding intersections
between 1D observations from
different cameras.

A potential false positive.

3. Cameras detect
objects and their 1D
location within their field
of views.

4. Two objects
being detected

Figure 4.3: The Camera-sense interaction space is created by using several floor-mounted
cameras to detect objects and then triangulate their locations. Objects are detected in
planes inside the (approximate) wedge-shaped volume created by joining each camera’s
field-of-view with the other cameras.

4.3 The Camera-sense system 49

The cameras are mounted in a line along the floor in front of a display wall with
their lenses pointing towards the ceiling. The ceiling is expected to be brightly
and uniformly lit, in order to create high contrast between the background and the
darker objects to detect. The cameras are spaced evenly 32 cm apart. The number
of cameras can be scaled up or down as necessary to cover wide or narrow display
walls. The two implementations used by the Tromsø and Princeton display walls
use sixteen and eight cameras respectively.

Each camera’s field-of-view is divided into an equal number of slices. Correspond-
ing slices from all the cameras together create a plane in front of the display wall
in which objects are detected and located in 2D. An object’s skeleton 3D represen-
tation is then assembled using one 2D location from each of the different planes.

To determine an object’s 2D location, it must first be detected in several corre-
sponding slices from different cameras. Once detected in a slice, its location and
extent in 1D along the horizontal axis of the slice is determined. The 1D locations
and extents are sent using the Shout event system7 to an object locator running on
a workstation.

The object locator triangulates the 2D location of objects within a plane using the
1D locations and extents from that plane. To obtain a skeleton 3D representation
of an object, the object locator selects a single 2D object location from each slice
and adds it to the object’s 3D representation. The first 2D location is chosen from
the outermost plane, which is farthest from the display wall. The location from
every subsequent plane is chosen by selecting the one closest to the location from
the previous plane.

Once the object locator has created or updated its 3D representation of an object,
events containing the object’s 2D location within the different planes and an event
containing its 3D representation is broadcast to applications using Shout. Applica-
tions then use the events to interpret gestures.

4.3.2 Design

Figure 4.4 shows the design of the Camera-sense system. The design consists of an
image processing component that runs on each computer in the image processing
cluster, and an object locator that runs on a workstation8.

The system uses commodity web cameras to achieve its goal of locating objects
within the Camera-sense interaction space. Each camera is assigned an identifier,
ranging from 0 up to the number of cameras. Cameras that are physically adjacent

7The Shout event system is described in Appendix B.
8The object locator may also run on one of the image processing computers, which is the case for

the system deployment at the Princeton display wall.

50 4 Interaction Spaces

Image
capture

Divide into
slices

Background
subtraction Threshold

Shout
event

distribution

Update
background

Send 1D
object events

Receive
events

Intersect lines
from cameras to
object locations

Update 2D
object state

Per plane triangulation

Locate
objects

Update 3D
object state

Send 2D
object
events

Send 3D
object
events

Applications
2D/3D Object events

Object locator (workstation)

Image processing (cluster)

Per slice processing

Figure 4.4: The design of the Camera-sense system. Images are captured and processed,
before the results are sent via the Shout event system to the object locator. The object
locator determines where objects are in 2D and 3D, and sends 2D and 3D object events to
Shout, which distributes them to applications.

are assigned successive camera IDs, i.e. camera i is physically located between
cameras i− 1 and i + 1.

The cameras used by the system are Unibrain Fire-i cameras with a resolution of
640x480 pixels delivering images at a rate of 30 frames per second. The full spec-
ifications are listed in Section 2.2.1. The cameras connect to the image processing
cluster using FireWire 400 [132].

Commodity web cameras differ from high-end cameras in a number of ways, in-
cluding the rate at which images can be captured, image resolution, hardware trig-
gering support, noise levels and lens optics. Of these factors, the one with the
biggest implications for the design of the system is the lack of triggering support.
Triggering makes it possible to synchronize the time at which all the cameras begin
to acquire an image through their imaging sensor. An external source sends a pulse
to the cameras through a wire that connects all the cameras to each other. The pulse
“triggers” the cameras, resulting in nearly simultaneous image acquisition.

Without triggering, the object locator must handle the fact that images can be cap-
tured at different points in time, which impacts both the latency and accuracy of
the system. Latency is increased because the object locator must wait for data from
all cameras before it can triangulate object locations. The lack of triggering makes
the triangulation of moving objects less accurate, since the object will have moved
slightly between the time two cameras have acquired an image. These issues are

4.3 The Camera-sense system 51

discussed further in Section 4.7.

Image processing

The image processing component’s goal is to detect the 1D location and extent of
objects appearing in images captured from the camera(s) connected to the computer
it is running on. An image is captured from a camera, then divided into 25 slices.
Since the first part of the image is covered by the actual display wall assembly,
the first slice is located near the vertical center of the image at an offset of about
240 pixels9; the exact offset is configured manually for each camera based on the
camera’s physical placement and orientation. The slices are the same width as
the captured image, but only three pixels tall. A five-pixel gap is placed between
each slice, making each slice consume 8 lines of pixels from the image. With 25
slices, 200 vertical pixels are consumed from the image, which leaves some room
for adjusting the vertical offset of the first slice without exhausting the camera’s
vertical resolution of 480 pixels. Figure 4.5 shows an example image captured
from one of the cameras and its division into slices.

A single slice

Cameras

Display wall

Camera image

Slices
•••••••••••••

Figure 4.5: The view from one of the cameras mounted along the floor, and the slices the
image is divided into. Each slice cuts through a plane tilting out from the display wall’s
surface and into the surrounding space, as illustrated in Figure 4.3.

The slice height of three pixels was chosen based on the camera’s resolution and
field-of-view. With a resolution of 640x480 and a vertical field-of-view of 32◦,
three pixels cover 32◦

480 = 0.2◦ of the vertical field-of-view (without adjusting for

9The first slice could be moved up if the cameras were rotated so as not to have the display wall
obscure the first part of the image. This has not been done due to the complexity of mounting the
cameras in this fashion. It is far simpler to make all the cameras lie flat on the ground.

52 4 Interaction Spaces

Object extent: 20 pixels
Object 1D location: pixel 320 of 640

1

2

3

4

5

Figure 4.6: (1) An image captured from a camera. (2) The background slice. (3) The
current slice being processed. (4) The slice after background subtraction. (5) The slice
after thresholding, where the object’s extent and 1D location have been determined.

camera distortion). At a distance of 3 meters, the plane formed using 0.2 degrees
is 1.04 cm thick. This is about the width of an index finger.

Each slice is processed using two standard techniques from computer vision: Back-
ground subtraction [133] and thresholding [134]. Background subtraction removes
the background (which is usually the ceiling) from the slice, by subtracting the new
slice from a background slice. This yields a delta slice, where negative values indi-
cate that the corresponding pixel in the new slice is darker than the corresponding
background pixel, and positive values indicate that the corresponding pixel in the
new slice is brighter. The background slice is initially set to the first slice from a
camera when the image processing begins. Every subsequent slice is then slowly
averaged into the background slice, to compensate for camera noise and changing
lighting conditions.

For pixels in the new slice that closely match the background slice, the resulting
pixel value lies close to 0. By selecting a suitable threshold value, foreground
objects can be isolated in the current slice. Since the image processing component
assumes that the background is bright and uniformly lit, only negative values are
used, since any foreground objects would hide the bright background and thus
appear darker than the background. Figure 4.6 illustrates how a finger is detected
in a single slice from one camera. A finger enters the slice (1). The background
slice (2) is subtracted from the current slice (3), yielding a temporary delta slice
(4). Any pixels with a negative value less than the threshold value is set to white
and considered part of the current foreground (5).

Figure 4.7 illustrates how slices are analyzed to detect objects and determine their
1D location. Due to camera noise, random pixels may sometimes exceed the
threshold and be considered part of the foreground when in reality they are not.
To lessen the impact of noise, solitary pixels in the thresholded slice are ignored,
but only if they do not have an adjacent foreground pixel either two positions to
the left or right of the solitary pixel. Camera noise may also have the opposite
effect, where a single pixel fails to be detected as part of the foreground. When

4.3 The Camera-sense system 53

1.

2.

3.

4.

Figure 4.7: (1) A slice after foreground pixels have been found using thresholding. (2)
Solitary foreground pixels (red) are considered noise and ignored from further consideration
as long as there are no foreground pixels either two positions to each pixel’s left or right.
(3) Solitary background pixels with foreground pixels neighbouring both sides (blue) are
considered part of the foreground. (4) Foreground pixels that span two of the three lines
(green) are considered detected objects; other foreground pixels (red) are ignored.

this pixel falls in between two pixels that are considered part of the foreground, the
system might end up detecting two objects when in reality there is only one. To
compensate for this, single-pixel gaps between two foreground pixels are closed
by considering the gap as part of the foreground.

Next, groups of adjacent foreground pixels are located in each individual line of
the slice. Each group represents a potential object. An object is defined as detected
if groups from two of the three lines in a slice overlap, and one of the overlapping
groups appear in the center line. The object’s 1D location is then set to the center
pixel index of the group from the center line, and its extent set to the number of
pixels in the center group.

If one or more objects are detected by the image processing, their 1D location and
extent is sent to the object locator. If no objects are detected, an event notifying the
object locator of this is sent instead. This event is only sent once when no objects
are detected. If subsequent images from the same camera result in no objects being
detected, no further events are sent until objects have again been detected in an
image from that camera.

Object locator

The object locator detects and locates objects in 2D and 3D. Objects are first de-
tected in each of the different planes, by using 1D object events from the image
processing cluster to determine an object’s 2D location. The resulting 2D locations

54 4 Interaction Spaces

are then used to update the current state of the different 3D objects, before both 2D
and 3D object events are sent to applications using Shout.

Since image acquisition is not synchronized across cameras, the object locator must
wait to receive 1D object or no detect events pertaining to all the cameras. Once it
has received the events, the object locator proceeds to triangulate the 2D location
of objects. The triangulation is illustrated in Figure 4.8(a), where three objects
are detected. To make triangulation possible, the field-of-view, lens distortion,
physical location and orientation of each camera must be known. The field-of-
view is configured based on the lens capabilities reported by the vendor. The lens
distortion is initially assumed to be zero, and the initial value for the camera’s
location is set by measuring its physical offset from the floor and the left side
of the display wall. The initial orientation is assumed to be horizontal. All the
parameters may change after the system calibration, as detailed in Section 4.3.3.

To triangulate the 2D location of an object, lines are projected from a camera’s
location through the 1D object locations derived from an image from that camera.
Potential objects lie at the intersection of lines projected from different cameras.
An object is detected and located in 2D if it is observed by at least three cameras,
and the resulting intersection points are in close proximity, as detailed in Section
4.3.3.

To prevent false positives when triangulating an object’s 2D location, the object
must be detected in images from at least three different cameras, as shown in Figure
4.8(b). Potential false positives are also highlighted in Figure 4.3. Two cameras are
sufficient to determine the location of a single object in 2D, but if more objects are
to be located at the same time, false positives may occur. This scenario is common
when attempting to use the system for multi-touch or multi-user interaction. Using
three or more cameras, the false positives can be removed, leaving only the 2D
locations of actual objects.

Display wall

1D object
locations in
a slice

(a)

False positives
(using two
cameras only)

Camera

Object

(b)

Figure 4.8: (a) Triangulating 2D object locations based on the 1D locations of objects de-
tected after image processing. The rectangles below the cameras illustrate the output from
the image processing. The highlighted green areas within the rectangles show where an
object has been detected in 1D. (b) When attempting to locate more than one object using
observations from just two cameras, false positives (red circles) occur. By incorporating
observations from at least one more camera, the false positives can be eliminated, leaving
only the true object locations (black diamonds).

4.3 The Camera-sense system 55

Whenever a plane has been processed, the current 3D object state is updated. The
3D object state consists of a set of skeleton 3D objects. Each 3D object consists
of an object ID, as well as 25 2D locations; one for each of the 25 planes. With
each 2D location, the originating 2D object’s ID is stored, as well as a flag that
indicates whether the 2D location is valid or not10. The coordinate system uses
metric values to represent the object’s location in front of the wall along the X
and Y axes. The Z axis’ values are computed by mapping the index of each plane
linearly to a value ranging from 0 to 1, where 0 represents the plane closest to the
wall, and 1 represents the plane farthest away from the wall.

To update the 3D object state using 2D locations from a newly processed plane,
the object locator first attempts to update existing 3D objects using the new 2D
locations, before it may use any leftover objects to potentially create a new 3D
object. First, the object locator compares the 2D object IDs in the plane with the
2D object IDs stored in each 3D object. If a match is found, the 3D object is
updated using the matching 2D object, and the matching 2D object is removed
from further consideration.

If there are 2D objects left to process, they are added to existing 3D objects as
follows. Each 3D object that has not yet been updated is processed in turn. If the 3D
object has a 2D location that is in close proximity of the new 2D location, the 2D
location is assigned to that 3D object, and then removed from further consideration.
The object locator scans the 3D object’s 2D locations starting with the 2D location
from the same plane as the new 2D location originates, and then expands the search
to the planes closer to and further away from the wall.

Figure 4.9 illustrates the process. In step 1, a 2D location from plane 4 is being
compared to the current state of a 3D object. In step 2, the locator checks the 2D
location in plane 4 of the 3D object, and finds that it does not have a valid location
for this plane. It then expands the search in step 3, finding that neither plane 3
nor 5 have valid locations. In step 4, the locator finds valid locations in both plane
2 and 6. It compares the distance between the 2D locations, and determines that
the distance between the 2D location in plane 2 of the 3D object and the new 2D
location is below the proximity threshold. In step 5, the locator updates plane 4
of the 3D object with the new 2D location and marking the plane as containing a
valid location.

When all existing 3D objects have been updated or found not to match any of the
new 2D locations, new 3D objects are created for each of the remaining 2D lo-
cations. Two different events are then generated for each of the 3D objects that
contain at least five valid 2D object locations11. The first event includes the ob-

10For instance, an object that just barely has entered the interaction space will not have valid 2D
locations for the planes closest to the display wall.

11An object must appear in five planes to be considered “reliably” detected in 3D, on the assump-
tion that it is unlikely that something could be detected in five planes at almost the same location and
still be noise.

56 4 Interaction Spaces

24

A 3D object

Valid 2D location Invalid 2D location

2D locations

4

New 2D object
location, from plane 4

2D loc being checked

1.

ID 0 1 2 3 4 5 6 7 8 24 42.
Check validity and proximity

ID 0 1 2 3 4 5 6 7 8 24 43.

ID 0 1 2 3 4 5 6 7 8 24 44.

Not matching

Object in plane 2 is valid and close enough

ID 0 1 2 3 4 5 6 7 8 24 45.
Update plane 4 with new 2D object location

9

9

9

9

ID 0 1 2 3 4 5 6 7 8 9

Figure 4.9: The steps taken to incorporate a 2D object location from a plane with a 3D
object. See the main text for description of the different steps.

ject’s ID and a “simple” 3D location, that only references the 2D location of the
innermost plane in which the 3D object has been detected, and using that plane’s
index to generate the Z axis coordinate. The second event contains a serialized
description of the 3D object, including the object ID and all of its state regarding
valid and invalid 2D object locations in different planes. Both events are sent to
applications using Shout.

4.3.3 Implementation

The Camera-sense system has been implemented and is currently being used with
the Tromsø and Princeton display walls. For the Tromsø display wall, the system
employs sixteen commodity web cameras connected in pairs to eight computers
using FireWire 400 [132]. For the Princeton display wall, eight cameras and four
computers are used. The image processing component and object locator have both
been developed in C and Objective-C for Mac OS X. The cameras are mounted as
shown in Figure 4.10. The specifications for the cameras and image processing
cluster are given in Section 2.2.1.

Image processing

A screenshot of the image processing application is shown in Figure 4.11. It cap-
tures images from the cameras attached to the computer using libdc1394 [135],

4.3 The Camera-sense system 57

(a) (b)

Figure 4.10: The camera deployment in (a) Tromsø and (b) Princeton. In Tromsø, the cam-
eras are mounted along the floor on wooden boards with holes drilled to cup the cameras,
and held in place using rubber bands. In Princeton, the eight cameras are mounted to the
display wall’s frame using plastic straps and the vendor-supplied camera mount.

Figure 4.11: The image processing application capturing images from two attached cam-
eras. The green line in the two camera images indicates where the innermost slice is
located (the one closest to the display wall), and must be configured manually. The buttons
and sliders were used during development and are not necessary for normal operation.

an open source library for communicating with FireWire (IIDC 1394) cameras.
The application handles each camera independently. To capture and process im-
ages from a camera, two threads are used. The first thread runs an infinite loop that
waits for new images to be delivered by libdc1394. When a new image is available,
it is copied to a buffer and queued for processing by the second thread. Queuing
the new image has the effect of notifying the second thread that a new image is
available.

The second thread dequeues images from the queue. Each image is processed,
before object events that result from processing the image are sent. The image is
divided into slices, and each slice processed independently. Four pixel buffers are

58 4 Interaction Spaces

used to process each slice: (i) current: Contains the pixels that are going to be
processed from the current image; (ii) background: The background pixels; (iii)
delta: The result from subtracting the current pixels from the background pixels;
(iv) average delta: The average of the delta buffer over the last eight images. A
pixel is marked as part of the foreground if it is less than a constant threshold
of -10, and either (i) less than the three times the average delta, or (ii) less than
five times the average delta for the entire slice. When all the pixels have been
processed, the background buffer is updated using values from the current buffer.
Each background pixel is updated by retaining 99.5% of the background pixel’s
value and adding 0.5% of the current pixel to it.

The threshold factors and the background retention factor were all determined em-
pirically when tuning the system. For the threshold factors, the goal was to detect
foreground pixels without generating false positives. The background retention
factor controls how quickly the current pixels are incorporated into the background,
and thus controls how quickly the system can adapt to sudden changes in lighting.
However, with a low background retention factor, the current pixels (and any fore-
ground objects appearing in them) will replace the background too quickly. This
results in foreground objects being incorporated into the background if they are
stationary for too long; for instance, pointing at the same location for more than
five to ten seconds.

1D object event

shout-flagsflags
server-

timestamp
usecs

server-
timestamp

secs

timestamp
usecs

timestamp
secsrefconpeer-idtypelength

cam ID &
slice idx

Standard Shout fields

1D object specific fields
camera

loc X

camera
loc Y

camera
rotation

1D obj
location

object
extent

"No detect" event

shout-flagsflags
server-

timestamp
usecs

server-
timestamp

secs

timestamp
usecs

timestamp
secsrefconpeer-idtypelength

Standard Shout fields

cam ID &
slice idx

No detect specific fields

Figure 4.12: The 1D object and no detect event formats. Each field is 4 bytes wide. The
fields in bold are custom to the 1D object and no detect event types; the remaining fields
are Shout specific and further detailed in Section B.2.

The image processing application then analyzes the set of foreground pixels to find
groups that comprise objects, as discussed in Section 4.3.2. Once objects have been
located in all slices, their 1D location and extent are sent to the object locator as
1D object events using Shout. If no objects are detected, a “no detect” event is sent
instead. The event formats are illustrated in Figure 4.12. The figure shows both the
standard Shout event fields (which are discussed in more depth in Appendix B),
and the event specific fields. For the 1D object event, the fields and their usage are:
(i) Type: Set to the 1D object event type; (ii) Flags: Indicates whether this is the

4.3 The Camera-sense system 59

first or last detected object in a slice12; (iii) Camera ID and slice index: Contains
the camera’s identifier, and the index of the slice in which this object was detected;
(iv-v) Camera location X and Y: The camera’s location relative to the floor and the
display wall’s far left side, in centimeters; (vi) The camera’s horizontal rotation in
degrees; (vii) 1D object location: The object’s pixel location (ranging from 0 to
640); and (viii) Object extent: The object’s width in pixels. The no detect event
is like the 1D object event, except that only the camera ID and slice index are
included.

Object locator

Figure 4.13: The object locator being used to detect objects on the Princeton display wall.

A screenshot of the object locator is shown in Figure 4.13. The object locator has
two functions: (i) Determine 2D and 3D object locations; and (ii) calibrate the
system. Determining object locations is done as follows.

12This is necessary since the object locator does not know a priori how many objects have been
detected in a given slice. Thus, the event must include information that enables the object locator to
determine if it has received all detected object events pertaining to a given slice from a given camera.

60 4 Interaction Spaces

The object locator runs a loop that continuously accepts events. Once it has re-
ceived 1D object events pertaining to all the cameras in a given plane, the object
locator runs a triangulation step for that plane based on the new events. The object
locator maintains state on previously detected objects in different planes, as well as
state on current 3D objects. Each object, whether 2D or 3D, is assigned an object
ID, which persists while the object remains detected. Objects are removed if their
location is not updated for three seconds. This is enough to enable applications
to recognize gestures such as tapping the display wall by tracking the object ID,
without having to keep state around indefinitely.

x

y

Field-of-viewZ axis
rotation

Location

(a)

x

y

1 2 3 4

(b)

Figure 4.14: (a) The camera parameters. The camera’s physical location is given in cen-
timeters, offset from the floor and the display wall’s left side. It may be rotated left or right
about the Z axis (which is not shown, but runs perpendicular to the X and Y axes). The
rotation has been exaggerated for illustration purposes. The camera is assumed to have no
rotation about the Y axis. Rotation about the X axis is handled by configuring the offset for
the first slice index. (b) Four cameras, with different rotations, are used to triangulate the
locations of two different objects, as marked by the green and blue lines. Table 4.2 shows
an example of events that could lead to the above figure.

Cam ID Cam loc X Cam loc Y 1D object loc Cam rotation Flags
1 0.00 cm 0.10 cm 630 px 10◦ First and Last
2 0.32 cm 0.10 cm 400 px 0◦ First
2 0.32 cm 0.10 cm 635 px 0◦ Last
3 0.64 cm 0.10 cm 300 px -5◦ First
3 0.64 cm 0.10 cm 550 px -5◦ Last
4 0.96 cm 0.10 cm 50 px -10◦ First
4 0.96 cm 0.10 cm 315 px -10◦ Last

Table 4.2: Example 1D object events. The values are rough estimates (and for the rotation,
exaggerated) and may not match the illustration in Figure 4.14(b) exactly. The slice index
and object extent are omitted since they are respectively constant and not relevant to the
example.

Figure 4.14 shows how the object locator uses the information about a camera’s

4.3 The Camera-sense system 61

Camera loc (c)

p0

Field-of-view (fov) = 42°

0.5 * fov = 21.5°

p1

0.5*width

width

height = 300 cm

(a)

c

p0 p1
obs

234 px

(b)

Figure 4.15: Calculating a line segment based on a 1D object event for a given camera.
(a) To obtain the points p0 and p1, the width is calculated using standard trigonometry. The
location of the observed point obs in (b) then lies somewhere along the line between p0 and
p1. The resulting orange line segment from c to obs is then intersected with line segments
rooted at other cameras.

location and rotation to triangulate 2D object locations in a plane, with the ac-
companying 1D object events shown in Table 4.2. Line segments are created by
projecting a line from the camera’s location, through the point at which an object
is detected. This is done by applying standard trigonometry, as illustrated in Figure
4.15. The figure shows a camera’s field-of-view, divided in two to create a right
triangle. The height is set to 300 cm (which is approximately where the top of the
display wall is located). Since the field-of-view (fov) is known, the width can be
calculated based on the relationship between the tan trigonometric function and
the lengths of a right triangle: 0.5 ∗ width = height ∗ tan(0.5 ∗ fov) = 118.17
cm. At a distance of 300 cm, one camera thus covers a horizontal distance of
2 ∗ 118.17 cm = 236.34 cm. The locations of the points p0 and p1 subject to the
camera’s rotation then become p0 = rotate({−0.5 ∗ width, height}, r) + c and
p1 = rotate({0.5∗width, height}, r)+c, where c = {cx, cy} is the location and r
is the rotation of the camera. The rotate-function is defined as rotate(pt , angle) :
{pt .x = pt .x ∗ cos(angle)− pt .y ∗ sin(angle), pt .y = pt .x ∗ sin(angle) + pt .y ∗
cos(angle)}.

A line segment going through an observation at pixel pix can now be created by
defining two points on the line. The first point is at the camera’s location c. The
second, obs , is located somewhere between p0 and p1: obs = p0+ pix

640 ∗(p1−p0).
For example, if a 1D object were detected with center at pix = 234 from a camera
with no rotation and located at c = {0, 0}, p0 and p1 would be at {−118.34, 300}

62 4 Interaction Spaces

and {118.34, 300} respectively. The second point obs would then lie at obs =
{−118.34, 300}+ 234

640 ∗ ({118.34, 300}− {−118.34, 300}) = {−118.34, 300}+
0.365 ∗ {236.68, 0} = {−31.95, 300}.

The resulting line segments are then intersected with each other, yielding a set of
intersection points. The intersection points are divided into clusters of points in
close proximity of each other. If at least two intersection points originating from
three different cameras are in close proximity, a 2D object is defined as detected.
The system considers points in close proximity if the distance from their bounding
box’ top-left corner to its bottom-right corner is less than 20 cm. This threshold
was set based on observations of the actual distances between intersection points,
while weighing the trade-off between the desire to detect objects even in the face
of inaccurate data from the cameras and not make the resulting object locations too
inaccurate.

Clusters of points are isolated as follows: Start with all points, and calculate the
current point cluster’s bounding box. Then remove the point which reduces the
distance from the bounding box’ top-left coordinate to its bottom-right coordinate
the most. Repeat this step until the distance is less than 20 cm, or only two inter-
section points remain in the point cluster. The resulting points are excluded from
further consideration and considered as either a new object, an update to an exist-
ing object, or discarded if the distance is greater than 20 cm. Then the process is
repeated with a now smaller number of points, until no points remain in the point
cluster. For each cluster of points, the mean of the points is taken as the object lo-
cation. The system then selects the closest, not-yet-updated 2D object and updates
its location as long as the existing object is less than 4.5 cm away. Otherwise, a
new 2D object is created.

If the system could rely on perfect detection of objects from the cameras, the above
approach would be sufficient to detect and track all objects. However, since the im-
age processing will never achieve perfect accuracy in detecting foreground objects,
a foreground object may sometimes be observed only by two cameras in a given
triangulation round. To mitigate this problem, the object locator will attempt to use
a single intersection point to update an existing 2D object’s location if the inter-
section point is less than 32 cm from the existing object13. Only the closest such
intersection point is used, and the 2D object must already exist – that is, it must
have been observed by at least three cameras in a previous round.

Once a plane has been processed, the object locator updates its 3D object state
using the approach outlined in Section 4.3.2. Figure 4.16 shows how the Z co-
ordinate of user’s finger progresses as it moves closer to the wall. The proximity
threshold used to associate new 2D object locations with an existing object is cur-

13This value corresponds to an object moving at about 9.6 meters/second. Smaller values would
reduce the maximum speed of objects that could be tracked using only one intersection point. The
trade-off in choosing this value is the possible incorporation of false positives versus a better detec-
tion rate for existing objects.

4.3 The Camera-sense system 63

Figure 4.16: The depth penetration of a user’s finger is shown on the display wall as the
hand moves closer to the wall.

rently set to 20 cm. This threshold is higher than other similar thresholds used until
now. Since the detection of objects is not perfect, an object may not be detected
in all the planes where it actually appears. If this object were additionally pointing
at an angle (so that successive 2D locations from the outermost to the innermost
plane are significantly offset), the proximity threshold must be high in order to still
enable the construction of skeleton 3D objects when the angle of the object as it
approaches the wall is either very acute or very obtuse.

Camera calibration

The Camera-sense system currently uses a limited camera model that must be cal-
ibrated prior to using the system. The camera model incorporates the location,
Z-axis rotation, field-of-view and distortion of the camera image. The goal of cali-
brating the system is to refine the initial estimates of each camera’s parameters. To
estimate the parameters, the system records the 1D object events from all cameras
as a user touches a large number of calibration points on the display wall. Each
point has a known, physical location. When it is touched, an operator records the
1D object events coming from the image processing cluster. With the location of
the physical object known, the error for each camera that detects the object is esti-
mated by measuring the shortest distance between the known location and the line
segment projected from a camera through the observed 1D object.

64 4 Interaction Spaces

Rotation = 0° Rotation = 5.5°

Error

Figure 4.17: An example calibration of a camera. The red, blue, magenta and green
circles indicate the known locations of four calibration points. The colored lines are the
corresponding line segments resulting from observations made by the camera when the
calibration points were touched. In this case, adjusting the camera rotation reduces the
error.

When all the calibration points have been touched, each camera will be associated
with a set of 1D object events with corresponding calibration points. The parame-
ters of each camera are then automatically adjusted by iteratively changing differ-
ent parameters in a greedy fashion. The goal is to minimize the sum of the error, as
measured by summing the errors for each calibration point and its corresponding
1D object event. An example is shown in Figure 4.17, where the camera’s rotation
is adjusted to reduce the error between the known locations and the resulting line
segments.

4.4 The Snap-detect system

The idea behind the Snap-detect system is to detect snap- and clap-like sounds by
continuously comparing audio from four microphones with a pre-recorded sample
of a user snapping his fingers. When a user snaps his fingers, the sound travels
from the source of the sound (which is usually the user’s hand or hands) to each of
the four microphones. When the sound is detected in the audio stream from at least
three of the four microphones, the location of the sound’s origin is estimated by
measuring the sound’s arrival time to the different microphones. The location of the
sound is determined in 2D, but the sound can originate from anywhere within the
room in which the microphones are placed. This makes the Snap-detect interaction
space a pseudo-3D interaction space, since it can be used in all three dimensions,
but the resulting input is mapped down to two dimensions.

4.4 The Snap-detect system 65

4.4.1 Architecture

Figure 4.18 shows the architecture of the Snap-detect system. Four microphones
are mounted in a rectangular fashion around the Tromsø display wall, with two
microphones close to the ceiling, and two placed close to the floor on either side of
the display wall. The location of each microphone is known. The microphones are
connected individually using equal-length audio cables to an Analog-Digital (AD)
converter, which takes the analog audio signal from each microphone, digitizes it
and then passes it on to a workstation. The workstation detects the sound using an
approach inspired by cross correlation14 [136], and locates the sound using mul-
tilateration. The cross correlation-like approach is employed when processing the
audio signal from each microphone to compare the incoming audio stream with a
pre-recorded template sound. If the sound is detected in at least three of the four
audio streams, multilateration can be used to determine its location. Multilatera-
tion works by measuring the time difference of arrival (TDOA) of the sound to the
different microphones, and then intersecting the resulting set of conic sections.

4.4.2 Design

The Snap-detect system is designed using a single process to capture and analyze
audio from the four microphones. Audio from the four microphones are split into
four audio streams. These streams are processed independently with the goal of
detecting a template sound in each of the audio streams. The template is a short
recording of a user snapping his fingers.

To detect the template sound in a stream of incoming samples, three steps are taken.
First, each sample in the incoming audio stream is replaced with the absolute value
of itself, making all the samples in the incoming audio stream positive. Further,
sample values that are very close to zero are rounded to zero to avoid amplifying
noise when the samples are normalized15. Second, normalization is performed by
first determining the maximum sample value in the incoming audio stream, and
then dividing each sample value by the maximum sample value, resulting in an
audio stream where the sample range is between [0., 1.]: sample[i] = |sample[i]|

max |sample| .
The pre-recorded template sound is processed in the same way once, when the
Snap-detect application starts up.

The fourth step is to compute the product of each incoming sample with its cor-
responding template clip sample, sum the products and divide by the number of

samples: c =
1
n

n∑
i=0

sample[i + j] ∗ template[i] where c is the result, n is the

14An earlier implementation used standard cross correlation, but for performance reasons this
approach was simplified to the one described in Section 4.4.2.

15This also avoids introducing denormal floating point values.

66 4 Interaction Spaces

Microphones

AD converter

Workstation

Figure 4.18: The architecture of the Snap-detect system. Four microphones connect to an
AD converter, which digitizes the audio and sends it to a workstation. Credit for the human model:
Google SketchUp.

AD
converter

Capture
audio

streams

Shout
event

distribution

Send
sound
events

Applications

Workstation

Normalize
samples to

0...1

Per-stream sample processing

Make audio
samples
positive,

round to zero

Compare
with

template
samples

Check for
matches in

3/4
streams

Sound events

Figure 4.19: The design of the Snap-detect system.

number of samples in the template, j is the index into the incoming sample stream
to use as the possible starting point for the snap, sample is the incoming sam-
ples and template the template samples. Then a weighted mean is updated as

4.4 The Snap-detect system 67

µweighted = 0.99 ∗ µweighted + 0.01 ∗ c. If c is less than an experimentally de-
termined threshold and the difference between the weighted mean and c is greater
than the same threshold for more than 20 samples in a row16, a snap or clap is
defined as detected in the given stream. If the snap is detected in at least three of
the four incoming audio streams, the source of the sound can be determined using
multilateration.

Mic A Mic B

Figure 4.20: The difference in time from when the sound arrives at microphone A and
microphone B is constant. The possible locations where the user may be located lie on the
resulting conic section with focal point at the microphone which detected the snap first of
the two microphones being examined.

Multilateration works by calculating the time difference between the first arrival of
a sound, to its detection in the other audio streams. It has seen use in many different
applications, from the ship navigation systems Decca and Loran-C to determining
the location of aircraft using several radar sites. For the case of the Snap-detect
system, multilateration is used to determine the location of the sound. Each pair of
microphones where the snap has been detected gives rise to a conic (hyperbolic)
equation where the focal point is at the location in space of one of the microphones,
as illustrated in Figure 4.20. The curve indicates the potential locations of the
sound source given the difference in arrival times between the two microphones.
By determining the intersection of several such hyperbolic curves between different
pairs of microphones, the source of the sound, and thus the location of the user’s
hand(s), can be estimated.

4.4.3 Implementation

The Snap-detect system has been implemented using the hardware listed in Sec-
tion 2.2.2. The four microphones used are shown in Figure 4.21. The software is
written in C using some inline PowerPC AltiVec (vector) intrinsics. Audio samples
are read from the sound card using the open-source PortAudio library [137]. On
startup, the software loads a template clip that will be matched against incoming

16At a sample rate of 48000 Hz, this corresponds to 0.00041 seconds.

68 4 Interaction Spaces

audio samples. The template clip is 2048 samples long, or 0.04 seconds. The clip
is pre-processed by replacing each sample with the absolute value of the sample,
and then normalizing the result. To match the template clip against the incoming
samples, the incoming samples are processed in the same way, taking the absolute
value and then normalizing them.

Figure 4.21: The deployment of the Snap-detect system for the Tromsø display wall. The
yellow circles highlight the four microphones in use.

global detect_countdown, weighted_mean
.. after sample positivization and normalization ..
for i = 0 to window_size

sum = 0
for j = 0 to length(template_samples):

sum += template_samples[j] * incoming_samples[i+j]
c = sum / length(template_samples)
weighted_mean = (weighted_mean * 0.99) + (c * 0.01)
if c < threshold and (weighted_mean - c) > threshold:

if detect_countdown == 0:
.. mark channel as detecting a snap ..

else:
detect_countdown -= 1

else:
detect_countdown = 20

Listing 4.1: Pseudo-code to detect snaps in a single channel.

Matching the incoming samples to the template samples is done as shown in Listing
4.1. The incoming samples are slid over the template samples one sample at a time
in a window sized at window size samples. For each iteration of the outer loop,
the samples from the template and incoming stream are multiplied with each other,
and the result added to a total, before the total is divided by the number of samples

4.5 Arm-angle system 69

in the template. The window size is the number of new samples being processed
in the audio callback. The threshold was set to 0.0005 by trial and error.

Once a snap has been detected in one stream, subsequent detects in other streams
are timestamped using the number of samples since the first detect. Since the
sample rate is known, the distance the sound has traveled after being detected by
the first microphone can be calculated as num samples ∗ speed of sound

sample rate . Conics
are fitted to observations from different pairs of microphones, before the resulting
conics are intersected. The location of the snap is then determined by finding
intersection points that are clustered within a short distance of each other.

Sound event

rel-Zrel-Yrel-Xpower
sound-
type &
flags

Sound event fields

Figure 4.22: The sound event type. The standard Shout event fields have been left out of
the figure. Each field is 4 bytes long.

The location of the sound is then sent as a sound event to applications using Shout.
The format of this event is shown in Figure 4.22. The sound-type and flags field
is used to store a 24-bit sound-type. This field is included for future expandability,
if the system were ever to detect sounds other than snaps or claps. The remaining
8 bits of the sound-type and flags field are used for flags. The flags are used to
indicate which of the relative X, Y and Z locations are valid. In the current imple-
mentation, the flags are always set to have valid X and Y locations. The relative X,
Y and Z location fields indicate the relative location of the sound in front of the dis-
play wall, all ranging from 0 to 1. A value of 0, 0 indicates that the sound occurred
to the lower-left hand corner of the display wall, while a value of 1, 1 indicates the
upper-right hand corner of the display wall. The power and Z coordinate fields are
currently unused.

Additionally, the raw sample timestamps are sent using Shout to an application that
visualizes the calculations done by the Snap-detect system. Figure 4.23 shows a
screenshot of the Snap-detect visualizer. The Snap-detect application itself runs as
a user-interface-less process that sends raw events, while the visualizer can run on
any (Macintosh) computer. The yellow dots indicate a cluster of intersection points
whose mean location is used as the location of the snap.

4.5 Arm-angle system

The Arm-angle system was developed based on the idea that the direction in which
a user’s arm is pointing can be determined by looking for straight lines in images
captured by a steerable camera. Straight lines are located using the Hough trans-
form [138]. The resulting information can be used to enable users to point at targets

70 4 Interaction Spaces

Figure 4.23: A screenshot from the Snap-detect visualizer as it detects a snap. The cluster
of yellow dots indicate where the system has determined that the sound came from. The
four microphones can be seen as colored dots in the four corners of the figure.

that are far away from the user on the display wall. Making use of the Snap-detect
interaction space, the user “calls” the Arm-angle interaction space by snapping his
fingers, which prompts the camera to be panned and tilted towards the location of
the snap.

4.5.1 Architecture

Figure 4.24 shows the architecture of the Arm-angle system. A steerable camera
mounted in the ceiling streams images to a workstation. The camera is located at
the back of the room, pointing towards the Tromsø display wall. The workstation
controls the camera’s pan, tilt and zoom using a serial interface. When the user
snaps his fingers, the camera is steered towards the location of the snap, so as to
capture the user in its field-of-view. When the camera has stopped moving, the
image analysis proceeds to detect straight lines in the image. If any are found, their
angle and location relative to the display wall are sent to applications using Shout.

4.5.2 Design

The Arm-angle system does not attempt to recognize what is being used to point
with, but only the direction in which the object points. The object can be anything
that is straight, such as a user’s arm or a stick. Figure 4.25 shows the design
of the Arm-angle system. The design consists of two components: (i) A camera

4.5 Arm-angle system 71

Steerable
camera

Camera field-of-view
Workstation

Determine
pointing
direction

Display wall

Figure 4.24: The architecture of the Arm-angle system. A steerable camera sends images
to a workstation, which uses them to determine the angle at which the user’s arm is pointing.
Credit for the human model: Google SketchUp.

control component; and (ii) an image processing component. The camera control
component receives sound events from Shout, and in response to such events move
the camera towards the location indicated by the sound event. It then waits for the
camera to stop moving, before signaling the image processing component.

Image processing

Camera control

Camera

Image
capture

Shout
event

distribution

Send angle
events

Applications

Workstation

Convert to
grayscale

Scale
50%

Edge
detect Thinning

Angle events

Hough
xform

Snap-
detect

Receive
Sound
events

Move
camera

Wait until
done

moving

Sound events
Movement
commands

Figure 4.25: The design of the Arm-angle system.

The image processing component captures images from the camera, and then pro-
cesses the images as follows. First, the image is scaled down by 50%. This is

72 4 Interaction Spaces

done because the camera used provides interlaced images, and as a side-effect re-
duces the amount of data to be processed. Next, the image is converted from color
to grayscale, which further reduces the amount of data to process by a factor of
three17. Edges are then detected in the image using the Sobel edge detector [139].
The resulting edge map is thinned, which reduces the thickness of detected edges
and improves the output of the Hough transform.

The Hough transform is used to determine the parametrization of straight lines in
the image. The Hough transform works by examining each pixel in the image. If
the pixel is an edge (i.e., the pixel is white), a parametrization of all lines through
that pixel are plotted in an accumulation buffer. When this is done for all edge
pixels, the resulting accumulation buffer contains a set of votes for each possible
line in the image. The parametrizations with the highest number of votes are then
used to infer the direction in which the user’s arm is pointing. If the resulting lines
all point in same direction differing only by a few degrees, an angle event is created
and sent to applications using Shout.

4.5.3 Implementation

The arm-angle component was implemented in C and using the camera and work-
station hardware listed in Section 2.2.3. The camera is controlled using the open-
source “devserv” software [140], and is moved in response to incoming sound
events from the Shout event system. The camera zoom is fixed, and the location
to which the camera should pan is determined by interpolating between the pan-
values (in degrees) for the left and right edges of the display wall using the sound
component’s reported position along the horizontal axis (i.e., length-wise along the
display wall).

(a) Input image (b) Edge detected (c) Hough xform (d) Lines super-imposed

Figure 4.26: The steps involved in determining the angle at which the user’s arm is pointing.
(a) The input image from the camera. (b) The image after edge detection. (c) The result of
the Hough transform. (d) The dominant lines superimposed on the original camera image.

Figure 4.26 shows the images at various stages of the image processing. The sys-
tem captures images from the camera at a rate of 8-9 frames per second. The
images have a resolution of 720x540 pixels in interlaced18 format. The image is
scaled down by averaging neighbouring pixels to the left, right, up and down in the

17Converting from 24-bit color to 8-bit grayscale.
18Every other line of the image is from the previous image captured by the camera.

4.6 Evaluation 73

current_line = pixels
next_line = &pixels[width]
output_line = thinned_output
for y = 0 to height-2:

for x = 0 to width-2:
if is_edge(current_line[x]) and is_edge(current_line[x+1]) and

is_edge(next_line[x]) and is_edge(next_line[x+1]):
output_line[x] = 0

else:
output_line[x] = current_line[x]

current_line = next_line
next_line = &next_line[width]

Listing 4.2: Pseudo-code to thin an edge-detected image.

image. Color to grayscale conversion is performed by averaging the red, green and
blue color components. The Sobel edge detector is then used to locate edges in the
image. The image is thinned using a simple algorithm that removes consecutive
edge pixels along the horizontal axis of the image if at least two pixels are in a
row at both the current line and the next line of the image, as shown in Listing 4.2.
Finally, the Hough transform is applied to the thinned image. The output from the
Hough transform is analyzed to locate high-intensity pixels, which indicate many
votes for a particular line. The angle of these lines are then sent to applications in
angle events.

Angle event

timestamp
usecs

relative
horiz offsetheightwidthlengthangle

Angle event fields

Figure 4.27: The angle event format. The standard Shout fields have been left out of the
illustration. Each field is 4 bytes long.

The event format is shown in Figure 4.27. The angle and length values correspond
to the line parametrization obtained through the Hough transform, which is the
normal form of a line given as ρ = x ∗ cos(θ) + y ∗ sin(θ), where ρ corresponds to
the length field, and θ is given in the angle field. The width and height contain the
width and height of the source image in which the line was found (i.e., 720 ∗ 0.5 =
360 and 540 ∗ 0.5 = 270). The relative horizontal offset field is the horizontal
location of the last snap that caused the camera to move. Using the field, the line’s
position can be determined in front of the display wall.

4.6 Evaluation

There are several technical metrics that can be evaluated for the systems described
so far, including latency, accuracy, precision, failure rates, CPU load, memory us-
age and bandwidth. Latency is the time between when a user takes an action, until

74 4 Interaction Spaces

that action is reflected on the display wall. Accuracy determines how well the sys-
tem is able to relate an object’s physical location with its corresponding location
on the display wall. Precision is the system’s ability to consistently determine an
object’s location, regardless of whether the resulting location is accurate or not.
Failure rates includes both the rate at which the system fails to detect an object
when it is present, and the rate of false detections, i.e. how often the system detects
objects that aren’t actually present. CPU load, memory usage and bandwidth indi-
cate the resource consumption of the system, and can be used to identify potential
bottlenecks, for instance to improve latency by reducing the time spent computing
object locations.

Of the three systems, this dissertation presents an evaluation of the Camera-sense
system. The Snap-detect and Arm-angle systems have not been evaluated, a task
which is currently left as future work. The evaluation will further focus on the
Camera-sense system’s latency, accuracy and precision. Informal measurements
indicate that neither memory usage, bandwidth nor CPU load represent a bottle-
neck in the Camera-sense system. Memory usage is about 12 MB and 25 MB of
real memory for the object locator and image processing applications, CPU load is
about 10% for the object locator and 25% for the image processing application, and
total bandwidth usage from all the image processing applications to the object loca-
tor is about 0.5 MB/second with 4-8 cameras detecting 1-2 objects. These informal
measurements were all made on one of the Mac minis in the Princeton display wall,
with graphical output from the applications disabled. Neither application has been
optimized to reduce CPU load. A rigorous evaluation of these metrics has been left
as future work, along with an evaluation of the system’s failure rates.

The metrics latency, accuracy and precision were chosen since they represent the
two characteristics end-users are most likely to notice when they use the system. If
the latency is high, movements made by users will take a long time to be reflected
by corresponding reactions on the display wall. This in turn can result in over-
compensation or missed targets when users try to interact [141]. If the system
exhibits low accuracy or precision, users will be unable to reliably touch the targets
they are trying to hit on the display wall, making the system less useful. The
evaluation of the Camera-sense system is limited to evaluating its performance for
a single plane in 2D. The results presented here appear in [21, 22, 23].

4.6.1 Latency

The end-to-end latency of the Camera-sense system for locating an object in a
single plane has been measured. The end-to-end latency is the time from when a
camera starts acquiring an image, until data from that and all other cameras have
arrived at the object locator, been processed and then sent to applications as object
events. To measure the end-to-end latency, the latency introduced by the different
components of the system has been measured and summed.

4.6 Evaluation 75

There are four main locations where latency is introduced in the system, as shown
in Figure 4.29: (i) Camera image acquisition: The time taken from the camera
starts acquiring an image, until the image is available to applications on the com-
puter the camera is connected to; (ii) Image processing: The time it takes to process
a single slice from one camera; (iii) Shout: The time it takes to send an event from
an instance of the image processing application through the Shout event system to
the object locator; (iv) Object locator: The time it takes to triangulate object loca-
tions and track the resulting objects in a single plane, including time spent waiting
for 1D object locations from the image processing cluster.

Camera image acquisition latency

A custom measurement application was created to measure the image acquisition
latency. The application measures the latency of one or several FireWire cameras
by setting a computer’s display to white, and then determine how much time passes
before the white color is observed by the attached camera(s). The measurement
application is running on the same computer that the cameras and the display are
connected to. The cameras are pointed directly at the computer’s display. For every
measurement, the display is set to white for a duration of 0.3 seconds, before it is
set to black for 0.7 seconds in preparation for the next measurement. This should
give a good estimate of the time it takes for a camera to acquire an image, transfer
it to the computer, pass through the operating system and FireWire camera library
(libdc1394) before it is available to applications for processing.

Display

Camera

Time

Acquired
image

1 2 3 ...

Display set
to white

2+n
Measurement app
detects white color;

latency = n

Figure 4.28: Measuring camera image acquisition latency. At time 1, the display is set to
black. At time 2, the display is set to white, but the camera has not detected this yet. At
time 3, the camera still has not detected the white display. At time 2+n, the image acquired
from the camera is sufficiently bright that the measurement application determines that the
camera has seen the white display. The image acquisition latency is set to n, and the next
measurement is made by setting the display to black and repeating the process.

76 4 Interaction Spaces

Figure 4.28 illustrates how one measurement is made. The display starts out be-
ing black, and then set to white for a duration of 0.3 seconds. To detect when the
camera observes the white display, the measurement application examines a 20x20
square of pixels located at the center of the image acquired by the camera. Once
the difference between the current and previous mean pixel values for this square
exceeds 15019, the camera is said to detect the white display, and a latency mea-
surement is taken. After 0.3 seconds, the display reverts to black and stays that
way for another 0.7 seconds.

The experiment was conducted with a single camera20 attached to two different
computers: A Mac mini (1.66 GHz Intel Core Duo, 512 MB RAM, Mac OS X
10.4.9) and a Dell workstation (3.0 GHz Intel Pentium 4, 2 GB RAM, Hyper-
Threading enabled, Ubuntu Linux 6.10). The camera was mounted so that its lens
was completely up against the (LCD) display’s surface. The latency measurement
application was started, before 1000 measurements were made, by alternating the
display between black and white.

In some cases, the approach taken to detecting the white display might fail to mea-
sure a sufficiently steep increase in pixel intensity. When this happens, no measure-
ment is made. One possible reason for such failed measurements may be that the
camera has acquired an image halfway through when the display is set to white.
When the acquisition ends, the resulting image will be gray, but not sufficiently
bright to trigger the detection of a white image. In the next image acquired from
the camera, the additional brightness would not be sufficient to break the 150 pixel
mean difference required to detect the white image.

Image processing and object locator latency

To measure the latency incurred by image processing and the object locator, the
two applications were instrumented. The image processing application was instru-
mented as shown in Listing 4.3. The purpose is to measure the time from when
the camera library has an image available, until that image has been processed, and
the resulting events queued for sending to the object locator using Shout. 1000
measurements were made for a single slice, with a single camera connected to a
Mac mini (specifications as the one used in the camera image acquisition latency
measurement).

Listing 4.4 shows how the object locator was instrumented. The purpose is to
measure the time it takes from receiving the first 1D object event, until the events

19Pixel values range from 0-255. Thus, when the display goes from black to white, a large change
in the mean pixel value is expected; where black = 0 and white = 255. The threshold of 150 represents
a change in intensity from black by nearly 60%.

20In a second experiment, two cameras were attached to the computers, yielding results that were
within the standard deviation from the results obtained using one camera. For this reason, the results
obtained using two cameras are not included.

4.6 Evaluation 77

camera_image_acquire_thread:
while true:
image = wait_for_image_from_camera()
timestamp = gettimeofday()
enqueue_image(image, timestamp)

image_processing_thread:
while true:

image, start = dequeue_image()
for each plane:

detect_objects_in_plane(image, plane)
send_1D_object_events()
stop = gettimeofday()
latency = stop - start

Listing 4.3: Pseudo-code demonstrating how the image processing application was instru-
mented to measure the latency incurred by image processing. A timestamp is taken when
a new image is available from the camera. The image and the timestamp is queued, and
then dequeued by a different thread which processes the image. When the processing is
complete and any object events have been sent, another timestamp is taken and the latency
measurement made.

have been processed, and the resulting 2D and 3D object events have been queued.
Latency is introduced since: (i) Not all 1D object events arrive at the same time;
and (ii) the object locator must wait to receive events pertaining to all cameras
before it can use the events to detect objects. 1000 measurements were made while
processing data from 12 cameras connected to 6 Mac minis.

Shout latency

The methodology used to measure the latency for distributing events using Shout
appears in Section B.5.1, where both the methodology and results are presented.
This Section includes uses the roundtrip latency results from the experiment with
an event rate of 1 and 8 pong slaves, divided by two to arrive at the one-way la-
tency. This is the mean latency that the Shout system can deliver for the system’s
deployment in Tromsø, where there are 8 Mac minis running one instance of the
image processing software each. The results for the Shout latency reported in this
dissertation differs from the one given in earlier papers [23, 22], as explained in
Section B.6.

Results

Figure 4.29 illustrates the four components of the latency chain, from camera im-
age acquisition, to image processing, Shout event distribution and the object locator
and their associated contribution to the end-to-end latency. When the object locator

78 4 Interaction Spaces

receive_events:
while true:

event = shout_wait_next_event()
append_1d_observation(event)

append_1D_observation(event):
if not have_start_timestamp:

start = gettimeofday()
have_start_timestamp = true

if event is last from camera or event is no_detect:
mark camera as ready
perform_object_detection()

perform_object_detection:
if all cameras are marked ready:

intersect_lines(); detect_objects(); send_object_events()
stop = gettimeofday()
latency = stop-start
have_start_timestamp = false

Listing 4.4: Pseudo-code demonstrating how the object locator was instrumented to mea-
sure its latency. The start timestamp is set on reception of the first 1D object event. The
events are processed when all cameras are “ready.” 2D and 3D object events are then sent,
before the stop timestamp is taken and the resulting latency measurement calculated.

has finished detecting and locating objects, the Shout latency is incurred once more
as events are sent from the object locator to applications.

81 ms 1.16 ms 0.25 ms 31 ms 0.25 ms

Image
processing

Camera
image

acquisition
Object
locatorShout Shout

Total: 81 ms 82.16 ms 82.41 ms 113.41 ms 113.66 ms

Applications

Figure 4.29: The latency measurement results, with individual latency contribution listed
within each box, and the cumulative latency shown at the bottom.

Table 4.3 shows the latency measurements in more detail, with the number of sam-
ples, mean latency contribution, standard deviation and minimum/maximum val-
ues. For the camera image acquisition, the results in parentheses are from the mea-
surements on the Linux workstation. The other experiments were not conducted
on Linux since the image processing and object locator applications were written
targeting Mac OS X. For the camera image acquisition, the number of samples
is lower than the expected 1000 due to some failed measurements, as described
earlier.

The Camera-sense system’s mean end-to-end latency is 113.66 ms, including the
added latency required to deliver the resulting 2D and 3D object events to applica-
tions. The biggest contributor to latency in the system is camera image acquisition,
which accounts for 71% of the latency. On the average, acquiring images on the

4.6 Evaluation 79

Cam. img. acq. Image proc. Shout Object loc. Sum
N 923 (852) 1000 800000 1000 -
µ 81 ms (93 ms) 1.16 ms 0.25 ms 31 ms 113.41 msa

σ 10 ms (9 ms) 0.11 ms 0.11 ms 10 ms -
min 58 ms (72 ms) 0.97 ms 0.23 ms 0.008 ms 59.21 ms
max 104 ms (114 ms) 3.3 ms 40.88 msb 139 ms 287.18 ms

Table 4.3: Detailed latency measurement results. N is the number of samples, µ is the
mean and σ the standard deviation.

aThe end-to-end latency is 113.66 ms, since the Shout latency must be counted twice: Once to
send events from the image processing cluster to the object locator, and once more to send events
from the object locator to applications.

bThese maxima are very rare: Of the 800000 measurements, only 540 (0.06%) are above 1 ms,
and 59 are above 10 ms.

Linux workstation incurred about 10 ms more latency than image acquisition on
Mac OS X. The second biggest contributor is the object locator, which contributes
31 ms (27%) to the end-to-end latency. Both the camera image acquisition and the
object locator incur about one order of magnitude more latency than other parts of
the system.

The results are discussed in Section 4.7.

4.6.2 Accuracy and precision

The Camera-sense system’s accuracy and precision in 2D within a single plane has
been measured. Designing an experiment to measure the system’s accuracy and
precision in an empirical and objective manner that enables other researchers to
consistently reproduce the results is challenging. Measuring the system’s accuracy
requires that a physical object is placed at a known location, before the system is
used to determine its location. The system’s accuracy at that point is then defined
as the distance from the known (target) location to the observed location. The
system’s precision is determined by calculating the standard deviation of several
accuracy measurements.

To make such an experiment fully repeatable while measuring the system’s accu-
racy and precision over a large area, a mechanical arm or similar would have to
be constructed that could interact with the system in a pre-determined and con-
sistent way. This approach is very laborious. An alternative is to have a user do
these pre-determined movements. However, such an experiment can never be fully
reproduced, since the interactions made by each user would undoubtedly change
from experiment to experiment. Users might adapt to the experiment, accidentally
do things in a different way from an earlier experiment, or affect the system in a
number of other ways which are hard to control for. Further, it is highly unlikely
that other researchers would have access to the same set of users in an attempt at

80 4 Interaction Spaces

reproducing the experiment.

Experiments involving users are thus unsuited to methodically exploring how
changes to the system’s various stages affect the total system accuracy and pre-
cision. The results can not be used to measure the effect of varying lighting con-
ditions, different calibrations or changes to other parts of the system, as one must
have confidence in that the outcome reflects the actual changes to the system, and
not changes in the way a given user interacts with the system during the experiment.
Instead, such an experiment can only provide an approximation of the system’s ac-
curacy and precision for that given user.

Methodology

The Camera-sense system’s precision was calculated based on the accuracy mea-
surements. To make the accuracy measurements, the following methodology was
employed. The experiment was conducted on the Princeton display wall, which
measures 272x202 cm. A display application running on the display wall was writ-
ten to show a set of 100 targets, one after another, as 10x10 pixel squares spaced
evenly in a 10x10 grid. Each target is touched in turn by a user. When a user
touches a target, feedback is given in the form of a fountain of particles appearing
at the location of the touch. The targets are located within an interior rectangle on
the display wall measuring 167x60 cm. This area represents the area where inter-
action is most likely to occur: Any higher, and users would have to stretch to reach
the targets, and any lower would require users to bend. The horizontal extent was
chosen based on the fact that at least three cameras must see an object before it can
be located: To the far left and far right of the display wall, initial touches are thus
not recognized21.

A master application runs the experiment by instructing the display application to
show each target one after another. The display application responds by displaying
the target. For each target, the master receives object events for a single plane (the
plane closest to the wall) from the Camera-sense system. It extracts the location
and object extent from the events, and records them along with the current sample
count and target location.

For each target that the user touches, the master discards the initial 15 object events,
before it logs data from the following 30 object events. The first 15 object events
(which represent about half a second of touching given the cameras’ frame rate of
30) are discarded to let the user place his finger on the target, in an effort to get
more consistent results. Once the master has logged 30 samples for the current

21Touches can be tracked to the far left and right once they have been recognized, as the system
in these cases can utilize data from just two cameras to track the object. To extend the system to
allow initial detection of objects along the full width of the display wall, additional cameras could be
placed to the left and right of the display wall. Another approach would be to increase the spacing
between cameras to cover a larger area.

4.6 Evaluation 81

target, it instructs the display application to flash the display and then show the
next target. At this point, the master begins a grace period where the user is given
time to remove his finger before touching the next target. The purpose of this is
to avoid incorporating object events stemming from the previous target into the
current target. The grace period lasts for one second after the master detects that
the user has removed his finger from the display wall.

The experiment was conducted twice, with a different user in the second experi-
ment.

Results

Tables 4.4 shows the accuracy and precision results from the two experiments.
The accuracy is given as the mean distance from the targets to their corresponding
observations, and the precision is shown as the standard deviation. The table also
lists the mean horizontal and vertical distance from targets to observations, which
represents the system’s accuracy along the horizontal and vertical axes.

Experiment µ σ µdx µdy

User 1 1.12 cm 0.72 cm -0.21 cm -0.47 cm
User 2 1.24 cm 0.69 cm -0.40 cm -0.25 cm

Table 4.4: Accuracy and precision results from the two experiments. µ is the mean distance
from all observations to their corresponding targets, and represents the system’s overall
accuracy. σ is the standard deviation, and represents the system’s overall precision. µdx

and µdy are the mean horizontal and vertical distance from an observation to its target.

The system has a mean distance from targets to observations of 1.12 cm for user
1, and 1.24 cm for user 2. These values are well within the standard deviations
for the two users, indicating that the system exhibits similar accuracy for the two
users. The mean horizontal distance from targets to observations is -0.21 cm and
-0.40 cm respectively, indicating that the observations are skewed slightly to the
right of their intended target. The mean vertical distance is -0.47 cm and -0.25 cm
for users 1 and 2, which puts the mean slightly above their intended target.

Figure 4.30 shows a plot of the results from the experiment conducted with user 1.
The X and Y axes indicate the offset from the left and bottom sides of the Princeton
display wall, with all measurements in centimeters. The measurements are plotted
as dots and the targets are shown as red circles in the figure. The same plot for
user 2 is shown in Figure 4.32(a). Ideally, the dots should be centered inside the
red circles, indicating perfect accuracy. Perfect precision would be indicated by all
dots for each target lying on top of each other (i.e., appearing as a single dot).

Two boxes A and B are highlighted in Figure 4.30. The boxes show areas where the
Camera-sense system exhibits low and high accuracy and precision. In box A, the
vertical spread of the dots indicates that the observed locations flicker up and down,

82 4 Interaction Spaces

50 100 150 200

80
90

10
0

11
0

12
0

13
0

Observed locations and targets

X cm

Y
cm

B

A

Figure 4.30: 100 targets (red circles) and the locations (dots) detected by the Camera-
sense system for each target for user 1. The X and Y axis show the horizontal and vertical
location on the 272x202 cm Princeton display wall. Boxes A and B highlight areas where
the system exhibits low and high accuracy and precision.

resulting in relatively low precision in this area. The lack of precision also results
in lower accuracy in this area. In comparison, the horizontal location remains fairly
stable, indicating that the system’s precision is better along the horizontal axis than
along the vertical axis. In box B, the system delivers better accuracy, with most
observations being closer to their targets. The system’s precision in this area is
also better, with less variation in the measurements.

Figure 4.31 shows the distance from each target to its associated observations for
user 1, with the corresponding plot for user 2 shown in Figure 4.32(b). Negative
values on the X or Y axis indicate that an observation is above or to the left of the
target. Figures 4.33 and 4.35 show histograms of the same data in the horizontal
and vertical directions for users 1 and 2. The histograms show how the system’s
accuracy differs along the X and Y axes, with more samples clustered within a
narrow range for the dx values compared to the dy values.

4.7 Evaluation 83

−4 −2 0 2 4

−
4

−
2

0
2

4
Distance from target to observation

dx cm

dy
 c

m

Figure 4.31: The difference between the target location and the actual sample location for
every sample, measured in centimeters, for user 1.

Figures 4.34 and 4.36 show the system’s per-target precision using histograms of
the standard deviation for each target’s 30 samples. For user 1, 90% of the targets
had a horizontal standard deviation less than 0.08 cm and a vertical standard devi-
ation less than 0.47 cm. For user 2, 90% of the targets had a horizontal standard
deviation less than 0.16 cm and a vertical standard deviation less than 0.68 cm.

Table 4.5 shows the mean object extent, its standard deviation as well as the min-
imum and maximum object extent recorded for the two experiments. The object
extent is given in pixels, and is fractional since the object locator calculates the ob-
ject extent as the mean of the extents from the cameras that detect a given object.

Experiment µobj σobj min max
User 1 4.45 px 0.82 px 2.34 px 6.49 px
User 2 4.26 px 0.72 px 2.00 px 6.49 px

Table 4.5: Results for the object extent recorded as part of the two accuracy experiments.

84 4 Interaction Spaces

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

50 100 150 200

80
90

10
0

11
0

12
0

13
0

Observed locations and targets (2)

y cm

x
cm

(a)

−4 −2 0 2 4

−
4

−
2

0
2

4

Distance from target to observation (2)

dx cm
dy

 c
m

(b)

Figure 4.32: Results from the experiment conducted with user 2. (a) A plot of the mea-
surement results (dots) compared to the target locations (red circles) and the (b) difference
from target and observed location are shown.

Histogram of dx

dx cm

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2 3 4

0
25

50
75

10
0

12
5

15
0

17
5

(a)

Histogram of dy

dy cm

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2 3 4

0
25

50
75

10
0

12
5

15
0

17
5

(b)

Figure 4.33: Histograms of the horizontal (a) and vertical (b) distance from each sample to
its target for user 1.

4.7 Evaluation 85

Per−target horizontal standard deviation

dx cm

F
re

qu
en

cy

0.000 0.070 0.140 0.210 0.280 0.350

0
4

8
12

16
20

(a)

Per−target vertical standard deviation

dy cm

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

20
25

(b)

Figure 4.34: Histograms of the per-target horizontal (a) and vertical (b) standard deviation
for user 1.

Histogram of dx (2)

dx cm

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2 3 4

0
25

50
75

10
0

12
5

15
0

17
5

(a)

Histogram of dy (2)

dy cm

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2 3 4

0
25

50
75

10
0

12
5

15
0

17
5

(b)

Figure 4.35: Histograms of the horizontal (a) and vertical (b) distance from each sample to
its target for user 2.

86 4 Interaction Spaces

Per−target horizontal standard deviation (2)

dx cm

F
re

qu
en

cy

0.000 0.070 0.140 0.210 0.280 0.350

0
4

8
12

16
20

(a)

Per−target vertical standard deviation (2)

dy cm

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

20
25

(b)

Figure 4.36: Histograms of the per-target horizontal (a) and vertical (b) standard deviation
for user 2.

4.7 Discussion

The Camera-sense system’s end-to-end latency was 113.66 ms, of which the major-
ity is due to the time taken by the commodity web cameras to acquire images and
transfer them to the computer. With better camera technology, the latency incurred
by the cameras could likely be reduced, either as an artifact of using cameras with
higher framerates, or smaller on-camera image buffers. The operating system is
already thought to have reduced the image acquisition latency by more than 20 ms
between the first experiment results presented in [142] and a repeat of the exper-
iment in [22]. This dissertation presents the more recent results from [22]. The
camera image acquisition latency experiment when conducted on the Linux work-
station yielded a mean latency that was about 10 ms higher than the corresponding
results on Mac OS X. Since the computer hardware used to measure the Linux
latency differs from the hardware used to measure the latency on Mac OS X, the
difference in latency can not be attributed to the operating system directly. The
difference comes either from the different hardware used, the differing operating
systems, or a combination of the two.

The object locator latency correlates well with the camera frame rate at 30 frames
per second, which corresponds to a new frame every 33 ms (1s

30 = 0.033s). The la-
tency is as expected given that the object locator must wait for all events related to
all cameras before processing them. Since the cameras are not synchronized, two
frames from two different cameras may be captured as far apart in time as 33 ms.
Thus, the worst-case is that the object locator must wait for up to 33 ms to receive
events. The measurements show that the object locator on the average waits for
31 ms. Cameras with higher framerates would reduce the latency incurred by the
object locator, since the maximum inter-camera image acquisition time difference

4.7 Discussion 87

would be reduced. This wait could also be eliminated if a different approach to
triangulating object locations were used. In this alternative approach, object loca-
tions would be updated every time a new 1D object event is received by the object
locator. This approach has not yet been explored.

The Camera-sense system was measured to have a mean accuracy of 1.12 cm and
1.24 cm for users 1 and 2, with a precision of 0.72 cm and 0.69 cm. There are
several factors that affect the system’s accuracy and precision: (i) Object speed;
(ii) lack of camera synchronization; (iii) camera frame rate; (iv) lighting; (v) preci-
sion of foreground and background segmentation; (vi) object extent; (vii) camera
placement and alignment; and (viii) calibration.

Since the system makes use of unsynchronized cameras, moving objects influence
the system’s accuracy and precision. With unsynchronized cameras, the difference
in inter-camera image acquisition time must be taken into account. For instance,
with cameras running at 30 fps, two cameras may end up acquiring images as much
as 33 ms apart. These images will still be used together to determine the location
of objects. If the object is moving, its 1D location in the second image will be
slightly different from where it was in the first image.

Using synchronized cameras, the problem of accurately determining the location
of moving objects would be resolved. In this case, all the cameras would acquire
each image at practically the same moment in time, resulting in moving objects
no longer shifting in location in between images from different cameras. The
drawback is far more expensive cameras, since camera synchronization (external
triggering) is a feature that is only found on high-end cameras, such as the $500
Imaging Source DMK 21BF04.H.

Rather than using synchronized cameras, the system’s accuracy and precision can
also be improved by using cameras with higher frame rates. For instance, increas-
ing the frame rate from 30 to 60 would halve the maximum inter-camera image
acquisition time from 33 ms to 16 ms. A higher camera frame rate also has the
benefit of reducing the object locator’s latency, and increasing the rate at which 2D
and 3D object events can be sent to applications. The drawback to higher camera
frame rates is the higher bus bandwidth requirements. For instance, transmitting
640x480 in 8-bit grayscale at 30 fps consumes 8.78 MB/s, not including packet
overhead. The maximum capacity of a FireWire 400 bus is about 47.68 MB/s (400
MBit). Of this, at most 80% of the bus capacity can be used for isochronous traffic
(38.14 MB/s) [132], thus at most four cameras can be supported at this rate22. Dou-
bling the framerate doubles the bandwidth requirements, and reduces the number
of cameras that can used simultaneously on the same bus.

The experiment conducted to evaluate the system’s accuracy and precision was

22In practice, the limit is often three. Most FireWire cards limit the number of isochronous contexts
to four, and the operating system may use one of them for its own purposes, such as providing IP
networking support over FireWire.

88 4 Interaction Spaces

designed to eliminate object speed, lack of synchronization and camera frame rate
as factors. The experiment measures the system’s accuracy for stationary objects,
which makes object speed and lack of camera synchronization less relevant. The
camera frame rate impacts latency and the accuracy for locating moving objects;
since latency is not an issue in the experiment and the objects to be located are
kept stationary, the (constant) camera frame rate should not affect the experiment’s
outcome.

Since the system is designed with the assumption that the background is static
and brightly lit, low lighting will affect the accuracy of the foreground/background
segmentation. In lowly lit conditions, the contrast between the foreground object
to be detected and the background is lower, making it harder to separate the two.
Camera noise also increases under low lighting. The experiments were conducted
under fairly good lighting conditions, where parts of the scene were well-lit by two
lamps mounted in the ceiling, whereas other regions of the scene were darker, as
shown in the sample image in Figure 4.5.

The accuracy of the foreground/background segmentation is important in order to
determine where an object appears in an image, which ends up yielding the 1D
locations and object extents that are later used to triangulate the 2D object location
within a plane. Since the segmentation algorithm uses a dynamic background,
stationary objects will eventually be incorporated into the background. The use
of a dynamic background should not affect the evaluation to a great extent, since
the object is only held in place for about two seconds in total. During this time,
the implementation incorporates 0.005% of the current foreground image into the
background image about 60 times, or about 0.3% in total for each target point.

The accuracy of the segmentation helps explain some of the results obtained during
the evaluation. When the computed 2D location of an object exhibits vertical jitter
(i.e., seemingly random changes in location up and down), the root cause is often
one or two cameras that oscillate between detecting the object and not detecting the
object, or detecting the object at slightly different 1D locations due to random noise
or lighting effects. Figure 4.37 illustrates the effect. In these cases, the output from
the oscillating camera(s) are inaccurate, since they either fail to detect the object,
or when they do detect it, provide an incorrect 1D location for the object.

Object extent also plays a role in the accuracy of the system. The object extent
has not been entirely eliminated as a factor in the experiments, since the extent of
a user’s finger may vary slightly depending on the exact finger pose. While the
object extent is not directly used in the triangulation of objects (only the center
of an object is used), it does give an indication of how precise the detection of an
object is. As part of the evaluation, the object extent was also recorded. It does not
vary much, ranging from 2.34 and 2.00, to 6.5 pixels with a mean of 4.45 and 4.26
for the two different users. This indicates that the user is not holding his finger
completely steady, that the accuracy and precision of the foreground/background
segmentation varies, or both. The end result is that the detected 1D location shifts,

4.7 Discussion 89

1. 2.

Cameras

Object Object

Detect No detect

Figure 4.37: (1) The presence of a slightly inaccurate 1D location from the highlighted
camera pushes the location of the detected object down. At the same time, the X location
is not modified as much, since it has much better “support” from the horizontally spread-out
cameras. (2) When the inaccurate camera no longer sees the object due to noise, lighting or
simply because the object disappears from the camera’s field-of-view, the object’s location
goes back up to the more “correct” location as determined by the remaining cameras. If the
camera repeatedly switches between detecting and not detecting the object, the result is
vertical jitter.

which in turn yields inaccurate 2D object locations.

Placement and alignment of the cameras is important to provide even camera cov-
erage within the interaction space created by the system. The spacing between
cameras affects the resulting accuracy of the system; wider spacing would reduce
the accuracy, while narrower spacing would enable different objects to be seen by
more cameras and thus increase the system’s accuracy. Spacing also impacts the
system’s precision.

For three cameras to all see an object, their field-of-views must overlap at the lo-
cation where the object is. For this reason, the camera spacing also affects the
lowest height at which objects can be detected. The placement and alignment of
the cameras was kept constant during the experiments, and thus should not impact
the results beyond the accuracy at which they were initially mounted (i.e., if a cam-
era was already out of alignment at the time the experiments were conducted, this
would clearly affect the resulting accuracy).

Calibration is the final factor that impacts the system’s accuracy and precision.
Calibration and camera placement represent two interrelated factors. Any time the
camera placement or alignment is changed, the system should be recalibrated. A
reasonably accurate initial setup of the cameras is also necessary for the calibration
to succeed. The evaluation has shown that most measurements had a standard
deviation less than about 0.1 cm horizontally, and 0.5 cm vertically for one of the
users. This indicates that the system is fairly precise in where it locates the detected

90 4 Interaction Spaces

objects, even though the per-target accuracy varies. Since the system has regions
where it achieves very good accuracy and precision (such as the region highlighted
in box B in Figure 4.30), it is likely that improving the calibration of the system
would result in higher accuracy and better precision across the entire display wall.
To improve the calibration, a more sophisticated camera model would be necessary.
The current model is limited in several ways, including no Y axis rotation and
limited handling of lens distortion.

The Camera-sense system can be scaled to cover wider or narrower display walls
by adding additional cameras and computers, as has been demonstrated with its de-
ployment at both the Tromsø and Princeton display walls, using 16 and 8 cameras
respectively. The informal experiments conducted to measure the CPU load and
memory usage of the image processing and object locator applications did not point
to any performance bottlenecks. However, with enough cameras, it is possible that
the object locator or the Shout event system may become bottlenecks, since they
are the centralized components in an otherwise embarrassingly parallel system.
Parallelizing the object locator would be one approach to remove the object loca-
tor as a potential bottleneck; this could for instance be done by having one locator
handle cameras [1, j] while a second locator handles cameras [j + 1, n]. A more
sophisticated solution would allow some overlap, such that both locators would
process data from cameras near the border between the two to avoid introducing
“dead zones.” At present such a parallelization is future work. If the Shout server
were to become a bottleneck, removing it would either require re-architecting the
event system and move away from the current centralized architecture, or develop
a custom protocol for exchanging information between the image processing ap-
plications and the object locator instance(s) independently of the Shout system.

4.7.1 The Camera-sense system and the state of the art

Comparing the Camera-sense system to the state of the art is challenging, since
the literature does not always report on the accuracy, precision or latency of the
developed systems, such as the Microsoft Surface [13], the Duke Multi-touch wall
[108], or the TouchWall [51]. However, informally and judging by videos available
of these systems, their accuracy appears to be better than the Camera-sense system.
They are camera-based, so the camera image acquisition latency is likely to be
similar to or better than the Camera-sense system, depending on the cameras used
and the frame rates they operate at.

The accuracy reported for the FTIR multi-touch wall [12] is 1 mm, which is about
an order of magnitude better than the Camera-sense system. The latency is likely
somewhat lower than the Camera-sense system, since the camera used runs at 30
frames per second and the FTIR multi-touch approach does not employ multiple
cameras; thus, there is no need to wait for data from more than one camera before
updating the object state.

4.8 Lessons learned 91

In the laser-range finder approach taken in [110], the reported accuracy of the laser
range finder is about 1.4 cm with an update rate between 20 and 30 Hz. The
Camera-sense system has a similar level of accuracy, at about 1.1-1.2 cm. On the
assumption that the range finder sends position data continuously, its latency is
likely in the 33-50 ms range (depending on the rate at which it scans). However,
their use of a 4-tap FIR23 filter to reduce the impact of noise adds latency to their
system, resulting in a total system latency that is a factor two to three higher than
the latency from the range finder alone, depending on what kind of filter is used.
This places it on par with or slightly worse than the Camera-sense system.

4.8 Lessons learned

Through the design, implementation and evaluation of the interaction space sys-
tems, a number of lessons have been learned. The Camera-sense system began as
a system to provide 2D multi-touch capabilities for the Tromsø display wall, be-
fore being extended to provide 3D input. The early versions of the Camera-sense
system employed a “strange” coordinate system, where 1 unit along the horizontal
axis was equivalent to the (expected) distance between the cameras, and to make
things more complicated, one unit along the vertical axis represented a longer dis-
tance than one unit along the horizontal axis. Initially having a coordinate system
that was independent of the camera placement seemed like a good idea, but made
tasks like properly calibrating the system more difficult and also made it hard to
judge the system’s accuracy in an informal manner, since coordinates would have
to be manually converted to the metric system. Eventually, the metric coordinate
system was adopted instead.

Placing the cameras along the floor – rather than along the ceiling – was done
due to the ease at which cameras could be moved and adjusted. However, one
disadvantage of mounting the cameras along the floor is that they frequently are
knocked out of position, due for instance to users bumping into the cameras with
their feet or cleaners hitting them with their mop while cleaning the floors.

The event format used by the Camera-sense system could be simplified. The initial
design goal for the verbose format (which includes the camera location and rotation
in every 1D object event sent from the image processing cluster) was to enable
different applications to visualize the “raw” 1D object events. However, from a
design and efficiency viewpoint, this information should have been kept local to
the object locator. A better design to enable visualization of raw data would be
to have applications query for the current camera configuration, and let the object
locator respond to such queries.

The Camera-sense system’s 3D capabilities gives it much potential. While it does

23Finite Impulse Response.

92 4 Interaction Spaces

Figure 4.38: An illustration of how the skeleton-based 3D object would appear to an appli-
cation.

not cover as much area in terms of depth as comparable systems [14, 56], it im-
proves on their capabilities by being able to track objects over a larger area. It can
further track not only an object’s “tip” in 3D, but also its extent further back in the
scene, as illustrated in Figure 4.38. Each 3D object is composed of one 2D object
location per plane. These 2D locations are strung together, and could be used to
determine the angle at which the object is pointing24. The 3D capabilities of the
Camera-sense system also mean that it can replace the Arm-angle system, although
a component incorporating the Arm-angle functionality into the Camera-sense sys-
tem has not yet been implemented.

During the work with the Camera-sense system, several different approaches to
creating the background lighting have been explored. For the initial 2D-only in-
stance of the system built in Tromsø, two rows of commodity Christmas lights are
mounted in the ceiling to generate a bright background for the system, as shown
in Figure 4.39. Another approach that has been attempted, also with the 2D-only
system, has been to use infrared light. A narrow strip of IR LEDs was built25,
and cheap IR-pass filters using exposed camera film was used to block visible light
from the cameras. This approach had potential, but the LEDs used had a too nar-
row viewing angle which made them invisible when placed to the far left or right
of a camera’s field-of-view. In Princeton, the ceiling was more brightly lit than in
Tromsø, so no additional lighting (visible or IR) was necessary.

24One way to do it would be taking the 2D location for the innermost and outermost slices and
projecting a line through them.

25Courtesy of the Technical Staff at the Department of Computer Science in Tromsø.

4.9 Further improvements 93

Figure 4.39: The Christmas lights being used to create a bright background for the Camera-
sense system in Tromsø.

4.9 Further improvements

There is more work left to both improve the systems presented, and to fully evaluate
them. The Camera-sense system can be improved in many ways. The evaluation
points toward the camera calibration as a likely reason for the observed inaccura-
cies. Reworking the calibration and using a complete camera model should go a
long way towards improving the system’s accuracy.

The Z-axis coordinates of 3D objects should be properly converted to real-world
(metric) units, and not taken as a direct conversion of the plane index as now. The
1D object event format could also be made more efficient, as discussed earlier, and
different approaches to back-lighting should be explored. One possibility beyond
the ones already explored, is using more powerful infrared lights (essentially, heat
sources) to illuminate the ceiling.

The object locator’s approach to isolating clusters of intersection points could also
be improved, since it at present does not take into account clusters with a bounding
box that is tall, but very narrow. The very first attempt at isolating point clusters
calculated the area of the bounding box and used that as the “measure of cluster-
ing.” However, this approach was highly prone to creating point clusters with very
narrow but tall bounding boxes, even more so than the current approach which uses
the distance from the top-left corner of the bounding box, to the bottom-right cor-
ner of the box. A better solution may be to exclude points based on each point’s
distance to every other point and remove the point which has the biggest total dis-
tance to all the other points. This approach has not yet been explored.

94 4 Interaction Spaces

There are also several aspects of the Camera-sense system that should be further
evaluated. The latency of the system has been measured when processing just
a single plane; it is possible that processing additional planes could lead to an
increase in latency which the current measurements do not reflect. Further, the
evaluation only measured the accuracy and precision for tracking stationary objects
in a single plane. Additional evaluation should include the system’s accuracy and
precision for tracking moving objects in 2D, and its accuracy and precision when
tracking both stationary and moving objects in 3D.

During use of the system, it has been observed that it occasionally generates false
positives; that is, it detects objects where there are none. Defining and conducting
an experiment to measure the false object detection rate in a controlled manner
would further enable a better characterization of the system’s accuracy. The sys-
tem’s accuracy and precision should also be characterized when: (i) Changing the
spacing between cameras; (ii) changing the resolution of the cameras; (iii) chang-
ing each camera’s lens characteristics26; and (iv) changing each camera’s image
acquisition frame rate.

Only informal experiences have been made using the Snap-detect and Arm-angle
systems. The Snap-detect system’s accuracy, precision and false positive rate
should be measured. Informal experiences using the system has given the im-
pression that false positives are not a big issue with the Snap-detect system; they
do occur, but rarely enough to make the system work well in day-to-day use. The
system’s accuracy is good enough for it to be used to bring up a menu at the user’s
location in the Wallboard application. A possible extension to the Snap-detect sys-
tem could be to locate sounds not only in 2D, but also in 3D by using additional
microphones mounted in the room housing the display wall.

The Arm-angle system has not been evaluated. Experiments to evaluate its accu-
racy and precision should be designed and conducted. Informal use of the system
indicates it has a tendency to pick up false positives from content being shown on
the display wall. Straight lines on the display wall may be sufficiently prevalent
so as to override the lines being detected from the user’s arm. This results in the
system incorrectly identifying where the user is attempting to point.

Some approaches to resolve this include: (i) Fitting an infrared-pass filter to the
camera (thus blocking the visible light from the display wall), and illuminate the
scene with IR light (this illumination would also benefit the Camera-sense system);
(ii) polarize the light from each projector, and mount a polarization filter on the
camera. This would have the effect of preventing the camera from seeing the light
generated by the projectors driving the display wall; (iii) utilize knowledge of what
is actually being displayed on the wall to separate the foreground (i.e., the person)
from the background (content being shown on the display wall); and (iv) simply
hide the content in front of the user when the Arm-angle system is called. This

26For instance, comparing the use of a fish-eye lens with the current 42◦ field-of-view lens.

4.10 Conclusion 95

approach is taken in the Wallboard application [95] in order for the display wall’s
intense light to not shine through the objects being scanned, and works quite well.
Finally, the Arm-angle system could itself be implemented using the Camera-sense
system.

4.10 Conclusion

This chapter has presented the concept of several Interaction Spaces and detailed
the architecture, design and implementation of three interaction space systems. The
three systems demonstrate how interaction can be separated from the computers
they act on. Interaction is no longer a capability associated with a given computer,
but instead a capability inherent to the environment, and in the case of the three sys-
tems, associated with a display wall constructed using a cluster of computers. The
systems have different characteristics. They can detect one or several users inter-
acting simultaneously, and vary in the size of the areas they cover. The Arm-angle
interaction space’s construction is enabled by the Snap-detect interaction space. It
demonstrates a movable interaction space.

The Camera-sense system’s latency, accuracy and precision has been evaluated.
The system’s end-to-end latency is 113.66 ms. The system locates objects with an
accuracy of 1.24 cm, and a precision of 0.72 cm. The results demonstrate that a
system built using commodity components provides accuracy that is on par with
[110] and lower than [12] the state-of-the-art, while improving on the state-of-the-
art by tracking objects in 3D without the need for users to wear markers. The
system’s latency is sufficiently low to enable interaction with applications. The
system is scalable. Its embarrassingly parallel architecture makes it possible to add
and remove cameras to cover wider or narrower display walls.

96 4 Interaction Spaces

Chapter 5

Applications

This chapter describes a number of applications that have been developed or mod-
ified to take advantage of the three different interaction space systems. The ap-
plications are listed in Table 5.1, along with whether the applications are multi-
user or not, newly developed or modified, and their use of the different interaction
spaces. This chapter is based in part on the research presented in the following
peer-reviewed, published papers: [21, 95, 24, 23].

Application Multi-user New Camera-sense Snap-detect Arm-angle
Wallview No Yes Yes Yes No
Wallboard Yes Yes Yes Yes Yesa

Wallfire Yes Yes Yes No No
Angle-snap No Yes Yes Yes Yes
MASpace No Yesb Yes No No
Quake 3 Arena Yes No Yes Yes No
Homeworld No No Yes No No

Table 5.1: New and existing applications and their use of the different interaction spaces.
If an application is listed as New, it has been developed from scratch towards fulfillment of
the Ph.D. project presented in this dissertation.

aThe Arm-angle space is only used when the virtual billboard-functionality of the application is
disabled, since the camera used by the Arm-angle system is otherwise in use to support the virtual
billboard.

bThe application has been developed from scratch, but is built to replicate the output of the already
existing HIDRA [143] application on display walls.

5.1 Wallview

Wallview is an image viewer developed specifically for display walls, shown in
Figure 5.1. The purpose of the application is to show many high-resolution images

97

98 5 Applications

Figure 5.1: The Wallview application being used to navigate a large collection of comics.

at once and enable users to pan, zoom and rotate the images using multi-touch
gestures. It has been used to navigate three years (950 images) of the Norwegian
comic M [62] and a whole range of other images. The application only supports
a single user navigating the images being displayed. It has been developed from
scratch in order to provide high-performance image viewing on the Tromsø display
wall. It uses the Camera-sense interaction space to pan, zoom and rotate the view
on the display wall. The Snap-detect interaction space is used to detect one, two
and three snaps in a row. Two snaps zooms the view in at the location of the snap.
One snap zooms the view back out, and three snaps resets the view to its origin.

Wallview is a parallel application. A viewer runs on each display wall cluster node.
OpenGL [58] is used to enable graphics card accelerated drawing of images, and
SDL [144] is used to load images from disk. A separate application controls the
pan, rotation and zoom by interpreting events from the Camera-sense and Snap-
detect systems. Using one hand, users can move the entire view around. With
two hands, the image can be zoomed in or out by controlling the distance between
the hands, much like the pinch-gesture used to zoom on the Apple iPhone. Two
hands are also used to rotate the image, by moving them in a circular fashion.
The Wallview application can also make use of the 3D capabilities of the Camera-
sense system. When enabled, the penetration of an object into the Camera-sense
interaction space is used to control the viewer’s zoom-factor.

5.2 Wallboard

Wallboard is a virtual billboard with some additional drawing functionality. It
enables users to “scan” or image content from the real world, and have it appear on

5.2 Wallboard 99

(a) (b) (c) (d)

Figure 5.2: Using the Wallboard application to scan an object, bringing a representation
of it from the real world into the display wall’s digital domain. (a) Pinning a document to
a regular billboard. (b) The document is held in front of the wall for less than two-three
seconds. (c) The user removes the document, (d) leaving an image of the document on the
wall at the location where the user held it.

the display wall. It also functions as a very simple whiteboard, enabling users to
draw circles, squares, triangles and paths. While several users may interact with the
application at the same time to create or move objects, the imaging component can
only be used by one user at a time. The application was developed from scratch, to
demonstrate the abilities of the different interaction spaces, demonstrate the virtual
billboard concept and to provide a test application for a system called “The Wall
Windowing System” (W2S) being developed by other researchers in the Tromsø
display wall group [145].

(a) (b)

Figure 5.3: (a) Two users using the Wallboard application simultaneously to manipulate
geometric objects. The user to the left has brought up the menu by snapping his fingers, and
is selecting which object to create. The white lines visualize the output from the Camera-
sense system, and can be turned on or off. (b) Wallboard begins imaging an object if it
detects a wide object penetrating through the entire Camera-sense interaction space.

Wallboard makes use of all three interaction spaces. The Camera-sense space is
used to enable multi-touch style interaction. It is one of a few applications that

100 5 Applications

makes use of the 3D capabilities of the Camera-sense system. The 3D capabilities
are used when imaging a document or other object. Wallboard initiates the imaging
component if it detects that a thick object has penetrated through the entire Camera-
sense interaction space, as shown in Figure 5.3(b). If an object detected in planes
A and B is sufficiently wide (as determined by the extent reported by the Camera-
sense system), sufficiently close and remains stationary for more than one second,
the system steers the movable camera towards the location where the document is
held, and captures an image of it. That image is then placed on the display wall.
More details can be found in [95].

The Snap-detect system is used to enable users to call a menu by snapping their
fingers. From this menu, they can initiate drawing operations or create circles,
squares or triangles. The Arm-angle space was previously used to move objects
around, in the same way as the Angle-snap application described in Section 5.4.
However, the camera used by the Arm-angle system is now used to provide content
for the virtual billboard functionality of the application. Their use is thus mutually
exclusive.

5.3 Wallfire

Figure 5.4: The Wallfire application running
on an iPod touch.

Wallfire, which appears in the Intro-
duction in Figure 1.1, is a demonstra-
tion application for the Camera-sense
interaction space. It can be used by
several users simultaneously to “paint
fire” on the display wall. Objects are
detected and located using the Camera-
sense system, and wherever an object
appears, fire is seeded on the corre-
sponding location on the display wall.
If no objects are detected, the display
wall slowly turns all black. The Wall-
fire application has also been imple-
mented to run on an iPod touch, as
shown in Figure 5.4.

5.4 Angle-snap

The Angle-snap application was written for the VNC-based desktop environment
running on the Tromsø display wall. It enables users to double-snap their fingers
in order to move the currently focused window to their location. Windows can also

5.5 MASpace 101

!

Display wall

Cameras

(a)

Micro-
phones

(b) (c)

A window

Figure 5.5: The Angle-snap application is used to select, move and interact with a window
on the display wall, by combining the capabilities of the three different interaction space
systems. (a) The Arm-angle system detects the direction in which the user’s arm is pointing,
and makes it possible to select a window on the display wall. (b) The Snap-detect system
detects the location of the sound made by a user snapping his fingers. This prompts the
window to move to the user’s approximate location. (c) The Camera-sense system is used
to control a mouse pointer on the display wall’s desktop environment, enabling the window
to be manipulated.

be moved by snapping once, then pointing at the window, and then snap again to
move the selected window closer to the user. Once the window is up close, users
can interact with the window using their hands. The application only supports a
single user at a time, as the desktop environment currently only supports a single
user1. It makes use of all three interaction spaces. The Snap-detect system enables
the window to be moved closer towards the user’s location. The Arm-angle system
makes it possible for users to point towards the window they wish to move, and the
Camera-sense system enables interaction with the window up close. More details
about the Angle-snap application appear in [24].

5.5 MASpace

MASpace, short for Microarray Space, is an application developed to visualize
multiple genomic microarray datasets on display walls (Figure 5.6(a)). MASpace
was developed from scratch to replicate the visualization produced by the HIDRA
application [143] on display walls. It is currently being used on the Princeton dis-
play wall by computational biologists at Princeton University. On the display wall,
only a single user can control the visualization at a time. However, the application

1Different approaches could be considered to add multi-cursor support, including the ones de-
tailed in [53, 146, 91, 54].

102 5 Applications

also has an iPod touch version which displays the same content as on the display
wall. The iPod can control the visualization on the display wall, or it can be decou-
pled from the visualization on the wall enabling navigation of the datasets without
affecting the display wall visualization. The iPod creates a separate, mobile inter-
action space, which also ties into the Pixel Space by displaying the same data as
on the display wall.

(a) (b)

Figure 5.6: (a) Using MASpace to compare microarray datasets. (b) The MASpace appli-
cation running on an iPod touch.

The MASpace application uses the Camera-sense interaction space to enable in-
teraction with the visualization. To control the visualization, users must be able
to select genes, and pan and zoom the visualization. To differentiate between se-
lecting genes and panning the visualization, MASpace makes use of the 3D capa-
bilities of the interaction space. If the user touches the wall, genes are selected.
Otherwise, the view is panned, or zoomed using a two-handed gesture, like Wal-
lview. The user can “tap” the wall with a closed fist to bring up a contextual menu
that enables additional control, such as dropping the current selection, resetting the
visualization’s view coordinates (if users get lost in the visualization) and rearrang-
ing datasets. The use of a closed fist is an example of distinguishing gestures based
on an object’s extent. Double-tapping with a single finger causes the application to
zoom the view in or out, or if the double-tap was on a gene, information about that
gene from an online gene database is pulled from the web and shown on the wall.

The visualization can also be controlled using an iPhone or iPod touch, with soft-
ware that provides a miniature view of the display wall visualization, shown in
Figure 5.6(b). The same gestures are used on the iPhone as on the wall, with the
exception that the iPhone does not support 3D sensing; for this reason, users must
toggle between selecting genes and moving the view. The two different platforms
have different strengths. The iPod lets users see and control the display wall from
anywhere, but with lower performance and resolution. Using the Camera-sense
space, it is possible for several users to gather around the display wall and collab-
orate on controlling the visualization. The iPod application also gives users the
ability to explore the datasets independently of what is being shown on the display

5.6 Quake 3 Arena and Homeworld 103

wall, acting as an independent display of the visualization.

5.6 Quake 3 Arena and Homeworld

Games are a class of application that require low latency input. This makes com-
puter games a good application domain to use new input mechanisms with, since
games become “unplayable” if the mechanism does not provide sufficient respon-
siveness. Quake 3 Arena [69] (Q3A) and Homeworld [70] are two commercial
games developed by id Software and Relic Entertainment, respectively. Quake 3
Arena is a first-person shooter, and Homeworld is a real-time strategy game. The
two games were open sourced in 2005 and 2003. With access to the source code
of the two games, it was possible to modify them to: (i) Take advantage of the
Camera-sense interaction space; and (ii) run with good performance on the Tromsø
display wall.

Figure 5.7: Quake 3 Arena and Homeworld being played on the Tromsø display wall using
the Camera-sense interaction space. The players to the left and right play Q3A, and the
middle player is playing Homeworld.

Q3A supports several players playing against each other at the same time using
the Camera-sense interaction space. The Snap-detect space is used to enable by-
standers to affect the game. When they snap their fingers, all of the players’
weapons fire at once. Homeworld makes use of the Camera-sense space to emulate
the in-game cursor. By distinguishing between a narrow and a wide object, users
can perform clicks and drags in the game. Further details about the modifications
to Q3A and Homeworld appear in [23].

104 5 Applications

Chapter 6

Pixel Space

This chapter documents the Pixel Space concept and the design, implementation
and evaluation of two Pixel Space systems. The chapter is based on the following
peer-reviewed, published papers which were all written towards the fulfillment of
the Ph.D. project presented in this dissertation: [25, 27].

Pixels are everywhere. Users carry pixels around on mobile phones, gaming ap-
pliances, music/video players, laptops and other portable devices. In June 2005,
laptops outsold desktops for the first time [147]. TVs and flat-panel displays are
ubiquitous. The Sixth Sense developed at MIT [11] is an example of how pixels
may soon be literally anywhere a user decides to go. The user wears a hat embed-
ded with both a tiny projector and a camera. The projector makes it possible to
display pixels on any surface that the user is looking at, while the camera enables
the user to interact with the pixels by tracking colored markers on the user’s fin-
gers and interpreting them as gestures. The growing collection of displays from
portable devices, tablets, laptops, workstations and display walls all contribute to
creating a large, near infinite pixel space.

While the pixel resources represented by this collection of displays continues to
grow, computers are usually only able to utilize a tiny fraction of the resources by
directly connecting the computer’s graphics card to one or two external displays.
This limits the number of displays one can utilize, and makes transparently utilizing
the pixels afforded by a display wall from a single computer difficult. The need
for tethering a computer to displays is further limiting in the type of displays one
can utilize. Small displays like those found on portable devices like the Apple
iPhone, iPod touch, and the Nokia N770/N800/N810 Internet Tablets1, can not be
connected to an external computer, and can thus not be utilized by other computers
at all.

1The iPhone and iPod touch have displays with a resolution of 480x320, and the Nokia Internet
Tablet has a resolution of 800x480.

105

106 6 Pixel Space

Pixels are an attractive way of sharing visual data for many reasons. First, they
are fully cross-platform, with almost any display2 today being able to show pix-
els. Further, the processing required to show pixels is very low. Displaying them
amounts to copying them to the appropriate location in memory, with little or no
pre-processing. In contrast, higher level drawing operations would require more
processing power on the display side with the result still appearing as pixels on the
display. Sharing pixels does not require sharing the underlying data. When uti-
lizing the pixel resources of the pixel space, this is an advantage, since one might
want to utilize “public” pixel resources without potentially leaving one’s personal
data behind3. The drawback to sharing pixels is that any computational resources
provided by the displays in the pixel space are not utilized at all. Further, contin-
uously streaming pixels over a network is bandwidth intensive and may become a
bottleneck as the size of the area being updated grows.

Figure 6.1: The 22 megapixel laptop. The laptop’s display area is extended to utilize the
pixels provided by a display wall, a workstation and a portable device.

This chapter presents two models with two associated systems implementing the
models. The first model is the Network Accessible Display (NAD) model. The as-
sociated implementation is called the 22 megapixel laptop, and was built to enable
utilization of the pixel resources in the pixel space. In the NAD model, all dis-
plays are equipped with some networking and processing capabilities. Using these
capabilities, each display shares itself on the network, enabling other computers
to use a given NAD to display pixels on its behalf. While most displays still lack

2The exception is vector-based displays, which have largely fallen out of use.
3This can be circumvented by for instance taking a screen shot of the pixels, or use other ap-

proaches to logging what is displayed. However, this does still not expose the actual data behind the
pixels, such as the data for a graph.

6.1 Limitations 107

both a network connection and the ability to run custom code, both a workstation
with a display and a portable device such as the Nokia Internet Tablet have the
hardware required by a NAD. They are both equipped with displays, have a net-
work connection and can run custom software, which when combined allows for
the functionality of a NAD to be emulated. The 22 megapixel laptop is an imple-
mentation that demonstrates the model, where the Tromsø display wall, a regular
workstation with a display and an Internet Tablet are turned into NADs that can be
transparently utilized from a laptop, as illustrated in Figure 6.1.

The implementation of the 22 megapixel laptop does not consider ways of improv-
ing the performance of sharing pixels. The second model and associated system
presented in this chapter is De-centralized VNC (DVNC). As described in Section
2.1.1, VNC can be used to provide a desktop environment for a display wall. VNC
is based on sharing pixels, but when used with a tiled display wall its performance
is reduced. The reduction is caused by the VNC server sending redundant pixel
data to the VNC viewers running on each tile of the display wall. Redundant pixels
must be sent in cases where pixels are moved, but not otherwise updated. Some
examples where this happens include moving a window, scrolling the contents of
a window or panning an image. DVNC removes the need for redundant pixel
updates from the VNC server by enabling the VNC viewers to exchange pixels
amongst each other.

The main difference between the 22 megapixel laptop and DVNC is that the 22
megapixel laptop provides a transparent way of utilizing the display wall’s pixel
space from a user’s personal computer, while DVNC provides a desktop environ-
ment that is permanently shared amongst different users. Further, the 22 megapixel
laptop is dynamic: It can adapt to the available pixel resources without requiring
that users restart their applications or their desktop environment. Since the number
and resolution of nearby pixel resources isn’t known a priori, the laptop discovers
the available resources. The user can then decide whether or not to use them, and
in which configuration. In contrast, DVNC’s resolution is defined when the server
is started, and can not be changed without restarting the server (and thus loosing
all desktop state).

6.1 Limitations

The 22 megapixel laptop is a research prototype. The user interface and network
protocols have been developed towards creating a system that demonstrates the
NAD model, and achieves the goal of giving users transparent access to the po-
tentially large number of nearby pixel resources. The system does not provide
the highest level of polish and performance. The design and implementation of
the system does not consider aspects such as authentication and access control, or

108 6 Pixel Space

compression4 and encryption of network data. Further, the 22 megapixel laptop
does not allow the available NADs to be shared amongst several users at the same
time. Only a single user may use a given NAD at a time.

The De-centralized VNC system builds on VNC, and thus already has support
for various kinds of encryption and authentication. However, no effort has been
made towards improving VNC’s performance by developing better compression
algorithms such as the work done in [148], or the caching strategy employed in
[149]. DVNC further does not employ any authentication between the different
VNC viewers. In the Tromsø display wall setting, this is not a major issue since
the viewers are on an internal, trusted network. Finally, the DVNC viewers do not
compress the pixel data sent to other viewers at all.

6.2 Related work

In a paper contemporary with the NAD model [150], the authors present ideas that
are very similar to those embodied in the NAD model: Namely, displays with net-
working and processing built-in. The resulting implementations are very different,
however. Where their work focuses on sharing windows from a computer to a
shared display (similar to the approach taken in [151, 146]), the NAD implementa-
tion is built with a focus on transparency: Users should be able to treat the shared
pixel resources as a natural extension of their desktop, rather than as a surface that
must be managed separately. However, the approach in [150] is able to share the
pixel resources amongst several users at the same time, whereas the current NAD
implementation is limited to one user at a time using a network accessible display.

The first “network projectors” were announced in the summer of 2007 [152], en-
abling the projector to be driven using the Microsoft Remote Desktop protocol
[87]. Such projectors are the products coming closest to adhering to the NAD
model available on the market. Digital photo frames are increasingly also shipping
with network capabilities. The iGala Digital Photo Frame [153] is a digital photo
frame that incorporates a regular Linux-based OS, a touch-screen and a wireless
network connection, making it a nearly ideal NAD. However, such photo frames
do not currently allow remote computers to control their pixels5.

Besides the 22 megapixel laptop, there are other software solutions that provide the
ability to create virtual displays and share them with other computers. MaxiVista
[20], ZoneScreen and Screen Recycler6 provide this ability on Windows and Mac
OS X. They are limited in their ability to scale to many displays, lacking awareness
of the different displays’ arrangement – which is necessary to utilize the collection

4With the exception of rudimentary compression using Run-Length Encoding.
5Except by constantly updating the digital photos stored on the device.
6http://www.zoneos.com/zonescreen.htm and http://www.screenrecycler.com (links last visited

April 25. 2009).

6.2 Related work 109

of displays in a tiled display wall – and the maximum resolution they can support.
The 22 megapixel laptop can create an arbitrary number of displays7, and the dis-
plays may have resolutions up to about 100 megapixels, subject to the amount of
available RAM on the computer. In [91, 83], the authors present a system which
integrates several displays from different computers into a single geometrically
aware desktop. The 22 megapixel laptop does not take into account the actual ge-
ometry of displays, only their arrangement so as to collect “related” displays (such
as those used on a display wall) together.

Sharing and accessing remote displays can be done using a range of different re-
mote desktop systems, from Virtual Network Computing (VNC) [17], to X11 [86],
Microsoft Remote Desktop [87], Sun-Ray [154] and THINC [155]. These sys-
tems generally differ in: (i) the way they send display updates, either as pixels
(compressed or otherwise), or as drawing operations8 which are interpreted by the
remote end and used to draw content; (ii) the way they compress content; and
(iii) the degree to which they are cross-platform. None of the systems have been
designed for use with display walls, where one to two orders of magnitude more
pixels than usual must be provided, and the display wall’s parallel architecture must
be accommodated.

VNC is a system that enables users to share their entire desktop with other users.
The system is based on sharing pixels stored locally in the (possibly virtual) dis-
play’s framebuffer. There are several implementations of VNC, including Re-
alVNC [26], TightVNC, UltraVNC and many others, and much work has been
done towards improving VNC’s performance, such as the compression and caching
techniques mentioned earlier [148, 149] or adding more advanced features to VNC
such as 3D support [156]. Microsoft Remote Desktop uses a drawing operation-
based approach to share display content. THINC [155] attempts to improve on
remote desktop solutions for thin-client systems using a combination of more effi-
cient pixel coding using the YUV color space, as well as transfer of raw graphics
operations intercepted before the native window system has turned them into pix-
els. The systems further differ in their ability to provide pixels to an entire display
wall. VNC can drive the entire Tromsø display wall, while Microsoft Remote
Desktop limits the maximum resolution to 4096x2048 pixels, which is about one-
third of the resolution offered by the Tromsø wall. THINC has not been applied to
resolutions of larger size than a regular workstation display.

The Scalable Adaptive Graphics Environment (SAGE) [40] is a system for stream-
ing pixels from a rendering cluster to one or several display walls. The system
assumes very high-bandwidth links from the rendering cluster to the display end-
points. The system allows different windows to overlap on a display wall, where
each window’s contents is derived from different pixel streams coming from the

7Subject to the Mac OS X Window Server’s limitation of 32 displays, as discussed in Section
6.3.5.

8Example drawing operations include “draw line from A to B,” “draw string at X,Y” and so on.

110 6 Pixel Space

rendering cluster. Some example pixel streams are a VNC-desktop, a movie, or an
animated scientific visualization. Contrary to DVNC, no pixel data is exchanged
between the nodes driving the display wall. Instead, moving a window causes the
pixel streams delivered by SAGE to be reconfigured, so that they “track” the win-
dow as it moves across the display wall. SAGE constantly streams pixels, which
results in high load even when there are few or no changes to the pixels.

6.3 Network Accessible Displays

The idea behind the Network Accessible Display (NAD) model is to discover
nearby displays sharing their pixel resources, and then utilize them to increase
the amount of pixel real estate available to a computer. The nearby pixel resources
are merged with the computer’s own pixel resources, such as those provided by
a laptop’s built-in display, to create a higher resolution display area that can be
transparently used by applications running on the computer.

The NAD model assumes that all displays at some point will be equipped with
CPU and networking resources. Using these resources, the display can run code
to advertise its existence on a local network, and make its pixels available for use
by other computers that are not directly connected to the display. Other computers
can then discover the NAD, and utilize it by connecting and streaming pixels to it.

Figure 6.2: The 22 megapixel laptop in use driving both the Tromsø display wall and the
Nokia N800 Internet Tablet.

The 22 megapixel laptop is a system based on the NAD model. This section is

6.3 Network Accessible Displays 111

based on research presented in [25], and presents the architecture, design, imple-
mentation and evaluation of the 22 megapixel laptop. The 22 megapixel laptop is
shown in Figure 6.2 driving a display wall and a Nokia N800 Internet Tablet.

6.3.1 Architecture

Figure 6.3 shows the architecture of the 22 megapixel laptop. The system consists
of two components: A laptop component and a NAD component. The laptop com-
ponent is responsible for discovering nearby displays, presenting them to the user,
and extending the laptop’s display area to include nearby NADs when the user re-
quests it. The NAD component makes the displays attached to the computer it is
running on available to other computers.

The laptop component discovers one or more NAD components using a network
discovery mechanism based on UDP multicast9. The laptop’s user then manages
the NADs by selecting which NADs to use and how to arrange the NADs. When the
user has configured the NADs, a set of virtual displays are created with resolutions
and bit depths matching the capabilities of the chosen NADs. The pixels from the
virtual displays are then sent to their respective NADs until the user decides to stop
using the NADs.

BlueTooth is used to determine if a NAD is in physical proximity to the computer.
No networking is done over BlueTooth, however. A NAD must first be discov-
ered on the local network before its proximity can be determined using BlueTooth.
BlueTooth proximity detection works by scanning for discoverable BlueTooth de-
vices, and then determine if any of the resulting MAC addresses match the Blue-
Tooth MAC address as part of the NAD properties received over the local network.

The NAD component runs on computers or devices with attached displays. It ad-
vertises the display’s presence and availability on the local wired or wireless net-
work. When a NAD receives a connection from a computer, it sends its properties
to the computer before it begins receiving pixels from it and displaying them on
the locally attached display.

6.3.2 Design

Figure 6.4 shows the design of the 22 megapixel laptop’s two components. The
laptop component consists of three sub-components: (i) A user interface; (ii) a
kernel extension; and (iii) a display sharing daemon (DSD).

9The network discovery mechanism is further detailed in Appendix C.

112 6 Pixel Space

Laptop
component

One NAD component
per cluster node

Laptop

28 tile
display

wall

NAD component

Advertise
display

availability

Portable
display

Create
virtual

displays

Discover
and manage

NADs

Send virtual
display pixels

to NAD

Receive pixels
and show on

display

Figure 6.3: The architecture of the 22 megapixel laptop. The computers driving the dis-
play wall and the portable display both run the NAD component. The laptop component
discovers the NAD components on the local wired and wireless networks.

User interface

The user interface communicates with the kernel extension to configure the number
and resolution of the virtual displays. When a user enters an area where NADs are
available, the NADs appear in a window in their preferred arrangement, as shown
in figure 6.5. To detect nearby NADs, the user interface uses a combination of
network discovery and BlueTooth proximity detection. If a NAD is discovered
on the network and a BlueTooth MAC address is part of its properties, the user
interface scans for that MAC address. If the given MAC address isn’t discovered,
the display is hidden from the list of NADs under the assumption that the user isn’t
in physical proximity to the display.

Kernel extension

The kernel extension creates a set of virtual displays in response to commands
from the user interface. The virtual displays appear to the computer’s window
system as regular displays, but without support for hardware accelerated graphics.
The virtual displays are detected using the same mechanism as those used when
the window system detects that a display is connected to the computer’s VGA or
DVI port. The window system manages the virtual displays in the same way that
it would a real display. This makes using the virtual displays fully transparent to
applications. Applications can draw to the virtual displays without requiring that

6.3 Network Accessible Displays 113

Laptop component

Kernel

Kernel Extension

Virtual
displays

Userspace

User interface

Window System

Display sharing
daemon (DSD)

Native display
driver

Real
displays

NAD
component

NAD
componentAvailable Network Accessible Displays

1. Discover NADs 6. Utilize NAD

3. Notification

4. Arrange
displays

5.
Notify
DSD

2. Configure
number of

virtual
displays

Figure 6.4: The design of the 22 megapixel laptop. (1) The available NADs are discovered
by the user interface running on the laptop. (2) In response to the user, the interface in-
structs the kernel extension to create a number of virtual displays, matching the capabilities
of the discovered NADs. (3) The creation of the virtual displays causes the window system
to be notified that new displays are available, using the same notification mechanism that is
used by the native display driver whenever a real display is plugged in to the laptop’s VGA
or DVI port. (4) The user interface arranges the geometry of the displays to match the con-
figuration indicated by the NADs. (5) The user interface notifies the display sharing daemon
(DSD) that it should connect to a given set of NADs, and send pixels from the corresponding
set of virtual displays. (6) The DSD sends pixels to the NADs.

the applications are rewritten, relaunched or otherwise modified in any way.

Display sharing daemon

The display sharing daemon accepts messages from the user interface. The mes-
sages can instruct the daemon to either push the contents of a given virtual display
to a NAD, or disconnect from a NAD. After connecting to a NAD, the DSD de-
tects changes to the virtual displays and sends them to each virtual display’s NAD
counterpart as compressed (Run-Length Encoded) pixels. A single display sharing
daemon drives all the NADs being used by the computer.

NAD component

The NAD component runs on any computer whose display should be turned into
a Network Accessible Display. It is configured with the properties of the locally
attached display(s) and accepts incoming TCP connections on a randomly assigned

114 6 Pixel Space

Figure 6.5: The user interface for discovering and utilizing nearby NADs. The left pane
of the window shows the current arrangement of the virtual displays, while the right hand
indicates available NADs. The user drags a box around the displays that he wishes to utilize,
and activate them by pressing the Configure and push displays button.

port. The NAD advertises its existence using the network discovery mechanism
described in Appendix C. The advertisement includes the TCP port it is listening
on, which is used by clients (such as the laptop component) when connecting to
the NAD.

Upon receiving a connection from a client, the NAD’s properties are sent to the
client. The properties include the NAD’s name, resolution, bit depth, BlueTooth
MAC address (if available), and display wall geometry (if available). The name
is a human readable name for the NAD, which must be assigned manually. The
resolution and bit depth are both determined by the NAD component when it starts
on a given computer. The BlueTooth MAC address must be assigned manually. If
included, the client can scan for that MAC address using its own BlueTooth hard-
ware to determine whether the given NAD is in physical proximity of the client.
Finally, display wall geometry must be assigned manually, and is only included if
the NAD is considered part of a display wall. The display wall geometry includes
the width and height (in number of displays) of the display wall, as well as the
NAD’s index within this grid of displays. It is used by clients when arranging the
NADs, so that the arrangement of virtual displays by the clients match the physical
arrangement of the display wall NADs. The screenshot in Figure 6.5 shows how
this is used to present the user with a collection of remote NADs that mimic the
arrangement of the display wall.

Once the display properties have been sent to the client, the NAD creates a drawing
context covering its entire display. The drawing context is used to display pixels
received from the client. Only a single client may send pixels to the NAD at a time,
since each client expects to control the entire display; the design does not support

6.3 Network Accessible Displays 115

interleaving pixels from different clients. When the client disconnects, the drawing
context is destroyed, returning the display to its previous state.

6.3.3 Implementation

The laptop component has been implemented for Mac OS X 10.4, and also been
confirmed to work on Mac OS X 10.5. The NAD component is cross-platform, and
has been implemented on both Linux and Mac OS X. It can run on x86, PowerPC
and ARM architectures.

User interface

The application creating the user interface is implemented in Objective-C using
the Cocoa APIs [157]. It communicates with the kernel extension using a sysctl-
interface which the kernel extension exports, and with the display sharing daemon
and NADs using regular BSD sockets. Configuring and arranging the virtual dis-
plays is handled using the CGDisplayConfiguration APIs exported by Mac
OS X’ window server10. Communication with the DSD and NADs use TCP for
transport, and a custom protocol to exchange information about display capabili-
ties. The protocol is used to exchange information between the NADs, the DSD
and the user interface.

The protocol uses a message-based abstraction built on top of TCP. Each message is
encoded using a 4-byte length field, followed by the message type and the message
content. The message type determines the format of the message content. Using
this protocol, the user interface sends queries to the NADs, which return a response
containing a dictionary describing the given NAD’s capabilities.

Kernel extension

The kernel extension is implemented in C++, and follows the standard pattern for
kernel extension development on Mac OS X [158], as illustrated in Figure 6.6.
On Mac OS X, kernel extensions are loaded on demand during “matching.” The
contents of an XML property list stored with the kernel extension is matched with
the currently connected hardware. The kernel extension with the highest “probing
score” is loaded by the kernel. Kernel extensions that don’t support specific kinds
of hardware can still be loaded automatically by the kernel by matching on the
IOResources class, which is always present.

10The window server internally uses the interfaces exported by the kernel extension to change
the resolution of the virtual displays. Display arrangement is handled internally by the window
server, and does not involve communication with the kernel extension, although the arrangement is
controlled by the user interface.

116 6 Pixel Space

The kernel extension consists of three classes: A virtual framebuffer (VFB) master,
a VFB nub and the class implementing the actual VFB. When the computer boots,
the VFB master is loaded and instantiated by the kernel by having it match on the
IOResources class. The master handles communication with the user interface
running in user space by exposing a sysctl-based interface. While designed for
the user interface, any application can use the interface by making the appropriate
sysctl() system call, or from the command line using the sysctl utility.

The master then instantiates a number of VFB nubs. A nub is part of the matching
system used by the IOKit [158] in the Mac OS X kernel. When a nub is instantiated,
the kernel interprets this as if new hardware was attached and begins looking for a
driver for the newly created nub. The VFB class is designed to match on the VFB
nub, and is thus loaded and instantiated by the kernel when the nub is created. One
VFB instance is created for each VFB nub that the master creates.

UserspaceKernel

VFB
master

VFB
nub

IOResources

VFB
nub

Number
of virtual
displays

VFB

VFB

3. For each nub, a single VFB
instance is matched,
instantiating a new virtual
display.

Number
of virtual
displays

1. Master matches
on IOResources,
and is loaded by
the kernel at boot.

2. Master creates a
number of nubs,
depending on the
number of virtual
displays. The user
interface then turns
the virtual displays
on/off using the
sysctl-based
interface. sysctl

User
interface

Window
Server

Figure 6.6: The kernel extension. (1) The VFB master class matches on the IOResources
“hardware” during system boot. This prompts the kernel to load the VFB master class. (2)
The master, once loaded, creates a set of “nubs,” which is the Mac OS X term for a device
endpoint. (3) The VFB class, which acts as a driver for the device endpoint created by the
VFB nub class, is instantiated by the kernel when the VFB nubs are created as part of the
standard driver loading mechanism in Mac OS X. The window server discovers the display
through notifications from the kernel, and configures them to default settings. At this point,
the user interface can manage the virtual displays using the sysctl interface exported by the
VFB master class, as well as through the window server itself.

The VFB class is a subclass of the operating system defined IOFramebuffer class.
Creating a VFB instance instantiates the actual virtual display and its associated
virtual framebuffer. This in turn triggers a notification to the window system. The
VFB instance allocates the memory to store the contents of the framebuffer, and

6.3 Network Accessible Displays 117

also exposes a pre-determined11 set of display resolutions. While the resolutions
are pre-determined, they may vary from VFB instance to VFB instance. The VFB
instance also maintains EDID12 data [159] which is used to give each of the dif-
ferent virtual displays human-readable names. The human-readable name appears
in several locations in the general Mac OS X user interface, including the Displays
panel of System Preferences.

Display sharing daemon

The display sharing daemon is implemented in Objective-C and C using the
CoreFoundation APIs on Mac OS X. It runs in the background as a daemon
process and receives messages from the user interface to push different virtual dis-
plays to available NADs. The CGRemoteOperationAPI is used to detect changes
to the virtual displays’ pixel content, and send the resulting pixels as compressed
data to connected NADs.

An updated area of pixels is transferred by creating a message containing a rectan-
gle that defines the location and size of the pixel area, followed by the pixels them-
selves. The DSD uses run-length encoding to compress the pixels. Run-length
encoding is a very simple compression scheme where sequences of identical pixels
are replaced with the number of identical pixels followed by a single copy of the
pixel value itself. Runs of non-identical pixels are encoded as the number of non-
identical pixels, followed by the pixels. Two bytes are used to store the run-length,
using positive values to indicate that the pixel value is repeated N times, and nega-
tive values to indicate the number of non-identical pixels following the run-length.
Other compression types (such as gzip or jpeg) are possible, but not implemented.

The functionality of the DSD is similar to what a regular VNC server could pro-
vide: Sharing of a display’s pixels with a viewer running somewhere else. How-
ever, a custom DSD was written rather than building on VNC in order to: (i) allow
displays to be pushed to remote NADs; and (ii) handle the large number of virtual
displays. VNC is not designed to support sharing more than a single display at a
time (however, that display may have an arbitrarily large resolution). Figure 6.7
illustrates the main difference between how a regular VNC server operates, and
how the DSD works. A VNC server waits for incoming connections from VNC
viewers, before it begins transferring pixels from its local framebuffer to the re-
mote viewer. In contrast, the DSD is controlled by the user interface, and when
prompted to do so pushes different virtual displays to the selected NADs. Once
the connection is established, however, their high-level behaviour is identical: The

11There is no documented way to dynamically change the list of resolutions supported by a given
virtual display, although it should be possible.

12Extended display identification data. EDID is a standard way for displays to report their ca-
pabilities to a graphics card, and contains information such as display timings, vendor, supported
resolutions, and the display’s serial number.

118 6 Pixel Space

Local computer

Framebuffer

VNC server

Remote computer

VNC viewer

Local
display

Local computer

Framebuffer

Display sharing
daemon

NAD
component

Local
display

Remote computer

1. VNC
Viewer connects to server;
the viewer pulls the display.

2. Display sharing daemon
Daemon connects;

display is pushed to NAD.

VNC server vs display sharing daemon

Figure 6.7: (1) The VNC viewer connects to the VNC server, and then displays pixels from
the framebuffer shared by the VNC server. The VNC viewer pulls the shared display to
it; the action is initiated by the viewer, not the server. (2) In contrast, the display sharing
daemon connects to the remote NAD, and starts sharing the framebuffer with it. The DSD
initiates the action, pushing a virtual display to the remote NAD.

VNC viewer/NAD requests pixel updates, and the VNC server/DSD responds with
new pixels.

NAD component

The NAD component is implemented in C using the SDL library [144] and BSD
sockets for communication. SDL is used to create a drawing context in which pix-
els from remote DSD’s are drawn. When it receives a connection from a DSD, the
DSD states the pixel format13, compression type and resolution of the content it
wishes to display. If the NAD can accept the requested resolution, it will start ac-
cepting pixel updates; otherwise the connection is closed. Each update is rendered
to the local display as it arrives from the client.

13The pixel format includes the bit depth used to represent each pixel, as well as the ordering of
the individual red, green and blue components (for instance, RGB versus BGR).

6.3 Network Accessible Displays 119

6.3.4 Evaluation

The 22 megapixel laptop has been evaluated by measuring the system’s pixel up-
date rate for different NAD configurations. A MacBook Pro with specifications
as given in Section 2.2.4 was configured to utilize increasingly large parts of the
Tromsø display wall. A custom application that updated all the virtual displays at
a fixed framerate was written to measure the performance of the system.

Methodology

Each tile of the Tromsø display wall was configured to run the NAD component,
which advertised a 1024x768 display in 32-bit color. For each experiment, the
MacBook Pro was configured to utilize one or more of the NADs, from 1, 2, 4, 8,
16, 24 to 28 (the Tromsø display wall has 28 tiles). Each experiment was repeated
five times, which adds additional results to the results initally obtained in [25].
Before starting measurements, a “draw” process running on the MacBook Pro cre-
ated a window that completely covered all the virtual displays, before updating this
window 300 times at an attempted rate of 10 frames per second14. When the draw
process had finished updating the virtual displays, statistics were gathered from the
NADs.

Three different statistics were recorded for each experiment: (i) The total number
of pixels updated by the NADs for the duration of the experiment; (ii) the total
number of bytes used to send data to the NADs; and (iii) the CPU load on the
MacBook Pro for the draw process, display sharing daemon and the Mac OS X
window server at both kernel and user level. To sample the CPU load of the differ-
ent processes, the mach-calls task for pid() and task info() are used. This
approach was taken since the window server could not be instrumented, since its
source code is unavailable. This way of sampling a process’ CPU load is identical
to that used by the “top” command line utility on Mac OS X. They return the same
information as getrusage(), but for a specific process and not just the calling
process.

Results

Figure 6.8 shows how the 22 megapixel laptop handles an increasing number of
virtual displays. The straight, dotted line indicates the target update rate (a full re-
fresh of all the virtual displays ten times per second), compared to the actual update
rate. The laptop is able to track the target rate for one and two virtual displays, be-
fore flattening out at four virtual displays. The system also peaks in performance at
four displays covering about 3.14 megapixels, delivering 27.38 megapixels/second.

14The actual update rate turned out to be lower for most of the configurations, as will be discussed.

120 6 Pixel Space

 0

 50

 100

 150

 200

 250

 28 24 16 8 4 2 1

M
eg

ap
ixe

ls/
se

co
nd

Number of virtual displays

Megapixels updated per second

Megapixels/second
Target megapixels/second

Figure 6.8: The actual number of megapixels updated per second by the virtual displays,
compared to the target rate.

The corresponding frame rate at this point is 8.70 fps15, which is slightly less than
the target of 10 frames per second. The frame rate is graphed in Figure 6.9, where
the number of pixels refreshed per second is converted to the corresponding frame
rate as the number of virtual displays increase.

NADs MPx/s σMPx/s MB/s σMB/s FPS σFPS CPU load
1 7.66 0.00 10.96 0.00 9.74 0.00 39.79
2 15.33 0.02 21.94 0.04 9.75 0.01 75.84
4 27.38 0.12 39.28 0.23 8.70 0.03 163.89
8 22.83 1.70 32.75 2.45 3.63 0.27 177.23

16 21.90 2.49 31.43 3.51 1.74 0.19 179.53
24 22.38 2.47 32.29 3.47 1.19 0.13 180.05
28 22.74 2.26 32.91 3.18 1.03 0.10 180.18

Table 6.1: Results from the 22 megapixel laptop evaluation. NADs is the number of NADs
used. MPx/s is megapixels per second, MB/s is megabytes/second and FPS is the frame
rate. σ{MPx/s,MB/s,FPS} is the respective metric’s standard deviation. CPU load is the sum
of the CPU loads for all of the three processes in percent. The total exceeds 100% due to
the use of a dual-core laptop.

Figure 6.10 shows the bandwidth used by the 22 megapixel laptop as the number of
virtual displays increase. The bandwidth usage peaks at 39.28 MB/second driving
four virtual displays, and correlates well with the pixel update rate in Figure 6.8.

15The frame rate is calculated as the update rate divided by the total area (4 virtual displays = 2x2
displays = (2 ∗ 2) ∗ (1024 ∗ 768) = 3145728 pixels): 27.38MPx/s

3.145728MPx
= 8.70.

6.3 Network Accessible Displays 121

 0

 2

 4

 6

 8

 10

 28 24 16 8 4 2 1

Fr
am

es
/s

ec
on

d

Number of virtual displays

Frame rate

Frame rate
Target frame rate

Figure 6.9: The target frame rate (10 frames per second) compared to the actual frame
rate achieved by the 22 megapixel laptop. The graph is obtained by dividing the megapix-
els/second measurement by the combined resolution of the area being refreshed.

Figure 6.12 shows the CPU load incurred by the display sharing daemon, the draw
process and the Mac OS X window server, as well as the sum of their loads. The
total load peaks at 180%16 with 24 and 28 displays. Most of the CPU is used by the
display sharing daemon. Figure 6.11 shows the CPU load at kernel and user level
for the three processes. The draw process spends very little time at kernel level,
and most of its time in user space, peaking with a load of 34.7% at 16 displays.
The window server and draw process track each other’s user level loads closely.
The window server’s kernel level load is also very similar to its user level load.

6.3.5 Discussion

The experiments demonstrate the tradeoff between the size of the area being up-
dated, and the rate at which the area can be updated. As the size of the area to
update grows, the rate at which it can be updated goes down. The results show
that the 22 megapixel laptop in its current implementation is able to refresh up to
27.38 megapixels/second. For a single virtual display, this would correspond to
a frame rate of 27.38MPx/s

1024∗768pixels = 34.8 frames per second. To determine the actual
peak frame rate for using a single NAD, a follow-up experiment was conducted,
where the draw process was configured to run at a target rate of 30 frames per sec-
ond, and then measure the number of pixels updated when sending either 16-bit

16The maximum load is 200% since the MacBook Pro has a dual-core processor.

122 6 Pixel Space

 10

 15

 20

 25

 30

 35

 40

 28 24 16 8 4 2 1

M
eg

ab
yt

es
/s

ec
on

d

Number of virtual displays

Bandwidth usage
Megabytes/second

Figure 6.10: The bandwidth used to send pixels to the NADs.

 0

 10

 20

 30

 40

 50

 60

 28 24 16 8 4 2 1

CP
U

lo
ad

 (p
er

ce
nt

)

Number of virtual displays

Laptop CPU load

Window server user
Window server kernel
Display sharing user

Display sharing kernel
Draw process user

Draw process kernel

Figure 6.11: The CPU load measured at user and kernel level for the window server, display
sharing daemon and draw process. The CPU load is measured in percent.

or 32-bit pixels to a single 1024x768 NAD17. At a depth of 16 bits per pixel, a
frame rate of 25 was measured, and for 32 bits per pixel, the measured frame rate

17Network usage and CPU load was not measured for this follow-up experiment.

6.3 Network Accessible Displays 123

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 28 24 16 8 4 2 1

CP
U

lo
ad

 (p
er

ce
nt

)

Number of virtual displays

Total laptop CPU load

Window server + DSD + Draw
Window server total
Display sharing total

Draw process total

Figure 6.12: The sum of the CPU load at user and kernel level for the three processes, as
well as the sum of the three processes’ CPU load. All measurements in percent of the CPU.

was 18. Taken together, these performance measurements indicate that the system
provides sufficient performance for working with relatively static content – such as
displaying documents, images or similarly static data – on the display wall. When a
single low-resolution NAD is used, the system has sufficient performance to share
dynamic content like videos. However, the motivation for the 22 megapixel laptop
was to enable transparent usage of nearby pixel resources, and not to improve on
the performance of the state-of-the-art in pixel sharing systems (such as VNC [17],
THINC [155] and SAGE [40]).

The results show that the network is never saturated by the system. The peak
transfer rate of 39.28 MB/second is less than half of the bandwidth available from
one computer on a switched, gigabit Ethernet. This rules out the network as the
bottleneck. The next candidate is CPU load. The CPU load correlates well with
the number of virtual displays used, approximately doubling every time the total
resolution of the virtual displays doubles. However, the CPU load peaks at 180%
when 4 virtual displays are used, indicating that the CPU is not the main bottleneck
either. However, the CPU load measurements still give valuable clues as to where
the main bottleneck is.

The draw process incurs little load at kernel level, regardless of the number of
virtual displays. This is as expected, since the draw process does all of its work at
user level, by drawing to a window covering the virtual displays. This drawing is
performed by copying data from one buffer to another, an operation that does not
involve the kernel at all. The draw process instead incurs this CPU load at user

124 6 Pixel Space

level. The time spent at user level is almost exclusively due to copying data from
an image buffer to the window covering the virtual displays.

The window server’s CPU load tracks the CPU load of the draw process almost per-
fectly. The reason for this is that all windows on Mac OS X are double-buffered.
The draw process draws to the window’s back buffer, which the window server
then copies to the virtual display’s framebuffer. However, the window server ap-
pears to be doing twice the work necessary: It incurs almost the same load at both
kernel and user level. This indicates that the window’s contents are copied no less
than three times: First from the draw process to the back buffer, then from the
back buffer to some internal window server buffer, and then finally to the virtual
display’s framebuffer.

The display sharing daemon incurs most of the CPU load, both at kernel and user
level. Between 53-62% of the DSD’s load is incurred at user level. The time spent
at user level is due to copying data from the each virtual display’s framebuffer,
compressing the data and then queuing it to be sent by the kernel. The kernel level
load comes from having to copy the buffers queued by the DSD at user level, and
then transferring the data over the network using TCP. All of this indicates that the
main bottleneck in the system as the total display resolution increases is copying
data in local memory. It is likely that better performance could be achieved by
eliminating redundant memory copies. Ideally, the apparently redundant memory
copy performed by the window server and the kernel’s need for making a copy of
buffers sent over TCP should be eliminated. This would move the bottleneck either
fully to the local CPU, or to the network.

(a) (b)

Figure 6.13: Two screenshots of the Displays control panel in the System Preferences
application on Mac OS X. (a) A single virtual display has been configured with a resolution
of 16384x6144 pixels (about 100 megapixels). The laptop’s internal display is visible as the
tiny box to the left, with a resolution of 1440x900 pixels. (b) Attempting to manage 28 virtual
displays using the built-in Mac OS X display management software. Only nine of the 28
virtual displays are visible, for a total of ten displays including the laptop’s built-in display.

Figure 6.13 shows two indirect results obtained by implementing the 22 megapixel

6.4 De-centralized VNC 125

laptop. Figure 6.13(a) demonstrates the window server can support a 100 megapixel
virtual display with a resolution of 16384x6144 pixels. In Figure 6.13(b), a screen-
shot of Mac OS X’ System Preferences application is shown. At the time the
screenshot was taken, the 28 virtual displays were arranged to match the Tromsø
display wall configuration. However, the Displays control panel in System Prefer-
ences does not anticipate more than 10 displays ever being connected at the same
time. The selection of virtual displays further appears completely random. Further
investigation uncovered that the “Displays” menu extra (which ships with Mac
OS X) is limited to showing the state of up to 16 displays, and that the Mac OS
X window server itself limits the maximum number of displays to 32. Of these
32 displays, only 30 slots are actually available for use, since the window server
appears to maintain a single “ghost display” sized at 1x1 pixel, and the laptop’s
built-in display also consumes one slot. The purpose of this invisible and inacces-
sible ghost display is unknown. Despite the 32-display limit, the window server
appears to detect the presence of additional displays beyond this “magic” limit.
However, the window server makes no attempt at utilizing them.

6.4 De-centralized VNC

The idea behind De-centralized VNC (DVNC) is to improve the performance of
VNC [17] when VNC is used to create the desktop environment on a tiled dis-
play wall, by delegating work from the VNC server to the VNC viewers. Section
2.1.1 describes how VNC is used to create a traditional desktop environment on
the Tromsø display wall. DVNC improves the performance of regular VNC by en-
abling VNC viewers to exchange pixels amongst each other. This section is based
on research presented in [27].

6.4.1 Model and design

Figure 6.14 shows the VNC model for original VNC and DVNC. VNC is usually
used to give a single VNC viewer access to a framebuffer shared by a remote VNC
server. When used on a display wall, the remote server’s framebuffer is divided
between several VNC viewers. However, doing this makes VNC’s “Copy Rect”
update operation less efficient, since each viewer no longer has access to all the
pixels from the VNC server’s framebuffer. To resolve this issue, DVNC changes
the VNC model by enabling VNC viewers to exchange pixels amongst each other,
so that the Copy Rect operation can be executed as if all the VNC viewers had
access to all the pixels shared by the VNC server.

VNC uses the RFB protocol [90] to share pixels from a VNC server to one or more
VNC viewers. The RFB protocol uses three main operations to update a remote
viewer with new pixels: Image Rectangle, Fill Rectangle and Copy Rectangle,

126 6 Pixel Space

VNC
server

VNC
Viewer

VNC
Viewer

VNC
Viewer

VNC
Viewer

(b) Original VNC model
on a display wall

VNC
server

VNC
Viewer

VNC
Viewer

VNC
Viewer

VNC
Viewer

Pixels sent from server Pixels exchanged by viewers

(c) De-centralized VNC
model on a display wall

VNC
server

VNC Viewer

(a) Original VNC model
on a standard display

Figure 6.14: The VNC model when used with a regular display, a display wall, and the
De-centralized VNC model on a display wall.

shown in Figure 6.15. The Image Rect operation is used to update a rectangle
on the remote viewer with a given set of pixels, which are included as part of the
operation. The Fill Rect operation is used to fill a rectangle with a specific color,
and the Copy Rect operation is used to move the pixels inside a rectangle by a given
delta dx, dy, as illustrated in Figure 6.16(a). The delta indicates the number of
pixels left/right and up/down the area should be moved. The Copy Rect operation is
used when areas of the screen are moved, but not otherwise changed. For instance,
moving a window, panning an image or scrolling a document generates Copy Rect
operations.

XImage Rectangle: Y W H

Rectangle Data

Pixels ...

XFill Rectangle: Y W H Color

XCopy Rectangle: Y W H dx dy

Before After

ViewerOperations

VNC update operations

Figure 6.15: The three operations used by the RFB protocol to update a remote viewer
with new pixels. The Image Rect operation is variable length, depending on the number of
pixels included with the operation. The Fill Rect and Copy Rect operations are fixed in size
at 12 bytes. X, Y, W and H represent the offset and size of the rectangle. For the Copy Rect
operation, dx and dy indicate the horizontal and vertical amount by which the destination
rectangle is offset.

6.4 De-centralized VNC 127

Of the three operations, the Image Rect operation is the most costly to transfer
over a network since it requires sending both the rectangle and the pixels to fill the
rectangle with. For the Tromsø display wall, a full update of all the pixels using a
single Image Rect operation would require transferring 63 MB if the pixels were
uncompressed18. In comparison, the Fill Rect and Copy Rect operations require
only 12 bytes to encode, regardless of the size of the area being updated. The Fill
Rect operation specifies the rectangle and a color to fill the rectangle with, while
the Copy Rect operation specifies a rectangle and a movement delta.

The bandwidth used by the Image and Fill Rect operations does not change much
when using VNC to drive a display wall. There is some added overhead in that
the server must send several smaller Image Rect/Fill Rect operations to different
viewers, rather than one large Image Rect/Fill Rect operation to a single viewer.
However, the VNC server does not send any redundant data to the viewers.

1. The grey area is
moved down and
to the right by
copying the pixels
from the source to
the destination
area.

2. After the grey
area has been
moved, the black
area is exposed,
and must be
refreshed by the
server using
Image Rect
operations.

(a)

1. On a tiled
display, the Copy
Rect operation is
less useful, as
each viewer does
not have a
complete copy of
the framebuffer.

2. Each viewer is
only able to
complete part of
the Copy Rect,
resulting in a
much larger
region that must
be refreshed by
the VNC server.

(b)

Figure 6.16: The Copy Rect operation used when (a) a single viewer displays the entire
remote framebuffer, and (b) several viewers display different parts of the remote framebuffer.

The Copy Rect operation is different. When using several viewers to display the
framebuffer exported by the VNC server, the Copy Rect operation is less effective
than if a single viewer were used to display the entire framebuffer, as shown in
Figure 6.16. When the area is moved, it will expose pixels that the server must
update using the Image Rect operation. When a single viewer displays the entire
framebuffer, this is not a problem. However, when the server’s framebuffer is split
amongst many viewers, Copy Rect operations spanning the boundaries between
viewers end up exposing a larger area that must be refreshed by the server. This
leads to additional load on the server, which would have been avoided if all the
remote viewers had access to the entire framebuffer exported by the server. How-
ever, giving all viewers access to the VNC server’s entire framebuffer is neither

18Assuming 3 bytes per pixel * 7168 * 3072 pixels = 63 MB.

128 6 Pixel Space

practical nor scalable, at least if the server is to be responsible for keeping each
viewer updated.

To resolve this problem and improve VNC’s performance on tiled display walls,
VNC is de-centralized. The Image and Fill Rect operations can not be
de-centralized. The Image Rect operation always relies on pixels computed by the
server, and the Fill Rect operation’s efficiency is not affected much by the move to a
display wall. The Copy Rect operation can be de-centralized by having the viewers
communicate amongst each other to exchange the pixels necessary for completing
the operation as if all the viewers involved had access to the entire remote frame-
buffer. This reduces the server load, since the server spends less resources sending
pixels that have already been distributed to the viewers. Figure 6.17 shows how the
Copy Rect operation is de-centralized.

Viewer 3 Viewer 4

Viewer 1 Viewer 2

(a)

Viewer 3 Viewer 4

Viewer 1 Viewer 2

(b)

Figure 6.17: De-centralizing the Copy Rect operation. (a) Four tiles receive a Copy Rect
operation that overlaps all of them, indicating that the grey area is to be moved down and to
the right in the direction of the arrows. The colored areas indicate the destination for viewers
1, 2 and 3. (b) To perform the operation, viewer 4 receives the pixels it does not have locally
from viewers 1, 2 and 3, shown as the incoming, colored boxes. Similarly, viewers 2 and 3
receive pixels from viewer 1 (not shown).

DVNC enables viewers to send updates to each other. This introduces a race con-
dition between updates received from the server, and updates received from other
viewers. An example of this race condition is illustrated in Figure 6.18. Two view-
ers A and B receive updates for non-overlapping areas of the server’s framebuffer.
The server begins by updating the framebuffer using a Copy Rect operation that
spans both viewers, and then updates a part of the framebuffer covered by viewer
B using an Image Rect operation. If viewer A does not send the necessary pixels to
viewer B before viewer B applies the Image Rect operation, the result is a display
that is inconsistent with the VNC server’s framebuffer.

To avoid this problem, DVNC imposes a total ordering on all updates sent by the
server, and a requirement that all viewers must receive the exact same set of Copy
Rect operations. Since all viewers receive the same Copy Rect operations, they can
make independent decisions about whether or not they participate in the execution
of a given Copy Rect operation. If the rectangle covered by a viewer overlaps

6.4 De-centralized VNC 129

Two VNC viewers
Time

VNC server's
framebuffer

1. VNC server updates two
areas using Copy and Image
Rect operations.

2. Viewer B receives
the two updates first.
Viewer A has not
sent pixels for the
Copy Rect yet, so
instead viewer B just
applies the Image
Rect operation.

3. Viewer A receives
the Copy Rect, and
sends its pixels to B.
B overwrites the new
pixels it received
from the server with
stale pixels from
viewer A.

1 1
1. Copy Rect

2
2.Image Rect

VNC
server

1 1 2 A B A B12 21

Figure 6.18: Possible race condition in DVNC that must be handled in order to ensure that
the pixels displayed by the viewers remains consistent with the pixels in the framebuffer
exported by the server.

with either the source or destination rectangle given by the Copy Rect operation, it
participates in the Copy Rect operation either as a sender, receiver or both of pixels.
Using this knowledge, a viewer can determine if it should delay the execution of
an Image or Fill Rect operation to maintain consistency.

To avoid circular dependencies, the Copy Rect operation is split into a pre-phase
and a post-phase. During the pre-phase, the viewer sends the pixels that will be
moved out of its local framebuffer to the viewers that need them. The Copy Rect
is then executed locally, but not completed until the post-phase occurs. The post-
phase is executed once the viewer has received pixels from other viewers pertaining
to the current Copy Rect operation. At this point the Copy Rect operation is com-
pleted and other operations from the VNC server can be processed.

6.4.2 Implementation

DVNC has been implemented by modifying the RealVNC [26] distribution ver-
sion 4. RealVNC is an open-source VNC implementation. Both the server and
the viewer code required modifications, with the majority of changes made to the
viewer code.

Server modifications

Four modifications were made to the server, by: (i) adding support for sending
identical Copy Rects to all viewers; (ii) not clipping Copy Rect operations to the
area covered by viewers; (iii) adding an explicit timestamp (a counter) to the be-
ginning of every framebuffer update; and (iv) adding support for measuring load
and bandwidth to evaluate the resulting implementation.

130 6 Pixel Space

The first change is to the way updates are distributed by the VNC server. The
original VNC server accumulates updates for each viewer in a change set, and then
sends the set of changes to a viewer once the viewer requests them. The change set
is then cleared, before new updates begin accumulating while the server waits for
another request from the viewer. This way to manage what has been sent to viewers
has the benefit of accommodating both fast and slow viewers, since fast viewers can
request updates more often than slow viewers and be serviced accordingly.

In DVNC, this behavior is changed to ensure that all viewers receive the same set
of Copy Rect operations. To achieve this, the server is modified to accumulate just
one set of changes for all viewers, and prevent the server from sending changes to
the individual viewers until all of them have requested an update from the server.
The drawback to these modifications is that the server can provide updates no faster
than the slowest viewer. However, in the display wall environment, all viewers run
on identical hardware using the same local network, thus the difference between
the slowest and fastest viewer is expected to be small.

The second change is to no longer clip the Copy Rect operation to the area covered
by a viewer. In the original VNC implementation, the VNC server clips all update
operations to the area covered by a viewer to avoid sending updates to the viewer
that it won’t display19. In DVNC, this behaviour has been changed to not clip
the Copy Rect operation, while the Image and Fill Rect operations continue to be
clipped as before.

The third change was to add a 4-byte timestamp to the RFB protocol’s framebuffer
start message. The purpose of this timestamp is to enable viewers to disambiguate
Copy Rect operations covering the same area (that is, the same rectangle and delta
values) from each other, and thus maintain a consistent display. The drawback
to this change is that the network protocol is modified from the standard VNC
protocol, making DVNC incompatible with regular VNC viewers.

The final change was to extend the server with functionality for logging the server’s
CPU load and bandwidth usage. The purpose of this was to enable experimental
insights into the final performance of the system. The instrumentation follows the
pattern outlined in Chapter 3. This instrumentation was incorporated both into the
DVNC server, and the original VNC server.

Viewer modifications

The viewer was modified in four ways to add support for: (i) viewer discovery; (ii)
queueing of incoming update operations; (iii) viewer-to-viewer pixel exchange;
and (iv) performance measurements.

19For instance, a viewer covering the area x, y, width, height = {0, 0, 1024, 768} does not need
to receive pixels that do not overlap this rectangle, such as {1100, 0, 2, 2}.

6.4 De-centralized VNC 131

Viewer discovery is handled by a separate thread using the network discovery
mechanism detailed in Appendix C. Each discovery message contains the port
on which the viewer listens for incoming connections from other viewers, as well
as the region of the VNC server’s framebuffer that the viewer covers. When a
viewer starts up, it uses the discovery mechanism to connect to all other viewers.
Once a connection to a viewer has been established, any Copy Rect operations that
involve the two viewers will result in pixels being exchanged between them.

In contrast to the original viewer implementation, incoming update operations from
the server are not applied immediately. Instead, they are queued, and then pro-
cessed when the server signals the end of a framebuffer update. This introduces a
queueing overhead that is not present in the original implementation. To reduce this
overhead, updates that do not overlap with already queued operations are applied
immediately.

Before applying an update, its type is examined. Any Copy Rect operations en-
countered have their pre-phase executed, before the viewer attempts to execute the
Copy Rect’s post-phase. This only succeeds if the viewer has received the nec-
essary pixels from other viewers, or if no pixels are needed from other viewers
for that Copy Rect operation. Otherwise, the operation is put back on the queue.
Other operations from the same framebuffer update may be applied afterwards, but
only if they do not intersect with the area covered by any preceding Copy Rect
operations.

A separate thread is used to exchange pixel updates with other viewers. The thread
sets one outgoing pixel queue for each connected viewer and one incoming pixel
queue in which pixels received from other viewers are collected. The queues are
used when the Copy Rect pre- and post-phases execute. The Copy Rect pre-phase
enqueues pixels from the local viewer to remote viewers, while the post-phase
fetches pixel updates from the thread’s incoming data queue. The thread commu-
nicates with other viewers using TCP. Pixels are sent as they are stored in memory
locally by the viewer. For this to work, all viewers must run on hardware with
the same endianness and represent pixels in the same way. A fully cross-platform
implementation should either byteswap pixels as necessary or compress them to
reduce network bandwidth usage.

6.4.3 Evaluation

The De-centralized VNC implementation has been evaluated by measuring its per-
formance for two traces and a set of control experiments, and comparing the result
to the performance of the original (but instrumented) VNC implementation. Two
different computers were used to run the VNC server. Their specifications are
listed in Section 2.2.5. The two computers will be referred to as the Pentium 4 and
the Xeon. The experiment was conducted on and using hardware from the Tromsø

132 6 Pixel Space

display wall.

The evaluation measured the following four metrics: (i) Total number of pixels
refreshed; (ii) total number of bytes sent by the server to the viewers; (iii) the
server’s CPU load; and (iv) the VNC viewer queueing overhead20.

Methodology

The DVNC and VNC servers were configured to export a 16-bit color desktop
with a resolution of 7168x3072, matching the resolution of the Tromsø display
wall. They were both instrumented to record their CPU load at kernel and user
level. The CPU load is sampled 10 times per second, and sent using Shout to a
logging application running on a different computer. The bandwidth impact of this
is negligible at less than 500 bytes per second.

The VNC viewers were instrumented to record three statistics: (i) The number
of pixels updated; (ii) the number of bytes received from the server; and (iii) the
queuing overhead. Each viewer makes its own measurements, before the results are
gathered at the end of an experiment. The pixel update count and bytes received
are summed, producing a total number of pixels updated by all the viewers, and the
total number of bytes sent by the VNC server to all the viewers. The queuing over-
head is collected to produce histograms and analyzed to produce min/max/mean
statistics.

Three sets of experiments were conducted, listed in Table 6.2. The first two were
recorded trace experiments, where the system’s performance when a user interacts
with the desktop environment was measured. The third was a control experiment,
where a custom event generator replaces the user trace with the goal of determin-
ing the maximum performance gain using DVNC in a situation where the server’s
possibility for using the Copy Rect operation is near maximized.

The two trace experiments rely on two traces recorded of a user panning an image
and moving a window. The input events generated by the user as the image was
panned and the window was moved were recorded and then later played back using
the Shout event system. The trace experiments were conducted on both the Pentium
4 and Xeon.

The control experiments use a custom-written event generator to move the image
from the Image Pan trace up and down. The event generator uses the
XTestExtension API to X to post input events to the DVNC or VNC X-server.
An illustration of the control experiment’s operation is shown in Figure 6.19. Since
the image covers almost the entire display wall, this experiment maximizes the
VNC server’s opportunity for using the Copy Rect operation. Fresh pixels that the

20The queuing overhead adds to the latency between when a viewer receives an update, and when
that update is drawn to the viewer’s display.

6.4 De-centralized VNC 133

Experiment Image size Duration Notes
Image Pan 9372x9372 255 s A trace of a user panning an im-

age covering nearly the entire display
walla is played back.

Window Move 2592x1944 145 s A trace of a user moving a window
around on the display wall is played
back.

Control 9372x9372 30 s The image from the Image Pan trace
is moved up and down in a pro-
grammed way using a custom event
generator, in increments of 8 pixels.
The rate of movement is varied for
each experiment, to determine when
the VNC and DVNC servers’ perfor-
mance break down.

Table 6.2: The three experiments, and their characteristics.

aWith the exception of the image viewer’s window title bar.

(1) (2) (3)

Must be sent from VNC server

Display wall

Image being moved

Figure 6.19: An illustration of how the control experiment operates. The green outline
indicates the tiles of the Tromsø display wall. An image covers the display wall, with parts
of it being outside the area that the display wall can show. The image is moved down at a
fixed rate. The VNC server must provide new pixels at the top (as shown by the red boxes in
(2) and (3)) when the image is moved down; when the image is moved back up new pixels
must be provided at the bottom (not shown).

VNC server must send to the viewers only appear either at the bottom or the top of
the display wall, depending on which direction the image is moving in. For each
experiment, the rate at which the image is moved is varied, from one movement
of 8 pixels per second up to 50 movements (400 pixels) per second. The control
experiments were only conducted on the Pentium 4.

To characterize the additional network overhead introduced by the changes to DVNC,
and in particular the introduction of a timestamp in the “framebuffer start” message
of the RFB protocol [90], a null-benchmark was also conducted. The VNC server’s
desktop was configured to display a static image. The number of bytes to refresh

134 6 Pixel Space

all the viewers on the display wall were measured. The original VNC server sent a
total of 85688.97 KB, while the DVNC server sent 85707.69 KB, which represents
an overhead of 0.02%.

Trace results

Figure 6.20: Top: Total number of pixels refreshed for each trace by the original and DVNC
viewers. Bottom: Total number of bytes sent by the server to the viewers.

Figure 6.20 shows the number of pixels refreshed and the bytes sent for the two
trace experiments when conducted on the Pentium 4 and Xeon. The source data
appears in Table 6.3. DVNC improves the performance of the original VNC im-
plementation when running on both the Pentium 4 and the Xeon. However, the
Pentium 4 refreshes almost a factor of two more pixels than the Xeon for both
the DVNC and original VNC implementation. The number of bytes sent does not
change much between the Pentium 4 and Xeon.

Figures 6.21 and 6.22 show the cumulative VNC server CPU load for the Image
Pan and Window Move traces, respectively, for both the DVNC and original VNC
servers. The X axis shows the running time of the traces, and the Y axis shows
the CPU time consumed by the DVNC and original VNC server as the experiment
progresses. Table 6.4 summarizes the results.

DVNC significantly reduces the CPU load of the server by 20% to 35% compared

6.4 De-centralized VNC 135

Trace Version CPU Pixels refr. Chg Bytes sent Chg
Image Pan DVNC P4 36.3 GPxa

3.30 1132.06 MB 0.25Image Pan VNC P4 11.0 GPx 4385.00 MB
Image Pan DVNC Xeon 19.1 GPx 2.76 1136.82 MB 0.26Image Pan VNC Xeon 6.9 GPx 4359.29 MB

Window Move DVNC P4 10.6 GPx 1.85 750.24 MB 0.32Window Move VNC P4 5.7 GPx 2347.74 MB
Window Move DVNC Xeon 8.4 GPx 1.71 671.91 MB 0.28Window Move VNC Xeon 4.9 GPx 2357.96 MB

Table 6.3: The trace results. The Trace, Version and CPU columns indicate which trace
was run, the version of VNC used (either DVNC or the original VNC implementation), and
the computer used to run the server. The results are given in the Pixels refreshed and Bytes
sent columns, with the relative change between DVNC and the original VNC implementa-
tionsb listed next to the results.

aGigapixels. Note that these values differ from the ones that appear in the paper [27] due to
conversion from the incorrect megapixel definition to the correct one, as discussed in Section 3.7.

bObtained by dividing the DVNC value by the VNC value.

to the original VNC server. Most of the reduction happens at kernel level, with
76% less load in the Image Pan experiment and a 34% to 46% reduction for the
Window Move experiment. The user level load is also somewhat reduced, ranging
from 4% to 13%.

Trace Version CPU Total Chg Kernel Chg User Chg
Image Pan DVNC P4 69.3 s 0.65 10.7 s 0.24 58.6 s 0.92Image Pan VNC P4 106.5 s 43.4 s 63.1 s
Image Pan DVNC Xeon 77.3 s 0.71 9.5 s 0.24 67.8 s 0.96Image Pan VNC Xeon 108.8 s 38.2 s 70.6 s

Window Move DVNC P4 52.0 s 0.80 14.6 s 0.66 37.4 s 0.87Window Move VNC P4 64.8 s 22.0 s 42.8 s
Window Move DVNC Xeon 56.0 s 0.80 9.5 s 0.54 46.5 s 0.89Window Move VNC Xeon 69.5 s 17.5 s 51.9 s

Table 6.4: The VNC server CPU load for the trace experiments. The first three columns are
as in Table 6.2. The Total, Kernel and User columns indicate the amount of CPU time spent
by the server, along with the relative change between DVNC and original VNCa.

aObtained by dividing the DVNC value by the VNC value.

136 6 Pixel Space

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

C
P

U
 T

im
e

(s
)

Time (s)

Cumulative VNC server load for Image pan trace on Pentium 4

Orig. Total

Orig. Kernel

Orig. User
DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

(a)

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

C
P

U
 T

im
e

(s
)

Time (s)

Cumulative VNC server load for Image pan trace on Xeon

Orig. Total

Orig. Kernel

Orig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

(b)

Figure 6.21: Cumulative server CPU load for the Image pan trace on (a) Pentium 4 and (b)
Xeon, with total, user and kernel level load for both implementations.

6.4 De-centralized VNC 137

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160

C
P

U
 T

im
e

(s
)

Time (s)

Cumulative VNC server load for Window move trace on Pentium 4

Orig. Total

Orig. Kernel

Orig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

C
P

U
 T

im
e

(s
)

Time (s)

Cumulative VNC server load for Window move trace on Xeon

Orig. Total

Orig. Kernel

Orig. User
DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

(b)

Figure 6.22: Cumulative server CPU load for the Window move trace on (a) Pentium 4 and
(b) Xeon, with total, user and kernel level load for both implementations.

138 6 Pixel Space

Queueing overhead

Table 6.5 shows the queuing overhead for the two traces on the Pentium 4 and
Xeon. The minimum overhead is 0.000 seconds, with a mean overhead between
0.01 and 0.02 seconds. The maximum overhead is about 0.64 seconds, which
implies that an update operation was queued for more than half a second before
being drawn.

Trace CPU Min Avg Max
Image pan P4 0.000 s 0.018 s 0.640 s
Image pan Xeon 0.000 s 0.011 s 0.582 s

Window move P4 0.000 s 0.012 s 0.512 s
Window move Xeon 0.000 s 0.011 s 0.504 s

Table 6.5: The queueing overhead, measured in seconds, for the traces on the Pentium 4
and the Xeon. The original VNC implementation does not have a queuing overhead and is
thus not included in the table.

Figure 6.23 shows a histogram of the queueing overhead for the Image Pan and
Window Move traces on the Pentium 4. The majority of the updates are queued
for less than 0.05 seconds, with some outliers contributing to the high maximum
queuing overhead values. For the Image Pan trace, 53% of the operations have an
overhead less than 0.004 seconds. 70% and 87% of the operations have an overhead
less than 0.01 and 0.03 seconds respectively. For the Window Move trace, 54% of
the operations have a queueing overhead less than 0.004 seconds, and more than
75% and 91% of the operations have a queueing overhead less than 0.01 and 0.03
seconds respectively.

Control results

Figure 6.24 shows the number of pixels refreshed in the control experiments as
the rate at which the image was moved was varied between 1 and 50 times per
second. The number of pixels for DVNC and the original VNC implementation is
compared to a target pixel count. The target update rate is calculated by measuring
the number of pixels refreshed when scrolling the image vertically by 8 pixels
once, and multiplying that number with the duration of each experiment and rate
at which the image is moved.

Version CPU Pixels refreshed Chg Bytes sent Chg
DVNC P4 21.4 GPx 11.88 375.89 MB 0.33VNC P4 1.8 GPx 1135.40 MB

Table 6.6: The number of pixels refreshed and bytes sent at event rate 50 in the control
experiment, as well as the relative change between DVNC and VNCa.

aObtained by dividing the DVNC value by the VNC value.

6.4 De-centralized VNC 139

Histogram of queueing overhead for Image Pan on P4

Latency (s)

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
20

00
00

40
00

00
60

00
00

80
00

00
10

00
00

0
12

00
00

0

(a)

Histogram of queueing overhead for Window Move on P4

Latency (s)

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4 0.5

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

(b)

Figure 6.23: Histograms of the queueing overhead for the (a) Image Pan and (b) Window
Move traces running on the Pentium 4. The X axis shows the overhead in seconds, and
the Y axis shows the frequency of VNC server update operations that were executed by the
viewers with the given overhead.

140 6 Pixel Space

The number of pixels refreshed tracks the target pixel count well until the move-
ment rate is 26 movements per second. At this point, the original VNC imple-
mentation’s performance breaks down, and at a rate of 28 is reduced by 57.8%.
DVNC’s performance keeps tracking the target until the rate reaches 35, where it
too begins to decline. However, the reduction in DVNC’s performance happens
more gracefully than the original VNC implementation. Table 6.6 shows the re-
sults at event rate 50, where DVNC is able to refresh 11.88 times more pixels than
the original implementation, while cutting bandwidth usage by two thirds.

Figure 6.24: Total number of pixels refreshed for the control experiment for the two im-
plementations, as well as the target refresh count. Event generation rates range from 1 to
50.

Figure 6.25 shows the server’s CPU load (in percent) at kernel and user level, as
well as the total CPU load. The original VNC server incurs a far higher CPU load
than the DVNC implementation, until its performance breaks down at an event
rate of 26. At this point, the original VNC server is using close to 100% of the
available CPU time. When its performance breaks down, there is a marked increase
in the kernel level load, at the same time as the user level load goes down. The
DVNC server’s CPU load behaves more consistently, increasing towards 100%
CPU utilization as the event rate approaches 40, before flattening out.

Figure 6.26 shows the total number of bytes transferred from the server to the
viewers. The DVNC server sends less data than the original implementation, which
is also reflected in the kernel level CPU load. Neither of the two implementations
are able to saturate the gigabit Ethernet network, with maximum transfer rates of
37.8 MB/second and 12.5 MB/second for the original and DVNC implementations.

Figure 6.27 shows the cumulative CPU load for the server in the control experiment

6.4 De-centralized VNC 141

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

CP
U

Lo
ad

 (P
er

ce
nt

)

Rate

VNC server load for control experiment

Orig. Total

Orig. KernelOrig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total
Original Kernel

Original User
DVNC Total

DVNC Kernel
DVNC User

Figure 6.25: CPU load for the VNC server, showing total, kernel, and user level load for
both the original and DVNC implementations in the control experiment.

Figure 6.26: Total bytes sent from the servers for the control experiment.

using rate 25. The load increases linearly, which demonstrates that the control ex-
periment successfully incurs an even amount of load throughout the experiment, in

142 6 Pixel Space

contrast to the “staircase-effect” that can be observed in the load measured during
the trace experiments.

Figure 6.27: The graph shows cumulative VNC server CPU load for one of the control
experiments. Total, kernel and user level load is shown for both the original and DVNC
implementations. The event rate used was 25.

6.4.4 Discussion

The evaluation documents that DVNC improves the performance of VNC for up-
dating pixels that are moved, but not otherwise changed when using it to drive a
tiled display wall. The performance gains can be significant, with gains up to al-
most a factor of 12 possible as demonstrated by the control experiments. DVNC
does not provide any performance gains for pixels that are changed, such as video
or other animated content. DVNC does not introduce much additional overhead
for such content, with the null-benchmark indicating an overhead of just 0.02%.

The performance improvements are made possible by changing the model at a
number of different levels. Instead of having the server do all the work with the
viewers remaining passive receivers of pixels, the DVNC approach makes the view-
ers serve each other in a peer-to-peer style network. The cost is that viewers now
need to know about each other, where they before needed no knowledge of other
viewers connected to the server. However, the design ensures that each viewer
can make independent decisions regarding where to send pixels and from whom
they should receive pixels, which avoids deadlocks and keeps the communication
between viewers limited to actual pixels, and not coordination messages. Coordi-
nation would introduce latency.

6.4 De-centralized VNC 143

The network discovery mechanism works well to connect the viewers to each other.
Informal measurements indicate that the start-up time costs incurred by using it are
on the order of 1-2 seconds, with viewers appearing “instantly” on the display wall
for all practical purposes. An alternative to using the network discovery mech-
anism for establishing viewer-to-viewer communication is to either: (i) Share a
static list of viewers with all the viewers; or (ii) transfer a list of viewers from
the VNC server to each viewer as it connects to the server. Both solutions could
potentially reduce start-up costs, but with lower flexibility. A static list of hosts
would require manual configuration for each display wall environment the system
is used in, whereas the discovery mechanism hides these details. Letting the server
manage the list has the same downside. In addition, the static list implies embody-
ing the server with knowledge of the display wall’s configuration, which is neither
necessary nor desirable. The discovery mechanism allows the display wall’s con-
figuration to change without having to restart the VNC server. The existing desktop
configuration can remain in place as long as the display wall’s resolution remains
unchanged.

Trace experiments

The trace experiments have demonstrated DVNC’s performance in a setting similar
to how the display wall desktop environment may be used. The server’s kernel
level CPU is reduced, leaving more time for the server to work at user level and
for other applications on the same computer as the server to execute. The server’s
user level load is not much reduced, since the server instead spends its time at user
level generating more frequent updates to viewers, rather than re-sending already
distributed pixels. This is also demonstrated by the reduction in bandwidth usage.

One drawback to using DVNC is the queuing overhead. The queueing overhead
is difficult to evaluate: It is easy to measure, but hard to determine what the num-
bers imply in terms of performance, since there is nothing to compare it to in the
original implementation. While the worst-case queueing overhead is about half a
second, the original implementation may at this point still be waiting to receive its
pixels from the server, due to the potentially large difference in pixel update rate.
The evaluation demonstrates that delays of this magnitude are not typical. More
than three quarters of the update operations supplied by the VNC server to the
viewers are are drawn in less than 0.01 seconds, and more than 90% are drawn in
less than 0.03 seconds. Compared to the original VNC implementation, the queue-
ing overhead is deemed insignificant due to the much higher rate at which updates
occur. Informally, two years of real-world usage of the system supports this con-
clusion. The performance gains are also clearly visible in the two DVNC videos
that accompany this dissertation.

The staircase effect in the trace CPU load measurements (Figures 6.21 and 6.22)
is caused by short periods of user inactivity. During this time, the user typically

144 6 Pixel Space

repositions the mouse, which results in little activity by the VNC server and thus
reduced load. This effect is not apparent in the CPU load measured during the
control experiments, as shown by Figure 6.27. The reason is the constant rate of
movement in these experiments, which leads to a constant load on the server and a
resulting linear increase in cumulative CPU load.

Control experiments

The control experiments were designed to determine the breaking point in terms
of performance for the DVNC and original VNC implementations, as well as to
determine how much better DVNC is than regular VNC in a situation where the
server’s ability to use the Copy Rect operation is near maximized. The original
implementation breaks down when the server attempts to refresh about 8 ∗ 26 ∗
7168 = 1490944 = 1.49 megapixels per second21. This is not due to lack of
bandwidth, since the amount of data sent continues to increase for higher event
rates. Instead, the breakdown comes from a combination of the VNC server having
to work harder to keep its framebuffer updated, and having to send more and more
redundant data to the VNC viewers.

DVNC performs better in the control experiments than in the trace experiments
since movement is constrained to the vertical axis in the control experiments. In
contrast, the trace experiments contain diagonal movements, which incur a higher
load on the server. The reason is that more pixels must be refreshed (new pixels
are introduced not only at the top or bottom, but also to the left or right side of
the display wall). Diagonal movements also create more complex dependencies
between the VNC viewers when they exchange pixels, although the effect of this
compared to the added load on the server has not been quantified.

Server on the Pentium 4 and the Xeon

The trace experiments were conducted on both a Pentium 4 and a Xeon. The
Pentium 4 refreshed 1.9 times more pixels than the Xeon for the Image Pan trace,
which is surprising given the Pentium 4’s older architecture, fewer cores and lower
clock speed. To determine why and to further characterize the difference between
the Pentium 4 and Xeon, an experiment measuring the two platforms’ memory
hierarchy performance was conducted. The results from this experiment appear in
Appendix D, and demonstrate that the Pentium 4 has a sustained read-modify-write
memory bandwidth of 3.78 GB/second, which is 1.75 times more than the Xeon’s
memory bandwidth at 2.16 GB/second. This correlates well with the difference
between the number of pixels refreshed by the two different computers.

21Each movement is 8 pixels, and each line is 7168 pixels wide.

6.5 Further improvements 145

The memory bandwidth is thus the bottleneck that prevents DVNC from achieving
even higher performance when updating pixels that are moved, but not otherwise
updated. This is interesting, given that the update operations moments later have
to move across the comparatively slow gigabit Ethernet link. However, since the
Copy Rect operation is so small (only 12 bytes), the server can send it much faster
than it can repeatedly move memory locally.

6.5 Further improvements

There are further improvements and additional evaluation that could be made to
the 22 megapixel laptop and De-centralized VNC. The 22 megapixel laptop’s peak
performance should be further characterized beyond the follow-up experiment that
placed its peak performance at 25 and 18 frames per second for sharing a 32 and
16-bit display, respectively.

At present, BlueTooth is used to determine if a display is nearby or not. This only
works if the NAD has BlueTooth available. Of the NADs used in the 22 megapixel
laptop implementation, only the Nokia N800 could be detected using BlueTooth.
BlueTooth has a surprisingly long range, which makes it possible to detect a NAD
as “nearby” even if it is placed across the hall through two or three walls. This
could be solved by checking the BlueTooth signal strength, however the current
implementation does not do this. Other approaches for determining if a display
is close to the user or not could also be employed. Some possibilities include
inspecting the network latency and apply a threshold to define the display as nearby,
determine whether the display and the computer are using the same wireless access
point, or use other means of in-door location, such as WiFi triangulation.

The 22 megapixel laptop is currently limited in that the number and resolution of
the virtual displays must be configured at compile-time, rather than at runtime22.
The kernel extension’s sysctl-interface already allows user space applications to
change both the number and resolution of the displays. However, due to lacking
documentation of the necessary steps needed to make these changes visible to the
Mac OS X window server, the changes made internally by the kernel extension are
not currently detected by the window server. This in turn necessitates the crude “at
compile-time” approach currently taken.

The DSD could be extended to support the Copy Rect operation, which would
make window movement, scrolling and other tasks that generate the Copy Rect
operation faster when used with NADs in a display wall context. This would further
open additional issues that are not handled by the DVNC implementation. Two
examples are handling pixel exchange between a collection of NADs that each

22It could also be configured through a property list, but a reboot would still be required to have
the changes take effect.

146 6 Pixel Space

have different resolutions, and handling the case where more than one NAD covers
the same pixel area.

The DVNC system’s performance should be compared to other implementations
of VNC. DVNC could then be incorporated into the implementation that performs
best. The load on the VNC viewers should be further characterized, and the addi-
tion of compression to the viewer-to-viewer communication should be considered.
The DVNC system’s performance should be characterized for additional display
wall configurations. Such an evaluation should include larger or smaller display
walls as well as sharing the pixels at different bit-depths.

6.6 Conclusion

This chapter has presented the Pixel Space, the NAD model, the 22 megapixel lap-
top and De-centralized VNC model and implementation. The Pixel Space repre-
sents a near infinite collection of pixel resources. Parts of the pixel space surround
users every day, in the form of portable devices with displays, netbooks, laptops,
workstations, TVs, projectors and for some, display walls. The NAD model and
its associated implementation as the 22 megapixel laptop have shown how such
nearby pixel resources may be transparently utilized from a user’s personal laptop.
The 22 megapixel laptop can drive the Tromsø display wall. Its performance has
been evaluated, and shown to be very low when the entire wall is being updated
at once, with better frame rates possible as the size of the area being updated goes
down. Since the 22 megapixel laptop only updates areas within which pixels have
changed, it is possible to utilize the NADs represented by the entire Tromsø display
wall at once with performance in the 10-25 frames per second range, as long as the
areas that are updated are kept small.

DVNC improves the performance of VNC [17, 26] when it is used to create a
desktop environment on tiled display walls. This is done by changing the VNC
model to allow VNC viewers to exchange pixels amongst each other. This reduces
the VNC server’s load by eliminating the transfer of redundant pixels to the VNC
viewers when the Copy Rect update operation is used. DVNC only gives perfor-
mance gains for tiled display walls; no performance is gained when a single viewer
is used to access the VNC server’s framebuffer.

The main bottleneck both for the 22 megapixel laptop and the DVNC implementa-
tion is a scarcity of local resources. For the 22 megapixel laptop, the CPU spends
most of its time copying data from one location in memory to another. For DVNC,
the memory bandwidth becomes the biggest bottleneck, as long as content is only
moved. Neither of the two systems are bandwidth-bound in the experiments con-
ducted.

Chapter 7

Discussion

This chapter presents a discussion of the principles formulated in Section 1.4.1,
and a discussion of the systems that have been built to explore the interaction and
pixel space concepts in the context of the problem statement given in Section 1.3.

7.1 Interaction Spaces

The Interaction Spaces concept is an abstraction for interaction mechanisms. This
dissertation has focused on unencumbered and device-free interaction spaces, where
user interaction is detected by the environment, converted to input events and then
made available to sequential or parallel applications running on a display wall.
However, interaction spaces are also created by and available on devices. The use
of an iPod touch to control the MASpace application is one example, where the
entire display wall’s interaction space is “folded up” and made available on the
iPod. The user can control the MASpace application on the display wall, but in a
setting limited to and enhanced by the capabilities of the iPod’s interaction space.
Compared to the Camera-sense system, this means no 3D support, but better accu-
racy and precision. The iPod version of the MASpace application also taps into the
pixel space, acting as a mirror or an extension of the display wall, depending on
whether it is used to view the same content as is being shown on the display wall,
or to examine an independent display of the data.

In Section 1.4.1, three principles are formulated: (i) Orthogonal interaction mech-
anism; (ii) “where, not what;” and (iii) pixels as network-available resources. The
three principles have been formulated based on the concepts, models and systems
developed as part of this dissertation. The first two principles are specific to the
interaction space concept and are discussed here; the third principle is discussed in
Section 7.2.

147

148 7 Discussion

The first principle makes the ability to detect interaction into a property of the envi-
ronment, rather than binding it directly to a given computer. The interaction mech-
anism is realized independently of the computer or computers it acts on. While
the underlying motivation for the different interaction space systems is to enable
sound- and gesture-based interaction with display walls, the resulting principle is
more general. Each interaction space exists orthogonally to the computers they act
on. For the display wall, this is necessary since the display wall’s parallel architec-
ture requires that any input mechanism is abstracted away from any one computer
in the display wall’s cluster. Instead, the interaction mechanism must be able to act
on any or all of the applications running on the different computers in the display
wall’s cluster.

When considering the interaction mechanism as orthogonal to the computers they
act on, it becomes possible to extend the interaction spaces beyond just interacting
with a display wall. For instance, the input mechanisms to one’s personal com-
puter could be augmented by the interaction spaces surrounding the computer at
any given time. Bring a laptop into an interaction space, and the laptop’s existing
interaction mechanisms are augmented with the interaction mechanisms provided
by the surrounding interaction space. This however raises the issue of generality.
The interaction space systems presented in this dissertation are designed for dis-
play walls. The accuracy and precision of the Camera-sense system, for instance,
is good enough to enable interaction with a number of applications on a display
wall, but it may not be good enough in its current state to enable interaction at
the level of accuracy required for smaller devices, except perhaps for some coarse-
grained gestures. An iPhone, for instance, has an interaction mechanism whose
accuracy is on the order of millimeters. A general interaction space covering “ev-
erything” may not be possible, due to the often conflicting and contradicting needs
that would arise from trying to support the range from very small to very large dis-
plays. However, since different interaction spaces can complement each other, cus-
tom interaction space systems for smaller devices could be built that would provide
the necessary accuracy and precision, or otherwise cater to special requirements.

The interaction space systems presented in this dissertation are limited in scope to
detecting that something is present or that something occurs. None of the systems
make any attempt at interpreting what they detect. The Camera-sense system only
detects an object’s location and extent in 3D. The Snap-detect system is limited to
locating the origin of snap-like sounds, and the Arm-angle system determines the
angle of a user’s arm (or other straight object). Interpreting events from the three
interaction space systems is left to applications, an approach that is based on the
end-to-end principle [160]. The applications are best suited to decide how they
want to treat the events from applications, and whether combining events from the
different systems makes sense or not.

As an example, the Camera-sense system provides applications with 3D object in-
formation. For some applications, information about an object’s 2D location may

7.1 Interaction Spaces 149

be all that the application needs in order to provide a regular multi-touch interface.
Other applications may go beyond this, and attempt more sophisticated gesture
recognition based on the full 3D object data delivered by the system. Where a
multi-touch interface only needs 2D points, an interface based on gesture recog-
nition defines a vocabulary of higher level gestures based on the entirety of the
underlying object data. Such high level gestures can include pointing, waving
and specific finger, hand or arm poses. One design possibility is to have a special-
purpose application that refines input events from the three systems into new events
representing the higher level gestures, which are then in turn sent to other appli-
cations. The 3D object data could also be used in other ways, such as to build a
simple “scanner” to further augment the functionality of the Wallboard application.

The “where, not what” principle states that it is sufficient to determine where an ob-
ject is, rather than determine what the object is when implementing an interaction
space system. For the Camera-sense system, the principle is applied in that users
can use any object to interact, including their fingers, hands, other body parts or
other objects. Importantly, the system identifies that something is present, and then
determines the location of that something, rather than spending resources trying to
determine what that something is. This also reduces the complexity of the problem
from doing generalized object recognition and identification, to the simpler case of
separating foreground from background. The same principle applies for the Snap-
detect system. The system does not try to distinguish between a user snapping his
fingers, or using a mechanical clicker to make a similar sound, nor does it try to
identify which user made the sound. Instead, the system simply determines where
the sound occurred and reports that to applications.

No substantial functionality has been lost in the Camera-sense and Snap-detect
systems’ respective inability to determine what objects are and what the source of
a sound was, although there are drawbacks to the approach. For instance, if the
Camera-sense system was able to recognize objects, and not only their presence,
one could imagine being able to separate different tools from each other – such as
a brush, a pencil and an eraser – and have the different tools act in different ways
when used to interact with a display wall. While this would be a useful capability,
the problem of identifying and recognizing objects is non-trivial. Further, having to
use different objects to perform different tasks, or indeed, having to use any object
or device at all – is one of the requirements that the Camera-sense and associated
systems venture to do away with.

The Arm-angle system also follows the “where, not what” principle. While nei-
ther its accuracy nor its precision has been measured through experiments, infor-
mal experiences using the system indicate that the quality of its output was to a
large extent affected by the content being displayed on the display wall. For in-
stance, any straight line appearing on the display wall resulted in false positives
from the system. This is problematic – but in retrospect, should have been ex-
pected – since most window systems use rectangular windows, producing a large

150 7 Discussion

number of straight lines that the camera used by the Arm-angle system sees. It is
possible that this problem could have been avoided by using a more sophisticated
approach to determine the angle of the user’s arm, such as isolating the user’s sil-
houette. However, when the display wall does not have any content within the cam-
era’s field-of-view, the system worked as intended. Thus, the “where, not what”
principle still applies, but the implementation could be improved; some possible
approaches are outlined in Section 4.9.

The problem statement presents four requirements that a system for gesture-based
interaction with a display wall should meet. The systems should be: (i) Always
available; (ii) unencumbered; (iii) multi-user; and (iv) room-wide. To explore po-
tential solutions, three interaction space systems were built: (i) The Camera-sense
system; (ii) the Snap-detect system; and (iii) the Arm-angle system.

The Camera-sense system meets three of the four requirements. There is no setup
associated with the system; users need merely step up to the wall in order to start
interacting with the display wall. The system enables unencumbered interaction,
and does not require users to carry devices or wear markers. The system can detect
gestures from more than one simultaneous user. The system is only available when
the user is close to the wall, and thus does not meet the room-wide requirement.
However, since the Camera-sense system is scalable, it could be extended to not
only cover a wider display wall, but possibly also a larger part of the room. The
cameras could be mounted in the ceiling in a grid-like fashion – rather than along
just a single line as in the current implementation – giving room-wide coverage.
This is a potential direction for future research.

A further benefit of the Camera-sense system’s scalable architecture is that differ-
ent sizes of display walls can be accommodated by adding additional cameras and
computers, subject to the performance of the two centralized components of the
system, as discussed in Section 4.7. However, the system’s scalability comes at
the cost of added complexity. With more cameras, the burden of initially aligning
and later re-aligning the cameras whenever they lose their alignment grows. The
monetary cost also increases as additional cameras or computers are purchased,
and in other equipment costs such as network switches and cables. Managing a
large cluster of computers is also non-trivial, and requires a person to keep soft-
ware up-to-date and otherwise maintain the system. Of the three interaction space
systems developed, the system that is most “maintenance free” is the Snap-detect
system. It is also the system with the simplest architecture: A single computer
handles all signal processing and event generation. If that computer is running, the
system works; otherwise, it does not. The microphones generally do not move.
When people accidentally bump into them, they eventually return to their expected
position – suspended as they are from the ceiling.

The Snap-detect system also meets three of the four requirements. Users can use
the system immediately by simply snapping their fingers, without requiring any
setup in advance: The system is constantly running and ready to detect input. It is

7.2 Pixel Space 151

unencumbered, since users need only snap their fingers or clap their hands in or-
der to interact – no external devices are necessary. However, this does not prevent
users from using external devices, such as a mechanical clicker, to interact using
the system. The Snap-detect system is available room-wide, given that it can detect
sounds emanating from anywhere within the same room as the display wall. Since
it does not support the detection of several users snapping their fingers simultane-
ously, it technically does not meet the multi-user requirement. However, the short
duration of a snap – less than a second – makes it possible for several users to
quickly take turns using the system.

The Arm-angle system meets two of the four requirements. It is always available,
although users need to “call” the interaction space by snapping their fingers first. It
is unencumbered, since no markers or devices are necessary to detect the angle of
a user’s arm. Since the current implementation only uses one camera, the system
is not multi-user. Additional users could be supported by incorporating additional,
steerable cameras into the system. The current implementation also limits the lo-
cation of the interaction space to an area about a meter or two from the display
wall and along the length of the wall, making it fail the room-wide requirement.
However, the movable characteristic of the interaction space could make it possi-
ble to extend it for use from “anywhere” within the room. This would require that
the system be able to compensate for the camera’s viewing angle, and also possi-
bly require a different approach to detecting pointing direction. Another alternative
would be to use several cameras mounted at different locations in the room to cover
different areas.

By using the systems together, the three systems complement each other to meet all
the four requirements set out in the problem statement. Users can interact with the
display wall from anywhere in the room, without any advance setup, and without
carrying devices or wearing markers.

7.2 Pixel Space

The Pixel Space concept is an abstraction that collects pixel resources from a wide
range of displays connected to a wide range of platforms. Any display can be
considered a part of the pixel space. Pixels in the pixel space are shared across
platforms and devices, and can be utilized by computers to display content.

Three principles were formulated in Section 1.4.1. The two interaction space prin-
ciples are discussed in Section 7.1. The following discusses the third principle:
Pixels as network-available resources.

Pixels are available almost everywhere, on displays of different sizes and resolu-
tions. The displays on handheld devices like iPhones or Nokia Internet Tablets
represent a pool of pixel resources that could have been utilized if there was a way

152 7 Discussion

of connecting the display to one’s computer. A high-resolution display wall also
represents a pool of pixel resources. Utilizing these pixel resources from a single
laptop is not physically possible with the technology currently on the market, sim-
ply due to the large number of displays involved, and the limit of one to two display
ports on a single laptop. By making the pixel resources represented by this range of
displays available over a network, any computer can gain the ability to utilize them
to extend its own display area. This dissertation demonstrates this through the 22
megapixel laptop, however the principle is more general. Given the cross-platform
characteristics of pixels, any device could be given the ability to extend its display
area by accessing the network-available pixel resources.

In Chapter 2, it is assumed that gigapixel-scale display walls will be driven by
more than one computer. The development of the 22 megapixel laptop and DVNC
may seem to contradict this assumption, since they both generate all pixels on a
single computer and display them using the pixel resources of a display wall –
albeit a display wall with lower resolution1. Both systems were motivated in part
by the need for having traditional desktop applications available on a display wall.
The ease with which this can be accomplished by simply sharing the application’s
output – its pixels – with a display wall, compared to the insurmountable task of
rewriting all existing applications to fit the parallel architecture of a display wall,
warrants the performance trade-off.

One drawback to systems sharing pixels over a network, is that their performance
is reduced as the number of pixels being shared grows. In some cases, the per-
formance reduction may be so big as to make the system unsuited for displaying
certain kinds of content. For instance, games, videos, animations or other types of
frequently-changing content typically require high framerates. Depending on the
resolution, the system may not be able to deliver the framerates necessary to ac-
ceptably display the content. While the performance for sharing such content may
be good enough2 when utilizing the pixel resources from a single display, using
an entire display wall significantly increases the load on the computer driving the
pixels.

There are three activities where bottlenecks may be introduced in or around a pixel
sharing system: (i) Generating the pixels; (ii) reading and possibly compressing
the pixels; and (iii) sending the pixels across the network to the pixel resources on
which they are displayed. Depending on the number of pixels and the rate at which
they should be updated, the bottleneck for sharing the pixels moves. Generating a
large number of pixels can put a very high load on the CPU. Depending on the num-
ber of pixels being generated, the bandwidth between the CPU and main memory
may become exhausted, constraining the system’s performance. This was the case

1Although the 22 megapixel laptop has been used to create a 100 megapixel display, as shown in
Figure 6.13(a) in Section 6.3.5.

2“Good enough” for dynamic content is usually between 25-30 frames per second, which corre-
sponds to the frame rate of movies and television.

7.2 Pixel Space 153

in the DVNC system, where just moving a large number of pixels (without chang-
ing them) was enough to exhaust the server’s memory bandwidth. Compressing the
pixels and sending them across the network are two inter-related factors. Compres-
sion puts additional load on the CPU, when the CPU time might instead have been
better spent generating the pixels. However, compression can reduce the amount of
data that must be sent, sometimes substantially [149, 155]. The choice of whether
to use compression or not depends on the network’s available bandwidth, and that
the receiving end has the performance and capability to decompress the pixels.

The problem statement presents five requirements for enabling utilization of pixel
resources. The systems should be: (i) Cross-platform; (ii) transparent; (iii) dy-
namic; and they should provide: (iv) structure; and (v) performance. To explore
potential solutions, two models were devised, and based on the two models, two
pixel space systems were implemented: (i) The 22 megapixel laptop; and (ii) De-
centralized VNC.

The 22 megapixel laptop is a system built based on the Network Accessible Display
model. It meets four of the five requirements. First, it can utilize pixel resources
across platforms, as demonstrated by utilizing resources from a handheld Nokia
N800 Internet Tablet, a workstation and the Tromsø display wall. Second, the sys-
tem is transparent. Applications need not be restarted or modified in any way to
utilize additional pixel resources as they become available. The pixel resources
are represented as Network Accessible Displays. Since the NADs appear to the
underlying window system as if they were regular displays directly connected to
the computer via a DVI or VGA cable, applications can utilize them in a transpar-
ent manner without requiring that applications are restarted or modified in any way.
Third, the 22 megapixel laptop is dynamic, since the collection of NADs is allowed
to change at any time. The local display configuration can change on-the-fly to ac-
commodate new or disappearing NADs. The laptop can also filter displays based
on their physical proximity to the laptop, by scanning for a display’s reported Blue-
Tooth MAC address. Fourth, the 22 megapixel laptop is structure-aware, in that it
can group related NADs and arrange its local, virtual displays to match the con-
figuration of the NADs. In particular, this is used to support the grid-structure of
typical display walls. Finally, the 22 megapixel laptop does not exploit the parallel
architecture of the display wall when it utilizes NADs from the display wall, and
thus does not meet the performance requirement. While its performance is accept-
able when the content being displayed is mostly static or the area covered by the
updates is relatively small (on the order of 1-2 0.7 megapixel NADs), dynamic con-
tent that covers the entire 22 megapixel Tromsø display wall can only be updated
at approximately one frame per second.

The 22 megapixel laptop does not utilize the parallel architecture of the display
wall to improve the performance of pixel sharing. To explore the performance re-
quirement, the De-centralized VNC model was developed, and an implementation
of it built. The purpose was to improve the performance of VNC when used to

154 7 Discussion

create a desktop environment for display walls, focusing on the performance re-
quirement, and little focus on the remaining four requirements. The experiments
have shown that DVNC improves the performance of regular VNC by a factor of
up to 11.88 when pixels are moved, but not otherwise updated. It does this by
utilizing the network and computational resources made available by the display
wall’s cluster. The approach taken by the DVNC model and implementation can
potentially be integrated into the 22 megapixel laptop implementation to improve
its performance too.

Chapter 8

Conclusion

This dissertation presents the concepts of multiple Interaction Spaces and one Pixel
Space. The concepts are explored and documented through the development of
ideas, models, architectures, designs and implementations, resulting in a number
of artifacts. Three interaction space systems, two pixel space systems and several
applications that use the systems are built. The systems are evaluated through
experiments, and based on the systems, three principles are formulated.

Two of the principles are formulated in relation to the interaction space systems:
(i) Orthogonal interaction mechanism; and (ii) “where, not what.” The first prin-
ciple states that the interaction mechanism is a property of the environment. The
mechanism is orthogonal to the devices and computers it acts on, and not bound to
any given computer or user. The different systems demonstrate this by acting on a
high-resolution, wall-sized, tiled display that is driven by multiple computers, and
depending on the system, enabling one or several users to interact simultaneously.

The second principle states that determining where something is, rather than what it
is, is sufficient to enable the detection of interaction within the different interaction
spaces. The three systems all apply this principle, by focusing only on detecting
the presence or occurrence of an object or sound, rather than identifying the object
or sound.

The three interaction space systems – Camera-sense, Snap-detect and Arm-angle
– each create an interaction space that enable gesture- or sound-based interaction
with applications running on a display wall. The different systems complement
each other, and can be used alone or in concert. Users do not need to wear markers
or carry any devices in order to interact using the systems.

The systems are in use with several applications, including an image viewer and an
application to visualize and interact with several genomic microarray datasets on
a display wall. The Camera-sense system’s latency, accuracy and precision have
been evaluated. The system has an end-to-end latency of 113.66 ms. The system is

155

156 8 Conclusion

in use with two display walls, covering areas of 6.0x3.0 m, and 2.7x2.0 m, and is
able to locate objects with an accuracy of 1.24 cm, and a precision of 0.72 cm. The
system’s accuracy ranges from an order of magnitude worse [12] to on par [110]
with comparable systems from the state of the art. However, the Camera-sense
system exceeds the capabilities of these systems by detecting and locating objects
in 3D without the need for markers. Its scalability also helps set it apart from a
number of existing systems from the state of the art [12, 105, 56, 112], but at the
cost of additional complexity in managing, setting up and calibrating the system.
The system’s accuracy and precision is sufficient to enable interaction with a range
of applications on a display wall. The Camera-sense system is a viable way of
enabling interaction with display walls.

The third principle is formulated in relation to the two pixel space systems, and
states that pixels should be considered network-available resources. The number
of pixel resources available to a computer is determined by the environment the
computer is in. For instance, a computer near a display wall should be able to
utilize the pixel resources offered by the display wall, and not be limited to its
local pixel resources.

The two pixel space systems – the 22 megapixel laptop and De-centralized VNC
(DVNC) – were constructed to utilize the pixel resources of the Pixel Space. The
22 megapixel laptop was built based on the Network Accessible Display (NAD)
model. In the NAD model, a display’s pixels are made available on the network
by augmenting the display with some networking and computational resources.
The 22 megapixel laptop is able to transparently extend its display area by utilizing
pixels from nearby NADs. Applications running on the laptop need not be modified
in any way to utilize the additional pixels provided by the NADs. The system is
cross-platform, and can utilize displays ranging from a handheld device to a display
wall. The system’s performance has been measured through experiments. The 22
megapixel laptop can provide pixels at a peak rate of about 27 megapixels/second.
As the number of NADs used increases, the main bottleneck in the system is a
scarcity of local resources; in particular, memory bandwidth and CPU.

The DVNC system changes the model with which VNC shares pixels, from a fully
centralized model to a de-centralized model. The purpose of the change is to im-
prove the performance of VNC when it is used to share pixels with a display wall.
Using VNC, a desktop environment for a display wall is created with a resolution
matching the display wall’s resolution. However, due to the display wall’s paral-
lel architecture, the “Copy Rect” operation used by VNC to update remote VNC
viewers becomes less efficient, resulting in increased load on the VNC server. The
Copy Rect operation is used by the VNC server when a rectangle of pixels should
be moved and the pixels inside the rectangle are not otherwise modified. This op-
eration is generated by any action that results in content being moved, including
moving windows, scrolling documents or panning images. When this operation is
used on a display wall, the server has to send redundant pixels to the viewers. The

8.0 157

DVNC system resolves this issue by enabling VNC viewers to exchange pixels
amongst each other. The result is a system that improves the performance of VNC
on tiled display walls by a factor of up to 11.88. The main bottleneck in DVNC is
the VNC server’s CPU to memory bandwidth.

158 8 Conclusion

Chapter 9

Future work

This chapter presents some possibilities for future work and research directions for
the systems that have been built based on the Interaction Spaces and Pixel Space
concepts.

One avenue of future research is to augment portable devices such as iPhones or
laptops with the capabilities of the different interaction spaces they enter. This is
possible since the interaction spaces exist orthogonally to the devices which they
act on and are not bound to any given computer or device.

Manual alignment and calibration of cameras in the Camera-sense system is an
issue in its current implementation. One avenue of further research is to remove
the need for manual alignment by making camera calibration automatic. At one
extreme, one could “sprinkle” cameras on the floor in a random way, and moments
later have an interaction space available. To realize this, each camera would need
to determine its own location and orientation in space, which the system could use
to build an interaction space covering the areas in which sufficient cameras overlap.

The Camera-sense system could also be extended to cover not only wide walls, but
entire rooms, for instance by mounting cameras in the ceiling. Additional cameras
could also be mounted along the walls to add additional area coverage or poten-
tially improve accuracy and precision. Another avenue of research is to explore
the possibilities of building a system with adaptive accuracy. The system could
adapt to the size of the display that one wants to enable interaction with, perhaps
by physically moving cameras to cover the areas that need additional accuracy in
greater detail.

At present, the applications developed as part of this dissertation make little use of
the 3D aspect of the Camera-sense system, except for the Wallview, Wallboard and
MASpace applications (discussed in Sections 5.1 and 5.5). The Camera-sense sys-
tem’s 3D capabilities represent many opportunities for further research and devel-
opment, including ways of utilizing the skeleton 3D object representation created

159

160 9 Future work

by the system. One idea is to extend the Wallboard application by scanning objects
using the Camera-sense interaction space instead of a regular camera. By turning
the object slowly inside the Camera-sense interaction space, a rough 3D profile of
the object could be constructed. The resulting 3D profile could be textured using
image data gathered by the cameras.

The Snap-detect system makes use of microphones in front of the display wall.
These microphones are capable of hearing more than just users snapping their fin-
gers. Other approaches to using these resources could provide avenues for future
research. Speech recognition that locates the users talking is one possibility. The
Arm-angle system at present does not scale to multiple users, while the Camera-
sense system demonstrates that a multi-camera approach is viable. It is possible
that the Arm-angle system could be extended by adding more cameras, either to
increase the accuracy and precision of the system (for instance using a stereo-
camera configuration), or by simply enabling the creation of additional, movable
interaction spaces.

Topics like access control, encryption and compression have not been handled in
the 22 megapixel laptop, with the exception of the very rudimentary RLE com-
pression implemented by the Display Sharing Daemon. To apply the Network
Accessible Display model pervasively, a better way of managing display access
rights would be required. One could for instance define some displays to be a part
of one’s own “private” pixel space, with other displays (such as those on a display
wall) contributing pixels to a public pixel space which would be open to anyone.

With shared, public pixel resources, one is also faced with the problem of several
users wanting to use the same resources at the same time. The implementation
of the NADs utilized by the 22 megapixel laptop currently only supports a single
client at a time, since it is unclear how to handle pixels from several clients at
once. However, earlier work conducted on window sharing [151, 146] suggests
one possible way forward. Windows could be placed on the virtual displays, which
would give the windows the benefit of the additional resolution provided by the
pixel resources. Then, rather than sharing the entire virtual display, individual
windows could be shared with the NADs. In this way, windows from different
users could overlap on the shared pixel resources, in the same way that windows
overlap in existing window systems.

The bottleneck in DVNC is the memory bandwidth on the server. Two possible ap-
proaches to handle this issue would be to either: (i) Investigate whether the server’s
GPU could be used to accelerate the movement operation locally (at present, any
GPU resources are not used by the VNC server at all); or (ii) de-centralize VNC
further, by having the VNC server not actually perform the Copy Rect operation lo-
cally at all. The pixels are already distributed to the viewers, so the operation could
in principle be fully delegated to the viewers. The viewers already do the pixel
movement themselves, so any changes to the system may only require changes
to the server. There are many challenges with such an approach, however. Since

9.0 161

the VNC server in this approach would become inconsistent with what the view-
ers display, the server must manage the areas which are not up to date in its local
framebuffer. It could then either have local applications redraw such areas, or have
the pixels sent from the viewers as necessary. The resulting implementation would
lessen the need for the server to move as much memory around, and could increase
the system’s performance.

162 9 Future work

References

[1] Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry Cook, Stefanos
Damianakis, Georg Essl, Adam Finkelstein, Thomas Funkhouser, Timo-
thy Housel, Allison Klein, Zhiyan Liu, Emil Praun, Rudrajit Samanta, Ben
Shedd, Jaswinder Pal Singh, George Tzanetakis, and Jiannan Zheng. Build-
ing and Using A Scalable Display Wall System. IEEE Computer Graphics
and Applications, 20(4):29–37, 2000.

[2] Thomas A. DeFanti, Jason Leigh, Luc Renambot, Byungil Jeong, Alan
Verlo, Lance Long, Maxine Brown, Daniel J. Sandin, Venkatram Vish-
wanath, Qian Liu, Mason J. Katz, Philip Papadopoulos, Joseph P. Keefe,
Gregory R. Hidley, Gregory L. Dawe, Ian Kaufman, Bryan Glogowski,
Kai-Uwe Doerr, Rajvikram Singh, Javier Girado, Jurgen P. Schulze, Falko
Kuester, and Larry Smarr. The OptIPortal, a Scalable Visualization, Stor-
age, and Computing Interface Device for the OptiPuter. Future Generation
Computer Systems, 25(2):114–123, 2009.

[3] Doug Ramsey. UC San Diego Unveils World’s Highest-Resolution
Scientific Display System, July 2008. Press Release. Available from
http://www.calit2.net/newsroom/release.php?id=1332 (last visited May 27.
2009).

[4] Grant Wallace, Otto J. Anshus, Peng Bi, Han Chen, Yuqun Chen, Douglas
Clark, Perry Cook, Adam Finkelstein, Thomas Funkhouser, Anoop Gupta,
Matthew Hibbs, Kai Li, Zhiyan Liu, Rudrajit Samanta, Rahul Sukthankar,
and Olga Troyanskaya. Tools and applications for large-scale display walls.
IEEE Computer Graphics and Applications, 25(4):24–33, 2005.

[5] oblong industries, inc. The g-speak spatial operating system.
http://oblong.com/ (last visited March 26. 2009).

[6] Thomas Baudel and Michel Beaudouin-Lafon. Charade: remote control of
objects using free-hand gestures. Communications of the ACM, 36(7):28–
35, 1993.

[7] Johnny Chung Lee. Hacking the nintendo wii remote. IEEE Pervasive
Computing, 7(3):39–45, 2008.

163

164 References

[8] advanced realtime tracking GmbH. Artrack motion tracking cameras and
software. http://www.ar-tracking.de/ (last visited March 26. 2009).

[9] Xiang Cao and Ravin Balakrishnan. VisionWand: Interaction techniques for
large displays using a passive wand tracked in 3D. In UIST ’03: Proceed-
ings of the 16th annual ACM symposium on User interface software and
technology, pages 173–182, New York, NY, USA, 2003. ACM.

[10] Alexander Bornik, Reinhard Beichel, Ernst Kruijff, Bernhard Reitinger, and
Dieter Schmalstieg. A hybrid user interface for manipulation of volumetric
medical data. In 3DUI ’06: Proceedings of the IEEE Symposium on 3D
User Interfaces, pages 29–36, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[11] Pranav Mistry, Pattie Maes, and L. Chang. WUW - Wear Ur World - A
Wearable Gestural Interface. In CHI ’09 extended abstracts on Human fac-
tors in computing systems, 2009.

[12] Jefferson Y. Han. Low-cost multi-touch sensing through frustrated total in-
ternal reflection. In UIST ’05: Proceedings of the 18th annual ACM sympo-
sium on User interface software and technology, pages 115–118, New York,
NY, USA, 2005. ACM Press.

[13] Stevie Bathiche and Andy Wilson. Microsoft surface, 2007.
http://www.microsoft.com/surface/ (last visited March 6. 2009).

[14] Giora Yahav, Gabi J. Iddan, and D. Mandelbaum. 3d imaging camera for
gaming application. In ICCE ’07: Digest of Technical Papers of the Inter-
national Conference on Consumer Electronics, pages 1–2, January 2007.

[15] Kyungdahm Yun and Woontack Woo. Tech-note: Spatial interaction us-
ing depth camera for miniature ar. In 3DUI ’09: Proceedings of the IEEE
Symposium on 3D User Interfaces, pages 119–122, March 2009.

[16] Shahzad Malik and Joe Laszlo. Visual touchpad: a two-handed gestural in-
put device. In ICMI ’04: Proceedings of the 6th international conference on
Multimodal interfaces, pages 289–296, New York, NY, USA, 2004. ACM.

[17] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy
Hopper. Virtual Network Computing. IEEE Internet Computing, 2(1):33–
38, 1998.

[18] Kevin E. Martin, David H. Dawes, and Rickard E. Faith. Distributed Multi-
head X design, July 2003. http://dmx.sourceforge.net/dmx.html (last visited
March 6. 2009).

[19] Microsoft Corporation. Microsoft remote desktop; understanding the remote
desktop protocol (rdp). http://support.microsoft.com/kb/186607 (last visited
May 5. 2009).

References 165

[20] Bartels Media GmbH. MaxiVista. http://www.maxivista.com/ (last visited
April 25. 2009).

[21] Daniel Stødle, Olga Troyanskaya, Kai Li, and Otto J. Anshus. Tech-note:
Device-Free Interaction Spaces. In 3DUI ’09: Proceedings of the IEEE
Symposium on 3D User Interfaces, pages 39–42, March 2009.

[22] Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen, and Otto J. An-
shus. Lessons learned using a camera cluster to detect and locate objects. In
Parallel Computing: Architectures, Algorithms and Applications. Proceed-
ings of the International Conference ParCo 2007, volume 15 of Advances
in Parallel Computing, pages 71–78. IOS Press, 2008.

[23] Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-Based, Touch-Free Multi-User Gaming on Wall-
Sized, High-Resolution Tiled Displays. Journal of Virtual Reality and
Broadcasting, 5(10), November 2008.

[24] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. A system for
hybrid vision- and sound-based interaction with distal and proximal targets
on wall-sized, high-resolution tiled displays. In Proceedings of the IEEE In-
ternational Workshop on Human-Computer Interaction 2007, volume 4796
of Lecture Notes in Computer Science, pages 59–68. Springer, 2007.

[25] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. The 22
megapixel laptop. In EDT ’07: Proceedings of the 2007 workshop on
Emerging displays technologies, pages 1–4, New York, NY, USA, 2007.
ACM.

[26] RealVNC, Ltd. VNC for Unix 4.0, 2006. http://www.realvnc.com/ (last
visited April 29. 2008).

[27] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. De-
Centralizing the VNC Model for Improved Performance on Wall-Sized,
High-Resolution Tiled Displays. In NIK ’07: Norsk Informatikkonferanse,
pages 53–64. tapir akademisk forlag, November 2007.

[28] Lillian Hoddeson and Michael Riordan. Crystal Fire: The Invention of the
Transistor and the Birth of the Information Age. W. W. Norton and Com-
pany, December 1998.

[29] Peter Lyman and Hal R. Varian. How much information?, 2003.
http://www.sims.berkeley.edu/how-much-info-2003 (last visited March 23.
2009).

[30] Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike Lang,
Scott Pakin, and Jose C. Sancho. Entering the petaflop era: the architec-
ture and performance of roadrunner. In SC ’08: Proceedings of the 2008

166 References

ACM/IEEE conference on Supercomputing, pages 1–11, Piscataway, NJ,
USA, 2008. IEEE Press.

[31] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), Apr 1965.

[32] Three Rivers Computer Corporation. Three Rivers PERQ, 1980.

[33] Apple Computer, Inc. Apple cinema hd display, June 2004. A 30-inch
display with a resolution of 2560x1600 pixels.

[34] Optoma. Optoma Pico Pocket Projector PK101. http://www.optoma.com/
(last visited March 23. 2009).

[35] Marcus Yam. Sony demonstrates flexible, bendable oled, Jan-
uary 2009. http://www.tomshardware.com/news/Sony-OLED-Flex-bend-
flexible,6773.html (last visited May 5. 2009).

[36] LG.Philips LCD. LG.Philips LCD Develops World’s First Flexible Color
A4-Size E-Paper, May 2007. Press Release.

[37] Duncan Graham-Rowe. Flexible screens get touchy-
feely. MIT Technology Review, February 2009.
http://www.technologyreview.com/computing/22232 (last visited May
4. 2009).

[38] Amazon Inc. Amazon kindle dx, May 2009. The third generation ebook
reader manufactured by Amazon.

[39] Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom DeFanti, Gregory L.
Dawe, and Maxine D. Brown. The immersadesk and infinity wall projection-
based virtual reality displays. SIGGRAPH Computer Graphics, 31(2):46–
49, 1997.

[40] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh, Julieta
Aguilera, Andrew Johnson, and Jason Leigh. High-performance dynamic
graphics streaming for scalable adaptive graphics environment. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page
108, New York, NY, USA, 2006. ACM.

[41] Douglas C. Engelbart and William K. English. A research center for aug-
menting human intellect. In AFIPS Conference Proceedings of the 1968 Fall
Joint Computer Conference, pages 395–410, December 1968.

[42] Isaac Asimov. The Foundation Series. Gnome Press, 1951.

[43] Arthur C. Clarke. 2001: A space odyssey. New American Library, June
1968. The novelisation of the movie.

[44] Stanley Kubrick and Arthur C. Clarke. 2001: A space odyssey, April 1968.
The movie version of the book.

References 167

[45] Steven Spielberg, Philip K. Dick, Scott Frank, and Jon Cohen. Minority
Report. Twentieth Century-Fox Film Corporation, June 2002.

[46] Joel Garreau. Brain wave of the future. The Washington Post, April 2009.
Thursday April. 23.

[47] Mattel, Inc. Mind flex, January 2009. Demonstrated at the Consumer Elec-
tronics Show (CES) 2009.

[48] Nuance Communications, Inc. Dragon NaturallySpeaking.
http://www.nuance.com/naturallyspeaking/ (last visited March 24. 2009).

[49] Apple Computer, Inc. Apple first quarterly earnings report 2009, January
2009. http://www.apple.com/pr/library/2009/01/21results.html (last visited
March 24. 2009).

[50] Apple Computer, Inc. The newton message pad, August 1993.

[51] Michael Arrington. Microsoft TouchWall can inexpensively
turn any flat surface into a multi-touch display, May 2008.
http://www.crunchgear.com/2008/05/14/microsoft-touchwall-can-
inexpensively-turn-any-flat-surface-into-a-multi-touch-display/ (last
visited May 2. 2009).

[52] Chris Flores. The windows team blog: Mi-
crosoft demonstrates multi-touch, May 2008.
http://windowsteamblog.com/blogs/windowsvista/archive/2008/05/27/microsoft-
demonstrates-multi-touch.aspx (last visited January 27. 2009).

[53] Grant Wallace, Peng Bi, Kai Li, and Otto J. Anshus. A MultiCursor X Win-
dow Manager Supporting Control Room Collaboration. Technical Report
TR-707-04, Princeton University, Computer Science, July 2004.

[54] Peter Hutterer. MPX: The Multi-Pointer X Server.
http://wearables.unisa.edu.au/mpx/ (last visited May 4. 2009).

[55] Christian von Hardenberg and François Bérard. Bare-hand human-computer
interaction. In PUI ’01: Proceedings of the 2001 workshop on Perceptive
user interfaces, pages 1–8, New York, NY, USA, 2001. ACM.

[56] W. Matthew Vieta and Matthew Bell. Wavescape: a practical robust display
with a 3d gesture interface. In IPT/EDT ’08: Proceedings of the 2008 work-
shop on Immersive projection technologies/Emerging display technologies,
pages 1–2, New York, NY, USA, 2008. ACM.

[57] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Pe-
ter D. Kirchner, and James T. Klosowski. Chromium: a stream-processing
framework for interactive rendering on clusters. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics and interac-
tive techniques, pages 693–702, New York, NY, USA, 2002. ACM.

168 References

[58] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL, Version 1.2.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[59] Kai-Uwe Doerr and Falko Kuester. CGLX: A Cross-Platform Cluster
Graphics Library. http://vis.ucsd.edu/ cglx/ (last visited March 6. 2009).

[60] Han Chen, Kai Li, and Bin Wei. A Parallel Ultra-High Resolution MPEG-2
Video Decoder for PC Cluster Based Tiled Display Systems. In IPDPS ’02:
Proceedings of the 16th International Parallel and Distributed Processing
Symposium, page 30, Washington, DC, USA, 2002. IEEE Computer Society.

[61] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus.
Hybrid vision- and sound-based interaction on display walls.
http://www.youtube.com/watch?v=ga8e91KHNuM (last visited March
26. 2009).

[62] Mads Eriksen. M - De første årene. Schibsted Forlag, 2007. A Norwegian
comic.

[63] Daniel Stødle. Three years of “M” on a display wall.
http://www.youtube.com/watch?v=aJelUGgWKKM (last visited March 26.
2009).

[64] Daniel Stødle, Olga Troyanskaya, Kai Li, and Otto J. Anshus. Device-Free
Interaction Spaces. http://www.youtube.com/watch?v=4Cp1FbenilY (last
visited March 26. 2009).

[65] technabob. The best way to navigate your comic collection, January
2008. http://technabob.com/blog/2008/01/24/the-best-way-to-navigate-
your-comic-collection/ (last visited May 5. 2009).

[66] Peter Glaskowsky. Bright ideas – notes from the emerging display tech-
nology conference, August 2007. http://news.cnet.com/8301-13512 3-
9755113-23.html (last visited May 5. 2009).

[67] Tor-Magne Stien Hagen, Espen Skjelnes Johnsen, Daniel Stødle,
John Markus Bjørndalen, and Otto Anshus. Liberating the desktop. In ACHI
’08: Proceedings of the First International Conference on Advances in
Computer-Human Interaction, pages 89–94, Washington, DC, USA, 2008.
IEEE Computer Society.

[68] Bård Fjukstad, John Markus Bjørndalen, and Otto J. Anshus. High resolu-
tion numerical models on a display wall. In 7th EMS Annual Meeting and
8th European Conference on Applications of Meteorology (ECAM), page 2,
2007.

[69] id Software. Quake 3 arena (open source version). http://ioquake3.org/ (last
visited April 2. 2009).

References 169

[70] Relic Entertainment. Homeworld (open source version).
http://www.homeworldsdl.org/ (last visited April 2. 2009).

[71] Myron W. Krueger, Thomas Gionfriddo, and Katrin Hinrichsen. VIDEO-
PLACE – An artificial reality. In CHI ’85: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 35–40, New York,
NY, USA, 1985. ACM.

[72] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-
screen projection-based virtual reality: the design and implementation of the
CAVE. In SIGGRAPH ’93: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 135–142, New York,
NY, USA, 1993. ACM.

[73] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V.
Kenyon, and John C. Hart. The CAVE: audio visual experience automatic
virtual environment. Communications of the ACM, 35(6):64–72, 1992.

[74] Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless interfaces
between people, bits and atoms. In CHI ’97: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 234–241, New
York, NY, USA, 1997. ACM.

[75] Brad Johanson, Armando Fox, and Terry Winograd. The interactive
workspaces project: Experiences with ubiquitous computing rooms. IEEE
Pervasive Computing, 1(2):67–74, 2002.

[76] NVIDIA Corporation. NVIDIA GeForce GTX
295 Technical Specifications, January 2009.
http://www.nvidia.com/object/product geforce gtx 295 us.html (last
visited March 23. 2009).

[77] Visbox, Inc. VisWall Datasheet. http://www.visbox.com/wallMain.html
(last visited March 26. 2009).

[78] Glenn Bresnahan, Raymond Gasser, Augustinas Abaravichyus, Erik Bris-
son, and Michael Walterman. Building a large scale, high-resolution, tiled,
rear projected, passive stereo display system based on commodity compo-
nents. In Stereoscopic Displays and Virtual Reality Systems X: Proceedings
of the SPIE Volume 5006, pages 19–30, 2003.

[79] George Robertson, Mary Czerwinski, Patrick Baudisch, Brian Meyers,
Daniel Robbins, Greg Smith, and Desney Tan. The large-display user expe-
rience. IEEE Computer Graphics and Applications, 25(4):44–51, 2005.

[80] Yuqun Chen, Douglas W. Clark, Adam Finkelstein, Timothy Housel, and
Kai Li. Automatic alignment of high-resolution multi-projector displays
using an un-calibrated camera. In VISUALIZATION ’00: Proceedings of

170 References

the IEEE Conference on Visualization, Washington, DC, USA, 2000. IEEE
Computer Society.

[81] Grant Wallace, Han Chen, and Kai Li. DeskAlign: Automaticlly Aligning a
Tiled Windows Desktop. In PROCAMS ’03: Proceedings of IEEE Interna-
tional Workshop on Projector-Camera Systems, pages 1–7, October 2003.

[82] Ruigang Yang, David Gotz, Justin Hensley, Herman Towles, and Michael S.
Brown. Pixelflex: a reconfigurable multi-projector display system. In VI-
SUALIZATION ’01: Proceedings of the IEEE Conference on Visualization,
pages 167–174, Washington, DC, USA, 2001. IEEE Computer Society.

[83] Manuela Waldner, Christian Pirchheim, and Dieter Schmalstieg. Multi pro-
jector displays using a 3D compositing window manager. In IPT/EDT
’08: Proceedings of the 2008 workshop on Immersive projection technolo-
gies/Emerging display technologies, pages 1–4, New York, NY, USA, 2008.
ACM.

[84] Aditi Majumder and Rick Stevens. Color nonuniformity in projection-based
displays: Analysis and solutions. IEEE Transactions on Visualization and
Computer Graphics, 10(2):177–188, 2004.

[85] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew Ev-
erett, and Pat Hanrahan. WireGL: a scalable graphics system for clusters. In
SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 129–140, New York, NY, USA,
2001. ACM.

[86] Robert W. Scheifler and Jim Gettys. The X window system. ACM Transac-
tions on Graphics, 5(2):79–109, 1986.

[87] Brian Craig Cumberland, Gavin Carius, and Andrew Muir. Microsoft Win-
dows NT Server 4.0, Terminal Server Edition: Technical Reference. August
1999.

[88] Hussein Abdel-Wahab and Mark A. Feit. XTV: A framework for sharing
X Window clients in remote synchronous collaboration. In TRICOMM ’91:
Proceedings of the IEEE Conference on Communications Software, pages
159–167, April 1991.

[89] Ethan Solomita, James Kempf, and Dan Duchamp. XMove: A Pseudoserver
for X Window Movement. The X Resource, 11(1):143–170, 1994.

[90] Tristan Richardson. The RFB Protocol, version 3.8, February 2009.

[91] Christian Pirchheim, Manuela Waldner, and Dieter Schmalstieg.
Deskotheque: Improved spatial awareness in multi-display environ-
ments. In Proceedings of VR 2009: The IEEE Virtual Reality Conference
2009, pages 123–126, March 2009.

References 171

[92] The Rocks Cluster Group. Rocks linux cluster distribution, version 4.
http://www.rocksclusters.org/ (last visited April 24. 2009).

[93] Unibrain S.A. Unibrain Fire-i Digital Camera Specifications, 2006.
http://www.unibrain.com/Products/VisionImg/tSpec Fire i DC.htm (last
visited April 6. 2009).

[94] Network Working Group. RFC792 - Internet Control Message Protocol.
September 1981. http://www.ietf.org/rfc/rfc792.txt (last visited April 28.
2009).

[95] Daniel Stødle and Otto J. Anshus. Blurring the line between real and digital:
pinning objects to wall-sized displays. In IPT/EDT ’08: Proceedings of
the 2008 workshop on Immersive projection technologies/Emerging display
technologies, pages 1–5, New York, NY, USA, 2008. ACM.

[96] Meredith Ringel, Henry Berg, Yuhui Jin, and Terry Winograd. Barehands:
implement-free interaction with a wall-mounted display. In CHI ’01: CHI
’01 extended abstracts on Human factors in computing systems, pages 367–
368, New York, NY, USA, 2001. ACM.

[97] Paul Dietz and Darren Leigh. DiamondTouch: a multi-user touch technol-
ogy. In UIST ’01: Proceedings of the 14th annual ACM symposium on User
interface software and technology, pages 219–226, New York, NY, USA,
2001. ACM Press.

[98] Karen Johanne Kortbek and Kaj Grønbæk. Interactive spatial multimedia
for communication of art in the physical museum space. In MM ’08: Pro-
ceeding of the 16th ACM international conference on Multimedia, pages
609–618, New York, NY, USA, 2008. ACM.

[99] Bert Bongers and Gerrit C. Veer. Towards a multimodal interaction space:
categorisation and applications. Personal Ubiquitous Comput., 11(8):609–
619, 2007.

[100] Thomas Riisgaard Hansen, Eva Eriksson, and Andreas Lykke-Olesen.
Mixed interaction space: designing for camera based interaction with mo-
bile devices. In CHI ’05: CHI ’05 extended abstracts on Human factors in
computing systems, pages 1933–1936, New York, NY, USA, 2005. ACM.

[101] Robert G. Kable. Electrographic apparatus, July 1986. US Patent no.
4600807.

[102] Tyco Electronics. Carrolltouch infrared touchscreens.
http://www.elotouch.com/Products/Touchscreens/CarrollTouch/ (last
visited March 6. 2009).

[103] SK Lee, William Buxton, and Kenneth C. Smith. A multi-touch three dimen-
sional touch-sensitive tablet. In CHI ’85: Proceedings of the SIGCHI con-

172 References

ference on Human factors in computing systems, pages 21–25, New York,
NY, USA, 1985. ACM.

[104] Paul Farhi. CNN hits the wall for the election. The Washington Post, Febru-
ary 2008. February 5., 2008. Page C01.

[105] Andrew D. Wilson. Touchlight: an imaging touch screen and display for
gesture-based interaction. In ICMI ’04: Proceedings of the 6th international
conference on Multimodal interfaces, pages 69–76, New York, NY, USA,
2004. ACM.

[106] Ankur Agarwal, Shahram Izadi, Manmohan Chandraker, and Andrew
Blake. High precision multi-touch sensing on surfaces using overhead cam-
eras. International Workshop on Horizontal Interactive Human-Computer
Systems, 0:197–200, 2007.

[107] Shahram Izadi, Steve Hodges, Stuart Taylor, Dan Rosenfeld, Nicolas Villar,
Alex Butler, and Jonathan Westhues. Going beyond the display: a surface
technology with an electronically switchable diffuser. In UIST ’08: Pro-
ceedings of the 21st annual ACM symposium on User interface software
and technology, pages 269–278, New York, NY, USA, 2008. ACM.

[108] RENCI Vis Group. Duke multi-touch wall development - system, November
2008. http://vis.renci.org/multitouch/?p=138 (last visited May 4. 2009).

[109] The Natural User Interface Group. Touchlib, a multi-touch development kit.
http://nuigroup.com/touchlib/ (last visited May 4. 2009).

[110] Joseph A. Paradiso, Kai yuh Hsiao, Joshua Strickon, Joshua Lifton, and Ari
Adler. Sensor systems for interactive surfaces. IBM Systems Journal, 39(3-
4):892–914, 2000.

[111] Ismo Rakkolainen and Karri Palovuori. Laser scanning for the interactive
walk-through fogscreen. In VRST ’05: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 224–226, New York, NY,
USA, 2005. ACM.

[112] SMART Technologies. SMART board interactive whiteboards.
http://www.smarttech.com/ (last visited March 6. 2009).

[113] Gerald D. Morrison. A camera-based input device for large interactive dis-
plays. IEEE Computer Graphics and Applications, 25(4):52–57, 2005.

[114] Nicolai Marquardt, Ricardo Jota, Saul Greenberg, and Joaquim A. Jorge.
The Continuous Interaction Space: Integrating Gestures Above a Surface
with Direct Touch. Technical Report 2009-925-04, University of Calgary,
April 2009.

[115] Vicon Motion Systems. Vicon motion capture. http://www.vicon.com/ (last
visited May 5. 2009).

References 173

[116] Nobuyuki Matsushita and Jun Rekimoto. Holowall: designing a finger,
hand, body, and object sensitive wall. In UIST ’97: Proceedings of the
10th annual ACM symposium on User interface software and technology,
pages 209–210, New York, NY, USA, 1997. ACM.

[117] Evan Hildreth and Francis Macdougall. Multiple camera control system,
June 2006. US Patent no. 7058204.

[118] Heinrich-Hertz-Institut. iPoint Presenter, 2008. http://www.iPoint3D.com/
(last visited April 20. 2009).

[119] Takeo Igarashi and John F. Hughes. Voice as sound: using non-verbal voice
input for interactive control. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and technology, pages 155–
156, New York, NY, USA, 2001. ACM.

[120] Yoshiyuki Mihara, Etsuya Shibayama, and Shin Takahashi. The migratory
cursor: accurate speech-based cursor movement by moving multiple ghost
cursors using non-verbal vocalizations. In Assets ’05: Proceedings of the 7th
international ACM SIGACCESS conference on Computers and accessibility,
pages 76–83, New York, NY, USA, 2005. ACM.

[121] James Scott and Boris Dragovic. Audio Location: Accurate Low-Cost Loca-
tion Sensing. In Proceedings of the 3rd International Conference on Perva-
sive Computing, PERVASIVE 2005, volume 3468 of Lecture Notes in Com-
puter Science, pages 1–18. Springer Verlag, May 2005.

[122] Joseph A. Paradiso. Tracking contact and free gesture across large interac-
tive surfaces. Communications of the ACM, 46(7):62–69, 2003.

[123] Chris Harrison and Scott E. Hudson. Scratch input: creating large, inexpen-
sive, unpowered and mobile finger input surfaces. In UIST ’08: Proceedings
of the 21st annual ACM symposium on User interface software and technol-
ogy, pages 205–208, New York, NY, USA, 2008. ACM.

[124] Jean-Marc Valin, Francois Michaud, Jean Rouat, and Dominic Letourneau.
Robust sound source localization using a microphone array on a mobile
robot. In Proceedings of the International Conference on Intelligent Robots
and Systems (IROS), volume 2, pages 1228–1233, October 2003.

[125] Daniel Vogel and Ravin Balakrishnan. Distant freehand pointing and click-
ing on very large, high resolution displays. In UIST ’05: Proceedings of the
18th annual ACM symposium on User interface software and technology,
pages 33–42, New York, NY, USA, 2005. ACM.

[126] Xiaojun Bi, Yuanchun Shi, Xiaojie Chen, and Peifeng Xiang. Facilitating
interaction with large displays in smart spaces. In sOc-EUSAI ’05: Proceed-
ings of the 2005 joint conference on Smart objects and ambient intelligence,
pages 105–110, New York, NY, USA, 2005. ACM.

174 References

[127] Sarah M. Peck, Chris North, and Doug Bowman. A multiscale interaction
technique for large, high-resolution displays. In 3DUI ’09: Proceedings of
the IEEE Symposium on 3D User Interfaces, pages 31–38, March 2009.

[128] Patrick Baudisch, Edward Cutrell, Dan Robbins, Mary Czerwinski, Peter
Tandler, Benjamin Bederson, , and Alex Zierlinger. Drag-and-Pop and Drag-
and-Pick: Techniques for Accessing Remote Screen Content on Touch- and
Pen-operated Systems. In Proceedings of Interact 2003, pages 57–64, Au-
gust 2003.

[129] Anastasia Bezerianos and Ravin Balakrishnan. The vacuum: facilitating the
manipulation of distant objects. In CHI ’05: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 361–370, New
York, NY, USA, 2005. ACM.

[130] Azam Khan, George Fitzmaurice, Don Almeida, Nicolas Burtnyk, and Gor-
don Kurtenbach. A remote control interface for large displays. In UIST ’04:
Proceedings of the 17th annual ACM symposium on User interface software
and technology, pages 127–136, New York, NY, USA, 2004. ACM.

[131] George Robertson, Mary Czerwinski, Patrick Baudisch, Brian Meyers,
Daniel Robbins, Greg Smith, and Desney Tan. The large-display user expe-
rience. IEEE Computer Graphics and Applications, 25(4):44–51, 2005.

[132] IEEE Computer Society. IEEE Standard for a High-Performance Serial Bus.
IEEE Standard 1394-2008, pages 1–906, Oct 2008.

[133] Massimo Piccardi. Background subtraction techniques: a review. In 2004
IEEE International Conference on Systems, Man and Cybernetics, vol-
ume 4, pages 3099–3104 vol.4, Oct 2004.

[134] Prasanna Kumar Sahoo, S. Soltani, Andrew K. C. Wong, and Ye C. Chen. A
survey of thresholding techniques. Computer Vision, Graphics, and Image
Processing, 41(2):233–260, 1988.

[135] Damien Douxchamps et. al. libdc1394, an open
source library for handling FireWire DC 1394 cameras.
http://damien.douxchamps.net/ieee1394/libdc1394/ (last visited March
6. 2009).

[136] Charles H. Knapp and G. Clifford Carter. The generalized correlation
method for estimation of time delay. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 24:320–327, August 1976.

[137] Ross Bencina and Phil Burk. PortAudio - an Open Source Cross Platform
Audio API. In Proceedings of the International Computer Music Confer-
ence, pages 263–266, 2001.

References 175

[138] Richard O. Duda and Peter E. Hart. Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM, 15(1):11–
15, 1972.

[139] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Anal-
ysis. John Wiley and Sons, 1973.

[140] Deb Agarwal. devserv - open source camera control software, 2005.
http://acs.lbl.gov/OldMisc/mbone/devserv/ (last visited April 29. 2009).

[141] I. Scott MacKenzie and Colin Ware. Lag as a determinant of human per-
formance in interactive systems. In CHI ’93: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 488–493, New
York, NY, USA, 1993. ACM Press.

[142] Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and
Otto J. Anshus. Gesture-based, touch-free multi-user gaming on wall-sized,
high-resolution tiled displays. In Proceedings of the 4th International Sym-
posium on Pervasive Gaming Applications, PerGames 2007, pages 75–83,
June 2007.

[143] Matthew M. Hibbs, Grant Wallace, Maitreya Dunham, Kai Li, and Olga
Troyanskaya. Viewing the larger context of genomic data through horizontal
integration. IV ’07: Proceedings of the IEEE International Conference on
Information Visualization, pages 326–334, July 2007.

[144] SDL: Simple Directmedia Layer. A cross-platform, open-source li-
brary for “low-level access to a video framebuffer, audio output, mouse,
keyboard, and joysticks across a wide variety of operating systems.”
http://www.libsdl.org/ (last visited March 6. 2009).

[145] Espen Skjelnes Johnsen, John Markus Bjørndalen, Tore Larsen, and Otto J.
Anshus. Simplifying Applications Use of Wall-Sized Tiled Displays. In
NIK ’08: Norsk Informatikkonferanse, 2008.

[146] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. Support for
collaboration, visualization and monitoring of parallel applications using
shared windows. In Applied Parallel Computing. State of the Art in Scien-
tific Computing, volume 4699 of Lecture Notes in Computer Science, pages
228–238. Springer, 2006.

[147] Scott Campbell. Survey: Notebooks surpass desktop sales for first time.
CRN, August 2005. http://www.crn.com/white-box/169400139 (last visited
March 6. 2009).

[148] Tony Lin, Peng-Wei Hao, Chao Xu, and Ju-Fu Feng. Hybrid image coding
for real-time computer screen video transmission. Visual Communications
and Image Processing 2004, 5308-1:946–957, January 2004.

176 References

[149] Lars Ailo Bongo, Grant Wallace, Tore Larsen, Kai Li, and Olga Troyan-
skaya. Systems support for remote visualization of genomics applications
over wide area networks. In GCCB ’06: Proceedings of the International
Workshop on Distributed, High-Performance and Grid Computing in Com-
putational Biology, volume 4360 of Lecture Notes in Computer Science,
pages 157–174. Springer, March 2007.

[150] Grant Wallace and Kai Li. Virtually shared displays and user input devices.
In ATC’07: Proceedings of the 2007 USENIX Annual Technical Conference,
pages 1–6, Berkeley, CA, USA, 2007. USENIX Association.

[151] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. Collaborative
sharing of windows between Mac OS X, the X Window System and Win-
dows. In NIK ’04: Norsk Informatikkonferanse, 2004.

[152] Tim Dreyer. NEC display solutions announces first Win-
dows Vista-compatible projectors and Silicon Optix HQV
Processing, June 2007. Press Release. Available from
http://www.necus.com/companies/17/NECDisplaySolutions Announces First.pdf
(last visited May 5. 2009).

[153] Aequitas Technologies. iGala digital photo frame. http://www.i-gala.com/
(last visited May 5. 2009).

[154] Brian K. Schmidt, Monica S. Lam, and J. Duane Northcutt. The interac-
tive performance of slim: a stateless, thin-client architecture. In SOSP ’99:
Proceedings of the seventeenth ACM symposium on Operating systems prin-
ciples, pages 32–47, New York, NY, USA, 1999. ACM.

[155] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh. THINC: a virtual
display architecture for thin-client computing. In SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems principles, pages
277–290, New York, NY, USA, 2005. ACM Press.

[156] The VirtualGL Project. A Study of the Performance of VirtualGL 2.1 and
TurboVNC 0.4, 2008. http://www.virtualgl.org (last visited April 29. 2008).

[157] Apple Computer, Inc. Cocoa Fundamentals Guide. Apple Computer, Inc.,
November 2008.

[158] Apple Computer, Inc. I/O Kit Fundamentals - Hardware and drivers. Apple
Computer, Inc., May 2007.

[159] Video Electronics Standards Association. VESA Enhanced Extended Dis-
play Identification Data – Implementation Guide, June 2001. Version 1.0.

[160] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end argu-
ments in system design. ACM Transactions on Computer Systems, 2(4):277–
288, 1984.

References 177

[161] Brad Johanson and Armando Fox. The event heap: A coordination infras-
tructure for interactive workspaces. In WMCSA ’02: Proceedings of the
Fourth IEEE Workshop on Mobile Computing Systems and Applications,
page 83, Washington, DC, USA, 2002. IEEE Computer Society.

[162] Greg Eisenhauer, Fabian E. Bustamante, and Karsten Schwan. Event ser-
vices for high performance computing. In Proceedings of the Ninth Inter-
national Symposium on High-Performance Distributed Computing, pages
113–120, 2000.

[163] Apple Computer, Inc. Bonjour Overview. Apple Computer, Inc., May 2006.

[164] Daniel Steinberg and Stuart Cheshire. Zero Configuration Networking: The
Definitive Guide. O’Reilly Media, Inc., 2005.

[165] Philip J. Mucci, Kevin S. London, and John Thurman. The
cachebench report. Technical report, University of Tennessee, Com-
puter Science, November 1998. Technical report: Available from
http://icl.cs.utk.edu/projects/llcbench/index.html (last visited April 16.
2008).

178 References

Appendix A

Papers

The papers included in this appendix have all been peer-reviewed prior to publica-
tion in their respective venues. They all appear exactly as they were in their final,
published state. No modifications have been made. References within the papers
refer to the references listed at the end of each paper, and not to the main references
of the dissertation.

The papers are listed in chronological order. In cases where a paper has been
presented at a conference and later accepted in revised form for a journal or pro-
ceedings, the revised paper is included with a reference to the original publication.

A.1 Gesture-Based, Touch-Free Multi-User Gaming on Wall-
Sized, High-Resolution Tiled Displays

Citation

Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and Otto J. An-
shus. Gesture-based, touch-free multi-user gaming on wall-sized, high-resolution
tiled displays. In Proceedings of the 4th International Symposium on Pervasive
Gaming Applications, PerGames 2007, pages 75–83, June 2007.

Revised:

Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, and Otto J. An-
shus. Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays. Journal of Virtual Reality and Broadcasting,
5(10), November 2008.

179

180 A Papers

Abstract

Having to carry input devices can be inconvenient when interacting with wall-
sized, high-resolution tiled displays. Such displays are typically driven by a cluster
of computers. Running existing games on a cluster is non-trivial, and the perfor-
mance attained using software solutions like Chromium is not good enough.

This paper presents a touch-free, multi-user, human-computer interface for wall-
sized displays that enables completely device-free interaction. The interface is
built using 16 cameras and a cluster of computers, and is integrated with the games
Quake 3 Arena (Q3A) and Homeworld. The two games were parallelized using
two different approaches in order to run on a 7x4 tile, 21 megapixel display wall
with good performance.

The touch-free interface enables interaction with a latency of 116 ms, where 81
ms are due to the camera hardware. The rendering performance of the games
is compared to their sequential counterparts running on the display wall using
Chromium. Parallel Q3A’s framerate is an order of magnitude higher compared
to using Chromium. The parallel version of Homeworld performed on par with the
sequential, which did not run at all using Chromium. Informal use of the touch-free
interface indicates that it works better for controlling Q3A than Homeworld.

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized,
High-Resolution Tiled Displays

Daniel Stødle, Tor-Magne Stien Hagen, John Markus Bjørndalen, Otto J. Anshus
Dept. of Computer Science

University of Tromsø
N-9037 Tromsø, Norway

phone, e-mail: +47 77 64 42 22
{daniels, tormsh, jmb, otto}@cs.uit.no

Abstract

Having to carry input devices can be inconvenient
when interacting with wall-sized, high-resolution tiled
displays. Such displays are typically driven by a clus-
ter of computers. Running existing games on a cluster
is non-trivial, and the performance attained using soft-
ware solutions like Chromium is not good enough.

This paper presents a touch-free, multi-user, human-
computer interface for wall-sized displays that enables
completely device-free interaction. The interface is
built using 16 cameras and a cluster of computers, and
is integrated with the games Quake 3 Arena (Q3A) and
Homeworld. The two games were parallelized using
two different approaches in order to run on a 7x4 tile,
21 megapixel display wall with good performance.

The touch-free interface enables interaction with a
latency of 116 ms, where 81 ms are due to the camera
hardware. The rendering performance of the games
is compared to their sequential counterparts running
on the display wall using Chromium. Parallel Q3A’s
framerate is an order of magnitude higher compared
to using Chromium. The parallel version of Home-

Digital Peer Publishing Licence
Any party may pass on this Work by electronic
means and make it available for download under
the terms and conditions of the current version
of the Digital Peer Publishing Licence (DPPL).
The text of the licence may be accessed and
retrieved via Internet at
http://www.dipp.nrw.de/.
First presented at the 4th Intl. Symposium on
Pervasive Gaming Applications, PerGames 2007.
Revised for JVRB.

world performed on par with the sequential, which did
not run at all using Chromium. Informal use of the
touch-free interface indicates that it works better for
controlling Q3A than Homeworld.

Keywords: Display wall, multi-touch, device-free,
parallelized games

1 Introduction

Wall-sized, high-resolution tiled displays are becom-
ing increasingly common in locations ranging from
visualization labs to public spaces. Often, having to
carry input devices around in order to interact with
applications running on a display wall can be incon-
venient. Devices like mice or Nintendo Wiimotes are
easily misplaced, and for public installations there is
the risk of theft. Asking users to wear optical or elec-
tronic markers raises the bar for casual users. Instead,
a completely device-free approach to interacting with
wall-sized displays is necessary.

Display walls provide high resolution by tiling a
set of independent displays in a grid. Each dis-
play is usually driven by a computer in a display
cluster[LCC+00]. The resolution of a typical desktop
display is about 2-3 megapixels, while the resolution
of a display wall ranges from 10 to 100 megapixels
[LCC+00, SW06] and beyond. The display wall used
in this paper is comprised of 28 projectors, each driven
by one computer and arranged in a 7x4 grid, for a total
resolution of 7168x3072 pixels.

For games, high framerates are important [CCD06].
Maintaining high framerates becomes increasingly
difficult as the resolution goes up. Further, the cluster-
based architecture of display walls makes running ex-

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 181

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

isting games difficult, as very few, if any, games are
written to run on a cluster of computers or use more
than a few displays. Chromium [HHN+02] can be
used to make the display wall appear as a single dis-
play to OpenGL-based applications, but at the cost of
sub-optimal performance. In addition, not all software
works with Chromium.

This paper presents a device- and touch-free multi-
user human-computer interface for display walls.
Users standing in front of such a display wall can in-
teract with applications directly using hand- and arm-
gestures without the need for any devices and with-
out having to wear markers of any kind. The inter-
face has been integrated with two commercial, but now
open-source games1: Quake 3 Arena (Q3A) [iS08]
and Homeworld [Ent08], respectively a first-person
shooter (FPS) and a real-time strategy (RTS) game.
Games were chosen because they generally require
low-latency input to be playable. If the touch-free in-
terface does not provide sufficiently good accuracy or
low latency, the games will become unplayable. The
two games were parallelized in order to run on the dis-
play wall with good performance, and modified to ac-
cept position data from the touch-free interface. Figure
1 shows two persons playing Q3A against each other
on a display wall. The person in the middle is playing
Homeworld.

Figure 1: Two persons playing Q3A and one person
playing Homeworld simultaneously on a 7x4 tile dis-
play wall. Q3A runs on 2x2 tiles to the left and right,
and Homeworld on 3x3 tiles in the middle.

The interface uses 16 cameras and 9 computers to
detect objects in front of the display wall, and is able
to detect multiple objects simultaneously at a rate of
30 Hz. When three or more cameras see the same ob-

1Only the game engines are open source. The data files still
require a license.

ject, triangulation can be used to determine the object’s
position. The interface is referred to as touch-free, as
users can interact with the display wall without actu-
ally touching its canvas. This is an important advan-
tage over existing solutions that require touch to work
[Han05], as the canvas used for our display wall is flex-
ible and thus prone to perturbation when users touch it.
The interface’s main advantage over other approaches,
like the IS-900 tracking system [Int08], is that it is
completely device-free. Users need not wear markers
to accommodate the interface, but can instead walk di-
rectly up to the display wall and start interacting. This
is particularly important for public installations, where
markers or other input devices might easily get lost or
stolen. Even in a lab setting it is easy to misplace in-
put devices, or confuse the different input devices with
each other (“Which mouse/Wiimote is the correct one?
Where did I leave it?”).

Two different approaches were used when paral-
lelizing Q3A and Homeworld. For both Q3A and
Homeworld, a copy of the game runs on each tile.
Each copy’s OpenGL view frustum is modified in ac-
cordance with the tile it runs on to create a coherent,
multi-tile view. For Q3A, the existing client-server
based architecture combined with the concept of spec-
tators was exploited. The server keeps all the clients
in sync, and the spectator-concept enables different
clients to be configured so as to constantly follow a
given player. For Homeworld, a state-synchronizing,
master-slave approach was taken. Each copy shares a
global clock and random number generator seed. The
master distributes all input to the different slaves, with
the purpose of having all copies compute the exact
same game state for each new frame.

Experiments were conducted to measure the latency
of the touch-free interface, as well as the framerate of
the two games. The experiments show that the time
before an object’s position is available to the games
averages 116.7 ms, with the majority of this latency
incurred by the FireWire-based cameras. Game-side
gesture-processing did not incur significant latencies,
due to the simple gestures involved. For Q3A, the
framerate is shown to be as much as an order of mag-
nitude better than using Chromium. Homeworld’s
framerate remains high in the parallel configuration,
and outperforms the single-display configuration when
running on both 2x2 and 3x3 tiles. Homeworld did not
work with Chromium at all.

The main contributions of this paper are (i) a dis-
tributed, device- and touch-free multi-user interface,

urn:nbn:de:0009-6-15001, ISSN 1860-2037

182 A Papers

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

(ii) two approaches to parallelizing games for a dis-
play wall environment, demonstrating how different
aspects of the two games’ existing architectures can
be exploited, (iii) a prototype system for gesture-based
input to games in the FPS and RTS genres, (iv) an eval-
uation of the interface’s responsiveness when used to
interact with two games, and (v) evaluation of three
different approaches for making existing games run on
display walls.

2 Related Work

The Quake-series of games have been popular targets
for modification and extension, both in terms of input
devices and display surfaces. Some examples include
playing Quake using Nintendo’s Wiimote, using eye-
tracking to play Quake, or controlling Quake from a
PDA2. CaveQuake is a limited re-implementation of
Quake II and Q3A for use in a CAVE3, but does not
support all the features of the full games, and for the
Q3A case does not even support playing. In [KLJ04],
the authors present a gesture-based interface to Quake
2. The interface is limited in that only one person may
use it at a time, and differs from the touch-free inter-
face presented in this paper by the use of whole upper-
body gestures. The touch-free interface only enables
hand- and arm-gestures. We are not aware of any work
to integrate new input devices or new display surfaces
for Homeworld.

In [BBH05], a gaming interface based on a com-
mercially available stool, “The Swopper,” is presented.
The stool and a light gun is used to produce joystick
input events to control an FPS game. By shifting the
body weight and rotating on the stool in combination
with aiming and firing the gun, the user can navigate
and interact with the world. The touch-free interface
does not require the use of any external devices, and
the large display wall makes it possible to have multi-
ple players playing side-by-side simultaneously. The
stool-and-light-gun approach is more expressive com-
pared to the gestures recognized by the touch-free in-
terface.

Gesture VR [SK98] is a video-based, hand-gesture
recognition system. The system recognizes three ges-
tures which are used to provide applications with dif-
ferent input events, as demonstrated by controlling

2http://www.youtube.com/watch?v=n1tsXc2RoeM
http://www.youtube.com/watch?v=3pRWYE2LRhk
http://www.youtube.com/watch?v=tNJXjNBgmLs

3http://www.visbox.com/cq3a/

Doom, an FPS game developed by id Software. Their
solution is centralized, using two synchronized cam-
eras connected to a single computer. The touch-free
interface comprises 16 cameras connected to 8 com-
puters, enabling it to cover a larger area at the cost of
a more elaborate hardware setup. The touch-free in-
terface only recognizes simple gestures (2D position
and radius of detected objects), while Gesture VR al-
lows for detection of 3D position and three different
gestures.

In [TGSF06], the authors argue that a digital table is
a conductive form factor for general co-located home
gaming. By combining speech and hand gestures as
input to two commercial games, The Sims and War-
craft III, several persons can interact with the games
running on the tabletop. The touch-free interface is
based on hand- and arm-gestures alone on wall-sized
displays. The physical dimensions of the display wall
enables more than a couple of people to play simul-
taneously, against each other or co-operatively. Fur-
ther, we have modified the source of the two games,
enabling more flexible multi-point interaction. The
games used in [TGSF06] are not open source, requir-
ing that custom wrappers are built that translate touch-
and speech input to mouse and keyboard events. In
[SZP+00], the authors demonstrate a bimodal speech-
and gesture-based interface for interacting with a 3D-
visualization. Apart from the speech-aspect, this sys-
tem differs from the touch-free interface in that it sup-
ports only one user at a time and has a far more limited
area in which interaction can take place.

The authors of [TGSF06] use the Diamond-
touch [DL01] tabletop for multi-touch interaction.
Other technologies for multi-touch interaction include
[Han05], where infrared light is projected into a can-
vas and internally reflected. The internal reflection of
the light is frustrated at points where the user touches
the canvas. The escaping light can be detected us-
ing a camera mounted behind the canvas. The touch-
free interface is based on detecting the presence of
objects directly, and does not require the user to ac-
tually touch the display wall’s canvas. In [Mor05],
the author presents a camera-based solution to detect-
ing and positioning objects in front of a whiteboard
called the “SmartBoard.” The approach is similar to
the touch-free interface, except that the touch-free in-
terface utilizes a distributed approach with 16 com-
modity FireWire cameras connected to a set of com-
puters, whereas the SmartBoard uses custom cameras
with on-chip processing to perform object recognition.

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 183

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

Chromium [HHN+02] is a system for distributing
streams of rendering commands, allowing many exist-
ing OpenGL applications to run on tiled display walls
without modifications. Chromium works by concep-
tually making the individual tiles of a display wall ap-
pear as a single, logical display to the application. By
making applications use Chromium’s OpenGL library,
Chromium can intercept rendering commands and for-
ward them to remote rendering nodes. Homeworld did
not run using Chromium, and Chromium’s rendering
performance running Q3A did not scale well beyond
2x2 tiles.

In CaveUT [JH02], a set of modifications to Un-
real Tournament is presented that allows it to display
in panoramic theaters. The same principle of using
spectators to support multi-tile rendering is applied
as employed by the parallel version of Q3A. How-
ever, no measurements of the resulting performance
are presented. This paper presents measurements of
the Q3A’s framerate and documents the latency in-
curred by using spectators.

3 Design

Quake 3 Arena [iS08], developed by id Software, is
an open-source first-person shooter designed for mul-
tiplayer gaming. It is based on a client-server architec-
ture where the server maintains the state of the game.
At a fixed rate, independent of the connected clients,
the server updates its game state, before broadcasting
state changes to connected clients. Clients use this
to update their view of the game. A client in Q3A
is either a player or a spectator. A player is a client
that participates in the game. A spectator is a client
that instead of participating, follows one of the players
around and displays that player’s view of the game.

Homeworld [Ent08] is a 3D real-time strategy game
developed by Relic Entertainment. In September
2003, the Homeworld engine was made open source.
Although the Linux version still lacks some of the fea-
tures of the complete game, including software ren-
dering, cut-scene playback and networked multiplayer
support, the game itself is fully playable in single-
player mode. In contrast to Q3A, Homeworld has a
monolithic design, with all code running inside a sin-
gle process.

Figure 2 shows the overall design of the touch-free
interface, and its use with Q3A and Homeworld. Im-
ages are captured and then analyzed to locate objects
in a plane parallel to the display wall’s canvas. The

Figure 2: The design of the touch-free interface, and
its use with Q3A and Homeworld.

Figure 3: Running Q3A and Homeworld on a 7x4
display wall. To the left and right, two Q3A players
control a set of Q3A spectators. In the middle, a sin-
gle Homeworld master synchronizes the rendering and
game simulations of 8 Homeworld slave copies.

positions of these objects are then processed by an ob-
ject detector that yields the object’s 2D position and
radius, before the resulting information is sent to the
two games. The two games process the data individu-
ally, using object positions and radii to detect gestures
and handle them in game-specific ways.

The design of the parallelized Q3A uses a modified
player that receives input from the touch-free inter-
face. The player uses the positions received to rec-
ognize gestures, and converts them to keyboard and
mouse events suitable for the game. The player relays
its actions to the Q3A server, which then updates all
clients with the new game state. This causes the spec-
tators following a given player to update their view.

urn:nbn:de:0009-6-15001, ISSN 1860-2037

184 A Papers

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

(a) Using a “vertical” hand
to control the player’s aim.

(b) Controlling aim and fir-
ing by making the hand flat.

(c) Moving and aiming simultaneously using both
hands.

Figure 4: Gestures for controlling Q3A .

For Homeworld, a single copy is elected as a mas-
ter. The master becomes responsible for accepting and
interpreting input from the touch-free interface. Af-
ter recognizing gestures, the resulting input is handled
and broadcast to the slave copies. Figure 3 shows one
configuration of a 7x4 tiled display wall where two
users can play Q3A against each other, while a third
user simultaneously plays Homeworld. This configu-
ration is identical to the one pictured in Figure 1. Sev-
eral other configurations are also possible.

3.1 Hand- and arm-gestures

When playing an FPS using a mouse and keyboard, the
mouse is used to aim and fire, and the keyboard is used
for movement. In addition, the mouse’s scroll wheel
is often used to switch weapons, and the keyboard
to control other actions the player can take (ducking,
jumping, etc.). The following gestures, summarized
in Table 1, were used for controlling Q3A. When only
one hand is detected by the input system, its position is
used for controlling the player’s aim. When the hand
is tilted (making it flat), it will additionally fire the
player’s weapon. When two hands are detected, the
right hand controls aim and firing, and the left hand is
used to move the player forwards or backwards. Fig-
ure 4 illustrates the gestures.

Action Gesture
Aim Move right/only hand
Fire weapon Flat right/only hand
Move forward Vertical left hand
Move backward Flat left hand

Table 1: The gestures in Q3A that the game recognizes
and maps to actions.

Homeworld uses a different control scheme. When

using a keyboard and mouse, the main controls can
all be accessed with the mouse, and the keyboard is
mostly used for shortcuts for different menu selections
and buttons. When no mouse buttons are pressed, the
mouse simply controls an on-screen cursor. Holding
down different mouse buttons, the user can pan and
zoom the camera, as well as select entities and manip-
ulate them from a contextual menu.

Action Gesture
Control cursor position Move right/only hand
Select/click entities Flat right/only hand
Pan view/contextual menu Flat left hand
Toggle tactical view Vertical left hand
Zoom Flat left and right hand,

distance between hands
control zoom factor

Table 2: Actions in Homeworld and their correspond-
ing gestures.

Table 2 lists the different actions in Homeworld, and
their mapping to gestures. The cursor is controlled us-
ing a one-to-one mapping from hand location to the
display wall. When the right/only hand is flat (like the
fire-gesture in Q3A), the user can select or click items.
The user can enter or leave Homeworld’s tactical view
using a vertical left hand. With a flat left hand, the user
can either invoke Homeworld’s contextual menu (for
moving ships, creating formations, and so on), or pan-
ning the camera (by simultaneously moving the right
hand). Finally, the user can zoom the camera in and
out using a flat left and right hand, varying the distance
between them to control the amount of zoom.

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 185

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

Figure 5: The architecture of the touch-free interface.

4 Implementation

Figure 5 shows the architecture of the touch-free in-
terface. The interface makes use of 16 FireWire cam-
eras, connected in pairs to 8 Mac minis. The cam-
eras are mounted along the floor, enabling the detec-
tion of objects in a plane parallel to the display wall’s
canvas. The cameras have a 42-degree field-of-view.
Images are captured at 30 FPS with a resolution of
640x480 pixels in 8-bit grayscale. Each image is pro-
cessed by subtracting the background, removing noise
and thresholding the result to identify objects (which
are typically hands or arms). This yields zero or more
pairs of 1D position and radius.

Each Mac mini sends its identified positions and
radii via an event server to a MacBook Pro that de-
termines the position of each object in 2D space using
triangulation (Figure 6). The resulting 2D positions
and radii are sent via the event server to either Home-
world or Q3A. The event server’s role is to distribute
events of different kinds to software used with the dis-
play wall. The software for capturing images, detect-
ing and positioning objects was implemented for Mac
OS X in Objective-C and C, using libdc13944 to com-
municate with the FireWire cameras; more details on
the design and implementation appear in [SHBA08].

Q3A and Homeworld were modified to receive ob-
ject position events from the touch-free interface, and
then interpret them according to the gestures outlined
in the previous section. When a gesture is recognized,
events corresponding to the action associated with the
gesture is injected into the game’s input event stream.
Depending on the relative amount of movement de-
tected, mouse events can be generated, and the object’s
radius is used to determine whether it is interpreted as
a flat hand or a vertical hand.

4http://libdc1394.sourceforge.net/

Figure 6: 16 cameras positioned below the display
wall’s canvas are used to triangulate the position of
different objects.

4.1 Parallelizing Q3A and Homeworld

Running Q3A and Homeworld on a tiled display wall
requires that each tile displays a part of the total view
for each game. To achieve this, the view frustum used
by OpenGL for both Q3A and Homeworld must be
modified in relation to the tile on which the game runs.

The parallel version of Q3A is controlled by config-
uring a set of environment variables, and then reading
them from within the game. The variables control how
the view frustum is configured, as well as whether or
not a client is designated as a player or a spectator,
and which player a given spectator follows. Due to the
client-server architecture of Q3A, this is sufficient to
create a parallel version that will run on the display
wall. Figure 7 shows a player in the upper-left corner,
with four spectators following that player, as it would
appear on a tiled display wall.

Homeworld was parallelized by running several

urn:nbn:de:0009-6-15001, ISSN 1860-2037

186 A Papers

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

Figure 7: Example Q3A configuration on a display
wall. The upper left corner shows the player, while
the remaining four clients are spectators following that
player, with modified view frustums to match the tiles
on which they run.

tightly coupled copies and manually ensuring state
consistency between them. Each copy runs on one tile,
and the Message Passing Interface (MPI) [BDV94] is
used to exchange state information and keep the copies
synchronized. One copy is elected as master, and
the remaining copies become slaves. For each frame,
the master accepts input from the touch-free interface
and broadcasts it to the slaves. Before starting a new
frame, all the copies synchronize at a barrier. This en-
sures that each slave receives the same input during
the same simulation step in the game, and synchro-
nizes the visual display. To ensure that each copy’s
game simulation proceeds identically on all nodes, the
same value is used to seed each copy’s pseudo-random
number generator. Finally, a global clock is shared by
all the copies and controlled by the master.

5 Experiments

Three experiments were conducted. The first experi-
ment was performed to determine the latency involved
in using the touch-free interface, and determine if it is
sufficiently low to play games. The next two experi-
ments measured the rendering performance of the two
games. For Q3A, the results are compared to Q3A run-
ning on the display wall using Chromium; for Home-
world, the results are compared to running Homeworld
on a single display.

The hardware used was (i) a display cluster with
28 nodes (Intel Pentium 4 EM64T, 3.2 GHz, 2 GB
RAM, HyperThreading enabled, NVIDIA Quadro FX
3400 with 256 MB Video RAM, running the Rocks
cluster distribution 4.0) connected to 28 projectors
(1024x768, arranged in a 7x4 matrix), (ii) switched,
Gigabit Ethernet, (iii) 8 Mac minis (1.66 GHz Intel
Core Duo, 512 MB RAM, Mac OS X 10.4.9), (iv) 16
Unibrain Fire-i FireWire cameras, (v) a MacBook Pro
(2.33 GHz Intel Core 2 Duo, 3 GB RAM, Mac OS X
10.4.9). Each Mac mini was connected to two cam-
eras. The MacBook Pro was used to run the object
detection software.

5.1 Latency Measurements

Referring to Figure 5, there are five areas where sig-
nificant latency may be introduced: (1) The time taken
from the camera captures an image, until the image is
available to a Mac mini for processing, (2) the time
taken by the Mac mini to process the image, (3) the
time taken to transfer processed data over the network
to the MacBook Pro, (4) time taken by the MacBook
Pro to detect objects using information gathered from
all the Mac minis, and (5) the time taken to distribute
the resulting object positions to the two games.

For Q3A, there is one additional, latency-inducing
step. This step is the time from a gesture is recog-
nized, until the action caused by the gesture is shown
by the spectators. This latency is caused by the re-
quired round-trip from a Q3A player via Q3A’s server
to the spectators.

5.1.1 Methodology

The camera-induced latency (1) is measured by point-
ing a camera at the screen attached to a computer cap-
turing images from the camera. The computer’s screen
is initially black, before it is turned white. At this
point, a timer starts. The timer stops when the images

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 187

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

(a) The latency from when the cameras grab images, until positions
of objects are available for processing by either Q3A or Homeworld.
Each measurement represents an average measure of the latency.

(b) The additional latency as input events are delivered
to a Q3A player, sent to the server and finally made
visible by the spectators.

Figure 8: Latency measurements for (a) the touch-free interface and (b) Quake 3 Arena.

captured by the camera show a white screen, with the
resulting latency being the elapsed time since the timer
was started.

The processing-sensitive latencies (2 and 4) are
measured by measuring typical execution times for the
code that respectively performs image processing and
object detection. The network latencies (3 and 5) are
determined by measuring the time taken to send a mes-
sage from one computer via an event server to the tar-
get, and receiving a reply.

To avoid modifying Q3A’s server, the added latency
in Q3A is determined as follows. When the player
fires his weapon, the Q3A engine will cause a weapon-
fire sound to be played. The client-side sound-playing
code was modified to start a timer when that sound is
played. Each spectator reports back to the player when
it plays a weapon-fire sound, yielding an estimate of
the latency from when something happens at the con-
trolling player, until it is visible to the spectators.

5.1.2 Results

The results from the latency measurements are sum-
marized in Figure 8(a). The additional latency in-
troduced through Q3A’s client-server architecture is
shown in Figure 8(b). The average latency before an
object’s position is available to either game is 116.7
ms. The camera-induced latency is the greatest con-
tributor, at 81 ms. Object detection requires 31 ms. For
Q3A, the added latency averaged 87 ms with a stan-
dard deviation of 59 ms over 1287 samples gathered
from 9 spectators.

5.2 Rendering Performance

The metric used to measure the performance of Q3A
and Homeworld is frames per second. For both Q3A
and Homeworld, input events are recorded over a pe-
riod of about 30 seconds. The game is started in a
known state, and the recorded input events are played

back5. During playback, the framerate is logged con-
tinuously.

5.2.1 Methodology

Figure 9: The framerate when running Q3A on 2x2,
3x3 and 7x4 tiles using Chromium, compared to the
parallel version’s framerate running on 7x4 tiles.

The performance of both Homeworld and Q3A was
measured for four different configurations, with 1, 4,
9 and 28 rendering nodes. For Q3A, the framerate
was limited to 500, and the performance measured
both when using Chromium to distribute the render-
ing, and when running the parallel version. The Q3A
server ran locally on the same network. For Home-
world, which did not work with Chromium, the par-
allel version’s framerate was measured, and compared
to running Homeworld on a single display.

5This is similar to measuring Quake performance by running a
timedemo. The timedemo mechanism already in Quake does not
work for the parallel version, as it is designed to run on a single
computer only.

urn:nbn:de:0009-6-15001, ISSN 1860-2037

188 A Papers

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

(a) The framerate when running Homeworld on a single dis-
play, compared to running it on 2x2, 3x3 and 7x4 tiles.

(b) The total number of frames drawn when running Home-
world on a single display, compared to 2x2, 3x3 and 7x4 tiles.

Figure 10: Homeworld performance measurements.

5.2.2 Results

Figure 9 shows the results from measuring Q3A’s
rendering performance. The peak performance with
Chromium on 4 rendering nodes (2x2 tiles) is 148 FPS,
and the average at 73. For 3x3 tiles, the peak FPS is
97 and the average is 47, and for all 7x4 tiles, the peak
is 51 and the average 21 FPS. The figure only lists the
results from the parallel version running on all 28 tiles,
as there were no significant difference in performance
when varying the number of rendering nodes for the
parallel version. The maximum framerate for the par-
allel version was 666, and the average framerate was
398.

Figure 10(a) shows the results from measuring
Homeworld’s framerate, while Figure 10(b) shows the
cumulative number of frames drawn by the game dur-
ing the experiment. The framerate varies much more
compared to the Q3A measurements. The maximum
framerate for Homeworld running on a single tile, 2x2,
3x3 and 7x4 tiles were respectively 311, 353, 250 and
231. The respective average framerates were 168, 183,
169 and 143. Figure 10(b) shows that running Home-
world on both 2x2 and 3x3 tiles performs better than
running it on a single display. The framerate was never
lower than 80 for any of the configurations.

6 Discussion

Our expectations prior to implementing touch-free,
multi-user support in Q3A and Homeworld were that
using gestures to control Q3A would be awkward and
difficult, while gestures for controlling Homeworld
would be more natural as the pace of the game is

slower and the gestures similar to emulating a mouse.
Although we haven’t conducted any formal user stud-
ies, our initial, subjective experiences indicate that the
touch-free interface was more natural when control-
ling Q3A than controlling Homeworld. There are sev-
eral potential explanations, including the characteris-
tics of the touch-free interface and the intrinsics of the
games. For instance, since Homeworld uses a one-to-
one mapping between hand position and cursor posi-
tion, a user might not be able to reach all points on the
display wall. Another observation is that as one plays
the games for extended periods of time, one’s arms be-
come fatigued.

6.1 Latency

In [MW93], the authors investigate the effect of lag
(i.e, latency) on human performance in interactive sys-
tems. As latency goes up, accuracy deteriorates and
time to perform tasks increases. For this reason, it is
important for the touch-free interface to provide input
with as low latency as possible. In [Arm03], the au-
thors show that Q3A players prefer using Q3A servers
where their average ping6 is no more than 150-180
ms. The touch-free interface has a latency of 116.7
ms, and the average latency from the parallelized Q3A
implementation is 87 ms. This gives a total latency of
203.7 ms, 23.7 ms more than the maximum preferred
latency. The latency for Q3A fluctuated with a stan-
dard deviation of 59 ms, which may be an artifact of
the latency measuring experiments, or a result of the
Q3A server experiencing varying loads. Even though

6The latency from a player takes an action until it becomes
observable by other players.

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 189

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

the average latency using the touch-free interface is
slightly higher than the maximum preferred latency,
the touch-free interface can be improved sufficiently
to perform below the limit.

The touch-free interface’s architecture is currently
bound latency-wise by existing camera-technology,
which are the biggest contributors to the overall sys-
tem latency. As camera technology improves, the in-
trinsic latency of cameras can be reduced, which will
directly affect the latency of the touch-free interface.
Improvements in the I/O bus and OS will reduce this
latency. In earlier work [SHBA07], the latency due
to the cameras was found to be 102 ms. More recent
experiments puts the latency at 81 ms, as shown in
Section 5. We speculate that this reduction in latency
is due to an operating system update, as neither the
computers or cameras changed in between the exper-
iments. The first set of experiments were conducted
using Mac OS X 10.4.8, while the results presented in
this paper were obtained on Mac OS X 10.4.9.

The next-biggest contributor to latency is the object
detector. The detector waits for all the cameras to pro-
vide data before triangulating object positions. This
synchronizes the cameras, and ensures that only fresh
data from each camera is used for the triangulation.
The result is improved accuracy. The cameras all run
at 30 FPS, which corresponds well with the 31 ms av-
erage latency from the object detector. Improvements
in camera technology will also help bring the object
detector latency down. As the image capture rate of a
camera goes up, the resulting latency incurred by the
object detector will go down, as less waiting must be
done in order to ensure that fresh data is in use from all
cameras. For instance, doubling the camera framerate
to 60 FPS, will result in an upper bound on the ob-
ject detector latency of 16 ms. The architecture of the
touch-free interface is scalable, as all image process-
ing is done locally by each computer capturing image
data. This reduces the amount of data required to be
processed by the object detector by several orders of
magnitude.

One problem with the touch-free interface is that its
accuracy for positioning objects decreases as the ob-
jects move faster. This is caused by the use of many
different cameras to capture images. Although each
camera operates at the same framerate, they capture
images at slightly different points in time. For a mov-
ing object, this results in the object appearing at dif-
ferent positions for different cameras. When these po-
sitions are used to triangulate an object’s 2D position,

the result can be inaccurate. These inaccuracies appear
as jitter in the object’s vertical position. The horizon-
tal position is also affected, although not as much as
the vertical position. This problem can be alleviated
by using cameras with higher image capture rates, or
cameras where the image capture can be synchronized.

6.2 Parallelizing games

Q3A’s existing architecture made it possible to rapidly
parallelize the game and make it run on the display
wall’s cluster. In particular, the spectator-concept,
which can be viewed as a single data, multiple view
model, was useful. This model is absent from Home-
world, making the process of parallelizing Homeworld
more laborious. Applications that support this model
should be simpler to parallelize for tiled display wall
environments. The performance penalty from using
spectators in this way is an 87 ms increase in the la-
tency from when a player performs an action until it is
visible on the display wall. This latency is independent
of the input system used (keyboard/mouse or touch-
free interface). Even better results may be achieved by
parallelizing the game from scratch, but at the cost of
a much greater effort.

Homeworld’s architecture made it possible to par-
allelize it by running synchronized copies on the tiles.
However, to determine where to synchronize, the game
engine had to be analyzed to identify all places where
data is used that could impact the game simulation. At
these places the copies must synchronize in order to
use identical data. Finding all these synchronization
points is difficult, and verifying that all places have
been identified requires exercising all possible code-
paths of the engine. One way of doing this would be to
play the entire game from start to finish; to date only
the first level has been completed. Minor bugs and
timing issues can also potentially skew the copies out
of sync. For these reasons, parallelizing Homeworld
required more effort than parallelizing Q3A.

When running Q3A on the entire display wall, the
framerate for the parallel version was an order of
magnitude higher than the framerate achievable using
Chromium. Homeworld outperformed the sequential
version when running on 2x2 and 3x3 tiles. This is
somewhat unexpected, as the simulation itself was not
parallelized. In principle, each copy runs the same
code on the same data, with the addition of synchro-
nization overhead for the parallel version. The fact
that a higher framerate is still achieved for these tile

urn:nbn:de:0009-6-15001, ISSN 1860-2037

190 A Papers

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

configurations, is because the tiles share the render-
ing workload. For the 7x4 configuration, the framer-
ate is lower than for a single display. We hypothesize
that this is due to increased synchronization overhead,
mainly from the MPI barriers used.

7 Conclusion

This paper has introduced a touch-free, multi-user
interface for controlling applications on wall-sized,
high-resolution tiled displays. The interface uses 16
cameras and 9 computers to triangulate the position of
objects in a plane parallel to the display wall’s can-
vas. Input from the touch-free interface is converted
to hand- and arm gestures, which are then interpreted
and injected into Quake 3 Arena and Homeworld as
regular mouse and keyboard events. To run on the dis-
play wall, the two games were parallelized by exploit-
ing different aspects of the two games’ architectures.
For Q3A, the spectator-concept was utilized to follow
each player on several tiles of the display wall. For
Homeworld, a master-slave approach was taken, syn-
chronizing all game state and input.

Players control the games by using one or both
hands. Users do not need to use external devices,
wear gloves or optical markers in order to interact.
In this regard, the interface is not only touch-free, but
also completely device-free. This enables the interface
to work in a public setting where other input devices
might get lost, misplaced or stolen. It also makes in-
teraction more direct, as users no longer must interact
through devices like mice or keyboards.

The responsiveness of the touch-free interface was
measured by determining its end-to-end latency. The
parallel versions of the two games were evaluated by
measuring their framerates in both parallel and se-
quential (unmodified) versions running on the display
wall. The touch-free interface’s latency was 116.7 ms,
with the majority of this latency due to the cameras
used. The parallel version of Q3A consistently out-
performed the sequential version running on the en-
tire display wall, averaging 398 FPS vs sequential’s 21
FPS. The average framerate for Homeworld on a sin-
gle display was 168 FPS, while running Homeworld
on the entire display wall yielded an average framer-
ate of 143 FPS. The high framerates indicate that the
parallelized games will scale to more tiles and higher
resolutions. The framerates are well beyond what is
displayable by a typical LCD panel or projector with a
60 Hz refresh rate.

Acknowledgments

The authors wish to thank Espen S. Johnsen, Tore
Larsen and Ken-Arne Jensen for their discussions.
Supported by the Norwegian Research Council,
projects No. 159936/V30, SHARE - A Distributed
Shared Virtual Desktop for Simple, Scalable and Ro-
bust Resource Sharing across Computer, Storage and
Display Devices, and No. 155550/420 - Display Wall
with Compute Cluster.

References

[Arm03] Grenville Armitage. An experimental es-
timation of latency sensitivity in multi-
player Quake 3. In ICON 2003: Pro-
ceedings of the 11th IEEE International
Conference on Networks, pages 137–141.
2003. ISSN 1531-2216.

[BBH05] Steffi Beckhaus, Kristopher J. Blom, and
Matthias Haringer. A new gaming de-
vice and interaction method for a First-
Person-Shooter. In Proceedings of the
Computer Science and Magic 2005. 2005.
GC Developer Science Track.

[BDV94] Greg Burns, Raja Daoud, and James
Vaigl. LAM: An Open Cluster Environ-
ment for MPI. In Proceedings of Super-
computing Symposium, pages 379–386.
1994.

[CCD06] Mark Claypool, Kajal Claypool, and
Feissal Damaa. The Effects of Frame
Rate and Resolution on Users Playing
First Person Shooter Games. In Pro-
ceedings of ACM/SPIE Multimedia Com-
puting and Networking (MMCN), volume
SPIE-6071, pages 1–11. jan 2006.

[DL01] Paul Dietz and Darren Leigh. Diamond-
Touch: a multi-user touch technology. In
UIST ’01: Proceedings of the 14th an-
nual ACM symposium on User interface
software and technology, pages 219–226.
ACM Press, New York, NY, USA, 2001.
ISBN 1-58113-438-X.

[Ent08] Relic Entertainment. Home-
world, 2008. www.relic.com/,
www.homeworldsdl.org/ and

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 191

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

www.thereisnospork.com/projects/,
last visited: April 1st, 2008.

[Han05] Jefferson Y. Han. Low-cost multi-touch
sensing through frustrated total internal
reflection. In UIST ’05: Proceedings of
the 18th annual ACM symposium on User
interface software and technology, pages
115–118. ACM Press, New York, NY,
USA, 2005. ISBN 1-59593-271-2.

[HHN+02] Greg Humphreys, Mike Houston, Ren
Ng, Randall Frank, Sean Ahern, Pe-
ter D. Kirchner, and James T. Klosowski.
Chromium: a stream-processing frame-
work for interactive rendering on clus-
ters. In SIGGRAPH ’02: Proceedings
of the 29th annual conference on Com-
puter graphics and interactive techniques,
pages 693–702. ACM Press, New York,
NY, USA, 2002. ISBN 1-58113-521-1.
ISSN 0730-0301.

[Int08] InterSense. InterSense IS-900 Sys-
tems, 2008. http://www.isense.com/
www.isense.com/products.aspx?id=45,
last visited April 1st, 2008.

[iS08] id Software. Quake 3 Arena, 2008.
www.idsoftware.com/ and ioquake3.org/,
last visited: April 1st, 2008.

[JH02] Jeffrey Jacobson and Zimmy Hwang. Un-
real Tournament for Immersive Interac-
tive Theater. Commun. ACM, 45(1):39–
42, 2002. ISSN 0001-0782.

[KLJ04] Hyun Kang, Chang Woo Lee, and
Keechul Jung. Recognition-based gesture
spotting in video games. Pattern Recog-
nition Letters, 25(15):1701–1714, 2004.
ISSN 0167-8655.

[LCC+00] Kai Li, Han Chen, Yuqun Chen, Dou-
glas W. Clark, Perry Cook, Stefanos
Damianakis, Georg Essl, Adam Finkel-
stein, Thomas Funkhouser, Timothy
Housel, Allison Klein, Zhiyan Liu, Emil
Praun, Rudrajit Samanta, Ben Shedd,
Jaswinder Pal Singh, George Tzanetakis,
and Jiannan Zheng. Building and Us-
ing A Scalable Display Wall System.

IEEE Comput. Graph. Appl., 20(4):29–
37, 2000. ISSN 0272-1716.

[Mor05] Gerald D. Morrison. A Camera-Based In-
put Device for Large Interactive Displays.
IEEE Computer Graphics and Applica-
tions, 25(4):52–57, 2005. ISSN 0272-
1716.

[MW93] I. Scott MacKenzie and Colin Ware. Lag
as a determinant of human performance
in interactive systems. In CHI ’93:
Proceedings of the SIGCHI conference
on Human factors in computing systems,
pages 488–493. ACM Press, New York,
NY, USA, 1993. ISBN 0-89791-575-5.

[SHBA07] Daniel Stødle, Tor-Magne Stien Hagen,
John Markus Bjørndalen, and Otto J.
Anshus. Gesture-Based, Touch-Free
Multi-User Gaming on Wall-Sized, High-
Resolution Tiled Displays. In Proceed-
ings of the 4th Intl. Symposium on Per-
vasive Gaming Applications, PerGames
2007, pages 75–83. June 2007.

[SHBA08] Daniel Stødle, Phuong Hoai Ha,
John Markus Bjørndalen, and Otto J. An-
shus. Lessons Learned using a Camera
Cluster to Detect and Locate Objects. In
Parallel Computing: Architectures, Al-
gorithms and Applications. Proceedings
of the International Conference ParCo
2007., volume 15 of Advances in Parallel
Computing, pages 71–78. IOS Press,
2008. ISBN 978-1-58603-796-3.

[SK98] Jakub Segen and Senthil Kumar. Ges-
ture VR: Vision-based 3D hand interace
for spatial interaction. In MULTIME-
DIA ’98: Proceedings of the sixth ACM
international conference on Multimedia,
pages 455–464. ACM Press, New York,
NY, USA, 1998. ISBN 0-201-30990-4.

[SW06] Bram Stolk and Paul Wielinga. Build-
ing a 100 Mpixel graphics device for the
OptIPuter. Future Gener. Comput. Syst.,
22(8):972–975, 2006. ISSN 0167-739X.

[SZP+00] Rajeev Sharma, Michael Zeller,
Vladimir I. Pavlovic, Thomas S. Huang,
Zion Lo, Stephen Chu, Yunxin Zhao,

urn:nbn:de:0009-6-15001, ISSN 1860-2037

192 A Papers

Journal of Virtual Reality and Broadcasting, Volume 5(2008), no. 10

James C. Phillips, and Klaus Schulten.
Speech/Gesture Interface to a Visual-
Computing Environment. IEEE Computer
Graphics and Applications, 20(2):29–37,
2000. ISSN 0272-1716.

[TGSF06] Edward Tse, Saul Greenberg, Chia Shen,
and Clifton Forlines. Multimodal Multi-
player Tabletop Gaming. In PerGames
’06: Proceedings of the 3rd International
Workshop on Pervasive Gaming Applica-
tions. 2006.

Citation
Daniel Stødle, Tor-Magne Stien Hagen, John Markus
Bjørndalen, Otto J. Anshus, Gesture-Based, Touch-
Free Multi-User Gaming on Wall-Sized, High-Resolution
Tiled Displays, Journal of Virtual Reality and Broad-
casting, 5(2008), no. 10, August 2008, urn:nbn:de:
0009-6-15001, ISSN 1860-2037.

urn:nbn:de:0009-6-15001, ISSN 1860-2037

A.1 Gesture-Based, Touch-Free Multi-User... 193

194 A Papers

A.2 The 22 Megapixel Laptop 195

A.2 The 22 Megapixel Laptop

Citation

Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. The 22 megapixel
laptop. In EDT ’07: Proceedings of the 2007 workshop on Emerging displays
technologies, pages 1–4, New York, NY, USA, 2007. ACM.

Abstract

Displays are everywhere. To utilize them efficiently, we introduce the notion of
the Network Accessible Display (NAD). A user can use displays on nearby com-
puters as if they were physically connected to his computer, including displays
on handheld devices and tiled display walls. We present a system adhering to the
NAD-model, and demonstrate it by extending a laptop with up to 30 NADs with an
area of 22 MPixels connected using both a wireless network and gigabit Ethernet.
The system can support one display at 25 Hz and 30 displays at 1 Hz. Even with a
refresh rate of only 1 Hz, the system remains useful for displaying relatively static
content.

Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
EDT 2007, San Diego, California, August 04, 2007.
© 2007 ACM 978-1-59593-669-1/07/0008 $5.00

The 22 Megapixel Laptop

Daniel Stødle∗ John Markus Bjørndalen†

Department of Computer Science

University of Tromsø, Norway

Otto J. Anshus‡

Figure 1: (a) Configuring virtual displays to match a 28-tile display wall. (b) Extending a display to a portable device. (c) Using the 22
megapixel laptop. (d) One laptop extended with both a display wall and a portable device, for a total display area of 22 megapixels.

Abstract

Displays are everywhere. To utilize them efficiently, we introduce
the notion of the Network Accessible Display (NAD). A user can
use displays on nearby computers as if they were physically con-
nected to his computer, including displays on handheld devices and
tiled display walls. We present a system adhering to the NAD-
model, and demonstrate it by extending a laptop with up to 30
NADs with an area of 22 MPixels connected using both a wireless
network and gigabit Ethernet. The system can support one display
at 25 Hz and 30 displays at 1 Hz. Even with a refresh rate of only 1
Hz, the system remains useful for displaying relativly static content.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; I.3.4 [Computer Graphics]: Graphics
Utilities—Virtual device interfaces;

Keywords: Network Accessible Display, display wall

1 Introduction

The rapid progress in development of computer-related technolo-
gies has resulted in a commoditization of computers, storage, dis-
plays and other types of hardware. This development has given
rise to approaches for building larger systems of cheap compo-
nents, including hard disk RAIDs, Beowulf/NoW-style computer
clusters and tiled displays. As this development continues, displays
with processing power can be used as Network Accessible Displays
(NADs), offering display services to nearby networked computers.

∗e-mail: daniels@cs.uit.no
†e-mail: jmb@cs.uit.no
‡e-mail: otto@cs.uit.no

We have built a software system enabling a desktop computer or
laptop to utilize tens of displays as if they were directly connected
to the computer.

Laptops can typically use both their built-in display and an external
display. High-end workstations may be equipped with one or two
quad-head graphic cards, capable of supporting up to eight displays
in total. Wall-sized, high-resolution, tiled display walls have a pixel
area of anywhere between 10 megapixels and 100 megapixels [Li
et al. 2000; Stolk and Wielinga 2006], and are built using clusters of
computers with displays or projectors. These approaches are lack-
ing in several ways: (i) A laptop can only support one additional
display, (ii) a workstation supporting eight displays is expensive,
(iii) the number of supported displays is fixed, and (iv) using avail-
able, nearby displays from a laptop or workstation is impractical.
Finally, a variety of “portable displays” - from watches, to mobile
phones, PDAs and tablet computers - are not easily used as ex-
tended displays as there is no way of connecting them to computers
using regular display cables. An increasing number support net-
working, however, potentially enabling them to act as NADs.

Figure 2: Example of a laptop extending its local display to utilize
the high resolution made available by a tiled display wall, as well
as the display resources offered by a workstation and a portable
device.

Software like ZoneScreen, MaxiVista and Screen Recycler1 lets

1http://www.zoneos.com/zonescreen.htm, http://www.maxivista.com

196 A Papers

users extend their local desktops to a single other display. These
products not only share the user’s local display, but extends it, es-
sentially making a remote display appear as a secondary local dis-
play. MaxiVista can support up to three additional displays, with
a resolution up to 4800x2400 pixels. These solutions are lacking
in (i) their ability to scale to many displays, (ii) no awareness of
the physical arrangement of available display resources, and (iii)
limited display resolution.

The above applications use remote desktop software, like Vir-
tual Network Computing (VNC) [Richardson et al. 1998], THINC
[Baratto et al. 2005] and Microsoft Remote Desktop, to transfer an
extended desktop’s pixels to a remote host. VNC shares displays by
sending the shared display’s pixels to clients, while in THINC bet-
ter performance is achieved by more efficiently coding the drawing
operations used to generate pixels. Another way of sharing display
contents is to transmit only drawing operations (“draw string”, “fill
rectangle”, etc.) as used in Microsoft Remote Desktop and the X
Window System [Scheifler and Gettys 1986]. Our system makes
use of a custom component similar to VNC, but with support for
sharing several extended displays.

To support the model of NADs, the system creates virtual displays
and shows them on displays ranging from portable displays to tiled
display walls. The system extends the local desktop of a laptop
running Mac OS X with up to 30 additional, virtual displays of ar-
bitrary resolution2. The system then discovers nearby NADs and
configures the virtual displays to utilize the available display re-
sources. Our experimental testbed consists of a display wall com-
prised of 7x4 tiles for a total resolution of 7168x3072 pixels, several
workstations and a Nokia N800 “internet tablet” acting as a portable
display with a resolution of 800x480. Figure 2 illustrates this setup.

Our main contribution with this paper is the development of the
Network Accessible Display model, and in particular: (i) a scal-
able display sharing model and implementation based on virtual
displays, (ii) dynamic mapping of virtual displays to match avail-
able display resources, (iii) a system that will fit both the traditional
view of displays connected directly to computers, and our vision
of the display of the future - the NAD, and (iv) an evaluation of
system’s performance.

2 Design

The NAD system we developed consists of a number of distinct
components: (i) A display service running on computers whose
displays we wish to utilize, (ii) a GUI frontend, (iii) a VNC-like
display sharing daemon and (iv) a kernel extension to create and
maintain a set of virtual displays. Figure 3 illustrates the design.

Any computer wishing to provide its display as a NAD, runs a dis-
play service. The display service maintains properties related to
the display(s) on the computer it runs3, and exposes them to clients
through a network-based discovery mechanism.

The GUI frontend runs on computers that want to utilize NADs. It
discovers nearby display services and queries their properties. Cur-
rently available displays and their relative locations are presented to
the user, before the user selects the displays he wishes to use. The
frontend then configures the virtual displays and tells the daemon
to push screen contents to the selected display services.

The display sharing daemon accepts commands from the GUI fron-
tend. It sends the contents of the virtual displays to display services

and http://www.screenrecycler.com.
2Limited only by available memory; the system has been tested with

resolutions up to 16384x6144.
3Bit depth, resolution, location and more.

Figure 3: The system design. Display services running on a set
of computers are discovered by the GUI frontend, which proceeds
to configure the number, resolution and arrangement of the virtual
displays. It then instructs the display sharing daemon (vfbd) to push
each display’s contents to its associated display service.

as raw pixel data. The first update consists of all pixels for a given
virtual display, while further updates consist of pixels from areas
that have changed on the virtual display (incremental updates).

The kernel extension creates a set of virtual displays when the com-
puter boots. The virtual displays appear to the rest of the operating
system as real, physically connected displays, but are in reality just
a set of memory buffers. The GUI frontend communicates with the
kernel extension to configure the number of virtual displays, and
uses the window server to configure their resolution, bit depth and
arrangement in relation to each other.

3 Implementation

The display service was implemented in C using SDL4, and BSD
sockets for network communication. It currently runs on Linux and
Mac OS X. On startup, the display service is configured with the
properties for the display resources it should provide. For a regular
workstation with a single display, the properties consist of the lo-
cal display’s resolution and bit depth, as well as name and location.
For display services running on tiled display walls, the configura-
tion also includes information about the display wall, including the
service’s location in the grid of display tiles.

The GUI frontend was implemented in Objective-C using Cocoa on
Mac OS X. It uses the CGDirectDisplay APIs in Mac OS X to con-
figure virtual displays, including resolution and arrangement. The
frontend uses property details from each display service when con-
figuring the resolution and arrangement of virtual displays. Groups
of display services that belong together, such as those running on a
display wall, are presented together by the frontend, and not mixed
with other “free-standing” displays.

The display sharing daemon uses the CGRemoteOperation APIs
exported by Mac OS X’ window server to access the raw pixels of
the virtual displays. These APIs are also used to receive information
about areas of the virtual displays where the pixels have changed,
supporting incremental updates. The daemon performs run-length
encoding of the pixels before sending them to connected display
services, in order to reduce bandwidth usage. The daemon receives
the network address for a display service from the frontend, then
connects to the service and provides it with details about the vir-
tual display. The service then starts accepting pixel data from the
daemon.

4Simple Direct-Media Layer, a popular cross-platform library often used

to develop games; http://www.libsdl.org/

A.2 The 22 Megapixel Laptop 197

Figure 4: The kernel extension design. The VFB master class is
loaded at boot by the kernel, by matching on the class IOResources.
It instantiates a number of VFB nubs. These nubs cause the kernel
to start the matching procedure, and instantiate one instance of the
VFB class for each nub. The virtual displays are then used by the
window server when it starts up.

The kernel extension, implemented in C++, consists of three
classes: VFB (virtual framebuffer) master, VFB nub and VFB, as
shown in Figure 4. The master accepts requests from userspace to
configure properties of the virtual displays. In particular, it enables
the GUI frontend to enable and disable virtual displays, without
going through the window server5. The purpose of the nub is to
provide an endpoint for Mac OS X’ IOKit driver system to match
and incorporate VFB instances into the kernel. When a nub is in-
stantiated, it registers a service with IOKit. The VFB class matches
on this service, making IOKit instantiate one instance of VFB for
each nub created by the master.

The VFB class is a subclass of the IOKit class “IOFramebuffer.”
When it is instantiated, it allocates memory for a framebuffer of
some pre-determined resolution (this can vary from instance to in-
stance depending on configuration), before exposing its available
resolutions and bit depths to the window server.

4 Evaluation

We document the performance of the system for different numbers
of virtual displays. The hardware used was (i) a display cluster with
28 nodes (Intel Pentium 4 EM64T, 3.2 GHz, 2 GB RAM, Hyper-
Threading enabled, NVIDIA Quadro FX 3400 with 256 MB Video
RAM, running the Rocks Linux cluster distribution 4.0) connected
to 28 projectors (1024x768, arranged in a 7x4 matrix), (ii) switched,
gigabit Ethernet, and (iii) a MacBook Pro (2.33 GHz Intel Core 2
Duo, 3 GB RAM, Mac OS X 10.4.9).

4.1 Methodology

The MacBook Pro was configured with a number of virtual dis-
plays, where each virtual display had a resolution of 1024x768 at
32 bits per pixel. We varied the number of virtual displays between
1, 2, 4, 8, 16, 24 and 28. For each experiment, a window was cre-
ated that fully covered all the virtual displays (this will be referred
to as the “draw” process). The window was completely redrawn
300 times at an attempted rate of 10 Hz6, after which statistics were

5The window server does not provide a mechanism to control whether a

display is available or not.
6The actual rate was lower for most of the configurations, as discussed

in the next section.

gathered. To redraw the window, the draw process copies an image
from memory to the window.

For each experiment, we measured the following statistics: (i) The
total number of pixels updated by the display services, (ii) total
number of bytes used to send pixel data to the display services, (iii)
the CPU load both at kernel and user level for the draw process,
display sharing daemon (vfbd) and Mac OS X window server.

4.2 Results

Figure 5 shows the target number of Mpixels updated per second
compared to the system’s actual update rate. With up to four dis-
plays, the system tracks the target update rate fairly well. Beyond
four displays, the update rate is stable around 24 Mpixels/second,
much less than the 30-210 MPixels/second needed to track the tar-
get rate. Using 24 virtual displays, the rate is 24.31 Mpixels/second,
corresponding to a refresh rate of 1.35 Hz7.

 0

 50

 100

 150

 200

 250

 28 24 16 8 4 2 1

M
e

g
a

p
ix

e
ls

/s
e

c
o

n
d

Number of virtual displays (each at 1024x768)

Total number of megapixels updated per second for 1 to 28 virtual displays

Megapixels/second

Ideal megapixels/second

Figure 5: The graph shows the actual update rate in megapix-
els/second, and compares it to the target update rate (10 full up-
dates per second).

Figure 6 shows the measured bandwidth. The bandwidth corre-
lates well with the pixel update rate, with a peak bandwidth of 36.5
megabytes/second with 24 virtual displays. Figure 7 shows the ker-
nel and user level CPU load for the different processes involved in
generating and distributing data for the virtual displays. The major-
ity of the CPU is used by the display sharing daemon, followed by
the window server and finally the draw process. The combined load
peaks at 175% with 24 displays (the MacBook Pro has a dual-core
processor).

5 Discussion

The experiments demonstrate that there is a tradeoff between up-
date rate and the size of the area being updated. In the experiments
this area equals the combined resolution of the virtual displays. For
smaller areas, the update rate can be quite high. As an example, a
rate of 24 MPixels/second delivered to a virtual display with reso-
lution 1024x768 corresponds to a refresh rate of 32 Hz. The same
rate to a set of virtual displays with a total resolution of 7168x3072
(the size of the display wall used in the experiments) results in 1.14
Hz. Although not shown in the previous section, the best sustained
refresh rate for full screen updates at 1024x768 in 16-bit color is 25

724 virtual displays in a 6x4 grid results in a total resolution of

6144x3072 pixels; one full update is 18 megapixels, thus the refresh rate

is 24.31/18 = 1.35.

198 A Papers

 10

 15

 20

 25

 30

 35

 40

 28 24 16 8 4 2 1

M
e

g
a

b
y
te

s
/s

e
c
o

n
d

Number of virtual displays (each at 1024x768)

Bandwidth used to update 1 to 28 virtual displays

Megabytes/second

Figure 6: The graph shows the bandwidth used to update the vir-
tual displays.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 28 24 16 8 4 2 1

C
P

U
 l
o

a
d

Number of virtual displays (each at 1024x768)

CPU load for driving 1 to 28 virtual displays

Window server user

Window server kernel

vfbd user

vfbd kernel

draw user

draw kernel

Figure 7: The graph shows CPU load (in percent) for the display
sharing daemon (vfbd), window server and draw process at both
kernel and user level.

Hz, and for 32-bit about 18 Hz. As the resolution increases, the sys-
tem’s performance goes down, but remains usable for mostly static
content (images, documents, etc.).

The network is never saturated by the system - a transfer rate of 36
megabytes/second is less than half of the available bandwidth on a
gigabit Ethernet. Thus, the network is not the main bottleneck. The
CPU load measurements indicate that the main bottleneck is on the
laptop. The load correlates well with the total resolution offered
by the virtual displays, roughly doubling every time the resolution
doubles, until the total CPU load goes beyond what the CPU can
deliver at 4 virtual displays.

The draw process incurs little kernel level load, as it only copies
pixel data from a buffer to its own window. The window server’s
CPU load tracks the load of the draw process well. Interestingly,
this applies both to the window server’s user and kernel level load,
which indicates that the window server may be doing twice the
work necessary to get the pixels to the virtual display (the data ap-
pears to be copied twice). The display sharing daemon spends about
55-60% of its time at user level, with the remaining time spent at
kernel level. The time spent at user level is due to copying and
compressing pixel data, while the time spent at kernel level comes
from transferring pixel data over the network. The main bottleneck
in the system as the total resolution offered by the virtual displays
increases is copying data, and we hypothesize that improved perfor-
mance can be achieved by eliminating redundant memory copies.

The Mac OS X window server is limited to 32 displays (virtual or
not). In practice, the limit is 30, as there usually is a main display
attached (a laptop’s built-in display, for instance). In addition, the
window server has a second, always-available virtual display with a
resolution of 1x1 pixel which is always offline. The purpose of this
display is unknown to the authors and to the authors’ knowledge not
documented. Even though the window server detects the presence
of additional displays beyond the (practical) limit of 30, they are
never used or exposed to clients. While the window server scales
well, other parts of Mac OS X are not as scalable. Attempting to
configure the virtual displays from System Preferences results in
seeing an apparently random selection of at most 10 displays, and
the display configuration menu only manages to show 16.

6 Conclusion

We have introduced the Network Accessible Display model, and
presented the design and implementation of a system that adheres
to the model. A NAD computer runs a display service that com-
municates with clients wishing to use the NAD. Clients discover
NADs using a multicast-based discovery mechanism. We have used
the system to extend a laptop with up to 30 virtual displays and map
them to nearby physical displays, including a 22 Mpixel wall-sized,
high resolution tiled display, and a 0.3 Mpixel portable device.

The bottleneck for increased resolution is copying pixel data locally
on the client. When the number of pixels double, the client-side
CPU load doubles. At a rate of 24 Mpixels/sec to the NADs, all
available CPU is spent. We explain this by (i) load incurred com-
pressing and transferring pixel data, and (ii) copying and composit-
ing pixel data without graphics card hardware acceleration. Despite
the low refresh rate for higher resolutions, the system is still useful
for displaying static content like images and multiple documents.

Acknowledgements

Thanks to Tor-Magne S. Hagen and Espen S. Johnsen for discus-
sions, and Ståle W. Nilsen for help with the video. Supported by the
Norwegian Research Council, projects No. 159936/V30, SHARE -
A Distributed Shared Virtual Desktop for Simple, Scalable and Ro-
bust Resource Sharing across Computer, Storage and Display De-
vices, and No. 155550/420 - Display Wall with Compute Cluster.

References

BARATTO, R. A., KIM, L. N., AND NIEH, J. 2005. THINC: a
virtual display architecture for thin-client computing. In SOSP
’05: Proceedings of the twentieth ACM symposium on Operating
systems principles, ACM Press, New York, NY, USA, 277–290.

LI, K., CHEN, H., CHEN, Y., CLARK, D. W., COOK, P., DAMI-
ANAKIS, S., ESSL, G., FINKELSTEIN, A., FUNKHOUSER, T.,
HOUSEL, T., KLEIN, A., LIU, Z., PRAUN, E., SAMANTA, R.,
SHEDD, B., SINGH, J. P., TZANETAKIS, G., AND ZHENG, J.
2000. Building and Using A Scalable Display Wall System.
IEEE Comput. Graph. Appl. 20, 4, 29–37.

RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R., AND

HOPPER, A. 1998. Virtual Network Computing. IEEE Internet
Computing 2, 1, 33–38.

SCHEIFLER, R. W., AND GETTYS, J. 1986. The X window sys-
tem. ACM Trans. Graph. 5, 2, 79–109.

STOLK, B., AND WIELINGA, P. 2006. Building a 100 Mpixel
graphics device for the OptIPuter. Future Gener. Comput. Syst.
22, 8, 972–975.

A.2 The 22 Megapixel Laptop 199

200 A Papers

A.3 Lessons learned using a camera cluster... 201

A.3 Lessons learned using a camera cluster to detect and
locate objects

Citation

Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen, and Otto J. Anshus.
Lessons learned using a camera cluster to detect and locate objects. In Parallel
Computing: Architectures, Algorithms and Applications. Proceedings of the Inter-
national Conference ParCo 2007, volume 15 of Advances in Parallel Computing,
pages 71–78. IOS Press, 2008.

Abstract

A typical commodity camera rarely supports selecting a region of interest to reduce
bandwidth, and depending on the extent of image processing, a single CPU may
not be sufficient to process data from the camera. Further, such cameras often lack
support for synchronized inter-camera image capture, making it difficult to relate
images from different cameras. This paper presents a scalable, dedicated parallel
camera system for detecting objects in front of a wall-sized, high-resolution, tiled
display. The system determines the positions of detected objects, and uses them to
interact with applications. Since a single camera can saturate either the bus or CPU,
depending on its characteristics and the image processing complexity, the system
supports configuring the number of cameras per computer according to bandwidth
and processing needs. To minimize image processing latency, the system focuses
only on detecting where objects are, rather than what they are, thus reducing the
problem’s complexity. To overcome the lack of synchronized cameras, short peri-
ods of waiting are used. An experimental study using 16 cameras has shown that
the system achieves acceptable latency for applications such as 3D games.

John von Neumann Institute for Computing

Lessons Learned Using a Camera Cluster to
Detect and Locate Objects

Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen,
Otto J. Anshus

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 71-78, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

202 A Papers

Lessons Learned Using a Camera Cluster to Detect and
Locate Objects

Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen, and Otto J. Anshus

Dept. of Computer Science
Faculty of Science

N-9037 University of Tromsø, Norway
E-mail: {daniels, phuong, jmb, otto}@cs.uit.no

A typical commodity camera rarely supports selecting a region of interest to reduce bandwidth,
and depending on the extent of image processing, a single CPU may not be sufficient to process
data from the camera. Further, such cameras often lack support for synchronized inter-camera
image capture, making it difficult to relate images from different cameras. This paper presents
a scalable, dedicated parallel camera system for detecting objects in front of a wall-sized, high-
resolution, tiled display. The system determines the positions of detected objects, and uses them
to interact with applications. Since a single camera can saturate either the bus or CPU, depend-
ing on its characteristics and the image processing complexity, the system supports configuring
the number of cameras per computer according to bandwidth and processing needs. To mini-
mize image processing latency, the system focuses only on detecting where objects are, rather
than what they are, thus reducing the problem’s complexity. To overcome the lack of synchro-
nized cameras, short periods of waiting are used. An experimental study using 16 cameras has
shown that the system achieves acceptable latency for applications such as 3D games.

1 Introduction

Figure 1. Using the system.

This paper reports on lessons learned us-
ing a cluster of cameras to detect the po-
sition of objects in front of a wall-sized,
high-resolution, tiled display. The sys-
tem is used to support multi-user touch-
freea interaction with applications run-
ning on a 220-inch 7x4 tiles, 7168x3072
pixels resolution display wall (Fig. 1).
This requires that the system can accu-
rately and with low latency determine
the positions of fingers, hands, arms and
other objects in front of the wall. To
achieve this, a consistent and synchro-
nized set of position data from each camera is needed.

A grayscale camera producing images at a rate of 30 frames per second with a resolu-
tion of 640x480 pixels requires a bandwidth of about 8.78 megabytes/second. A FireWire
400 bus can accommodate at most three cameras producing data at this rate; higher-
resolution or higher-framerate cameras further decrease this bound. To support more cam-
eras, additional FireWire buses can be used on a single computer. Scalability may now

aAs the display wall’s canvas is not rigid, users must be able to interact with the display wall without actually
touching it - thus the term “touch-free.”

71

A.3 Lessons learned using a camera cluster... 203

be limited by the CPU, either due to image processing complexity or deadlines on when
results are needed. Finally, most commodity cameras have no support for hardware- or
software-based inter-camera synchronization. This limits the accuracy of object position-
ing, as it reduces the system’s ability to relate images captured from different cameras to
each other.

This paper presents a parallel system for processing streaming video from several cam-
eras. The system architecture comprises four layers: (i) Camera and image processing,
(ii) object-position processing, (iii) event distribution, and (iv) end-application use of po-
sition data. The first layer uses 16 cameras connected pairwise to 8 computers. Each
computer processes images from two cameras, locating objects and determining their one-
dimensional position. When three or more cameras in the first layer see the same object,
the second layer can determine the object’s 2D position using triangulation. The third layer
distributes position data between the other three layers. The fourth layer is comprised of
applications using the position data for interaction. An experimental study has shown that
the system achieves acceptable latency for common applications like the 3D games Quake
3 Arena and Homeworld (see Section 5 and Ref. 1).

The main contributions of this paper are the lessons learned from building and using
the system, including: (i) The flexibility of the system architecture allows configuring
available camera and processing resources to accommodate end-applications’ needs, (ii) by
reducing the complexity of image processing from identifying what objects are to identify
where they are, processing is reduced, and (iii) despite the lack of synchronized cameras,
useful results may still be obtained by introducing short periods of waiting.

2 Related Work

There exists much work on multi-camera systems. In Ref. 2, the authors demonstrate how
a 100-camera array is used to capture very high-resolution video at 3800x2000 pixels at
30 FPS, or high-speed video with 640x480 pixels at 1560 FPS. Their implementation uses
custom circuit boards to communicate with the FireWire cameras and relies on hardware
synchronization of cameras, while the system presented in this paper is exclusively based
on use of commodity components; cameras without support for synchronization and no use
of custom hardware. In Ref. 3, the authors show how displays may be synchronized using
an external synchronization source combined with software adjustment of display timings
(software genlocking). Their use of a hardware synchronization signal precludes applying
their technique to synchronize commodity camera capture.

Other work has used many low-resolution cameras to generate a 3D reconstruction
of objects, either for collaborative applications4 or for creating 3D models. Our system
does not attempt to generate high-resolution video or imagery, or reconstruct 3D objects.
Instead, the goal is to use a cluster of cameras to determine the 2D position of objects in
a plane parallel to the display wall. Previous work reports on different ways of achieving
this. In Ref. 5, the author combines internal reflection of infrared light with a camera
mounted behind a (rigid) canvas to support multi-touch interaction. Our system differs in
that it doesn’t require users to actually touch the canvas in order to interact, and in the
use of a parallel architecture for capturing and processing images. In Ref. 6, a set of
cameras with on-board image processing is mounted in the corners of a large display, and
used to detect multiple points of contact. Rather than build custom cameras, our system

72

204 A Papers

uses commodity cameras mounted on the floor in front of the approximately 6 meter wide
display wall, and performs all processing on a compute cluster.

3 Design

Figure 2. The system architecture.

The system architecture is comprised of four layers,
as detailed in the introduction and shown in Fig. 2.
The camera and image processing layer captures and
processes images from cameras used by the system.
To allow for many cameras to be used simultaneously
as well as flexibility in image processing complexity,
this layer is designed to run in parallel. The layer produces 1D positions and radii for
detected objects in each image for each camera. An object’s 1D position is defined as the
centre of a detected object along the horizontal axis of a captured image (the centner of the
finger in Fig. 4), and its radius defined as half the width (in pixels) of the detected object.
The object position processing layer combines the position data from each computer in the
image processing layer using triangulation, to determine the each object’s 2D position.

Figure 3. The camera and image processing layer de-
sign. The layer can operate in parallel with any number
of cameras. Communication happens between each par-
ticipant and its immediate neighbours.

The camera and image processing
layer consists of several steps: (i) Im-
age capture, (ii) cropping, (iii) back-
ground subtraction, (iv) thresholding and
(v) communication, shown in Fig. 3.
When the layer first starts up, it stores the
current image from the camera it works
with to a buffer. This image will be re-
ferred to as the background. As new im-
ages are captured, a horizontal region of

interest (ROI) is isolated, before the pixel values in the ROI are subtracted from corre-
sponding pixels in the background image. If the absolute difference between a pixel in the
current and in the background image is beyond a given threshold, an object is detected at
the position of the given pixel in the image. The ROI is determined dynamically when each
camera starts capturing images, by identifying the two brightest, horizontal regions in the
imageb.

Figure 4 shows an example of how a single image from a single camera is processed.
The two horizontal lines (1) indicate two regions of interest in the image. A finger extends
from the hand visible in the image, intersecting both ROIs. The background (2) is sub-
tracted from the current image (3), resulting in (4), before the thresholding step is applied,
yielding (5). Continuous regions of white indicate where objects have been found in the
image.

To account for changes in lighting, the background is updated when too many objects
are detected in a single frame from a given camera. An earlier implementation updated the
background continuously by merging it with the current image. This did not work well, as
users often point at the same location for longer periods of time (on the order of several

bThe system makes use of a set of “Christmas lights” running along the ceiling, directly above the cameras, in
order to create high contrast with intersecting objects.

73

A.3 Lessons learned using a camera cluster... 205

seconds). The result was “ghost” objects appearing when the user eventually moved his
hand.

Figure 4. A sample image being processed
by the image processing layer. The camera
looks directly at the ceiling.

When all objects in the image have been
found, the communication step begins. First, each
participant sends the number of objects it has de-
tected on the left- and right-hand side of the im-
age to the neighbours on its left and right. The
participant receives data from its neighbours, but
to avoid introducing additional latency, the partic-
ipant will use values that are up to 66 ms oldc. The
received values are used to determine if the par-
ticipant’s results coincide with those of its neigh-
bours. If the number of objects it has detected for
the left or right side of the image is identical to
the number of objects a neighbour has detected
for the same side, no further processing is done.
However, if the participant has detected fewer ob-
jects than its neighbour, it will re-perform the im-
age processing sequence with a lowered thresh-
old, in an attempt at discovering objects lost due

to noise in the captured image. Similarly, if it detects more objects than a neighbour, the
image processing sequence is re-performed with a raised threshold. Once this is done, the
final 1D positions and radii are sent to the object position processing layer using the event
distribution layer.

Figure 5. Line segments from each camera
and passing through each object are gener-
ated. Each line segment is intersected with
every other segment. At least three cameras
are required to position an object, as using
only two cameras results in many false posi-
tives.

The object position layer receives 1D posi-
tions for located objects from the image process-
ing layer, and uses the positions to triangulate
their positions. In order to do this successfully, at
least three 1D positions from three different cam-
eras are required, as shown in Fig. 5; any less, and
false positives occur when multiple objects are
visible. The triangulation is performed by com-
puting intersections between lines projecting from
the cameras and up, at an angle determined by the
1D positions. An object’s position in 2D is suc-
cessfully identified when two or more points of
intersection from different cameras lie sufficiently
close to each other. The final 2D position is com-
puted as the average of the X and Y components of the 2D intersection points.

4 Implementation

The system is comprised of 16 Unibrain Fire-i cameras, connected in pairs to a cluster of
8 Mac minis. In addition, a display cluster of 28 computers, each driving one projector at
cThis is a tradeoff between system latency, and object detection accuracy. Data that is 66 ms = two frames old
may still contain the correct number of (current) objects.

74

206 A Papers

1024x768, is used to provide the graphics capabilities of the display wall, and a MacBook
Pro is used to perform object position processing using data from the 8 Mac minis.

The cameras use IEEE-1394 (FireWire) to communicate with the Mac minis, and cap-
ture 640x480 grayscale (8-bit) images at 30 frames per second (FPS). They are mounted
along the floor and spaced 32 cm apart, as shown in Fig. 6. The cameras do not support ex-
ternal or software-based triggers to synchronize the image capture of multiple cameras, not
even when they are on the same FireWire bus. This means that two cameras may capture
images spaced in time as far as 33 ms apart (the time between two frames at 30 FPS.).

Figure 6. The image shows 12 of the 16 cam-
eras mounted along the floor and looking at
the ceiling.

The Mac minis are interconnected using Gi-
gabit Ethernet. Each Mac mini captures and pro-
cesses images from the two cameras it is con-
nected to independently of the others, and runs
a custom application for performing image cap-
ture and processing. This application is written
in Objective-C, and uses libdc13947 to commu-
nicate with the cameras. Each camera is handled
by a separate thread within the application, where
each thread corresponds to one participant in the
camera and image processing layer. Once a frame
has been analyzed, the 1D positions and radii of
any detected objects are sent to the the object po-
sition processing layer.

The object position layer runs a loop operating at the same rate as the cameras, and
uses the 1D object positions it receives to triangulate the positions of potential objects. To
handle the lack of synchronized cameras, the object positioning software waits for up to
33 ms to receive (possibly empty) sets of object positions from all participating cameras.
For the case when a camera has not detected an object, it will notify the object positioning
layer of this for the first “no-detect” event only.

To triangulate the positions of objects, the cameras are placed in a coordinate system
where cameras are spaced 1 unit apart (1 unit corresponds to 32 cm). For each camera,
line segments starting at the camera’s position and passing through the centre of each
detected object are generated (Fig. 5). The lines are then intersected with all lines from
the two cameras to the current camera’s left and right. The resulting intersection points are
compared, and points that are sufficiently close result in an object being identified. The
identified objects’ 2D positions and radii are then sent to end-user applications. It is each
end-user application’s responsibility to interpret the events to allow user interaction.

5 Evaluation

We have evaluated the system by measuring the latency incurred by the system’s different
layers. In particular, we measure the latency for the following components: (i) Camera
capture, (ii) image processing, (iii) event distribution, and (iv) object position processing.

To measure camera capture latency, one camera was connected to a computer and
pointed at the computer’s display. A custom application fills the computer’s display with
black, and then starts capturing images from the camera. At one-second intervals, the dis-
play is filled with white, and a timer is started. When the difference between average pixel

75

A.3 Lessons learned using a camera cluster... 207

values from a 20x20 pixel square in the centre of the image in the previous and the current
frame exceeds 150 (because the image goes from being black to being white), the timer is
stopped, yielding the camera latency. The experiment was conducted on a Mac mini (1.66
GHz Intel Core Duo, 512 MB RAM) running Mac OS X 10.4.9 and a workstation (Intel
Pentium 4 3.0 GHz, 2 GB RAM, HyperThreading enabled) running Ubuntu Linux 6.10 to
investigate potential differences in latency caused by the operating system or hardware.

The image processing and object position processing latencies were measured by in-
strumenting the code that performs the two tasks and measure the execution time of 1000
iterations. The event layer’s latency was measured using a ping-pong style benchmark,
determining the round-trip time for one event sent back and forth. The resulting round-trip
time was divided by 2 to find the one-way latency.

Cam. capture Image proc. Event distr. Object pos. Sum
Samples 923 (852) 1000 1000 1000 -
Average 81 ms (93 ms) 1.16 ms 1.9 ms 31 ms 115 ms
Std. dev. 10 ms (9 ms) 0.11 ms 0.02 ms 10 ms -
Minimum 58 ms (72 ms) 0.97 ms 1.6 ms 0.008 ms 62.7 ms
Maximum 104 ms (114 ms) 3.3 ms 3.8 ms 139 ms 250.1 ms

Table 1. Results from the latency experiments. Results for camera capture latency in parentheses are from run-
ning the experiment on the Linux workstation.

Table 1 shows the results from the experiments. The majority of total system latency of
115 ms is due to the cameras, with about 10 ms separating the measured latency on Mac OS
X and Linux. The next biggest contributor to latency is object position processing (object
pos.), which incurs an average latency of 31 ms, which is close to the rate at which the
cameras deliver data (every 33 ms). Image processing in the system does not incur much
latency. Event distribution (only counted once in the table, but generally incurred twice;
once for sending events from the image processing layer to the object position layer, and
then once more for sending events from the object position layer to end-user applications)
incurs a negligible latency.

6 Discussion

The lack of synchronized cameras is the main limiting factor for accuracy in the system.
As two cameras can capture images taken as much as 33 ms apart, the accuracy of the
triangulation is significantly affected when the object is moving. The effect is further
compounded because three cameras are required to accurately position an object. Filtering
can reduce the impact of the uncertainty in position, but at the cost of higher latency.
The object position processing layer already introduces up to 33 ms of latency to receive
updated position data from all cameras. Although latency could be reduced by not waiting
for all cameras, this has the effect of reducing the triangulation accuracy and the rate at
which object positions are correctly triangulated drops.

Without synchronized cameras, the question of the system’s accuracy can be raised.
How fast can an object move while still being accurately positioned? Let p and r be the
centre of an object O and its radius, respectively. Since the system uses only the horizontal

76

208 A Papers

axis to position objects, position and movement of an object are implicitly assumed to be
horizontald.

We observe that a position x of the object detected by a camera can be considered ac-
curate as long as x lies within [p− r, p+ r]. Therefore, the position of a moving object can
be detected accurately if there exists a common position x∗ that satisfies the accuracy re-
quirement for three images taken by three adjacent cameras during the interval t = 33mse.
Let p′ > p be the new horizontal position of the object’s centre due to the object movement
during the interval t. The common position x∗ must satisfy x∗ ≤ p + r and x∗ ≥ p′ − r.
Such a common position exists if p′ − r ≤ p + r or p′ − p ≤ 2r. That means the system
can detect an object’s position accurately if the object does not move longer than 2r - its
diameter - during the interval t.

For instance, assume that the object diameter is 1 cm (e.g. the size of the index-finger).
In this case, the object’s position can be accurately determined if the object moves at a
speed less than 1cm

33ms = 0.3m/s. Higher framerates can increase this bound, since the
maximum delay between two cameras capturing an image will decrease. Doubling the
framerate makes the maximum delay go down from 33 ms to 16 ms, and also reduce
the object position processing latency. Other limiting factors are the number of cameras
detecting the same object, the resolution of the cameras, the speed of the objects, the
camera shutter speed, and the accuracy of the image processing layer.

The total system latency of 115 ms is sufficiently low to support playing two games
(Quake 3 Arena and Homeworld), as we show in Ref. 1. In that paper, the camera latency
was measured to be 102 ms, 21 ms more than reported in this paper. We speculate that the
difference is due to a newer OS release in between the first set of results and the results
presented in this paperf . The results from the Linux workstation show that the operating
system or hardware architecture has an impact on the latency from the time at which a
camera captures an image, until that image can be processed.

7 Conclusion and lessons learned

We have presented a scalable, dedicated parallel system using a camera cluster to detect and
locate objects in front of a display wall. The bottlenecks in such a system can range from
the bandwidth required by multiple cameras attached to a single bus and CPU requirements
to process images, to deadlines on when results from image processing must be available.
Due to our system’s parallel architecture, the system can scale both in terms of processing
and number of cameras. We currently use two cameras per computer, but with either more
cameras, higher-resolution cameras or cameras with higher framerates, the system can be
scaled by adding more computers.

Processing images can be CPU-intensive. To avoid image processing incurring too
much latency, we reduce the complexity of it by focusing on only detecting that an object
is present in an image, rather than determining exactly what the object is. This means that
the image processing done by our system can be done quickly, resulting in very low image
processing latencies (about 1 ms).

dVertical movement translates to slower shifts in the detected, horizontal position of objects.
eThe maximum delay between two images taken by two different cameras.
f The initial results were gathered on Mac OS X 10.4.8, while the new results are from 10.4.9.

77

A.3 Lessons learned using a camera cluster... 209

Another challenge in systems using cameras to detect and position objects is relating
images from different cameras to each other. High-end cameras can resolve this issue by
providing support for either software- or hardware-based synchronization. The commodity
cameras used by our system supports neither. Our system resolves this by waiting for data
from all cameras currently detecting objects, resulting in up to 33 ms of added latency. This
still does not solve the problem of cameras capturing images at different points in time -
however, it is better than not detecting objects at all because data from related cameras is
processed in alternating rounds.

We have used the system for interacting with different applications on the display wall.
This includes controlling the two games Quake 3 Arena and Homeworld1, and control a
custom whiteboard-style application with functionality for creating, resizing and moving
simple geometric objects as well as drawing free-hand paths. The system works well for
tasks that do not require higher levels of accuracy than our system can deliver, despite the
intrinsic lack of synchronization between the cameras.

Acknowledgements

The authors thank Ken-Arne Jensen and Tor-Magne Stien Hagen. This work is supported
by the Norwegian Research Council, projects 159936/V30, SHARE - A Distributed Shared
Virtual Desktop for Simple, Scalable and Robust Resource Sharing across Computer, Stor-
age and Display Devices, and 155550/420 - Display Wall with Compute Cluster.

References

1. D. Stødle, T.-M. S. Hagen, J. M. Bjørndalen and O. J. Anshus, Gesture-based, touch-
free multi-user gaming on wall-sized, high-resolution tiled displays, in: Proc. 4th Intl.
Symposium on Pervasive Gaming Applications, PerGames 2007, pp. 75–83, (2007).

2. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M.
Horowitz and M. Levoy, High performance imaging using large camera arrays, in:
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 765–776, (ACM Press, NY,
2005).

3. D. Cotting, M. Waschbüsch, M. Duller and M. Gross, WinSGL: synchronizing dis-
plays in parallel graphics using cost-effective software genlocking, Parallel Comput.,
33, 420–437, (2007).

4. J. Mulligan, V. Isler and K. Daniilidis, Trinocular stereo: A real-time algorithm and
its evaluation, Int. J. Comput. Vision, 47, 51–61, (2002).

5. J. Y. Han, Low-cost multi-touch sensing through frustrated total internal reflection,
in: UIST ’05: Proc. 18th Annual ACM symposium on User Interface Software and
Technology, pp. 115–118, (ACM Press, NY, 2005).

6. G. D. Morrison, A camera-based input device for large interactive displays, IEEE
Computer Graphics and Applications, 25, 52–57, (2005).

7. D. Douxchamps et. al., libdc1394, an open source library for handling firewire DC
cameras. http://damien.douxchamps.net/ieee1394/libdc1394/.

78

210 A Papers

A.4 A System for Hybrid Vision- and Sound-Based... 211

A.4 A System for Hybrid Vision- and Sound-Based In-
teraction with Distal and Proximal Targets on Wall-
Sized, High-Resolution Tiled Displays

Citation

Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. A system for hybrid
vision- and sound-based interaction with distal and proximal targets on wall-sized,
high-resolution tiled displays. In Proceedings of the IEEE International Workshop
on Human-Computer Interaction 2007, volume 4796 of Lecture Notes in Computer
Science, pages 59–68. Springer, 2007.

Presented at the IEEE Workshop on Human Computer Interaction 2007, held in
conjunction with the IEEE International Conference on Computer Vision, Rio de
Janeiro, Brazil, October 20. 2007.

Abstract

When interacting with wall-sized, high-resolution tiled displays, users typically
stand or move in front of it rather than sit at fixed locations. Using a mouse to
interact can be inconvenient in this context, as it must be carried around and often
requires a surface to be used. Even for devices that work in mid-air, accuracy when
trying to hit small or distal targets becomes an issue. Ideally, the user should not
need devices to interact with applications on the display wall. We have developed
a hybrid vision- and sound-based system for device-free interaction with software
running on a 7x4 tile 220-inch display wall. The system comprises three compo-
nents that together enable interaction with both distal and proximal targets: (i) A
camera determines the direction in which a user is pointing, allowing distal targets
to be selected. The direction is determined using edge detection followed by ap-
plying the Hough transform. (ii) Using four microphones, a user double-snapping
his fingers is detected and located, before the selected target is moved to the loca-
tion of the snap. This is implemented using correlation and multilateration. (iii)
16 cameras detect objects (fingers, hands) in front of the display wall. The 1D
positions of detected objects are then used to triangulate object positions, enabling
touch-free multi-point interaction with proximal content. The system is used on
the display wall in three contexts to (i) move and interact with windows from a
traditional desktop interface, (ii) interact with a whiteboard-style application, and
(iii) play two games.

A System for Hybrid Vision- and Sound-Based
Interaction with Distal and Proximal Targets on

Wall-Sized, High-Resolution Tiled Displays

Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus

Dept. of Computer Science, University of Tromsø, N-9037 Tromsø, Norway
{daniels,jmb,otto}@cs.uit.no

Abstract. When interacting with wall-sized, high-resolution tiled dis-
plays, users typically stand or move in front of it rather than sit at fixed
locations. Using a mouse to interact can be inconvenient in this context,
as it must be carried around and often requires a surface to be used. Even
for devices that work in mid-air, accuracy when trying to hit small or
distal targets becomes an issue. Ideally, the user should not need devices
to interact with applications on the display wall. We have developed a
hybrid vision- and sound-based system for device-free interaction with
software running on a 7x4 tile 220-inch display wall. The system com-
prises three components that together enable interaction with both distal
and proximal targets: (i) A camera determines the direction in which a
user is pointing, allowing distal targets to be selected. The direction is
determined using edge detection followed by applying the Hough trans-
form. (ii) Using four microphones, a user double-snapping his fingers is
detected and located, before the selected target is moved to the location
of the snap. This is implemented using correlation and multilateration.
(iii) 16 cameras detect objects (fingers, hands) in front of the display
wall. The 1D positions of detected objects are then used to triangulate
object positions, enabling touch-free multi-point interaction with prox-
imal content. The system is used on the display wall in three contexts
to (i) move and interact with windows from a traditional desktop inter-
face, (ii) interact with a whiteboard-style application, and (iii) play two
games.

Keywords: Vision- and sound-based interaction, large displays.

1 Introduction

Wall-sized, high-resolution displays are typically built by tiling displays or pro-
jectors in a grid. The displays or projectors are driven by a cluster of computers
cooperating to produce a combined image covering the display wall, with ex-
isting display walls ranging in resolution from 10 to 100 Megapixels [8,16]. Our
display wall combines 7x4 projectors back-projecting onto a non-rigid canvas to
create a 220-inch display with a resolution of 7168x3072 pixels.

Display walls invite users to stand and move in front of them. To use input
devices like mice and keyboards in this context, users must carry them around.

M. Lew et al. (Eds.): HCI 2007, LNCS 4796, pp. 59–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

212 A Papers

60 D. Stødle, J.M. Bjørndalen, and O.J. Anshus

Mice often require flat surfaces to be used, and even for “gyro-mice” and similar
devices that don’t have this requirement, the accuracy when trying to hit small
or distal targets becomes an issue. We believe that ideally, users should not need
devices to interact with applications running on the display wall.

We have developed a hybrid vision- and sound-based system that enables
device-free interaction with software running on our display wall. The system
analyzes and combines input from three main components to enable both distal
and proximal interaction. The three components perform the following tasks,
respectively: (i) Determine the direction in which a user is pointing his arm, (ii)
determine the location at which a user snaps his fingers, and (iii) determine the
location of objects (usually fingers or hands) in front of the wall. Figure 1 shows
the system in use for playing two games.

Fig. 1. The system in use for playing Quake
3 Arena and Homeworld

Each component contributes to a
different part of the device-free work-
flow on the display wall. The first
component lets a user select a distal
target by pointing his arm towards it.
A camera situated in the ceiling be-
hind the user captures video. Each
frame of the video is run through
an edge detector, before the Hough
transform is applied to determine the
angle and position of the prevalent
line segments visible in the video.
Combining this with knowledge about what is currently visible on the display
wall lets the component determine which target the user is attempting to select.

The second component lets the user bring the selected, distal target closer by
double-snapping his fingers. Four microphones arranged in a rectangular fashion
near the display wall stream audio to a computer. The computer correlates the
audio samples with a template audio clip. When the user’s snap is detected
from at least three microphones, the snap’s position can be determined using
multilateration.

The third component lets the user interact with proximal targets. 16 cameras
arranged in a row on the floor below the display wall’s canvas stream data to 8
computers. When an object is visible from at least three cameras as it intersects
a plane parallel to the display wall’s canvas, its position can be determined using
triangulation. Multiple objects can be detected and positioned simultaneously,
enabling touch-free multi-point and multi-user interaction. We refer to it as
touch-free as the user does not actually have to touch the display wall in order
to interact with it. This is important in our context, as the display wall’s canvas
is flexible, and thus prone to perturbations when users touch it.

The main contribution of this paper is a hybrid vision- and sound-based sys-
tem for interacting with both distal and proximal targets. We detail the system’s
implementation and show its use in three different contexts on a display wall:

A.4 A System for Hybrid Vision- and Sound-Based... 213

A System for Hybrid Vision- and Sound-Based Interaction 61

(i) A traditional desktop interface, (ii) an experimental whiteboard-style appli-
cation, and (iii) two games.

2 Related Work

Interacting with distal targets on very large displays is an important problem
in HCI, and much previous work exists. In [18], the authors present a system
that allows distant freehand pointing for interacting with wall-sized displays.
Our system does not support pointing from afar, but lets users select distal
targets while standing close to the display wall. Our system detects the angle at
which a user points his arm, while the authors of [18] use a commercial system
that requires the user to wear markers. There are numerous other techniques
for reaching distal targets described in the literature; they include drag-and-
pop [1], the Vacuum [2] and the Frisbee [7]. These techniques generally work
by temporarily bringing distal targets closer. Our approach is complementary in
this regard, as distal targets are moved semi-permanently (that is, until the user
decides to move them again). The “tablecloth” is an entirely different approach
that lets the user scroll the desktop much as he would scroll a window [13].

In [14], untagged audio is used for interacting with a 3D interface connected to
a media player. The system recognizes loud sounds above a dynamic threshold,
such as snapping fingers, and in turn uses this to determine the position of the
sound. Their work focuses on creating 3D interfaces, by creating and placing
virtual “buttons” in space. Rather than creating buttons with fixed locations,
we utilize the user’s actual position to bring distal targets closer to the user.
In [6], the authors propose using continuous vocal sounds for controlling an
interface, rather than interpreting spoken commands. They do not attempt to
determine the user’s physical location, while one key capability of the snap-
detecting component of our system is that it allows applications to leverage this
information. Using vocal sounds to control the position of a cursor is proposed
in [9]. This work could conceivably be used to act on distal targets, and indeed
one aspect of moving the cursor often includes moving windows. However, no
attempt is made at determining the user’s location and using this information
to improve interaction.

Sound source localization is much used in the field of robotic navigation. In
[17], a system is described whereby 8 microphones are used to reliably locate
sounds in a 3D environment using cross-correlation and time-delay. The tech-
nique used by the snap-detecting component is similar in that it estimates the
time-delay between incoming snaps, but differs in that it uses the located sound
for interacting with a user interface, rather than interacting with a robot. Our
component only attempts to detect snaps, whereas the system in [17] does not
discriminate between different sounds. Rather, it is used to locate all “interest-
ing” sound sources, in order to focus the robot’s attention towards the sound
source.

Much research has been done on systems for supporting multi-touch and
multi-point interaction. The Diamondtouch [3] tabletop is one approach, where

214 A Papers

62 D. Stødle, J.M. Bjørndalen, and O.J. Anshus

the position of touches is detected using electric capacitance. Other technologies
include [5], where infrared light is projected into a canvas and internally re-
flected. The light escapes the canvas at points where the user is touching, which
can be detected using a camera. Our system is based on detecting the presence
of objects directly using cameras, and does not require the user to actually touch
the display wall’s canvas. In [10], the author presents a camera-based solution
to detecting and positioning objects in front of a whiteboard. They use custom
cameras with on-chip processing to perform object recognition, while we take a
parallel and commodity-based approach with 16 cheap cameras connected to 8
computers.

3 Design

Fig. 2. The system design with three com-
ponents and event distribution

The hybrid vision- and sound-based
system is comprised of three compo-
nents and a custom event delivery sys-
tem. The three components are (i)
arm-angle, (ii) snap-detect and (iii)
object-locator. Each component is re-
sponsible for detecting different user
actions, with the event system provid-
ing communication between the com-
ponents and end-user applications1.
Figure 2 illustrates the overall design.
The purpose of the arm-angle and snap-detect components is to let the user
select and access distal targets, while the object-locator enables the user to in-
teract with proximal targets using single- or multi-point interaction. Figure 4
illustrates an example scenario where each component is used in turn to select
a distal target, move it closer to the user and then interact with it.

Fig. 3. 16 cameras along the floor
enable object detection in front of
the display wall

The arm-angle component processes images
streamed from a single camera, with the pur-
pose of identifying the angle at which a user is
pointing. The camera is mounted in the ceil-
ing, looking at the backs of users interacting
with the display wall. The component delivers
events to end-user applications, which inter-
pret them according to their needs and cur-
rent state.

The snap-detect component performs sig-
nal processing on audio from four micro-
phones. The microphones are arranged in a
rectangle in front of the display wall, with two
microphones mounted near the ceiling at op-

1 The event system is outside the scope of this paper.

A.4 A System for Hybrid Vision- and Sound-Based... 215

A System for Hybrid Vision- and Sound-Based Interaction 63

posite ends of the canvas, and the other two near the floor. The component’s
goal is to detect a user snapping his fingers or clapping his hands in at least
three of the four audio streams, allowing the signal’s origin in 2D space to be
determined using multilateration.

Fig. 4. The user selects a window, double-
snaps to bring it closer, and interacts using
the touch-free interface

Multilateration uses the difference
between the time at which snaps are
detected by the different microphones
to determine possible locations where
the user snapped his finger. With a
fixed sample rate, it is possible to de-
termine the approximate, relative dis-
tance the sound has travelled from the
time it was detected by a given mi-
crophone until it was detected by an-
other. The resulting points lie on a
hyperbolic curve with focus point at
the given microphone’s position. For
many microphones, the intersections
of the resulting curves can be used
to determine the location of the user
in 2D. For each positioned snap, an
event containing the snap’s 2D loca-
tion and strength is delivered to end-
user applications.

The object-locator component uses
16 cameras to detect objects inter-
secting a plane parallel to the display
wall’s canvas, with typical objects being a user’s fingers or hands. The cameras
are connected pairwise to 8 computers, and mounted in a row along the floor
looking at the ceiling (Figure 3). When three or more cameras see the same
object, its position can be determined using triangulation. The component can
detect several objects simultaneously. If the end-user application supports it,
both multi-user and multi-point interaction is possible.

4 Implementation

The arm-angle component, implemented in C, uses a Canon VC-C4R pan-tilt-
zoom camera connected to a framegrabber-card on a computer running Linux.
The component captures frames at 8-9 frames per second (FPS). Each frame
has a resolution of 720x540 pixels and is scaled down to half-size and converted
from color to grayscale. Then the Sobel edge detector is used to locate edges in
the image, before the equations of lines appearing in the image are determined
using the Hough transform [4]. End-user applications receive events from the
arm-angle component, which they use to determine the targets that the user is
trying to select. For the traditional desktop interface, this is done by determining

216 A Papers

64 D. Stødle, J.M. Bjørndalen, and O.J. Anshus

the bounding rectangles of currently visible windows, and then intersect each
window’s bounds with the line indicating the user’s pointing direction. Since the
Hough-transform typically yields several potential lines for the arm and other
straight edges, each line votes for the closest window it intersects with. A red
square over the selected window highlights it to the user. The traditional desktop
interface on the display wall is created using Xvnc [12,11], with each tile of the
display wall showing its respective part of the entire, high-resolution desktop.

Fig. 5. The arm-angle image processing steps. (a) The input image, (b) the image after
edge detection, (c) output from the Hough-transform, (d) the edge-detected image with
lines extracted from the Hough-transform super-imposed.

Fig. 6. (1) Image from camera. (2) Cur-
rent background image. (3) Area of interest
from current camera image. (4) The result
by subtracting (3) from (2). (5) Result after
thresholding the image.

The snap-detect component uses
four microphones connected to a
mixer. The mixer feeds the audio to a
PowerMac G5, which uses a Hammer-
fall HDSP 9652 sound card to capture
4-channel audio samples at a rate of
48000 Hz. Samples from each chan-
nel are correlated with a template
sound of a user snapping his fingers.
When the correlation for a given chan-
nel exceeds an experimentally deter-
mined threshold, a snap is detected in
that channel. The snap-detect compo-
nent records a timestamp (essentially
a sample counter) for each channel the
snap is detected in. When a snap is
detected in at least three channels,
the resulting timestamps can be used
to determine the user’s location using
the difference in time between when
the snap is detected by the first micro-
phone, and when it is detected by the
remaining two or three microphones
(multilateration). The location is de-
termined by the intersection of conics created from different pairs of micro-
phones, illustrated in Figure 7. For the desktop interface on the display wall,
the selected window is moved to the location of the snap over a period of half

A.4 A System for Hybrid Vision- and Sound-Based... 217

A System for Hybrid Vision- and Sound-Based Interaction 65

a second. Changes to existing applications are not necessary to allow window
movement by snapping fingers.

Fig. 7. The possible posi-
tions given the time differ-
ence between mic A and
B are all located on the
conic section.

The object-locator component is implemented in
Objective-C, and consists of two modules: An im-
age processing module, and a triangulation module.
The image processing module runs in parallel on 8
Mac minis. Each Mac mini captures streaming video
from two Unibrain Fire-i FireWire cameras in 640x480
grayscale at 30 FPS. Figure 6 illustrates the image
processing done for a single camera. When the image
processing module on a Mac mini starts up, it sets
the first grabbed image to be the background image;
the background is subsequently updated dynamically
to deal with changing light conditions. For each new
image captured, a narrow region of interest is isolated,

before the background is subtracted from it. The result is then thresholded, yield-
ing one-dimensional object positions and radii wherever pixel values exceed the
dynamic threshold (the radius is set to the number of successive pixels above the
threshold divided by two). The one-dimensional positions and radii are gathered

Fig. 8. The object-locator identifying three
of four objects and their position

by the triangulation module. For each
camera, the triangulation module cre-
ates line segments that start at the
camera’s position, and pass through
the center of each object detected by
that camera. These lines are then in-
tersected with the lines generated for
the two cameras to the immediate left
and right of the current camera. The
resulting intersections are examined,
and if two or more intersection points
from three different cameras lie suf-
ficiently close, an object is detected,
as illustrated in Figure 8. The tradi-
tional desktop interface uses the 2D
positions reported by the object-locator to control the cursor, and uses the ra-
dius to determine if the user wants to click.

5 Early Deployment

The hybrid vision- and sound-based interface has been deployed in three different
contexts: (i) A traditional desktop interface running on the display wall, (ii)
a prototype whiteboard-style application supporting multiple users, and (iii)
two previously commercial, but now open-source games (Quake 3 Arena and
Homeworld). When used with a traditional desktop interface, the system enables

218 A Papers

66 D. Stødle, J.M. Bjørndalen, and O.J. Anshus

one user to select distal windows on the display wall, and move them closer by
double-snapping his fingers. When the window is within reach, the user can
interact with it using the touch-free interface. The cursor tracks the position of
the user’s hand or finger, and a click or drag can be invoked by tilting the hand
(making it flat), as illustrated in Figure 9. Its use in the whiteboard-application
is similar, where the distal objects drawn on screen can be brought closer by
pointing at them and then double-snapping. In addition, the whiteboard brings
up a tool palette at the user’s location when a user single-snaps, allowing new
objects to be added. The touch-free interface is used to support multi-user and
multi-point interaction, for instance allowing users to resize objects by varying
the distance between their hands.

Fig. 9. (a) A flat and (b)
vertical hand

The final context in which the system has been used
is to play two games, Quake 3 Arena and Homeworld,
further detailed in [15]. In this context, we only utilize
the object-locator component, and to some extent the
snap-detect component (people not playing the game
can make the players fire their weapons in Quake 3
Arena by snapping their fingers, for instance). The
touch-free interface provided by the object-locator en-
ables users to play the two games using gestures only,
rather than using traditional mouse/keyboard-based
input.

6 Discussion

One principle employed throughout the design of the system is the following:
Rather than identify what objects are, it is more important to identify where
the objects are. The system at present does not distinguish between an arm
pointing to give a direction, or a stick being used to do the same; nor does the
system distinguish a snap from a clap or snap-like sounds made by mechanical
clickers. This principle is also used to realize the touch-free interface - users can
interact using their fingers, hands, arms, pens or even by moving their head
through the (invisible) plane in front of the display wall.

This principle is not without issues, however, as false positives can occur for
all of the components used in the system. For the arm-angle component, one
issue is that the content currently on the display wall interferes with the edge-
detection and the following Hough-transform to produce results that do not
reflect the user’s intentions. Another issue is that the resolution offered by the
arm-angle component is too coarse to be used for selecting very small targets,
such as icons. Techniques like drag-and-pop or the vacuum may be better suited
for picking out small targets [1,2]. For the object-locator, the fact that it does
not recognize what objects are means that it has no way of distinguishing several
users from a single user interacting with several fingers or both hands. Although
our ideal is to provide device-free interaction with the display wall for multiple,
simultaneous users, the only component of the system that currently supports

A.4 A System for Hybrid Vision- and Sound-Based... 219

A System for Hybrid Vision- and Sound-Based Interaction 67

multiple simultaneous users is the object-locator. We are currently working on
ways to support multiple users with the arm-angle and snap-detect components
as well. We are also investigating the accuracy of the three components, to better
characterize their performance.

7 Conclusion

This paper has presented a system combining techniques from computer vision
and signal processing to support device-free interaction with applications run-
ning on high-resolution, wall-sized displays. The system consists of three compo-
nents utilizing in total 17 cameras and 4 microphones. It enables a user to select
distal targets by pointing at them, bring the targets closer by double-snapping
his fingers and finally interact with them through the use of a touch-free, multi-
point interface. The system does not require the user to wear gloves or use other
external devices. Instead, the system has been designed so as not to care ex-
actly what a detected object is, but rather where the object – whatever it may
be – is located. This in turn means that the system does not attempt to tell
different users apart, for either of the three components. The interface has been
deployed in three different contexts on the display wall: (i) One user at a time
can interact with a traditional desktop interface, (ii) several users can interact
simultaneously with a custom whiteboard-style application, with the caveat that
the distal target selector only works for the user positioned near the center of the
display wall, and (iii) up to three persons may play the games Quake 3 Arena
and Homeworld simultaneously.

Acknowledgements

The authors thank Espen S. Johnsen and Tor-Magne Stien Hagen for their dis-
cussions, as well as the technical staff at the CS department at the University
of Tromsø. This work has been supported by the Norwegian Research Council,
projects No. 159936/V30, SHARE - A Distributed Shared Virtual Desktop for
Simple, Scalable and Robust Resource Sharing across Computer, Storage and
Display Devices, and No. 155550/420 - Display Wall with Compute Cluster.

References

1. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B.,
Zierlinger, A.: Drag-and-Pop and Drag-and-Pick: Techniques for Accessing Remote
Screen Content on Touch- and Pen-operated Systems. In: Proceedings of Interact
2003, pp. 57–64 (2003)

2. Bezerianos, A., Balakrishnan, R.: The vacuum: facilitating the manipulation of
distant objects. In: CHI 2005. Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 361–370. ACM Press, New York (2005)

3. Dietz, P., Leigh, D.: DiamondTouch: a multi-user touch technology. In: UIST 2001.
Proceedings of the 14th annual ACM symposium on User interface software and
technology, pp. 219–226. ACM Press, New York (2001)

220 A Papers

68 D. Stødle, J.M. Bjørndalen, and O.J. Anshus

4. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves
in pictures. Commun. ACM 15(1), 11–15 (1972)

5. Han, J.Y.: Low-cost multi-touch sensing through frustrated total internal reflection.
In: UIST 2005. Proceedings of the 18th annual ACM symposium on User interface
software and technology, pp. 115–118. ACM Press, New York (2005)

6. Igarashi, T., Hughes, J.F.: Voice as sound: using non-verbal voice input for inter-
active control. In: UIST 2001. Proceedings of the 14th annual ACM symposium on
User interface software and technology, pp. 155–156. ACM Press, New York (2001)

7. Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., Kurtenbach, G.: A remote
control interface for large displays. In: UIST 2004. Proceedings of the 17th annual
ACM symposium on User interface software and technology, pp. 127–136. ACM
Press, New York (2004)

8. Li, K., Chen, H., Chen, Y., Clark, D.W., Cook, P., Damianakis, S., Essl, G., Finkel-
stein, A., Funkhouser, T., Housel, T., Klein, A., Liu, Z., Praun, E., Samanta, R.,
Shedd, B., Singh, J.P., Tzanetakis, G., Zheng, J.: Building and Using A Scalable
Display Wall System. IEEE Comput. Graph. Appl. 20(4), 29–37 (2000)

9. Mihara, Y., Shibayama, E., Takahashi, S.: The migratory cursor: accurate speech-
based cursor movement by moving multiple ghost cursors using non-verbal vocal-
izations. In: Assets 2005. Proceedings of the 7th international ACM SIGACCESS
conference on Computers and accessibility, pp. 76–83. ACM Press, New York (2005)

10. Gerald, D.: A camera-based input device for large interactive displays. IEEE Com-
puter Graphics and Applications 25(4), 52–57 (2005)

11. RealVNC, Ltd. VNC for Unix 4.0. http://www.realvnc.com/
12. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual Network

Computing. IEEE Internet Computing 2(1), 33–38 (1998)
13. Robertson, G., Czerwinski, M., Baudisch, P., Meyers, B., Robbins, D., Smith, G.,

Tan, D.: The large-display user experience. IEEE Comput. Graph. Appl. 25(4),
44–51 (2005)

14. Scott, J., Dragovic, B.: Audio Location: Accurate Low-Cost Location Sensing. In:
Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468,
pp. 1–18. Springer, Heidelberg (2005)

15. Stødle, D., Hagen, T.-M.S., Bjørndalen, J.M., Anshus, O.J.: Gesture-based, touch-
free multi-user gaming on wall-sized, high-resolution tiled displays. In: Proceedings
of the 4th Intl. Symposium on Pervasive Gaming Applications, PerGames 2007,
pp. 75–83 (June 2007)

16. Stolk, B., Wielinga, P.: Building a 100 Mpixel graphics device for the OptIPuter.
Future Gener. Comput. Syst. 22(8), 972–975 (2006)

17. Valin, J.-M., Michaud, F., Rouat, J., Letourneau, D.: Robust sound source local-
ization using a microphone array on a mobile robot. In: Proceedings of Interation
Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1228–1233 (Oc-
tober 2003)

18. Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very large,
high resolution displays. In: UIST 2005. Proceedings of the 18th annual ACM
symposium on User interface software and technology, pp. 33–42. ACM Press,
New York (2005)

A.4 A System for Hybrid Vision- and Sound-Based... 221

222 A Papers

A.5 De-centralizing the VNC Model... 223

A.5 De-centralizing the VNC Model for Improved Perfor-
mance on Wall-Sized, High-Resolution Tiled Displays

Citation

Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus. De-Centralizing
the VNC Model for Improved Performance on Wall-Sized, High-Resolution Tiled
Displays. In NIK ’07: Norsk Informatikkonferanse, pages 53–64. tapir akademisk
forlag, November 2007.

Abstract

This paper presents changes to the Virtual Network Computing (VNC) model to
improve performance on wall-sized, high-resolution tiled displays. VNC does not
fully utilize data distributed to the tiles, noticeably reducing interactive perfor-
mance when panning images and moving windows. By de-centralizing the VNC
model, the VNC viewers can exchange pixels amongst each other, improving per-
formance. The VNC server changes from individually servicing viewer requests,
to servicing the viewers once everyone has requested an update. The model is im-
plemented, and its performance documented through experiments. When panning
images, the number of pixels refreshed is increased three times or more, while
reducing the server’s bandwidth by 74% and CPU load by 35%. When moving
windows, the number of pixels refreshed is increased by a factor of 1.8, while re-
ducing the server’s bandwidth by 68% and CPU load by 19.7%. The paper demon-
strates how conceptually simple changes to VNC, while complex to realize, can
yield significant performance improvements.

De-centralizing the VNC Model for Improved Performance on

Wall-Sized, High-Resolution Tiled Displays

Daniel Stødle
daniels@cs.uit.no

John Markus Bjørndalen

jmb@cs.uit.no

Otto J. Anshus

otto@cs.uit.no

Abstract

This paper presents changes to the Virtual Network Computing (VNC)

model to improve performance on wall-sized, high-resolution tiled displays.

VNC does not fully utilize data distributed to the tiles, noticeably reducing

interactive performance when panning images and moving windows. By

de-centralizing the VNC model, the VNC viewers can exchange pixels

amongst each other, improving performance. The VNC server changes

from individually servicing viewer requests, to servicing the viewers once

everyone has requested an update. The model is implemented, and its

performance documented through experiments. When panning images, the

number of pixels refreshed is increased three times or more, while reducing

the server’s bandwidth by 74% and CPU load by 35%. When moving

windows, the number of pixels refreshed is increased by a factor of 1.8, while

reducing the server’s bandwidth by 68% and CPU load by 19.7%. The paper

demonstrates how conceptually simple changes to VNC, while complex to

realize, can yield significant performance improvements.

1 Introduction

Figure 1: Weather forecasting on a tiled display

wall with 28 projectors behind the canvas, using

VNC to provide the desktop environment.

Using high-resolution, tiled display walls

for visualization and collaboration is be-

coming increasingly popular. The high

resolution and large physical size of dis-

play walls make them useful for visualiz-

ing data from many domains. Users often

need to run applications written for stan-

dard desktop environments on the display

wall, such as the weather forecasting appli-

cation shown in Figure 1. Virtual Network

Computing (VNC) [1], a remote desktop

solution, is one way of achieving this. It

is usually used to share regular-sized desk-

tops, but for display walls, VNC can also

be used to create a very high-resolution

desktop. In the latter case, the desktop is maintained by a VNC server, which transmits

This paper was presented at the NIK-2007 conference; see http://www.nik.no/.

224 A Papers

tiles of the desktop to corresponding clients (VNC viewers) running on a display cluster.

Due to VNC’s centralized approach to rendering and distributing pixels, it does not scale

well to large display walls. With typical display walls ranging in resolution from 10 to

100 megapixels [2, 3] and beyond, a single complete refresh requires sending between 38

MB to 380 MB in total to the viewers.

This paper presents De-centralized VNC (DVNC). DVNC modifies the VNC model,

allowing viewers to exchange pixels when screen content moves, but is not otherwise

modified. Cases where this happens include panning large images, moving windows

on the desktop or scrolling in windows. Work is delegated to the viewers, letting the

server focus on sending new pixels rather than resending already transmitted pixels to the

viewers. When the viewers receive pixels from both the server and each other, the correct

ordering of display updates becomes important in order to preserve consistency of the

display.

DVNC was implemented by modifying an open-source version of VNC [4], and its

performance measured by comparing it to the original on a tiled display wall with a total

resolution of 7168x3072 pixels. As a result, we found interactive performance to be

significantly better when panning images and moving windows. The main contribution

is the modified VNC model, where viewers go from being passive receivers of pixels, to

become active participants in distributing pixels.

2 Related work

There has been much work on improving the performance and utility of VNC [1],

including new compression techniques [5, 6] and support for 3D acceleration [7]. This

paper is not focused on these aspects of VNC. DVNC instead aims at improving

performance when using VNC to create a desktop on tiled display walls, by delegating

work to viewers. In THINC [8], performance is improved compared to VNC and other

remote desktop solutions by efficiently encoding and transferring raw graphics operations

generated by applications. THINC is focused on thin-client usage, and is currently not

suitable for use in creating desktop environments for display walls as it can only export

desktops with the same resolution as the computer it is running on has.

Microsoft Remote Desktop and the X Window System [9] (X11) are two other ways of

accessing or creating desktops over the network. Both approaches use drawing operations

(“draw line”, “draw string”, and so on) to achieve good performance. The former is

limited to a maximum resolution of 4096x2048, and does not allow different regions to

be displayed by different viewers. Xdmx [10] can be used to enable X11 application

to run on a tiled display wall. Xdmx acts as a proxy to a set of X servers running on

the display cluster. This differs from DVNC in that no data is exchanged between the

different X servers on the display cluster to improve performance. DVNC uses a single X

server to render into a virtual framebuffer, which is then distributed to the tiles using the

VNC protocol.

SAGE [11] is a system for streaming high-resolution graphics from rendering or

storage clusters to one or several display walls. Pixel data is received by “SAGE

Receivers” and then displayed. While this can be used to display multiple VNC desktops

at once, no pixel data is exchanged between the different SAGE Receivers.

A.5 De-centralizing the VNC Model... 225

3 Model and design

When VNC is used on standard displays, a single viewer typically has access to the pixels

for the server’s entire desktop. On a tiled display wall, each viewer runs on its own

computer showing a small region of the server’s desktop, as shown in Figure 2 (a) and

(b). In the original VNC model, the server does all the work. The viewers do nothing

except receive and display pixels. In DVNC, this model is modified by letting the viewers

exchange pixels amongst each other for a certain class of update operations. The purpose

of this is to reduce the server’s load and improve end-user performance. The viewers go

from being passive receivers to being active slaves in a master-slave relationship to the

server. Figure 2 (c) illustrates this change.

Figure 2: The original VNC model for (a) a standard display,

(b) a tiled, 2x2 display wall. In the modified model (c), the

viewers exchange pixels with each other in addition to receiving

pixels from the server.

VNC uses the Remote

Framebuffer (RFB) protocol

[12] to send display updates

from the server to the view-

ers. Viewers request the area

they are interested in from

the server, which responds

with update operations for

that area. The RFB protocol

uses three operations to up-

date a region of the display:

Image Rect, Fill Rect and

Copy Rect. The Image Rect

operation contains a rectan-

gular set of pixels which is

drawn by the viewer at the lo-

cation indicated by the rect-

angle. The Fill Rect operation is used to fill a rectangle with a given color. The Image

and Fill Rect operations offer no obvious ways for distributing network load.

Figure 3: The Copy Rect operation as it is used for a single viewer for the entire remote desktop,

and its behaviour when used with multiple viewers each showing a region of the server’s desktop

on a tiled, high-resolution display.

The Copy Rect operation is used whenever an area of the screen is moved, but the

pixels inside the area remain unchanged, shown in Figure 3 (1) and (2). This is common

when moving windows, scrolling in documents or panning images. Since a Copy Rect

only takes 12 bytes to send regardless of the size of the area being updated, the Copy Rect

226 A Papers

operation is important for reducing the server’s bandwidth usage. To make the best use

of it, the viewer must have access to all of the pixels being moved for the entire desktop.

On a tiled display, this is not the case, as each viewer only has the pixels covering its own

area of the display. Copy Rect operations that span the areas of more than one viewer

force the server to split the operation, resulting in a larger set of exposed areas, shown in

Figure 3 (A) and (B). This incurs additional load on the server, which DVNC alleviates

by letting the viewers themselves exchange the necessary data. Figure 4 illustrates this.

Figure 4: A Copy Rect operation spanning four

viewers. The darkened, grey area moves down

and to the right. Viewers 1, 2 and 3 transfer some

of their pixels to viewer 4. (Other pixel transfers

are not shown, such as from viewer 1 to viewer

2.) The arrows indicate direction of movement.

In the de-centralized VNC model, the

viewers receive updates not only from the

server, but also from each other. This

creates consistency issues, both for the

viewer’s own display, and for pixels sent

by the viewer to other viewers. For

instance, a viewer receiving one update

from the server and a second update from

a different viewer, needs to know which of

the two updates to apply first in order to

ensure a consistent display. In DVNC, the

consistency issues are solved by imposing

a total ordering on all updates sent by the

server to the viewers, and by ensuring that

all the viewers see the same Copy Rect

operations.

The viewers make independent deci-

sions about where to send pixel data based

on the Copy Rect operations they receive.

Pixel data is always pushed to other viewers. To avoid circular dependencies between dif-

ferent viewers, the Copy Rect operation is split into two phases: A Copy Rect pre-phase,

and a Copy Rect post-phase. During the pre-phase, the viewer determines which viewers

it should send pixels to, copying and sending data as necessary. During the post-phase, a

viewer applies updates from other viewers in the correct order.

4 Implementation

DVNC was implemented by modifying RealVNC’s free VNC distribution (available

under the GPL license), version 4. Both the VNC server and the VNC viewer

required modifications. There are many implementations of VNC, including TightVNC,

UltraVNC, and others. Since the modifications involve changing the model, they could

also have been implemented by modifying a different VNC implementation.

VNC server modifications

The VNC server was modified to ensure that all connected viewers see the same Copy

Rect operations in the same order. Instead of accumulating updates for each viewer, the

server accumulates the same set of updates for all viewers, sending them once all the

viewers have requested an update. The drawback to this approach is that the server can

provide updates no faster than the slowest viewer. When updates are sent, the Copy Rect

operation’s rectangle is no longer clipped to the area which the viewer requests from the

server, but sent regardless of whether the Copy Rect actually intersects with the viewer’s

A.5 De-centralizing the VNC Model... 227

area. The server continues to clip Fill and Image Rect operations to the area requested by

the viewer. A 4-byte, logical timestamp was added to the RFB protocol’s framebuffer start

message. The logical timestamp is incremented once for each group of update operations,

and is used by the viewers to match updates received from other viewers to the correct

Copy Rect operation. Finally, the server was modified to measure its load during the

various experiments.

VNC viewer modifications

The VNC viewer was modified to receive framebuffer updates from other viewers. A

separate thread is responsible for sending and receiving pixel data to and from other

viewers. This thread also handles the logic necessary to determine which pixels should be

sent and received, as well as the order in which updates are applied. Also, both the original

and modified viewers were changed to record various statistics used for the experiments.

To better overlap communication with computation, incoming update operations from

the server are queued. If the operation to be queued is a Copy Rect, its pre-phase is

executed before queueing it (in some cases, execution of the pre-phase may be delayed to

ensure consistency). The pre-phase copies data and sends it to other viewers, increasing

the chance that other viewers will have the data they need when they begin executing the

Copy Rect’s post-phase.

When the server signals that it is done sending updates, all the queued operations are

applied by the viewer. Applying a Copy Rect operation is done by executing its post-

phase. During the post-phase, the viewer scans its list of updates received from other

viewers, matching them to the current Copy Rect using the VNC server timestamp and

other data contained by the operation. If the viewer hasn’t received all the necessary data

from other viewers, it will block waiting for the remaining data to arrive.

The queueing strategy introduces a queueing overhead not present in the original

implementation. To minimize this overhead, the modified viewer avoids queueing when

possible. If the rectangle covered by the incoming operation does not overlap with the

rectangles of any queued operations, the operation can be applied immediately.

Determining where a viewer sends its pixels for a given Copy Rect operation is done

by examining the data given by each Copy Rect operation. A Copy Rect operation consists

of a source rectangle R=(x, y, width, height) and a delta point (dx, dy). The delta point

indicates where the pixels identified by the source rectangle should be moved, yielding a

destination rectangle. The viewer intersects the source rectangle with its own area. If the

intersection is non-empty, the destination rectangle is computed by offsetting the clipped

source rectangle by the operation’s delta point and intersecting the result with the viewer’s

area. If the source and destination rectangles have different sizes (indicating that part of

the destination rectangle falls outside the viewer’s area), the viewer will transmit some of

its data to other viewers.

When the viewer starts up, it is given the area of the VNC desktop that it should display

as part of its arguments. The viewer then connects to the server and to the all other viewers

by means of a multicast discovery mechanism. When a connection to another viewer is

established, the viewers exchange a handshake, before they can exchange framebuffer

updates. The handshake consists of five long integers: A magic number followed by the

area the viewer covers. All future messages consist of a four-byte field containing the

length of the message, followed by the actual message itself. These messages consist of

the VNC server timestamp, the rectangle and delta point from the Copy Rect operation,

followed by the pixels for the update. The pixels are currently not compressed.

228 A Papers

5 Experiments

The performance of the original VNC and modified DVNC implementations is measured

using three metrics: Total number of pixels refreshed, total number of bytes sent from

the server to the viewers, and the server’s CPU load. A high pixel refresh count is better

than a low refresh count, as more pixels updated means better interactive performance.

The DVNC implementation is also expected to reduce bandwidth used by the server, and

reduce the server’s CPU load. This is because the modified model is based on distributing

load from the server to the viewers.

Hardware and software setup

The hardware used was (i) a display cluster with 28 nodes (Intel Pentium 4 EM64T, 3.2

GHz, 2 GB RAM, HyperThreading enabled, running the Rocks cluster distribution 4.0)

connected to 28 projectors (1024x768, arranged in a 7x4 matrix), (ii) switched, gigabit

Ethernet, (iii) a dual Intel Xeon 3.8 GHz with 8 GB RAM, and (iv) another Pentium

4 (same hardware as the nodes in the display cluster). The Xeon and the last Pentium

4 were used to run the server, and ran RedHat Enterprise Linux 4. The image viewer

used was “xloadimage” by Jim Frost. The event generator for the control experiments

used the XTestExtension to post input events to the server, and was custom-made for

these experiments. The VNC distribution was RealVNC version 4 [4], exporting a 16-bit

desktop.

Server and viewer instrumentation

The original and modified servers were instrumented to record their CPU load over the

duration of an experiment, recording both time spent at user level, and time spent on

behalf of the servers at kernel level. The servers recorded 10 samples per second, sending

performance data to a second computer on the same local network. The additional

network traffic generated by sending performance data is negligible at less than 500 bytes

per second.
Name Description

Total Pixels Total number of pixels re-

freshed by this viewer.

Server Bytes Total number of bytes re-

ceived by this viewer from

the server.

Viewer-

to-viewer

Bytes

Total number of bytes re-

ceived by this viewer from

other viewers.

Queuing

Overhead

Minimum, maximum and

average overhead caused by

queueing incoming opera-

tions.

Table 1: Statistics gathered from the viewers.

The original and modified viewers

were instrumented to record the statistics

outlined in Table 1. Each viewer makes

its own measurements. At the end of

each experiment, the number of pixels re-

freshed and number of bytes exchanged is

summed. The queueing overhead’s global

maximum and minimum values are deter-

mined, and the global queueing overhead

average is calculated by averaging the av-

erages from each viewer. The total number

of bytes sent between the viewers was also

recorded, but these data have not been used

to characterize performance in this paper.

Experiments and methodology

Two sets of trace experiments and a set of control experiments were conducted. The trace

experiments aim at measuring the performance for a user interacting with the desktop.

In particular, the answers to the following four questions were of interest: (i) How many

A.5 De-centralizing the VNC Model... 229

more pixels can the DVNC implementation refresh compared to VNC? (ii) How much

bandwidth does DVNC save? (iii) How does the DVNC changes affect the server’s load?

(iv) How big is the queuing overhead? The trace experiments play back two recorded user

traces, where a user either pans an image or moves a window (see Table 2). In the first set

of trace experiments, the server ran on the Xeon, and in the second set, the server ran on

the Pentium 4.

Trace Description

Image pan A user pans an image sized at

9372x9372 pixels. The visi-

ble portion of the image cov-

ers almost the entire display

wall, the rest of which is cov-

ered by the image viewer’s

window decorations. The

trace lasts for 255 seconds.

Window move A window sized at

2592x1944 pixels is moved

around on screen. The trace

lasts for 145 seconds.

Table 2: The traces used for measuring

performance.

The control experiments have two pur-

poses: (i) Get an objective view of the sys-

tem’s performance, and (ii) measure the

maximum performance gain in a situation

where the server’s possibility for using

Copy Rect operations is near maximized.

The image from the Image pan trace is

moved vertically up and down in a con-

trolled manner. The rate at which move-

ment occurs is varied for each experiment,

ranging from one to fifty times per second,

with each movement scrolling the picture

8 pixels up or down. An event generator

is used to move the image at the constant

rate defined by each experiment, with each

experiment lasting 30 seconds.

Where the trace experiments measure the system’s performance in a setting similar to

real-world use, the control experiments allow for external repeatability. Before running

either trace or control experiments, the server was restarted, and its desktop configured

to match the experiment’s starting point (open windows and window positions on the

desktop). Then the viewers were restarted, and the experiment was conducted, before

performance data was gathered.

A null-benchmark measured the overhead incurred by the changes to the VNC

protocol. The server displayed a static image, and the number of bytes required to refresh

the viewers was measured. The original sent a total of 85688.97 KB, while the modified

sent 85707.69 KB - an overhead of 0.02%.

Trace results

Figure 5: Left: Total number of pixels refreshed for each trace by the original and modified VNC

viewers. Right: Total number of bytes sent by the server to the viewers.

Figure 5 shows the total number of pixels refreshed by the original and modified

viewers as well as bytes sent from the server to the viewers for each trace. With the server

on the Pentium 4, the modified implementation refreshes 34.6 gigapixels (GPx) for the

Image pan trace, 3.29 times more than the original’s 10.5 GPx. For the Window move

230 A Papers

trace, the modified implementation refreshes 1.83 as many pixels. The number of bytes

sent is reduced by 74% for the Image pan trace, and by 68% for the Window move trace.

On the Xeon, number of pixels refreshed increases from 6.5 to 18.2 GPx and 4.6 to 8.1

GPx for the two traces respectively. Interestingly, the Pentium 4 is able to refresh almost

twice as many pixels as the Xeon for the Image pan trace. The amount of data transferred

is approximately the same regardless of where the server runs.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

C
P

U
 T

im
e
 (

s
)

Time (s)

Cumulative VNC server load for Image pan trace on Pentium 4

Orig. Total

Orig. Kernel

Orig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

Figure 6: Cumulative server CPU load for the

Image pan trace on Pentium 4, with total, user

and kernel level load for both implementations.

Figure 6 shows the original and mod-

ified servers’ cumulative CPU load, mea-

sured in seconds, when running on the

Pentium 4 for the Image pan trace. The

X axis shows the running time of the trace,

and the Y axis shows the CPU time con-

sumed by the server. The DVNC server’s

load is reduced by 35% compared to the

original VNC server (from 106.6 to 69.3

CPU seconds). The biggest reduction hap-

pens at kernel level, where the load is re-

duced by 75%, while the difference in user

level load is only 4%. The reduction in

kernel level load correlates well with the

reduction in bandwidth used by the DVNC

server. For the window move trace, the reduction in CPU load is 19.7% (from 64.8 to

52.0 CPU seconds). The server load on the Xeon has similar characteristics.

Trace Min Avg Max

Image pan

(P4)

0.000 s 0.009 s 0.546 s

Window move

(P4)

0.000 s 0.008 s 0.467 s

Image pan

(Xeon)

0.000 s 0.011 s 0.582 s

Window move

(Xeon)

0.000 s 0.011 s 0.504 s

Table 3: The queueing overhead, measured

in seconds, for the traces on the Pentium 4

and the Xeon.

Table 3 shows the modified implemen-

tation’s queuing overhead. The maximum

queuing overhead is 0.56 seconds, which

means that an update operation received by

one of the viewers was queued for a little

over half a second before it was actually

drawn. The average queuing overhead is

between 0.008 and 0.011 seconds, and the

minimum overhead is 0.000 seconds.

Control experiment results

Figure 7 shows the number of pixels

refreshed by the viewers for the control

experiment. The measured values are compared to a target number of pixels that should

have been refreshed if sufficient resources to avoid all bottlenecks were available. The

target value is calculated by measuring the number of pixels refreshed when scrolling

the image vertically by 8 pixels, and multiplying that number with the duration of each

experiment and rate at which the image is moved.

The number of pixels refreshed increases linearly with the event generation rate.

At first, both implementations closely follow the target refresh count. The original

implementation reaches its maximum at an event rate of 26, while the modified

implementation keeps tracking the target up to 40 events per second. The original’s

performance goes down by 57.8% when the event generation rate is increased from 26

to 28. The DVNC performance goes down by only 6.6% when increasing the event

generation rate from 40 to 45. At an event rate of 50, DVNC refreshes 11.9 times as

A.5 De-centralizing the VNC Model... 231

many pixels as the original.

Figure 7: Total number of pixels refreshed for

the control experiment for the two implementa-

tions, as well as the target refresh count. Event

generation rates range from 1 to 50.

Figure 8 shows the server’s total, ker-

nel and user level load in percent for both

implementations. Initially, the CPU load

increases linearly for the implementations,

with the original’s load increasing almost

twice as fast as the modified’s load. At the

peak in load, close to 100%, the event rate

for the original and modified server is re-

spectively 26 and 40. This is also the rate

at which the two implementations peak in

number of pixels refreshed.

Figure 9 shows the total number of

bytes transferred from the server to the

viewers. The number of bytes transferred

increases linearly with the event rate, with

a slower growth for the modified implementation. The original implementation peaks at

1135 MB, while the modified implementation peaks at 375 MB. This corresponds to a

bandwidth use of 37.8 MB/s and 12.5 MB/s, respectively, neither of which is close to the

maximum transfer rate of gigabit Ethernet at about 90 MB/s. Interestingly, the bandwidth

used by the original implementation continues to climb even after having peaked both in

CPU load and number of pixels refreshed.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
P

U
 L

o
a
d
 (

P
e
rc

e
n
t)

Rate

VNC server load for control experiment

Orig. Total

Orig. Kernel
Orig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

Figure 8: CPU load for the VNC server,

showing total, kernel, and user level load for both

the original and modified implementations in the

control experiment.

Figure 9: Total bytes sent from the servers

for the control experiment.

6 Discussion

The results from the trace experiments show that the DVNC implementation can refresh

more than three times as many pixels compared to the original. The control experiment

documents that DVNC can outperform the original by a factor of up to 11.9. For the case

where the server sends no Copy Rect operations - and hence no gain can be expected

from delegating work to the viewers - DVNC adds very little overhead; only 0.02% in the

null-benchmark. DVNC provides no performance benefit for content that is updated using

232 A Papers

operations other than Copy Rect - typically video, animated or otherwise “fresh” content.

DVNC provides a significant performance increase for certain operations that the server

is able to translate into Copy Rect operations.

Trace experiments

The server spends less CPU time at kernel level since it sends less data, leaving more

resources for the server and other applications. The server’s user level load is not reduced

as much, since the server provides viewers with more frequent updates, while sending

less data.

The maximum queueing overhead was half a second, and can be observed as

occasional stutters during playback of the traces. Even though there is some queueing

overhead associated with keeping each viewer consistent, overall performance is still

much better than the original implementation.

The staircase effect in Figure 6 is caused by periods of lower user activity. When

the user is not moving the image or the window, fewer updates take place and the server

experiences low load. Typically, this occurs when the user repositions the cursor to drag

the image or move the window. This effect is not present in graphs depicting the CPU

load for the control experiments (not included in this paper).

Control experiments

DVNC’s performance compares even more favorably to the original in the control

experiments, than it did in the trace experiments. The reason for this is that the pay-off

from each Copy Rect generated in the control experiments is greater than it is in the trace

experiments. In the trace experiments, many Copy Rects move diagonally. Diagonal

movements cause the areas covered to be smaller, meaning that larger areas must be

refreshed by the server. New pixels must be sent by the server to refresh not only the top

or bottom edge, but also the right or left edge of a given area. Diagonal movements also

cause more complicated dependencies between the different viewers when they exchange

pixels. A vertical or horizontal Copy Rect operation only requires that a viewer sends its

pixels to one other viewer, while a diagonal Copy Rect can require a viewer to send pixels

to three different viewers.

The original implementation’s sudden drop in pixel refresh count (Figure 7) is not

caused by lack of network bandwidth, as the bandwidth used continues to increase even

after the drop in refreshed pixels (Figure 9). The drop is caused by the server having to

work harder to keep its own framebuffer updated, which delays updates to the viewers.

The delay makes each viewer accumulate a larger dirty region, requiring more bytes

to refresh. This behaviour also explains why the original starts spending more time at

kernel level when the drop in performance occurs, as the kernel is heavily involved in the

communication.

Server on Pentium 4 and Xeon

The performance measured by the trace experiments on the Pentium 4 and on the Xeon

were not as expected. The Pentium 4, with its older CPU architecture, performed better

than the newer Xeon. The server implements Copy Rect by moving memory from

one location to a different location in the server’s framebuffer. To investigate whether

memory bus speeds were the issue, the two computers’ processor-memory bandwidth

was measured using CacheBench [13]. The sustained read/modify/write bandwidth to

A.5 De-centralizing the VNC Model... 233

memory for the Pentium 4 was 3.78 GB/s, while the Xeon only managed 2.16 GB/s. This

is a factor of 1.75, which correlates well with the difference in refreshed pixels, 34 GPx

vs. 18 GPx, a factor of 1.88.

Lessons learned

The performance improvements achieved by DVNC is made possible by changing the

model at a number of different levels. From a model where the server does all work and

the viewers are passive receivers, the new model makes the viewers partially serve each

other, off-loading the server. The viewers, which previously needed no knowledge about

other viewers, now need to know about every other viewer in order to exchange pixels

with them. Each viewer makes its own decisions about where to send pixels, as opposed

to having the server handle this task.

Discovering that the server’s memory bandwidth is a bottleneck was surprising, given

that the pixels moments later must be moved over a “slow” gigabit Ethernet. This is

becase the server may have to move up to 80 MB of data before sending a Copy Rect

operation describing the movement, while the A Copy Rect operation itself only requires

12 bytes to transfer.

7 Conclusion

This paper has presented a modification to the VNC model that improves performance

when VNC is used to create the desktop environment for tiled display walls. The De-

centralized VNC (DVNC) system increases performance for tasks like navigating large

images and moving windows on the desktop. The main principle employed is to let the

VNC viewers exchange data amongst each other, freeing the VNC server from re-sending

already distributed pixel data.

The DVNC model has been implemented by modifying an open-source VNC

implementation, and its performance evaluated. A tiled 7x4 display wall with a total

resolution of 7168x3072 pixels was used for the experiments. The system’s performance

was measured through several user trace and control experiments, and compared to VNC

without modifications. The results show that end-user performance was significantly

improved. For panning large images, DVNC could refresh three to twelve times more

pixels on the display wall compared to the original implementation. These improvements

are expected to carry over to other cases where screen content moves, but otherwise

remains unchanged, such as scrolling in documents.

The performance improvements are a result of distributing work between the server

and viewers. This lets server-side processing overlap with viewer-side pixel distribution.

In addition, the bandwidth required for the server to keep the viewers updated is reduced.

Consequently, the server can spend more cycles keeping its framebuffer updated, as well

as leaving more cycles for other applications.

8 Acknowledgements

The authors wish Lars A. Bongo and Espen S. Johnsen. This work has been supported by

the Norwegian Research Council, projects No. 159936/V30, SHARE - A Distributed

Shared Virtual Desktop for Simple, Scalable and Robust Resource Sharing across

Computer, Storage and Display Devices, and No. 155550/420 - Display Wall with

Compute Cluster.

234 A Papers

References

[1] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.

Virtual Network Computing. IEEE Internet Computing, 2(1):33–38, 1998.

[2] Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry Cook, Stefanos

Damianakis, Georg Essl, Adam Finkelstein, Thomas Funkhouser, Timothy Housel,

Allison Klein, Zhiyan Liu, Emil Praun, Rudrajit Samanta, Ben Shedd, Jaswinder Pal

Singh, George Tzanetakis, and Jiannan Zheng. Building and Using A Scalable

Display Wall System. IEEE Comput. Graph. Appl., 20(4):29–37, 2000.

[3] Bram Stolk and Paul Wielinga. Building a 100 Mpixel graphics device for the

OptIPuter. Future Gener. Comput. Syst., 22(8):972–975, 2006.

[4] RealVNC, Ltd. VNC for Unix 4.0. http://www.realvnc.com/.

[5] Lars Ailo Bongo, Grant Wallace, Tore Larsen, Kai Li, and Olga Troyanskaya.

Systems support for remote visualization of genomics applications over wide area

networks. In Proc. of GCCB’06. LNBI 4360, 2006.

[6] Tony Lin, Pengwei Hao, Chao Xu, and Ju-Fu Feng. Hybrid image coding for real-

time computer screen video transmission. Januar 2004. Visual Communications and

Image Processing (VCIP) 2004, part of the IS&T/SPIE Symposium on Electronic

Imaging 2004.

[7] dcommander. VirtualGL. http://www.virtualgl.org.

[8] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh. THINC: a virtual display

architecture for thin-client computing. In SOSP ’05: Proceedings of the twentieth

ACM symposium on Operating systems principles, pages 277–290, New York, NY,

USA, 2005. ACM Press.

[9] Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans. Graph.,

5(2):79–109, 1986.

[10] R. E. Faith and K. E. Martin. Xdmx: Distributed, multi-head X.

http://dmx.sourceforge.net/.

[11] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh, Julieta Aguilera,

Andrew Johnson, and Jason Leigh. High-Performance Dynamic Graphics Streaming

for Scalable Adaptive Graphics Environment. SuperComputing 2006, 11.-17.

November 2006.

[12] Tristan Richardson. The RFB Protocol, version 3.8.

[13] Philip J. Mucci. Low-level characterization benchmarks. Available from

http://icl.cs.utk.edu/projects/llcbench/index.html.

A.5 De-centralizing the VNC Model... 235

236 A Papers

A.6 Blurring the line between real and digital... 237

A.6 Blurring the line between real and digital: Pinning
objects to wall-sized displays

Citation

Daniel Stødle and Otto J. Anshus. Blurring the line between real and digital:
pinning objects to wall-sized displays. In IPT/EDT ’08: Proceedings of the 2008
workshop on Immersive projection technologies/Emerging display technologies,
pages 1–5, New York, NY, USA, 2008. ACM.

Abstract

Billboards are everywhere, enabling users to interact by leaving documents, im-
ages, ads or clippings for others to see. There is currently no simple and transparent
way to replicate this interaction pattern in a wall-sized display context. Users must
first employ devices like scanners or digital cameras to digitize the content they
wish to share. Then the digitized content must be manually transferred to some
computer, before the user can display and arrange it on the desktop. This paper
presents a system that supports the classic billboard interaction pattern in a display
wall context. The user briefly holds the content to digitize anywhere in front of the
display wall, and an image of it appears at the same location. The system comprises
a 6x3 m high-resolution wall-sized display, a gesture-based human-computer in-
terface and a ceiling-mounted steerable camera, which together enable transparent
and low latency object imaging.

Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
IPT/EDT 2008, Los Angeles, California, August 9–10, 2008.
© 2008 ACM 978-1-60558-211-5/08/0008 $5.00

Blurring the line between real and digital: Pinning objects to wall-sized
displays

Daniel Stødle∗

Department of Computer Science
University of Tromsø, Norway

Otto J. Anshus†

Department of Computer Science
University of Tromsø, Norway

Figure 1: (a) A user pinning a document to a combined white- and billboard. (b) A user pinning a document to the Wallboard. The document
is held at the location where the user wants it to appear. (c) The content appears on the display wall. (d) The user removes the physical
content, leaving the digitized version behind.

Abstract
Billboards are everywhere, enabling users to interact by leaving
documents, images, ads or clippings for others to see. There is
currently no simple and transparent way to replicate this interaction
pattern in a wall-sized display context. Users must first employ de-
vices like scanners or digital cameras to digitize the content they
wish to share. Then the digitized content must be manually trans-
ferred to some computer, before the user can display and arrange it
on the desktop. This paper presents a system that supports the clas-
sic billboard interaction pattern in a display wall context. The user
briefly holds the content to digitize anywhere in front of the display
wall, and an image of it appears at the same location. The system
comprises a 6x3 m high-resolution wall-sized display, a gesture-
based human-computer interface and a ceiling-mounted steerable
camera, which together enable transparent and low latency object
imaging.

1 Introduction
Wall-sized displays are becoming ever more common, with reso-
lutions ranging from 10 to 100 megapixels and beyond [Li et al.
2000; Stolk and Wielinga 2006]. Display walls are typically built
using a cluster of computers driving a set of tiled displays or pro-
jectors. Our display wall is built using 28 projectors and computers
arranged in a 7x4 grid, forming a 22 megapixel, 7168x3072 display

∗e-mail: daniels@cs.uit.no
†e-mail: otto@cs.uit.no

covering an area of 6x3 m.
There has been much work on moving whiteboard-style inter-

action to the realm of wall-sized displays, with commercial prod-
ucts such as the SMART Board [SMART Technologies] available.
However, one fundamental issue that has yet to be addressed is
making billboard-style interaction possible. On a billboard, users
are less concerned about drawing or writing, and care more about
leaving content of some kind behind for other users to see. This is
typically done by simply fixing a document, news clipping, picture,
advertisement or similar to the wall using pins, staples or magnets,
as shown in Figure 1 (a).

Figure 2: The entire display wall being used in a billboard-like fash-
ion.

The equivalent steps in current systems reduce to first digitizing
the relevant content, either using a scanner or a digital camera. Then
the content must be transferred in some way, with multimedia MMS
messages, e-mail or BlueTooth file transfer among the many ways
of doing this. Once transferred, the content must be brought up
on the display wall, and manually placed at a location determined
by the user. The entire process is time-consuming and requires a
knowledgeable user.

238 A Papers

This paper presents the design and implementation of Wallboard,
a system that replicates the billboard-style interaction pattern. To
achieve this, there are three important requirements that must be
satisfied. (i) A user should not need to employ any devices, wear
special gloves or be fitted with markers in order to “pin” content to
the display wall, as the interaction should be as direct as it would be
on a regular billboard. (ii) The content should appear on the display
wall where the user is holding it, in order to match the behaviour
of pinning content to a billboard. The user should be able to pin
content anywhere on the display wall, and not be restricted to some
designated region. (iii) As users expect to pin content to a billboard
instantaneously, the time required to pin content to the display wall
should also appear instantaneous to the user. Figure 1 (b)-(d) shows
a user pinning a document to the Wallboard, and Figure 2 shows
a large part of the display wall in use for imaged objects. Users
are free to move and scale imaged objects once they appear on the
display wall.

The main contribution of this paper is Wallboard, a scalable sys-
tem for transparently imaging objects on wall-sized displays. The
system is not limited to imaging objects, but also demonstrates how
user content can be augmented with other kinds of data, including
voice annotations and sensor measurements describing the content,
captured in the moments preceding the action of pinning content to
the display wall. The system demonstrates how the act of knowing
where something is can sometimes be far more powerful than being
able to identify exactly what that something is, while at the same
time being a less complex and computationally expensive problem
to solve.

2 Related work
There has been much work on creating digital whiteboards. In gen-
eral, most of it has focused on ways of augmenting whiteboards
with already-existing digital content, sharing content between dif-
ferent whiteboards (virtual or real), interaction styles or ways of
supporting content creation. There has been little to no focus on
making whiteboards act more like billboards, and in particular the
act of pinning objects to the board.

The Xerox Liveboard system [Elrod et al. 1992] was one of the
first digital whiteboards, upon which applications like Tivoli [Ped-
ersen et al. 1993] were built. The Xerox Liveboard work identified
aspects like image resolution as important to users, but also men-
tioned the need to “add [a] scanner.” The Xerox Liveboard differs
from our system in that it does not incorporate content from the
environment into its applications.

In their work on Tangible Bits [Ishii and Ullmer 1997], the
authors introduce the transBOARD. The transBOARD is a reg-
ular whiteboard augmented with sharing and storage capabilities
through the use of a stroke recorder to store whiteboard contents.
Physical content can be incorporated through the use of “phicons,”
barcode-tagged objects which represent real or virtual objects. This
differs from Wallboard in that physical objects must be “attached”
to such phicons before they can be used, and even then, do not ac-
tually appear on the transBOARD, but rather on a digital replica
on a display nearby. Wallboard allows users to image any object,
without manually having done so prior to pinning it to the display
wall.

Mynatt et.al created Flatland [Mynatt et al. 1999], an augmented
whiteboard intended for use in offices. The Immersive Whiteboard
[Shae et al. 2001] is an attempt at bridging a physical whiteboard
with a virtual counterpart. A video camera is used to create an
avatar of the user, but can not be used to share other physical con-
tent, like documents or images.

There are many examples of surfaces that are active in the sense
that they enable the inclusion of physical objects. The AMLCD
panel [Abileah and Green 2007] enables the screen itself to scan
documents, but is limited to capturing grayscale images of objects

very close to the display. Microsoft’s Surface [Bathiche and Wilson
2007] is a multi-touch enabled table that can sense devices like mo-
bile phones and transfer images from the devices. Apart from not
aiming to be a billboard, Microsoft Surface differs from Wallboard
in that it is not possible to image arbitrary objects and have them
appear on the surface. The EnhancedDesk [Koike et al. 2001] can
recognize tagged documents placed on its surface, and augment the
documents with interactive content. Recognition is done using a
camera that looks for a matrix-code printed on the content to scan.
No attempt is made at directly incorporating the imaged content;
instead content must be tagged and recognized by the system. In
[Klemmer et al. 2000], the authors demonstrate a desk that can dig-
itize post-it notes. Their implementation only works with post-it
notes, and requires the user to actually write the note on the digital
desk. Our system can accomodate any content on a surface that is
much larger than the desk demonstrated in [Klemmer et al. 2000].

Multi-touch and multi-point interaction has been an active field
of research for several years, with commercial products like the
Apple iPhone and Microsoft Surface available. There are many
approaches to implementing multi-touch interfaces, including the
use of electric capacitance in the Diamondtouch tabletop [Dietz and
Leigh 2001], use of total internal reflection of infrared light [Han
2005], and the optical approach taken in [Morrison 2005]. The first
two approaches require users to touch the canvas or screen. The
device-free input system built for the Wallboard uses a touch-free
approach, making for a cleaner surface and enabling the use of a
flexible canvas. The approach taken by the SMART Board [Morri-
son 2005; SMART Technologies] is the one most similar to ours,
but differs in its use of fewer and custom cameras with on-chip pro-
cessing to perform object detection.

3 Design and implementation
Figure 3 illustrates the overall system architecture. The system
comprises five major components: (i) a device-free input system,
(ii) input analysis, (iii) camera and sensor control, (iv) the Wall-
board application and (v) the Shout event system. Figure 4 illus-
trates how the various components are deployed.

Figure 3: The overall system architecture and design.

3.1 Device-free input system
The device-free input system is used to enable multi-point, multi-
user interaction with different applications running on the display
wall, including Wallboard. The input system is built using 16 cam-
eras mounted along the floor in front of the display wall’s canvas.
Images from each camera are analyzed in order to determine the
location of objects intersecting two planes parallel to the display
wall’s canvas - the input system’s “region of interest.” Typical ob-
jects include hands, fingers or arms, although the interface does not
distinguish between the different objects other than reporting dif-
ferent object radii. The intersection with each plane is found using

A.6 Blurring the line between real and digital... 239

triangulation, as shown in Figure 5.

Figure 4: Schematic of the system deployment. Cameras are
mounted along the floor to enable device-free interaction with the
display wall. The camera used for imaging content is mounted in
the ceiling at the back of the room. Microphones are deployed in
front of the display wall canvas.

The 16 Unibrain Fire-i firewire cameras are connected in pairs
to 8 Mac minis. Images from each camera are processed by ap-
plying two common techniques from computer vision: Background
subtraction and thresholding. The result of processing a single im-
age is a set of 1D positions (visible as the black dots inside the
rectangles in Figure 5, and also shown in Figure 6), which when
combined with data from the remaining cameras enable the trian-
gulation of 2D object positions. The design and implementation of
the device-free input system is based on the system presented by
[Stødle et al. 2008].

Figure 5: (a) The cameras for the device-free input system as they
are mounted along the floor. (b) Triangulating object positions us-
ing image data gathered from each camera (triangulation shown for
a single plane only).

The device-free input system is used for interacting with the
Wallboard, as well as determining where to point the camera in
order to image objects. This highlights an important principle em-
ployed throughout the design of Wallboard: Instead of determin-
ing what an object is, it is more fundamental to determine where it
is. This principle is applied successfully in the design of the input
system, and for Wallboard it makes it possible to easily determine
where the content to image is located. In contrast, one could design
a computer vision-based system where the area in front of the dis-
play wall is scanned by a camera to first identify the user, and then

determine his location. Once the user’s location has been found, the
immediate surrounding area could be analyzed to find objects, be-
fore the camera can finally be accurately pointed at it and zoomed
in. The latter approach would be more computationally demand-
ing, time consuming and also very difficult to make reliable - if at
all possible. It might also introduce assumptions about the content
to image that are not ideal; for instance, assuming that content is
always white and rectangular in shape.

3.2 Input analysis
The second component is the input analysis component. It is re-
sponsible for interpreting input events from the input system, and
determining if a user is attempting to capture content for the Wall-
board. For objects inside the device-free input system’s region of
interest, attributes like the object’s movement and radius are used
to determine whether to image the content or not. If the component
determines that the content should be imaged, it sends an event to
the camera and sensor control component, which will steer the cam-
era and capture the targeted content.

Figure 6: (a) The input image, showing the two planes in front of
the display wall with a finger intersecting both. (b) The result after
background subtraction and thresholding of one of the two planes.
(c) The hand must intersect planes A and B, which are both parallel
to the display wall surface, in order to target content for capture. In
addition, the hand must remain stationary for one second and have
a detected radius above an experimentally determined threshold.

The input analysis component is an important part, as it will es-
sentially make or break the user’s impression of the system. If it
over-eagerly begins imaging content, spurious images will appear
on the display wall. On the other hand, if it requires too much effort
to invoke, users will end up frustrated with the system’s behaviour.
The input analysis component uses the following three factors, all
supplied by the input system, to make a decision on whether or not
to image an object: (i) The 2D position of an object (usually a fin-
ger, hand or arm) intersecting two planes in front of the wall (Figure
6). When a set of 2D positions is sufficiently close to each other,
the remaining two factors are considered for that set. (ii) The width
of the objects in the set. If the width is above an experimentally de-
termined threshold, the object is tracked. (iii) If an object is tracked
for more than 1 second and remains stationary, it will be interpreted
as if a user wants to image the content held at the given location.

3.3 Camera and sensor control
The camera sensor and control component manages the camera and
microphones in use by the system. When instructed to do so by
the input analysis component, it will capture data from the camera.
It will then notify the Wallboard application that it should fetch
the newly captured data and position it on the display wall at the
location where the user originally held the content to be captured. It

240 A Papers

also continuously records audio from the environment, with audio
from the 15 preceding seconds being associated with the imaged
content.

The camera used is a Canon VC-C4R with pan-tilt-zoom func-
tionality and capable of generating images with a resolution of
720x540 in interlaced mode. It is mounted in the ceiling at the
back of the room (see Figure 4), pointing towards the display wall.
The camera is moved in response to a “scan” event from the input
analysis component. To steer the camera, a mapping between the
camera’s pan and tilt coordinates to areas covered on the display
wall is used. This mapping is created by determining the extreme
values for pan and tilt at maximum zoom levels when aiming at
the corners of the display wall. Linear interpolation is then used to
map coordinates from the device-free input system to the camera’s
pan- and tilt-values, before the camera can be steered to the correct
location.

One problem discovered in an earlier implementation of the sys-
tem was that captured images were often affected by motion blur.
Motion blur is introduced either by users being unable to hold the
content to image stationary, lingering camera movement, or both.
The problem is exacerbated by the fact that the camera in use is
only capable of producing interlaced images. To handle this prob-
lem, the control component continuously captures images from the
camera. Each new image captured is subtracted from the previ-
ous image, and used to calculate the average pixel intensity change,
as well as the pixel intensity change’s standard deviation. When-
ever the standard deviation is below an experimentally determined
threshold1, that image will be eligible for being pinned to the dis-
play wall.

3.4 Wallboard
The fourth major component is the Wallboard application itself,
whose main responsibility is to provide the graphical output on the
display wall, as well as allow users to interact with imaged content.
It accepts input events directly from the device-free input system,
enabling multiple users to interact with it simultaneously using one
or both hands. Since currently only one camera is in use, different
users can not overlap imaging of content, but must interleave their
use of the imaging feature. Wallboard also receives events from
the camera sensor and control component, informing it when newly
imaged content is available and where it should be placed on the
display wall.

The Wallboard application is written in C using an in-
development cluster-based backend to the Cairo [Worth and
Packard 2003] rendering library. It responds to input events from
the device-free input system, enabling users to not only image con-
tent, but also scale and move the resulting objects around on the
display wall afterwards. When instructed to position an imaged ob-
ject on screen, it will load the image representing it and place it
at the coordinates given in the “fetch data” event. Using the event
system it can also trigger playback of the audio associated with the
imaged content.

3.5 The Shout event system
The fifth and final component is a network event system called
Shout. Shout provides the other four components with the abil-
ity to send and receive events, and thus acts as an “event substrate”
in between the components. It is designed to be both extendable
and enable efficient event delivery. Shout is implemented in C, us-
ing a centralized event server to receive and distribute events from
different clients. For efficiency and reduced bandwidth consump-
tion, a binary format is used. The content and types of events is not
pre-defined by the event system, but instead defined by the applica-
tions using the system. By default, a client receives all events, but

1The threshold used is affected mainly by camera noise and lighting fac-
tors.

event filters can be configured in order to limit the events received
to specific types (such as the “fetch data” and “scan” events). To
aid system efficiency, clients may also tell the server about which
event types they intend to provide to the server. TCP is used for
client-server communication.

4 Initial results
The latency for capturing content has been measured. The inter-
val measured ranges from when the system determines that a user
wants to capture content, until the content appears on the display
wall – that is, not including the initial one-second delay used by the
system to determine user intent. The methodology to measure this
latency was as follows. An object was imaged by one of the au-
thors 30 times at different locations on the display wall. Every time
an event instructing Wallboard to image an object was received, a
timer was started. That timer was stopped when a corresponding
“fetch data” event was received, at which point the imaged content
would appear on the display wall.

The results from this experiment yielded an average latency of
1.08 seconds, with a standard deviation of 0.26 seconds. The maxi-
mum observed latency was 1.73 seconds, and the minimum latency
was 0.65 seconds.

5 Discussion
The latency for imaging objects is stems from the following factors.
First, the camera requires some time to capture an image. Frames
from the camera are captured using a frame grabber card, which
provides new frames at a rate of 12.5 frames per second. At this
rate, the time between an event prompting the control component to
image content arrives, until the camera is ready with a new frame,
can be up to 1.0 s / 12.5 frames/s = 0.08 s. With the actual latency
about one order of magnitude higher, the camera frame rate is not
the issue. The majority of the latency is due to two factors: (i) The
camera is steered to target the content before an image is captured,
and (ii) due to camera movement and stabilization, the technique
used to avoid motion blur will prevent a number of the initial images
from being recognized as valid images. The event system’s latency
has been measured at 1.9 milliseconds [Stødle et al. 2008], and thus
contributes very little to the overall latency.

The use of a steerable camera to image content in the Wallboard
system has some drawbacks. First, the pan- and tilt coordinates
used to control where the camera is pointing, are far more coarse-
grained than the coordinates provided by the device-free input sys-
tem. This manifests itself as slight inaccuracies when imaging con-
tent, such as missing the top or one of the sides of a document.
Second, it is quite common for parts of the fingers or hands to ap-
pear as part of the image representing the content. However, any
other approach would require either (i) tagging all content in ad-
vance, which is impractical and violates the device-free aspects of
the system design, or (ii) applying sophisticated computer vision
techniques in an effort to recognize either the object or the fingers.
The unwanted parts of the image could then be masked out. Finally,
with the camera mounted in the ceiling, it is possible for the user
to obscure the content to image when holding it at approximately
waist-height or below.

The current implementation brings up a black box on the display
wall, behind the content which is being imaged. This serves two
purposes: First, it removes clutter from the resulting image by tem-
porarily hiding other content at the location being captured. More
importantly, however, it prevents light from the projectors leaking
through the content being scanned. This is especially visible when
imaging single sheets of paper. This effect could also be exploited
for positive gain by the system, by allowing the color of the back-
ground to be changed. This could allow better capture of content
like transparencies. It could also enable the system to respond to
changes in the room’s current light levels, enabling better camera

A.6 Blurring the line between real and digital... 241

exposure.
The Wallboard system is scalable along many different axes. It

can be extended with additional cameras to enable several users to
image objects simultaneously, and the device-free input system al-
ready easily accomodates more than one user - three persons may
play Quake 3 Arena against each other at the same time on the dis-
play wall [Stødle et al. 2007]. The resolution of the images captured
can be increased by using more expensive cameras without chang-
ing other parts of the system, and additional sensors may be added
beyond the camera and microphones currently in use.

6 Conclusion
This paper has introduced Wallboard, a system that enables content
to be moved from the real world to a display wall in a way that mim-
ics the interaction pattern used to share information on a billboard.
Without requiring the use of any devices, users briefly hold docu-
ments, images or other content in front of the display wall at the
location where they want it to appear. A device-free input system
determines where the object to capture is located, before a camera
and associated sensors capture the object.

The system requires in total about two seconds to capture an im-
age of the content a user wishes to place on the Wallboard. The
first second is used to determine user intention (“does the user re-
ally want to capture this content and place it on the display wall?”),
while the rest is caused by system latency incurred by camera move-
ment and avoiding motion blur. An important design principle has
been identified that greatly simplifies the implementation of both
the device-free input system, and the process of determining where
the content to capture is located: Instead of determining what an
object is, it is more fundamental to determine where it is. Applying
this principle enables Wallboard to avoid some very hard problems
in computer vision (object recognition and pose estimation), while
still resulting in a system that achieves the design requirements set
out in the introduction: It mimics a billboard, it does not require the
user to wear or use any devices, and the time required to pin content
to the display wall is on the order of a few seconds.

Acknowledgements
The authors thank Espen S. Johnsen for creating the cluster-based
backend to Cairo, John Markus Bjørndalen, Tor-Magne Stien Ha-
gen and the technical staff at the CS department at the University of
Tromsø. This work is supported by the Norwegian Research Coun-
cil, projects No. 159936/V30 and No. 155550/420.

References
ABILEAH, A., AND GREEN, P. 2007. Optical sensors embed-

ded within amlcd panel: design and applications. In EDT ’07:
Proceedings of the 2007 workshop on Emerging displays tech-
nologies, ACM, New York, NY, USA, 7.

BATHICHE, S., AND WILSON, A., 2007. Microsoft surface.
http://www.microsoft.com/surface/.

DIETZ, P., AND LEIGH, D. 2001. DiamondTouch: a multi-user
touch technology. In UIST ’01: Proceedings of the 14th an-
nual ACM symposium on User interface software and technol-
ogy, ACM Press, New York, NY, USA, 219–226.

ELROD, S., BRUCE, R., GOLD, R., GOLDBERG, D., HALASZ, F.,
JANSSEN, W., LEE, D., MCCALL, K., PEDERSEN, E., PIER,
K., TANG, J., AND WELCH, B. 1992. Liveboard: a large in-
teractive display supporting group meetings, presentations, and
remote collaboration. In CHI ’92: Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM, New
York, NY, USA, 599–607.

HAN, J. Y. 2005. Low-cost multi-touch sensing through frustrated
total internal reflection. In UIST ’05: Proceedings of the 18th
annual ACM symposium on User interface software and tech-
nology, ACM Press, New York, NY, USA, 115–118.

ISHII, H., AND ULLMER, B. 1997. Tangible bits: towards seam-
less interfaces between people, bits and atoms. In CHI ’97: Pro-
ceedings of the SIGCHI conference on Human factors in com-
puting systems, ACM, New York, NY, USA, 234–241.

KLEMMER, S., NEWMAN, M. W., AND SAPIEN, R. 2000. The
designer’s outpost: a task-centered tangible interface for web site
information design. In CHI ’00: CHI ’00 extended abstracts
on Human factors in computing systems, ACM, New York, NY,
USA, 333–334.

KOIKE, H., SATO, Y., AND KOBAYASHI, Y. 2001. Integrating
paper and digital information on enhanceddesk: a method for
realtime finger tracking on an augmented desk system. ACM
Trans. Comput.-Hum. Interact. 8, 4, 307–322.

LI, K., CHEN, H., CHEN, Y., CLARK, D. W., COOK, P., DAMI-
ANAKIS, S., ESSL, G., FINKELSTEIN, A., FUNKHOUSER, T.,
HOUSEL, T., KLEIN, A., LIU, Z., PRAUN, E., SAMANTA, R.,
SHEDD, B., SINGH, J. P., TZANETAKIS, G., AND ZHENG, J.
2000. Building and Using A Scalable Display Wall System.
IEEE Comput. Graph. Appl. 20, 4, 29–37.

MORRISON, G. D. 2005. A camera-based input device for large
interactive displays. IEEE Computer Graphics and Applications
25, 4, 52–57.

MYNATT, E. D., IGARASHI, T., EDWARDS, W. K., AND
LAMARCA, A. 1999. Flatland: new dimensions in office white-
boards. In CHI ’99: Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM, New York, NY,
USA, 346–353.

PEDERSEN, E. R., MCCALL, K., MORAN, T. P., AND HALASZ,
F. G. 1993. Tivoli: an electronic whiteboard for informal work-
group meetings. In CHI ’93: Proceedings of the INTERACT ’93
and CHI ’93 conference on Human factors in computing systems,
ACM, New York, NY, USA, 391–398.

SHAE, Z.-Y., TSENG, B., AND LEUNG, W. H. 2001. Immersive
whiteboard collaborative system. Ann. Softw. Eng. 12, 1, 193–
212.

SMART TECHNOLOGIES. SMART board interactive white-
boards. http://www.smarttech.com/.

STØDLE, D., HAGEN, T.-M. S., BJØRNDALEN, J. M., AND AN-
SHUS, O. J. 2007. Gesture-based, touch-free multi-user gam-
ing on wall-sized, high-resolution tiled displays. In Proceedings
of the 4th Intl. Symposium on Pervasive Gaming Applications,
PerGames 2007, 75–83.

STØDLE, D., HA, P. H., BJØRNDALEN, J. M., AND ANSHUS,
O. J. 2008. Lessons learned using a camera cluster to detect
and locate objects. In Parallel Computing: Architectures, Algo-
rithms and Applications. Proceedings of the International Con-
ference ParCo 2007., IOS Press, vol. 15 of Advances in Parallel
Computing, 71–78.

STOLK, B., AND WIELINGA, P. 2006. Building a 100 Mpixel
graphics device for the OptIPuter. Future Gener. Comput. Syst.
22, 8, 972–975.

WORTH, C. D., AND PACKARD, K. 2003. Cairo: Cross-device
rendering for vector graphics. In Proceedings of the 2003 Linux
Symposium. http://cairographics.org/.

242 A Papers

A.7 Tech-note: Device-Free Interaction Spaces 243

A.7 Tech-note: Device-Free Interaction Spaces

Citation

Daniel Stødle, Olga Troyanskaya, Kai Li, and Otto J. Anshus. Tech-note: Device-
Free Interaction Spaces. In 3DUI ’09: Proceedings of the IEEE Symposium on 3D
User Interfaces, pages 39–42, March 2009.

Abstract

Existing approaches to 3D input on wall-sized displays include tracking users with
markers, using stereo- or depth-cameras or have users carry devices like the Nin-
tendo Wiimote. Markers makes ad hoc usage difficult, and in public settings de-
vices may easily get lost or stolen. Further, most camera-based approaches limit
the area where users can interact.

This paper presents Interaction Spaces – a distributed, optical sensor system for
3D input that lets users interact without needing markers or hand-held devices. An
Interaction Space is created that covers the display wall. Inside it, objects like
hands or fingers are tracked in 3D. This enables actions like moving or zooming a
view on the wall. The added depth dimension allows images to be zoomed using
a single hand instead of the two-hand “pinch” gesture used in other systems. The
system’s distributed aspect enables simple scaling to cover smaller or larger areas.

The system is built using four computers and eight web cameras mounted along the
floor. Each camera image is divided into vertical slices. Each slice is processed to
detect 1D object positions, before 2D positions are determined using triangulation.
The 3D position of an object can be inferred from its corresponding 2D positions in
each slice. The system is currently being used to control a microarray visualization
on a 2x2 display wall. The system’s accuracy has been evaluated, and is shown to
be about 1 cm.

Tech-note: Device-Free Interaction Spaces
Daniel Stødle∗

University of Tromsø, Norway
Olga Troyanskaya†

Princeton University, USA
Kai Li‡

Princeton University, USA
Otto J. Anshus§

University of Tromsø, Norway

ABSTRACT

Existing approaches to 3D input on wall-sized displays include
tracking users with markers, using stereo- or depth-cameras or have
users carry devices like the Nintendo Wiimote. Markers makes ad
hoc usage difficult, and in public settings devices may easily get
lost or stolen. Further, most camera-based approaches limit the area
where users can interact.

This paper presents Interaction Spaces – a distributed, optical
sensor system for 3D input that lets users interact without need-
ing markers or hand-held devices. An Interaction Space is created
that covers the display wall. Inside it, objects like hands or fingers
are tracked in 3D. This enables actions like moving or zooming a
view on the wall. The added depth dimension allows images to be
zoomed using a single hand instead of the two-hand “pinch” ges-
ture used in other systems. The system’s distributed aspect enables
simple scaling to cover smaller or larger areas.

The system is built using four computers and eight web cameras
mounted along the floor. Each camera image is divided into vertical
slices. Each slice is processed to detect 1D object positions, before
2D positions are determined using triangulation. The 3D position
of an object can be inferred from its corresponding 2D positions in
each slice. The system is currently being used to control a microar-
ray visualization on a 2x2 display wall. The system’s accuracy has
been evaluated, and is shown to be about 1 cm.

Index Terms: I.3.1 [Computer Graphics]: Hardware
Architecture—Input devices

1 INTRODUCTION

There are many approaches to provide 3D input to applications run-
ning on wall-sized displays. A user’s hand- or body movement can
be tracked using cameras that identify and position a set of passive
markers mounted on the user. Users can also carry devices like a 3D
mouse or the Nintendo Wiimote, or her location can be determined
without markers using stereo- or depth- cameras. These approaches
are limited in different ways. The use of markers makes ad hoc us-
age difficult. Users must spend time mounting the markers to their
body, or wear special clothes with embedded markers for full-body
tracking. In public settings, a 3D mouse or Wiimote may easily get
lost or stolen, and most camera-based approaches limit the area in
which interaction can take place.

This paper presents a distributed optical sensor system for 3D
multi-point input. The system removes the need for markers and
hand-held input devices, enabling the user to interact freely along
a wall-sized, high resolution tiled display. The system creates a 3D
Interaction Space that is as long and as tall as the display wall itself,
and up to about 35 cm deep. The width of the Interaction Space
is mainly limited by the number of optical sensors used. Inside
the Interaction Space, objects - like a user’s hands - are discovered

∗daniels@cs.uit.no
†ogt@genomics.princeton.edu
‡li@cs.princeton.edu
§otto@cs.uit.no

and their 3D position determined. Each object’s position is sent to
applications in events which can be used for various purposes like
moving, zooming, and rotating a view on the display wall.

Using the depth dimension, it is possible to zoom images us-
ing a single hand instead of the two-hand “pinch” gesture used in
other systems like the Apple iPhone. The system is not limited to
detecting hands and using them for input; it can detect any object
that gives sufficient contrast to the mostly static background, in-
cluding for instance the user’s elbows, head or other body parts.
Since the system avoids using markers or special hand-held de-
vices, ad hoc usage is possible with no preparation on the user’s
part. The system’s intrinsic distributed aspect makes it easily scal-
able by adding additional cameras and computers, creating larger
Interaction Spaces.

The system is currently being used with different applications
on two wall-sized displays, including a parallel multi-image viewer
and a genomics-application to explore relationships between dif-
ferent microarrays, shown in Figure 1(a). To evaluate the system,
experiments measuring the accuracy on a per-slice level have been
performed, demonstrating that the system has an average accuracy
of about 1 cm for the slice closest to the display wall. The main
contribution of this paper is a 3D input system that makes scal-
able interaction in 2D and 3D possible using commodity compo-
nents, while still maintaining reasonably good accuracy. Users do
not need special devices or markers to interact with the system.

2 RELATED WORK

There has been much work on input devices for display walls. The
VisionWand [2] provides input by optically tracking a wand-like
object in 3D using two cameras, but is limited in that it requires
markers and a known object (the wand) to operate. Further, the area
in which interaction can take place is limited. When Nintendo intro-
duced the Wii console, they also made the first “mass-market” 3D
input device in the “Wiimote.” The Wiimote combines accelerom-
eter data with tracking of up to four infrared dots to provide input
in 3D, and its potential for “hackability” has enabled the creation of
cheap DIY multi-point input devices [7]. The VisionWand and the
Wiimote are examples of systems that use markers to provide 3D
input.

Another class of 3D input systems employ image recognition to
determine the pose of hands and fingers without using markers di-
rectly. The Visual Touchpad is an example of this, where a user’s
hand can be positioned over a specially designed touchpad [9].
Other approaches include using stereo cameras combined with in-
frared illumination [12], and depth-cameras that capture both color
and depth for each pixel in an image [14]. Both systems can provide
device-free interaction, but suffer from a lack of large-area cover-
age. This is a commonality for most camera-based systems: The
user has to be inside the camera’s field of view, which introduces
scalability problems as the size of the area one wishes to interact
with goes up. Further, it is not clear how existing systems could be
extended to increase the area of interaction. The Interaction Spaces
system is designed to be scalable, and is currently used with two
different display walls measuring 6x3 and 2.7x2 meters.

The Interaction Spaces system is similar to a number of other
multi-touch systems currently available, like the Microsoft Surface
[1] and TouchWall, and the Diamondtouch tabletop [3]. Jeff Han pi-
oneered multi-touch sensing using frustrated total internal reflection

39

IEEE Symposium on 3D User Interfaces 2009
14-15 March, Lafayette, Louisiana, USA
978-1-4244-3812-9/09/$25.00 ©2009 IEEE

244 A Papers

of infrared light [4], which has been commercialized by Perceptive
Pixel as a “collaboration wall” and used extensively by CNN to
cover the 2008 US presidential election. In [13], the authors de-
scribe a system that detects hands and fingers interacting with a
whiteboard using a single camera. It is similar to our system in
its use of simple image differencing to segment the foreground and
background. In [10], a few custom cameras are used to triangu-
late the position of objects on the SMART Board. This approach
differs from ours in its use of custom cameras with on-chip image
processing to do object detection. None of these systems provide
input in 3D. GestureTek is a company that offers both 2D and 3D
camera-based, device-free input solutions [6]. The scalability of
their products is unclear, as it appears that all the cameras cover
the same (limited) region of interest, but from different angles. In
the Interaction Spaces system, different sensors cover different but
overlapping regions, cooperating to create a larger space in which
interaction can take place. Further, the Interaction Spaces system
does not require high-end synchronized cameras, but can operate
using commodity web cameras.

3 DESIGN AND IMPLEMENTATION

The design of the Interaction Spaces system is based on the follow-
ing permeating principle: It is more important to determine where
an object is, as opposed to what the object is. This approach is fun-
damentally different from other camera-based systems. Instead of
trying to determine what different objects are – a hand, a finger, a
pen, and so on – the system only seeks to discover that an object
has entered the Interaction Space, and determine where that object
is. The system is based on earlier work that only provided object
positions in 2D [11], and uses a set of optical sensors to detect the
presence of objects in each optical sensor’s field of view. By us-
ing information about the relative position of these objects in each
optical sensor’s view, the object’s location can be determined.

To extend this design to 3D, each sensor divides its field of view
into a number of distinct slices. Within each slice, the sensor lo-
cates foreground objects. As a result, each object’s 1D position and
extent in a slice is determined for each sensor. A coordinator can
then determine an object’s 2D position by collecting 1D positions
from all the sensors. By treating each 1D position in a slice as a
beam from the sensor’s position and up, the 2D positions of possi-
ble objects can be found using triangulation at the intersections of
beams from different sensors, as illustrated in Figure 1(b). To sup-
port multi-point interaction and avoid false positives, an object must
be initially tracked by at least three sensors. The sensors do not
attempt to associate objects from different slices with each other.
Instead, the coordinator uses the object extent and calculated 2D
position to associate objects from different slices with each other.

The Interaction Spaces system has been implemented using eight
commodity web cameras (Unibrain Fire-i @ 640x480 pixels in
grayscale) and four computers (Mac mini @ 1.83 GHz). The sys-
tem is used to interact with applications running on two display
walls: One 2.7x2 meter 4-projector, 2048x1536 pixel wall, and one
6x3 meter, 28-projector 7168x3072 pixel wall. The latter is ex-
tended with 4 additional Mac minis and 8 additional cameras to
cover the entire width of the wall. The software consists an image
processing component and an analysis component.

The image processing component runs on each Mac mini to cap-
ture images from the cameras, and processes them to detect the
presence of foreground objects. Each image is divided into 25 inde-
pendent vertical slices, as shown in Figure 1(c). Foreground objects
are detected using image differencing, thresholding and a dynami-
cally updated background image. This results in clusters of white
pixels where objects have been detected. The center position and
extent of each cluster is then transmitted using a network event sys-
tem to the analysis component, along with the slice index in which
the object was detected.

The analysis component receives data for each slice from each
sensor, and uses it to triangulate object positions in 2D per slice.
Since many objects can be detected in a given slice, each individual
object must initially be detected by at least three cameras for the
triangulation to be successful. This is necessary to avoid false pos-
itives caused by the presence of other objects, which would create
a number of “ghost objects” where imprints created by one object
intersect the imprints from other objects. Such potential false posi-
tives are highlighted in Figure 1(b).

To detect an object’s 3D position, the analysis component first
gathers the information it has about 2D object positions in all avail-
able slices. It then begins at the outer-most slice (farthest from the
display wall), and assigns 2D objects to new or existing 3D objects.
A new 3D object is created any time a 2D object from one of the
outer-most slices appear that are considered too far from any al-
ready existing 3D objects, or if there are more 2D objects in a given
slice than there are existing 3D objects. At present, the system is
limited to associating a single 2D object from each slice to a given
3D object; this means that an arm that extends into the Interaction
Space and then divides into an open hand with spread fingers will
only use one of the finger positions, instead of incorporating all of
them into the same 3D object.

Once a 3D object has been detected, an event is created contain-
ing the location of the object’s tip in 2D, and its depth position,
as well as events for the raw 2D locations for each object in each
slice. These events are used by applications to enable interaction.
Currently, the depth position is a direct translation from the slice
index, with a value of 0.0 corresponding to touching the wall, and
a value of 1.0 being the outer-most slice that is recognized; in the
future this will correspond to the actual depth in real world units.
The 2D position is reported in centimeters relative to the left side
of the display wall and the floor.

To provide accurate output, the system is calibrated using a lim-
ited camera model with the following parameters: position, field
of view, left-right rotation and distortion (further refinement is
planned). To calibrate the cameras, an operator touches 18 target
points with known real world coordinates on the display wall. Each
camera records the position of the object it detects, if any. When
all the targets have been touched, each camera will have a set of
detected objects and their associated real world coordinates. Each
camera is then automatically adjusted by iteratively changing dif-
ferent parameters with the goal of minimizing the error between
known target location, and where that object would be placed given
the current camera parameters.

4 APPLICATIONS

Interaction Spaces is currently being used to interact with a sys-
tem for visualization of genomic microarray data, shown in Fig-
ure 1(a). The viewer a custom display wall version of HIDRA [5].
In HIDRA, users explore different datasets by selecting genes in
one dataset, and observing where they are located in other datasets.
Genes in close proximity to each other in the microarray indicates
that they might be correlated.

To use the viewer, the system must support navigation and se-
lection of genes. In Interaction Spaces, these actions are mapped
to moving ones hand in the space in front of the display wall. The
depth dimension is used to control what action is performed. If
the user touches the display, the genes under the user’s finger will
be selected. Otherwise, the view is panned according to the user’s
hand movements. To avoid accidental panning when the user in-
tends to select genes, the system prevents panning if the object is
seen to move closer to the wall. The viewer can also be controlled
using an iPhone. The depth dimension is also used to control zoom
in an image viewer application, where the view zooms closer as the
user’s hand approaches the wall, and zooms back out when the hand
is moved away.

40

A.7 Tech-note: Device-Free Interaction Spaces 245

(a)

Slice

Interaction
Space

Sensors detecting
each object's 1D
position in a slice

within its view

Calculated 2D
position of

objects

Potential
false

positives

(b)

A single slice

Cameras

2x2 display wall

Camera image

S
lices

••••••••••••••••

(c)

Figure 1: (a) Interacting with a microarray visualization. The bright spot under the user’s finger is in reality a set of animated particles that tells
the user that he is giving input to the system. (b) An object’s 2D position in the center slice is found by triangulating the 1D positions detected
by the different sensors. The two circles indicate potential false positives if only two sensors were to be used in determining the position of the
object. (c) A sample image from one of the cameras, and its relation to the world.

5 EVALUATION

There are two important technical performance metrics when eval-
uating input devices: Latency and accuracy. Latency is important
to help users create a connection between the actions they make, to
what they see happen on screen [8]. Good accuracy is important for
selecting small targets or do other tasks that require precise input.
However, a system could in principle be used even in the face of
great inaccuracies if the applications were designed to expect noisy
and inaccurate input. Previous work [11] has shown that the latency
of the Interaction Spaces system is about 115 ms. This evaluation
will focus on accuracy. In the Interaction Spaces system, there are
many variables that together determine the total system accuracy.
The distributed nature of the system means that sensors covering
different areas may combine to produce very different accuracy lev-
els for the areas they cover.

It is difficult to design an experiment that objectively and empiri-
cally measures the accuracy of an input system such as the one pre-
sented in this paper, while enabling other researchers to reproduce
the results in a consistent manner. Without designing a mechanical
arm or similar that can be made to consistently produce the exact
same movements, the only option left is to have one or several users
test the accuracy of the system. However, such tests are very hard to
reproduce, and will inevitably be affected by the different character-
istics of each user. Thus, such tests do not help in methodically ex-
ploring how changes to the system affect its accuracy. For instance,
to quantify the effect of varying lighting conditions or changing the
foreground/background segmentation algorithm, it is essential that
the experiment be repeatable and identical to earlier trials. For this
case, users are not useful, as they will be hard-pressed to conduct
the exact same movements time and time again.

In spite of these concerns, the system’s accuracy in positioning
an object at the innermost slice was measured by having a user in-
teract “mechanically” with the system. The user touched 100 tar-
get points on the display wall in turn. For each target, the system
recorded the currently detected object’s position 30 times. Each
target was shown alone on the display wall as a white square on a
black background. To provide the user with feedback about what
the system detects, a fountain of particles appear at the location
where the system thinks the object is. Once the system has gathered
enough samples for the target, the screen briefly flashes to indicate
its readiness to sample the next target, and the next target appears
on the display wall.

The results are shown in Figure 2. The accuracy of the system is
measured in centimeters. The X axis indicates the offset from the
left side of the display wall, which measures 272 cm in total. The
Y axis shows the offset from the bottom of the display wall (not

50 100 150 200

70
80

90
10

0
11

0
12

0
13

0
14

0
Accuracy vs targets

X cm

Y
 c

m

B

A

Figure 2: 100 targets (circles) and the positions detected by the sys-
tem for each target (dots). The X and Y axis show the horizontal and
vertical location on the 2.7x2 m display wall. Boxes A and B highlight
areas where the system exhibits low and high accuracy.

the floor) to the top, which measures 202 cm. All the targets were
located within an interior rectangle that measured 167x60cm. The
size of this area was chosen based on the typical area in which the
system is used for interaction; anything much above is usually too
far up to reach without effort, and the system does not support initial
touches to the far left and far right (which is what the experiment
tests), as these objects are only seen by two cameras. This is one
less than the three that are required to get a positive lock on the
object (note that once the system has acquired an object, it can be
tracked even if only seen by two cameras).

The plot indicates that the system is more accurate along the hor-
izontal axis than the vertical axis, with the mean horizontal delta
(dX) between target and observed location being -0.21 cm, and the
mean vertical delta (dY) -0.47 cm. The mean distance from obser-
vations to actual targets is 1.1 cm, with a 0.72 cm standard devia-
tion. Further, 90% of the targets had a vertical standard deviation
less than 0.5 cm, and 93% of the targets had a horizontal standard
deviation less than 0.1 cm.

Two boxes are highlighted in Figure 2. Box A shows an area
where the system exhibits low accuracy. The detected object’s lo-
cation flickers up and down (as indicated by the vertical spread of
the dots), while the object’s position along the X axis remains fairly

41

246 A Papers

constant. Inside box B, the system appears to be more accurate:
Apart from a few problem spots, most samples are very close to
their targets. Why does the system exhibit such differing accuracy
behaviour? Some answers to this question will be given in the dis-
cussion.

6 DISCUSSION

The evaluation has shown that the system exhibits differing
accuracy-levels depending on where the user interacts. To analyze
why this is the case, it is necessary to know which factors impact the
system accuracy. The factors that govern accuracy in the Interaction
Spaces system are: (i) Timing of data from the sensors, (ii) object
speed, (iii) lighting, (iv) precision of the foreground/background
segmentation, (v) object extent, (vi) physical placement and align-
ment of the sensors, and (vii) system calibration.

Timing of sensor data is important when the objects being
tracked are moving. Since the system relies on unsynchronized
web cameras, one step of the triangulation may rely on data from
different cameras separated by up to 33 ms. The experiment was
designed to eliminate both timing and object speed as factors, by
keeping the object to track stationary.

The precision of the foreground/background segmentation is one
factor that helps explain some of the observations made in the eval-
uation. Typically, when the position of a detected object exhibits
much vertical jitter, a single camera “flickers” between detecting
and not detecting the object within that particular slice, or detecting
it at two slightly offset 1D positions due to random noise or lighting
effects. This causes the position to jitter up and down.

As an object’s extent grows wider, the extent of the lines pro-
jected from the cameras grow. If segmentation was perfect and the
cameras perfectly synchronized, the object extent would not play a
role in the system’s accuracy. While not entirely eliminated in the
evaluation (the extent of a user’s finger may vary slightly depend-
ing on the exact finger pose), it is not a major factor. As part of the
evaluation, the object extent was recorded for each sample, varying
between 2.34 and 6.49 pixels.

The cameras’ physical alignment is important to give a best pos-
sible starting point for determining object positions. Since perfect
alignment is difficult to achieve, the system requires calibration. In
the experiment, most samples had a standard deviation less than
0.1 cm horizontally and 0.5 cm vertically. Thus, while the system’s
accuracy varies from target to target, it is consistent in where it po-
sitions objects relative to the targets, pointing to calibration as the
cause of the varying accuracy, since different cameras may have
been calibrated more or less accurately.

Some ways to improve the system accuracy would include us-
ing infrared illumination coupled with visible-light filters on the
cameras, or using cameras with higher framerates or lower noise.
Lighting also affects the quality of the segmentation. The results
presented in the previous section were gathered under fairly ad hoc
lighting conditions, with two lamps mounted in the ceiling giving
good backlight to parts of the scene, but not covering it completely,
leaving large dark regions (visible in Figure 1(c)). Despite the vary-
ing light levels, the system yields an accuracy of about 1 cm.

The evaluation has only touched on the accuracy of positioning
an object within a slice, and not on how this relates to the depth
dimension. Since every slice is processed in the same way, it is rea-
sonable to assume that the resulting accuracy would be roughly the
same. However, conducting an experiment to prove this is very dif-
ficult, as it is hard for users to accurately point at targets shown on a
display wall as much as 35 cm away. For this reason, an evaluation
of the slice accuracy further away from the display wall is left as fu-
ture work. Support for recognition of 3D object pose (such as point-
ing direction) and a more refined camera model is also planned, as
well as an evaluation of the system’s accuracy when tracking mov-
ing targets.

7 CONCLUSION

This paper has presented the Interaction Spaces system for provid-
ing 3D input to applications running on wall-sized displays. The
system allows one or several users to interact with applications si-
multaneously using one or both hands, or any other object or body
part they might see fit to use. Unlike most existing systems, the
Interaction Spaces system can easily be extended to provide inter-
action along larger areas. It is non-intrusive, in that it does not
require users to wear special markers or carry devices to interact.
The system is in use with several different applications, including
an application for microarray visualization used to study relation-
ships between genes. In this application, the depth dimension can
be used to differentiate between navigating the visualization and se-
lecting genes. The experiments have demonstrated that the system
has an average accuracy of about 1 cm for the innermost slice.

ACKNOWLEDGEMENTS

Supported by the Norwegian Research Council (159936, 155550),
NSF (DBI-0546275), NIH (R01 GM071966, T32 HG003284),
NIGMS (P50 GM071508). Thanks to Matthew Hibbs, Tor-Magne
S. Hagen and Espen S. Johnsen.

REFERENCES

[1] S. Bathiche and A. Wilson. Microsoft Surface, 2007.
http://www.microsoft.com/surface/.

[2] X. Cao and R. Balakrishnan. VisionWand: interaction techniques for
large displays using a passive wand tracked in 3D. In UIST’03: Pro-
ceedings of the 16th annual ACM Symposium on User Interface Soft-
ware and Technology, pages 173–182, 2003.

[3] P. Dietz and D. Leigh. DiamondTouch: a multi-user touch technology.
In UIST’01: Proceedings of the 14th annual ACM Symposium on User
interface Software and Technology, pages 219–226, 2001.

[4] J. Y. Han. Low-cost multi-touch sensing through frustrated total in-
ternal reflection. In UIST’05: Proceedings of the 18th annual ACM
symposium on User interface software and technology, pages 115–
118, 2005.

[5] M. Hibbs, G. Wallace, M. Dunham, K. Li, and O. Troyanskaya. View-
ing the Larger Context of Genomic Data through Horizontal Integra-
tion. IV ’07: Information Visualization, pages 326–334, July 2007.

[6] E. Hildreth and F. Macdougall. Multiple camera control system, June
2006. US Patent no. 7058204.

[7] J. C. Lee. Hacking the Nintendo Wii Remote. IEEE Pervasive Com-
puting, 7(3):39–45, 2008.

[8] I. S. MacKenzie and C. Ware. Lag as a determinant of human perfor-
mance in interactive systems. In CHI’93: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 488–493,
1993.

[9] S. Malik and J. Laszlo. Visual touchpad: a two-handed gestural in-
put device. In ICMI’04: Proceedings of the 6th Int’l Conference on
Multimodal Interfaces, pages 289–296, 2004.

[10] G. D. Morrison. A Camera-Based Input Device for Large Interactive
Displays. IEEE Computer Graphics and Applications, 25(4):52–57,
2005.

[11] D. Stødle, P. H. Ha, J. M. Bjørndalen, and O. J. Anshus. Lessons
Learned using a Camera Cluster to Detect and Locate Objects. In
ParCo’07: Proceedings of Parallel Computing: Architectures, Algo-
rithms and Applications., volume 15 of Advances in Parallel Comput-
ing, pages 71–78. IOS Press, 2008.

[12] W. M. Vieta and M. Bell. WaveScape: a practical robust display
with a 3D gesture interface. In IPT/EDT’08: Proceedings of the
2008 workshop on Immersive projection technologies/Emerging dis-
play technologiges, pages 1–2, 2008.

[13] C. von Hardenberg and F. Bérard. Bare-hand human-computer inter-
action. In PUI ’01: Proceedings of the 2001 workshop on Perceptive
user interfaces, pages 1–8, 2001.

[14] G. Yahav, G. Iddan, and D. Mandelboum. 3D Imaging Camera for
Gaming Application. ICCE’07: Int’l Conference on Consumer Elec-
tronics., pages 1–2, Jan. 2007.

42

A.7 Tech-note: Device-Free Interaction Spaces 247

248 A Papers

Appendix B

The Shout event system

This appendix details the Shout event system. Shout is a network event system
based on the idea that applications need to exchange events of different kinds,
including input events, performance data and debug information. Since the appli-
cations run on different computers in the (parallel) display wall environment, the
system must allow applications to share events across machine boundaries.

B.1 Related work

The Shout event system is an important enabling component in several of the sys-
tems and applications presented in this dissertation. However, neither its design
nor the idea behind it is novel. There are a number of already existing network
event systems. The systems include: (i) the X Window System [86], where clients
may run on computers separate from the X server and send events to each other
using the XSendEvent() call; (ii) The Event Heap [161], which provides a tuple-
space based event infrastructure for the Interactive Workspaces project [75]; and
(iii) ECho [162], an event delivery system positioned towards parallel and grid
applications.

B.2 Model and architecture

In Shout, clients send and receive events to and from each other through a central-
ized server. An event can be any kind of occurrence that a client wants to make
known to other clients. Each event consists of an event type and a number of stan-
dard fields shown in Figure B.1. The rest of the event format is type-specific and
defined by the clients that use the given event types.

249

250 B The Shout event system

Clients configure a type filter when they connect to the server. The filter controls
which events the client receives. If the filter is empty, the client receives events of
all types. All events are coded in a binary format, using four bytes per field. A
binary format was chosen to keep the event size down and to simplify server-side
processing, compared to using a textual format like XML. The minimum event size
is 40 bytes.

Shout event

shout-flagsflags
server-

timestamp
usecs

server-
timestamp

secs

timestamp
usecs

timestamp
secsrefconpeer-idtypelength

data...

Required field

Optional field

Figure B.1: The event format used by Shout. Each field is 4 bytes long, and encoded in
network byte order.

The standard fields of a Shout event are: (i) Length: The event’s length in bytes
(including the length-field itself). The length is always a multiple of four; (ii) type:
The event’s type; (iii) peer-id: A value that identifies the client. The value is not
persistent, and changes each time a client connects to the Shout server; (iv) refcon:
A value that is defined by the event type; (v-vi) timestamp: A local timestamp taken
by the client in seconds and microseconds when the event is sent; (vii-viii) server
timestamp: A timestamp, in seconds and microseconds, recorded by the Shout
server when the event is received; (ix) flags: Event-type specific flags; (x) Shout-
flags: Flags internal to the event system, which are used to support bytestream
events and loopback functionality. The flags are set by setting different bits of the
field.

The rest of the event is defined by the event type, and is assumed to be in four-byte
fields unless the bytestream Shout-flag is set. All fields are swapped to network
byte order before they are sent, unless the event is a bytestream event. A bytestream
event contains the length of the bytestream in the first data-field1, followed by the
actual bytes. The bytes are not byte-swapped. The last field of a bytestream event
is padded to make the length of the event an even multiple of four.

The server receives events from clients, checks their type and then forwards each
event to all clients whose type filter matches the event’s type, or whose type filter
is empty.

B.3 Design

The Shout event system is designed around a centralized server with clients running
on different computers and devices on the same local-area network as the server.

1This is necessary since the number of bytes sent in an event is always a multiple of four.

B.3 Design 251

The clients connect to the server using a reliable communication channel. The
server design comprises three threads, as shown in Figure B.2: An input thread, a
processing thread and an output thread. The input thread receives data from clients.
It inspects the length field, and uses it to separate different events from each other.
It also modifies the server timestamp fields of the event with the current server
timestamp, and changes the event’s peer-id field to the client’s actual peer ID. The
events are queued for processing as they arrive.

Receive
thread

Processing-
and queuing

thread
Send

thread

Client ClientNumber of clients

Figure B.2: The server’s threaded design. The processing thread dequeues events from
each client’s receive queue, processes them, then re-enqueues them on the appropriate
send queues.

The processing thread examines the event type of any event on the queue. If it is a
Shout-specific event type (shown in Table B.1), it is handled directly by the server.
Otherwise, the event is queued on the outgoing event queues for each client whose
type filter matches the event type or is empty. The output thread sends data to a
given client as soon as data is available on the client’s output queue.

Type Description
Set filter Sent by a client to set its type filter. Each data field contains an event type

that the client wants to receive. The number of event types is derived
from the event’s length field (length−40

/ 4).
Set name Sent by a client to set its human-readable name on the server. The

bytestream Shout flag is set for the event. The length of the name stored
in the bytestream length field, and ASCII characters follow in the rest of
the data part of the event.

Table B.1: The two Shout specific event types.

A client sends two Shout-specific configuration events to set its type filter and a
human-readable name. Each item in the filter consists of a four-byte event type;
the number of event types is derived from the event’s length field by subtracting
the minimum event size of 40 bytes and dividing the resulting number by 4. The

252 B The Shout event system

human-readable name is used for debugging and development purposes, and is only
visible to the server. It is set by sending a bytestream event with the “set name”
event type.

B.4 Implementation

The Shout event system has been implemented in C, using POSIX threads and BSD
sockets. The system runs on platforms including ARM, x86 and PowerPC, with
either Linux or Mac OS X. The system consists of two components: The Shout
server, and the Shout client library.

The server opens a TCP socket on port 37372 on which it accepts connections from
clients. As clients connect, they are added to a list of clients which the server man-
ages. The server associates two event queues with each client: One for receiving
events from the client, and one on which events from other clients are queued to be
sent to the client. The queues are implemented as a linked list of reference-counted
events, and are unbounded. Events are delivered to clients in the same order as they
are received. However, no guarantees are made by the server that events from two
different sending clients are delivered in the same order to two different receiving
clients; however events from a single sending client are always delivered in the
same order as they are received. Events are reference-counted instead of making
a copy of an event for each client that should receive the event. This reduces load
due to memory copies, keeps memory usage down.

The input and output threads both use the select() call, respectively to wait
for available data on the different client sockets, and to check if it is possible to
send more data on the socket associated with a client. The output-thread further
makes use of a condition variable to synchronize with the processing thread. The
condition is signaled by the processing thread whenever a new event is queued for
sending to any client. The processing thread uses a condition variable to wait for
new events on the input thread.

Clients send and receive events using a library that is based on the server imple-
mentation. The library handles creating new events and memory management of
the events. It also handles queueing incoming and outgoing events, as well as com-
municating with the Shout server. In cases where the connection to the server is
closed, the library automatically tries to reconnect to the server at regular inter-
vals. The interval ranges from 1, 2, 4, 8 seconds, up to a maximum interval of 60
seconds. Clients may poll, block or use the select() call to wait for incoming
events. Listing B.1 shows how a simple Shout client is implemented using the
Shout client library, using the blocking method of waiting for events.

2The port can be changed if necessary; the choice of port was arbitrary and based on available
ports on the designated event server.

B.5 Evaluation 253

#include <shout.h>

// An example client that responds to PING events by sending a
// PONG event in return with the PING event sender’s timestamp.
int main(int argc, char *argv[]) {

shout_t *connection = 0;
shout_event_t *evt = 0;
uint32_t filter[] = { ’PING’ }, // the type filter

timestamp[2];

connection = shout_connect("hostname", 3737 /* port */, "Demo client");
shout_set_event_filter(connection, sizeof(filter)/4, filter);
while (1) {

evt = shout_wait_next_event(connection);
if (evt != 0) {

// Record the remote timestamp from the event
timestamp[0] = evt->data[0];
timestamp[1] = evt->data[1];
// Release our reference to the event:
shout_free_event(evt);
// Send an event in response
evt = shout_create_event(’PONG’, 0 /* shout-flags */, 0 /* event flags */,

0 /* ref-con */, 2 /* num data elems */,
timestamp /* pointer to data elems */);

// Queue the event
shout_queue_event(connection, evt);
// Release our reference to the event
shout_free_event(evt);

}
}
return 0;

}

Listing B.1: Sample Shout client code.

B.5 Evaluation

The Shout event system has been evaluated by measuring the roundtrip event de-
livery latency for a variable number of clients and events in flight. The approach
taken is similar to that taken by the standard “ping” utility, and is illustrated in Fig-
ure B.3. A client, referred to as the “ping master,” sends a ping-event. The event
contains a timestamp stored in two data items, in seconds and microseconds as re-
ported by the gettimeofday() system call. The timestamp is taken just before
queuing the event.

The master then waits for one or more pong-events in return. Pong-events are
sent by “pong slaves,” one for each ping-event they receive. The slaves copy the
ping-event timestamp into the pong-event, which enables the master to calculate
the roundtrip event delivery latency by comparing the timestamp taken when the
event was originally sent, to the current time.

254 B The Shout event system

Shout server

Ping master Pong slave

C
pong

slaves

R ping events in
flight at any given
time

Ping event Pong event

1. Ping master sends R
ping events

Shout server C
pong

slaves

After C received pong events, a
new ping event is generated. The
benchmark ends when max-pong
pong events have been received.

2. Ping master receives pong
events from pong slaves.

Figure B.3: Illustration of the roundtrip latency experiment.

The experiments are conducted by varying two parameters: (i) Rate (R): The num-
ber of ping-events sent by the master before it waits for corresponding pong-events
to arrive; (ii) Pong-slaves (C): The number of slaves that respond to each ping-
event. The rate was varied between the powers of two from 1 to 10 (i.e., 20 to
210). The number of pong-slaves was varied between 1 and 64. The experiment
was conducted on the Tromsø display wall cluster. The event server ran on the
cluster’s front-end. The ping master and pong slaves were all evenly distributed on
each of the 28 cluster nodes. No other clients were using the Shout server when
the experiment was conducted. For each configuration, 100000 ping-events were
sent.

B.5.1 Results

Figure B.4 shows a plot of the results from the experiment, and the numbers in
Table B.2. As the number of events in flight grows, either as a result of increasing
the rate (R) parameter, or increasing the number of clients, the latency goes up.
The lowest roundtrip latency was 0.26 ms, which grew to 1.65 ms with 64 clients.
In comparison, the “ping” utility reports a mean roundtrip latency between two
computers in the Tromsø display cluster at 0.095 ms, after sending one million
ICMP ping packets from the front-end to one of the cluster computers in flood-
ping mode with up to 5 ping packets in flight3.

3The command and options used were: sudo ping -c 1000000 -f -q -l 5
hostname

B.6 Discussion 255

 500

 300
 200

 100

 50

 25

 10

 5

 3
 2

 1

 0.5

 0.3
 0.2

 64 32 16 8 4 2 1

M
ill

is
ec

on
ds

Pong slaves

Roundtrip latency
R=1

R=2

R=4

R=8

R=16

R=32

R=64

R=128

R=256

R=512

R=1024

Figure B.4: Results from the latency experiment. The Y axis shows the latency in millisec-
onds. The X axis shows the number of pong slaves. The Y axis is logarithmically scaled.

B.6 Discussion

The latency of the system is sufficiently low to support interactive applications,
compared to the baseline latency of 8.3 ms which the authors of [141] term as
“negligible.” The roundtrip latency stays below 10 ms with up to 16 events in
flight simultaneously for up to 64 clients, at which point the server is processing
about 133000 events per second.

When sending one ping event at a time, Shout has a roundtrip latency of 0.26 ms,
which is about 2.7 times more than the network latency reported by the “ping”
tool. This discrepancy can be explained by the following three factors: (i) The
ping utility measures the time taken for a packet to be sent between two computers,
while the experiment measured the time for a packet to be sent from one computer,
via the event server, to a third computer, and back the same way; (ii) the “ping”
utility sends packets as raw ICMP IP-packets, while Shout communicates over TCP
connections4; (iii) the Shout server incurs some overhead in queueing, processing
and re-sending events. However, the difference is not very big.

It is possible that further refinements to the server implementation could reduce
the latency of the Shout system further. Profiling the server has revealed that al-
locating and releasing memory is responsible for a large part of the server’s CPU
consumption. Using a different memory allocator or having pools of “common”
event sizes at the server’s disposal, may reduce the load incurred by frequent mem-
ory allocations. At present, however, the Shout server’s performance is deemed

4The connections have the Nagle algorithm disabled, by setting the TCP NODELAY flag on the
sockets used for communication.

256 B The Shout event system

Slaves R=1 R=2 R=4 R=8 R=16 R=32
1 0.26 0.30 0.50 0.50 0.52 0.64
2 0.36 0.48 0.50 0.51 0.58 0.76
4 0.42 0.49 0.50 0.59 0.76 1.03
8 0.51 0.53 0.63 0.81 1.10 1.64
16 0.63 0.74 0.96 1.34 1.89 2.91
32 0.90 1.19 1.66 2.34 3.52 5.71
64 1.65 2.31 3.24 4.78 7.63 13.87

Slaves R=64 R=128 R=256 R=512 R=1024
1 0.85 1.29 1.99 3.50 6.57
2 1.06 1.70 3.01 5.55 10.59
4 1.65 2.76 4.85 9.01 17.68
8 2.72 4.87 8.89 17.06 31.70
16 4.90 8.92 17.03 35.52 62.38
32 10.44 20.85 40.80 92.65 185.62
64 27.51 61.50 141.71 291.07 496.25

Table B.2: Mean roundtrip latency for sending 100000 ping events, and receiving R*100000
pong replies. All times are in milliseconds.

satisfactory.

Earlier results reported that the roundtrip latency of Shout were an order of mag-
nitude higher than reported here. This discrepancy was due to a calculation error
when converting values from seconds to milliseconds. The latency measurement
experiments for Shout were re-conducted, with results as presented here.

B.7 Conclusion

This appendix has documented the Shout event system and its latency for deliv-
ering events. The Shout event system provides a mechanism for distributing dif-
ferent kinds of events between applications running on different computers. It is
instrumental in enabling several of the systems and applications presented in this
dissertation.

Appendix C

Network discovery mechanism

This appendix gives a very brief overview of the network discovery mechanism
used by the 22 megapixel laptop and De-Centralized VNC implementations (Sec-
tions 6.3 and 6.4). It was implemented at the time due to lacking cross-platform
implementations and APIs for Bonjour [163]. Bonjour is Apple’s implementation
of Zeroconf networking [164], where services are advertised on the local network
for potential users of the service to discover.

The network discovery mechanism is based on providers of a service periodically
multicasting advertisements on the local network. Clients of the service listen for
UDP multicast packets on a pre-determined port. Clients can also send a solicita-
tion which prompts all running providers to advertise their presence. This speeds
up the discovery process.

Providers send advertisements at regular intervals ranging from 1 to 3600 seconds,
beginning at 1 second, and then gradually increasing the delay between advertise-
ments until the maximum of 3600 seconds is reached. The delay is reset whenever
a solicitation is received from a client by a provider.

An advertisement contains a magic number and the TCP port number that the
provider is listening on. The magic number is used by clients to check that the
packet actually contains an advertisement, and is not just random data from a dif-
ferent multicast application that happens to use the same multicast address and
port combination as the network discovery mechanism. The port number is used
by the client to connect to the provider. For the 22 megapixel laptop, this is the
port the NAD component listens for connections from the laptop component; for
De-Centralized VNC, this is the port each VNC viewer listens on to receive connec-
tions from other VNC viewers. The De-Centralized VNC implementation further
augments each advertisement with the area covered by the advertising viewer.

The network discovery mechanism is implemented in C using standard BSD sock-
ets for communication and pthreads for threading. When the mechanism is ini-

257

258 C Network discovery mechanism

tialized by the client, a multicast socket is created and a separate thread started to
handle listening and sending packets on the multicast socket. Whenever an adver-
tisement arrives, the advertisement is parsed and a callback function is called in the
provider or client’s code.

Appendix D

Pentium 4 and Xeon memory
bandwidth

This appendix documents the memory bandwidth of the Pentium 4 and Xeon used
to run the VNC server in the experiments measuring the performance of the De-
centralized VNC and original VNC implementations.

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

28 210 212 214 216 218 220 222 224 226 228

M
em

or
y

ba
nd

wi
dt

h
(M

B/
s)

Buffer size (bytes)

Memory Hierarchy Performance of Pentium 4 and Xeon

Xeon Read-modify-write
Pentium 4 Read-modify-write

Figure D.1: Memory hierarchy performance of the Xeon and Pentium 4.

CacheBench, a part of the Low-Level Characterization benchmark suite [165], was
run on both the Pentium 4 and Xeon. The benchmark measures performance in
three ways: (i) Read; (ii) write; and (iii) read-modify-write. Of these three, the
read-modify-write approach is most similar to the actions taken by the VNC server

259

260 D Pentium 4 and Xeon memory bandwidth

when it executes a Copy Rect operation. Vectors of different lengths are read, mod-
ified and written back to memory, resulting in number describing how the different
caches in the system interplay with the system’s overall memory bus speeds. This
is similar to a Copy Rect operation in that a block of memory is read, then moved
to a different area in memory.

The results from running CacheBench on the Pentium 4 and Xeon are shown in
Figure D.1. For small buffer lengths, the L1 and L2 caches are able to keep the
apparent memory bandwidth high1. As the buffer lengths grow beyond the L2
cache capacity, the sustained CPU-to-memory bandwidth becomes evident. For
the Pentium 4, the sustained memory bus bandwidth was 3.78 GB/second, while
the Xeon sustains 2.16 GB/second. The Xeon has a higher memory bandwidth
for small buffer sizes, but performs worse than the Pentium 4 for sustained read-
modify-writes above 2 MB.

1Both the Pentium 4 and the Xeon have a 16 KB L1 cache. The Pentium 4’s L2 cache is 1 MB,
while the Xeon has a 2 MB L2 cache.

Appendix E

CD-ROM

A CD-ROM accompanies this dissertation. The contents of the CD-ROM are:

• A PDF copy of the dissertation.

• Individual PDF copies of the papers on which this dissertation is founded.

• The Hybrid vision- and sound poster.

• All the videos produced in conjunction with the research presented in this
dissertation. The videos are further detailed in Chapter 1.

– Hybrid vision- and sound-based interaction on display walls

– Three years of the comic “M”

– Device-free interaction spaces

– Microarray visualization

– The 22 megapixel laptop

– De-centralized VNC: Two videos, one of the original VNC implemen-
tation, and one of the DVNC implementation.

The CD-ROM is also available as a disk image from:

http://www.cs.uit.no/˜daniels/

261

